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Abstract

Chemical reactions reveal all types of exotic behavior, that is,
multistability, oscillation, chaos, or multistationarity. The mathe-
matical framework of rate equations enables us to discuss steady-
states, stability and oscillatory behavior of a chemical reaction. A
planar cubic dynamical system governed by nonlinear differential
equations induced by kinetic differential equations for a two-species
chemical reaction is studied. It is investigated that system has
unique positive steady state. Moreover, local dynamics of system
is studied around its positive steady state. Existence and direc-
tion of Hopf bifurcation about positive equilibrium are carried out.
In order to modify the bifurcating behavior, bifurcation control is
investigated. Keeping in mind, a consistency preserving discretiza-
tion for continuous chemical reaction system, a discrete counterpart
is proposed, and its qualitative behavior is investigated. Numerical
simulation along with bifurcation diagrams are provided to illustrate
the mathematical investigations.
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1 Introduction

The qualitative analysis of chemical reactions is an interesting topic of

study for both mathematicians and biologists due to the investigation of

the oscillatory behavior of chemical reactions. Existence of the limit cycles

and Hopf bifurcation analysis are topics of great interest and many authors

have studied chemical reaction systems. Schnakenberg [1] investigated

limit cycle analysis for a two-component chemical system of autocatalytic

type involving at least three reactions. Csaszar et al. [2] proposed some

chemical reaction systems yielding limit cycle behavior. Di Cera et al. [3]

studied oscillatory behavior for a 4–dimensional chemical reaction model

including limit cycle analysis, and chaotic behavior. Forbes and Holmes [4]

discussed the limit cycle behavior for a cubic autocatalator type chemical

reaction system. Vance and Ross [5] explored fluctuating behavior around

limit cycle for a chemical reaction system of homogeneous type by applying

a master equation approach. Shabunin et al. [6] discussed limit cycle

analysis and chaotic behavior for a chemical reaction system under an

external periodic force. Nagy et al. [7] reported two nested type limit

cycles for a two-species chemical reaction model.

Nielsen et al. [8] investigated supercritical Hopf bifurcation for Belo-

usov–Zhabotinsky type chemical reaction models. Olsen [9] addressed

codimension one and codimension two Hopf bifurcation for some variants

of Citri–Epstein type chlorite–iodide chemical reactions. Errami et al. [10]

explored emergence of Hopf bifurcation in a chemical reaction of networks.

Fercec et al. [11] studied supercritical Hopf bifurcation for two reaction

systems related to biochemistry. Din et al. [12] studied a cubic auto-

catalator chemical reaction model incorporating limit cycle analysis, Hopf

bifurcation and discretization. Din [13] discussed a chaotic 3–dimensional

chemical reaction model with local, global behaviors and Hopf bifurca-

tion analysis. Discretization, bifurcation analysis and chaos control for

some chemical reaction models have been investigated in [14–17]. Wil-

helm and Heinrich [18] proposed a bimolecular chemical reaction model

with the smallest possible reaction system for appearance of Hopf bifur-

cation. Wang et al. [19] studied Gierer–Meinhardt type chemical reaction
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system incorporating pattern formation mechanism and emergence of Hopf

bifurcation. Dutt [20] reported oscillatory behavior for a diffusion type

chemical reaction model.

Two-species chemical reaction systems involve the interaction between

only two different chemical species. They are important because they can

exhibit a wide range of dynamic behaviors, such as periodic oscillations,

chaos, and fixed points. Understanding these systems can provide insight

into the behavior of more complex reaction systems and can help in the

design of chemical processes and the development of new materials. For

example, two-species reaction systems are used in the study of chemical

oscillators, which are chemical reactions that exhibit periodic changes in

concentration over time. These oscillators are used in a variety of applica-

tions, including clocks, sensors, and biological systems. Another example

is the study of bistable chemical reactions, which are reactions that have

two stable states, separated by an unstable intermediate state. These sys-

tems can be used to create chemical switches and memory devices, where

the state of the reaction can be controlled and maintained by an external

stimulus. In other words, two-species chemical reaction systems are im-

portant because they provide a simple and well-understood model system

for the study of chemical dynamics, which can be applied to a wide range

of real-world problems.

