Abstract
Chemical reactions reveal all types of exotic behavior, that is, multistability, oscillation, chaos, or multistationarity. The mathematical framework of rate equations enables us to discuss steady-states, stability and oscillatory behavior of a chemical reaction. A planar cubic dynamical system governed by nonlinear differential equations induced by kinetic differential equations for a two-species chemical reaction is studied. It is investigated that system has unique positive steady state. Moreover, local dynamics of system is studied around its positive steady state. Existence and direction of Hopf bifurcation about positive equilibrium are carried out. In order to modify the bifurcating behavior, bifurcation control is investigated. Keeping in mind, a consistency preserving discretization for continuous chemical reaction system, a discrete counterpart is proposed, and its qualitative behavior is investigated. Numerical simulation along with bifurcation diagrams are provided to illustrate the mathematical investigations.