Two-species chemical reaction systems are also important in systems

biology, where they are used to model the interactions between different

components of biological systems such as protein-protein interactions or

gene regulation. In chemical engineering, two-species reaction systems are

used to model and optimize the behavior of chemical reactors, where the

goal is to achieve a desired product yield with a minimum of waste.

Overall, two-species chemical reaction systems provide a simple yet

powerful framework for studying a wide range of phenomena in chemical

kinetics, systems biology, and chemical engineering.

Arguing as in [2], a two-species chemical reaction described by A and

B is given as follows:

O
k1−→B, A

k2−→O, B
k3−→A, 2A

k4−→B, 2A+B
k5−→3A, (1)
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where O represents the environment and k1, · · · , k5 are positive numbers

representing reaction rate coefficients. Moreover, the schematic diagram

of two-species chemical reaction (1) is depicted in Fig. 1.

Figure 1. Schematic diagram of reaction (1).

Taking into account the reaction (1), one has the following two-dimensi-

onal induced dynamical system:

dx
dt =− k2x− 2k4x

2 + k3y + k5x
2y,

dy
dt =k1 + k4x

2 − k3y − k5x
2y,

(2)

where x and y are concentrations of species A and B, respectively. Keeping

in mind the simplicity for further computation, we assume that k4=k5= 1,

k2=a, k3=b and k1=c. Then system (2) can be rewritten as follows:

dx
dt =− ax− 2x2 + by + x2y,
dy
dt =c+ x2 − by − x2y.

(3)

The novelty of present study is described as follows:

• The existence and direction of Hopf bifurcation about positive equi-

librium of the system (3) are investigated.
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• The bifurcating behavior of the system (3) is controlled through im-

plementation of a chaos control method.

• Taking into account the consistency preserving discretization for the

system (3), a discrete counterpart is proposed, and its qualitative

behavior is studied.

The rest of the discussion for this paper is summarized as follows. In

Section 2, existence of interior (positive) equilibrium point is discussed.

Moreover, the parametric conditions are analyzed for which coexistence

is a sink and a source. In Section 3, it is investigated that system (3)

undergoes Hopf bifurcation about its coexistence. Moreover, bifurcation

theory of normal forms is implemented to explore direction of Hopf bifur-

cation and the Lyapunov first exponent is also computed. The bifurcating

behavior of the model is controlled in Section 4. A consistency preserving

discretization is implemented to system (3) in Section 5. Moreover, sta-

bility about fixed point, and bifurcation analysis are studied for discrete

counterpart of system (3). In Section 6, numerical simulation is presented

for illustration of theoretical investigation.

2 Local stability analysis

In order to find equilibria of system (3), we solve the following system:

−ax− 2x2 + by + x2y = 0,

c+ x2 − by − x2y = 0.
(4)

Then, it is easy to see that unique positive equilibrium (x∗, y∗) of system

(3) is given as follows:

(x∗, y∗) =

−a+
√
a2 + 4c

2
,
(b+ c)(a2 + 4c) +

√
a2 + 4c(c− b)

2
(
a2b+ (b+ c)

2
)

 .

Moreover, existence of unique positive equilibrium (x∗, y∗) is automatically

satisfied under positivity conditions of parameters a, b and c. On the other

hand, the Jacobian matrix J(x∗, y∗) of system (3) about (x∗, y∗) is given
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as follows:

J(x∗, y∗) =


a(b−c)2−b(a2+2(b+c))

√
a2+4c

ba2+(b+c)2
1
4

(
a−

√
a2 + 4c

)2
+ b

(b−c)(a(c−b)+(b+c)
√
a2+4c)

ba2+(b+c)2
− 1

4

(
a−

√
a2 + 4c

)2 − b

 .

Moreover, simple computation yields that the trace TJ(x∗, y∗) of J(x∗, y∗)

and its determinant detJ(x∗, y∗) are given by:

TJ(x∗, y∗) :=
a(b− c)2 − b

(
a2 + 2(b+ c)

)√
a2 + 4c

ba2 + (b+ c)2
− 1

4

(
a−

√
a2 + 4c

)2

− b,

and

detJ(x∗, y∗) :=− a3

2
+
√
a2 + 4c(b+ c) +

1

2
a2
√
a2 + 4c− 2ac.

Taking into account the Routh–Hurwitz stability criterion, we have the

following result.

Lemma 1. The following hold true for positive equilibrium of system (3):

(i) (x∗, y∗) is a sink if

a(b− c)
2 − b

(
a2 + 2(b+ c)

)√
a2 + 4c

ba2 + (b+ c)
2 <

1

4

(
a−

√
a2 + 4c

)2
+ b,

and √
a2 + 4c(b+ c) +

1

2
a2
√
a2 + 4c> 2ac+

a3

2
.

(i) (x∗, y∗) is a source if

a(b− c)
2 − b

(
a2 + 2(b+ c)

)√
a2 + 4c

ba2 + (b+ c)
2 >

1

4

(
a−

√
a2 + 4c

)2
+ b,

and √
a2 + 4c(b+ c) +

1

2
a2
√
a2 + 4c> 2ac+

a3

2
.

Moreover, for c= 15.5 the visualization counterpart of Lemma 2 is de-

picted in Fig. 2.
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Figure 2. Dynamical classification of positive equilibrium of system
(3).

3 Hopf bifurcation

In this section, emergence of Hopf bifurcation is discussed for system (3).

For this, b is taken as bifurcation parameter, and we assume that b=b0,

where b0 is possible positive root for the following cubic equation:

b3 +A1b
2 +A2b+A3= 0,

where

A1=
1

2

(
−a
(√

a2 + 4c+ 2
)
+ 4
√
a2 + 4c+ 3a2 + 6c

)
,

A2=
a4

2
+ a2

(√
a2 + 4c+ 2c

)
− ac

(√
a2 + 4c− 2

)
+ c

(
2
√
a2 + 4c+ 3c

)
− 1

2
a3
√
a2 + 4c,

and

A3=
1

4
c2
((

a−
√
a2 + 4c

)2
− 4a

)
.

The following Theorem gives necessary and sufficient conditions for exis-

tence of Hopf bifurcation for system (3) about its positive equilibrium.

Theorem 1. Assume that b=b0 and ρ ̸= 0, then system (3) undergoes
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Hopf bifurcation about its positive equilibrium (x∗, y∗), where

ρ=
d

db
T (b)|b=b0 ,

T (b) :=
a(b− c)

2 − b
(
a2 + 2(b+ c)

)√
a2 + 4c

ba2 + (b+ c)
2 − 1

4

(
a−

√
a2 + 4c

)2
− b.

Proof. Taking into account analysis of Section 2, it is easy to see that the

characteristic polynomial for J(x∗, y∗) is given as follows:

P (λ) =λ2 − T (b)λ+D(b), (5)

where

D(b) :=− a3

2
+
√
a2 + 4c(b+ c) +

1

2
a2
√
a2 + 4c− 2ac.

Furthermore, it is easy to see that D(b) > 0 for all b> 0, and T (b0) = 0.

Therefore, at b=b0 characteristic equation (5) reduces to P (λ) =λ2+D(b0)

yielding λ1,2= ± i
√
D(b0) as eigenvalues for J(x∗, y∗). In order to ver-

ify transversality condition (that is, the eigenvalues must cross the imag-

inary axis with nonzero speed), we consider any point b in the neigh-

borhood of b0, and one has λ1,2=α(b) ± iβ(b), where α(b) :=T (b)/2 and

β(b) :=
√

D(b)− T 2(b)
4 . Therefore, if we assume that ρ= d

dbα(b)|b=b0 ̸= 0,

then system (3) undergoes Hopf bifurcation about (x∗, y∗) when b varies

in the neighborhood of b0.

Next, in order to investigate the direction of Hopf bifurcation, first we

consider the translations w1=x − x∗ and w2=y − y∗, then under these

translations system (3) is transformed into the following system with equi-

librium at (0, 0):

dw1
dt

=− a(w1 + x∗)− 2(w1 + x∗)2 + b(w2 + y∗) + (w1 + x∗)2(w2 + y∗),
dw2
dt

=c+ (w1 + x∗)2 − b(w2 + y∗)− (w1 + x∗)2(w2 + y∗).

(6)

Applying Taylor series to system (6) about (w1, w2) = (0, 0) yields the



159

following system:

(
dw1

dt
dw2

dt

)
=

 m11 m12

m21 m22

( w1

w2

)
+

(
f(w1, w2)

g(w1, w2)

)
, (7)

where

m11=
a(b− c)

2 − b
(
a2 + 2(b+ c)

)√
a2 + 4c

ba2 + (b+ c)
2 , m12=

1

4

(
a−

√
a2 + 4c

)2
+b,

m21=
(b− c)

(
a(c− b) + (b+ c)

√
a2 + 4c

)
ba2 + (b+ c)

2 , m22=−1

4

(
a−

√
a2 + 4c

)2
−b,

f(w1, w2) = (y∗ − 2)w2
1 + 2x∗w1w2 + w2

1w2,

and

g(w1, w2) = (1− y∗)w2
1 − 2x∗w1w2 − w2

1w2.

Assume that b=b0, and the following transformation is considered:

(
w1

w2

)
=

 m11 0

−m12 −β(b0)

( z1

z2

)
. (8)

From (7) and (8), we obtain the following system in canonical form:

(
dz1
dt
dz2
dt

)
=

 0 −β(b0)

β(b0) 0

( z1

z2

)
+

(
f1(z1, z2)

g1(z1, z2)

)
, (9)

where

f1(z1, z2) =
1

m11
f(m11z1, −m12z1 − β(b0)z2),
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and

g1(z1, z2) =− m12

β(b0)m11
f(m11z1, −m12z1 − β(b0)z2)

− 1

β(b0)
g(m11z1, −m12z1 − β(b0)z2).

In order to discuss direction and stability of periodic orbits, the first Lya-

punov exponent L1 is computed at (z1, z2, b) = (0, 0,b0) as follows [21]:

L1=
1

16
[f1

z1z1z1 + f1
z1z2z2 + g1z1z1z2 + g1z2z2z2 ]

+
1

16β(b0)

[
f1
z1z2

(
f1
z1z1 + f1

z2z2

)
− g1z1z2

(
g1z1z1 + g1z2z2

)]
− 1

16β(b0)

[
f1
z1z1g

1
z1z1 − f1

z2z2g
1
z2z2

]
.

Then, we have the following result.

Theorem 2. Assume that ρ ̸= 0, and L1 ̸= 0, then system (3) experiences

Hopf bifurcation about (x∗, y∗) whenever b varies in a small neighborhood of

b0. Furthermore, bifurcation is subcritical if L1> 0, and it is supercritical

if L1< 0.

4 Bifurcation control

In order to achieve certain desired dynamical properties, controlling bifur-

cating behavior refers to the formulation of a controller that can modify

the fluctuating behavior of a given nonlinear system. The Hopf bifurca-

tion is associated with the appearance of a periodic solution. Such type

of situation can lead to oscillations with large amplitude whenever the

bifurcation (Hopf) point is approached. Consequently, it is appropriate

to vary such fluctuating behavior, which can be accomplished due to the

implementation of bifurcation control.

In this section, we apply a state feedback control method [22] to system
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(3), and in a result the following controlled system is obtained:

dx
dt =− ax− 2x2 + (b1 − k1(x− x∗)− k2(y − y∗))y + x2y,
dy
dt =c+ x2 − (b1 − k1(x− x∗)− k2(y − y∗))y − x2y,

(10)

where (x∗, y∗) is positive equilibrium of system (3), k1 and k2 are control

parameters, and b1 is some appropriate value of bifurcation parameter b

in the Hopf bifurcation region. On the other hand, the Jacobian matrix

for system (10) about (x∗, y∗) is given as follows:

J(x∗, y∗) =

 2x∗(y∗ − 2)− a− k1y
∗ b+ (x∗)

2 − k2y
∗

k1y
∗ − 2x∗(y∗ − 1) k2y

∗ − b− (x∗)
2

 .

A simple consequence of Routh–Hurwitz criterion gives that system (10)

is controllable if the following conditions are satisfied:

y∗(k2 − k1 + 2x∗) <a+ b+ x∗(x∗ + 4),

b+ (x∗)
2

>k2y
∗.

(11)

For a= 2.5, b= 3.25 and c= 4.5 the feasible region of (11), that is, control-

lable region for system (10) is depicted in Fig. 3.

Figure 3. Controllable region of system (10) in k1k2-plane.
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5 Discretization of system (3)

Discretization of chemical reaction systems is important because it allows

the use of mathematical tools and techniques to study the dynamics of the

system. The process of discretization converts the continuous-time dy-

namics of a chemical reaction system into a discrete-time dynamics, which

is represented as a sequence of states. This discrete-time representation

makes it possible to apply a wide range of mathematical and computational

methods to study the system, such as numerical integration, stability anal-

ysis, and control theory.

Discretization can also help in the simplification of the system. For

example, many chemical reaction systems are high-dimensional, and the

discrete-time representation can reduce the dimensionality of the system,

making it more tractable for analysis and control. Additionally, discretiza-

tion can be used to identify and isolate important features of the system,

such as steady states, limit cycles, and bifurcations.

Furthermore, discretization is also useful for the simulation of chemical

reaction systems. It allows to use finite difference or finite element method,

which is a common approach to simulate chemical reaction systems. This

process helps to reduce the computational cost of solving the system and

it allows the use of standard numerical integration techniques.

In summary, discretization is an important tool for studying chemical

reaction systems, as it allows the application of mathematical and compu-

tational methods to analyze and control the system, and simplifying the

system.

Consistency preserving discretization is a numerical method for ap-

proximating the solution of a continuous-time dynamical system, such as

a chemical reaction system, in a discrete-time format. The main objective

of this method is to ensure that important properties of the continuous-

time system, such as stability and bifurcating behavior are preserved in

the discrete-time approximation.

In this section, we propose a consistency preserving discretization for the

system (3). For this, a nonstandard finite difference scheme is applied to

system (3) as follows:
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xn+1−xn

h =− a xn+1 − 2xn+1xn + byn + (xn)
2
yn,

yn+1−yn

h =c+ (xn)
2 − byn+1 − (xn)

2
yn+1,

(12)

where 0 < h < 1 is step size for discretization. Furthermore, some simpli-

fication of (12) yields the following 2-dimensional map:(
x

y

)
→

(
x+b hy+hx2y
1+ah+2h x
ch+y+h x2

1+bh+hx2

)
. (13)

Furthermore, the Jacobian matrix M(x∗, y∗) of system (13) about (x∗, y∗)

is given as follows:

M (x∗, y∗)=


θ11

(a2+2(b+c)−a
√
a2+4c)h

2+2
√
a2+4ch

θ21
1

1+bh+ 1
4 (a−

√
a2+4c)

2
h

 ,

where

θ11 =
1 + ah+ 2h (x∗ + h (−b+ x∗ (a+ x∗))) y∗

(1 + ah+ 2hx∗)
2 ,

and

θ21 =
2hx∗ (1 + bh− ch− y∗)(

1 + h
(
b+ x∗2

))2 .

On the other hand, the characteristic equation for M (x∗, y∗) is com-

puted as follows:

F (X) = X2 −

(
1

1 + bh+ 1
4

(
a−

√
a2 + 4c

)2
h
+ θ11

)
X +detM (x∗, y∗) .

With some tedious calculations, one can show that F (±1) > 0, and

detM (x∗, y∗) < 1 if the following inequality holds true:

hθ21

(
a4h+ a2(2bh+ 4ch+ 1)− a3h

√
a2 + 4c

)
+ hθ21

(
2(b+ c)(h(b+ c) + 1)− a

√
a2 + 4c(2h(b+ c) + 1)

)
<
(
h
√

a2 + 4c+ 1
)(

h
(
−
(
a2 + 2(b+ c)

))
+ ah

√
a2 + 4c+ 2θ11 − 2

)
.
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On the other hand, detM (x∗, y∗) > 1 if the following inequality holds

true:

hθ21

(
a4h+ a2(2bh+ 4ch+ 1)− a3h

√
a2 + 4c

)
+ hθ21

(
2(b+ c)(h(b+ c) + 1)− a

√
a2 + 4c(2h(b+ c) + 1)

)
>
(
h
√
a2 + 4c+ 1

)(
h
(
−
(
a2 + 2(b+ c)

))
+ ah

√
a2 + 4c+ 2θ11 − 2

)
.

Consequently, the fixed point (x∗, y∗) of (13) is a sink if detM (x∗, y∗) < 1

and source if ,detM (x∗, y∗) > 1. On the other hand, at h = 0.01 and

c = 15.5 the regions for sink and source are depicted in Fig. 4. Moreover,

from Fig. 2 and Fig. 4, it is easy to see that dynamical behaviors of

both continuous and its discrete counterpart are almost identical with an

appropriate choice of step size h.

Figure 4. Dynamical classification of positive equilibrium of system
(13).
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Taking h as bifurcation, system (13) undergoes codimension-1 Neimark-

Sacker bifurcation when h passes through small neighborhood of h1, where

h1 is positive root of the following equation:

hθ21

(
a4h+ a2(2bh+ 4ch+ 1)− a3h

√
a2 + 4c

)
+ hθ21

(
2(b+ c)(h(b+ c) + 1)− a

√
a2 + 4c(2h(b+ c) + 1)

)
=
(
h
√

a2 + 4c+ 1
)(

h
(
−
(
a2 + 2(b+ c)

))
+ ah

√
a2 + 4c+ 2θ11 − 2

)
,

and ∣∣∣∣∣ 1

1 + bh1 +
1
4

(
a−

√
a2 + 4c

)2
h1

+ θ11(h1)

∣∣∣∣∣ < 2.

6 Numerical simulations

In this section, we consider some appropriate numerical simulation for

illustration and validation of theoretical investigation. For this, Mathe-

matica packages are implemented for bifurcation diagrams and other rele-

vant numerical simulation. Moreover, validity of bifurcation control is also

checked. In the end, emergence of Neimark-Sacker bifurcation is explored

in proposed discrete-time chemical reaction system.

In order to show emergence of Hopf bifurcation, first we choose a= 15.2,

c= 25.3 and b ∈ [0.5, 1.5]. Then, we will verify that system (3) is unsta-

ble for 0.5 ≤ b<b0= 1.098109805678854, asymptotically for b0<b ≤ 1.5,

and it will undergo Hopf bifurcation at b ≡ b0= 1.098109805678854. Fur-

thermore, if one choose a= 15.2, c= 25.3 and b= 1.15, then (1.514, 8.02)

is unique positive equilibrium point for system (3). On the other hand,

the complex conjugate multipliers for the variational matrix of system (3)

about (x∗, y∗) = (1.51373, 8.01756) are given by λ1,2=−0.211744±7.91723i

with R(λ1,2) =− 0.211744 < 0 showing that equilibrium is asymptotically

stable. Moreover, the plots for state-variables and associated phase por-

trait are shown in Fig. 5.
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(a) Plot for x(t) (b) Plot for y(t)

(c) Phase portrait

Figure 5. Plots and phase portrait for the system (3) with a= 15.2,
c= 25.3 and b= 1.15, and (x0, y0) = (1.51373, 8.01756).

Secondly, we take a= 15.2, c= 25.3 and b=b0= 1.098109805678854, then

system (3) has unique equilibrium (1.51373, 8.1403) with multipliers λ1,2=

± 7.86012i. On the other hand, we have α(b) is given as follows:

α(b) =− b+
83.5315

b+ 2.29137
− 23.5463.

Taking into account transversality condition, one has

ρ=
d

db
α(b)|b=b0=− 4.13543 < 0.

Therefore, necessary and sufficient conditions for appearance of Hopf bifur-

cation are satisfied at b=b0= 1.098109805678854. On the other hand, due

to some tedious computation, the first Lyapunov exponent is calculated as

follows:

L1=− 8.79151121928982 < 0.

Furthermore, considering a= 15.2, c= 25.3 and b=b0= 1.098109805678854

(bifurcation point), the plots for state-variables and associated phase por-

trait are shown in Fig. 6.
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(a) Plot for x(t) (b) Plot for y(t)

(c) Phase portrait

Figure 6. Plots and phase portrait for the system (3)
with a= 15.2, c= 25.3, b= 1.098109805678854, and
(x0, y0) = (1.51373, 8.1403).

Moreover, for a= 15.2, c= 25.3 and b ∈ [0.5, 1.5] bifurcation diagrams

for system (3) are depicted in Fig. 7.

(a) Bifurcation diagram for x(t) (b) Bifurcation diagram for x(t)

Figure 7. Bifurcation diagrams for the system (3) with a= 15.2,
c= 25.3, b ∈ [0.5, 1.5], and (x0, y0) = (1.51373, 8.1403).

Next, in order see the behavior of the system in bifurcation region,

that is, 0.5 ≤ b<b0= 1.098109805678854, we choose a= 15.2, c= 25.3 and
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b= 0.5. Then, system (3) has unique positive equilibrium (1.51373, 9.88454)

with multipliers of Jacobian matrix about (x∗, y∗) = (1.51373, 9.88454) are

given by λ1,2= 2.93935 ± 6.49921i having R(λ1,2) = 2.93935 > 0. Conse-

quently, equilibrium is a source and plots of system are depicted in Fig. 8.

In Fig. 8c, a limit cycle is depicted for the system (3) at b= 0.5.

(a) Plot for x(t) (b) Plot for y(t)

(c) Phase portrait

Figure 8. Plots and phase portrait for the system (3) with a= 15.2,
c= 25.3, b= 0.5, and (x0, y0) = (1.51373, 9.88454).

On the other hand, for b= 0.9, b= 0.8, b= 0.7 and b= 0.6 limit cycles

are depicted in Fig. 9.
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(a) Limit cycle at b= 0.9 (b) Limit cycle at b= 0.8

(c) Limit cycle at b= 0.7 (d) Limit cycle at b= 0.6

Figure 9. Limit cycles for the system (3) with a= 15.2, c= 25.3 and
various values of b.

Finally, effectiveness of bifurcation control is checked in the bifurcation

region. For this, assume that a= 15.2, c= 25.3 and b= 0.5 for controlled

system (10), then this system is controllable if k1 ≤ 0.877134, k2<k1 −
0.594736, or k1> 0.877134, k2<0.28239. For k1= 1.5 and k2= 0.1, bifur-

cation control procedure is activated for system (3) for 50 ≤ t ≤ 100 and

corresponding plots are depicted in Fig. 10.
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(a) Plot for x(t) (b) Plot for y(t)

Figure 10. Activated control procedure for the system (3) with
a= 15.2, c= 25.3, b= 0.5, and 50 ≤ t ≤ 100.

Finally, appearance of Neimark-Sacker bifurcation in map (13) about is

positve fixed is discussed. For this, we take a = 15.5, b = 1.4, c =

25.3, and h ∈ [0, 1.5]. Then, positive fixed point (1.489, 7.61) becomes

nonhyperbolic at h = 0.55822 yielding Neimark-Sacker bifurcation. On

the other hand, bifurcation diagrams for the map (13) are depicted in Fig.

11.

(a) Bifurcation diagram for xn (b) Bifurcation diagram for yn

Figure 11. Bifurcation diagrams for the system (13) with a= 15.5,
c= 25.3, b = 1.4, h ∈ [0, 1.5], and (x0, y0) = (1.489, 7.6).

7 Concluding remarks

A chemical reaction model for two interacting species is studied. Stability

analysis is carried out around unique positive equilibrium. It is investi-

gated that model experiences Hopf bifurcation about its interior (positive)

equilibrium point. Direction of Hopf bifurcation through implementation
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of standard bifurcation theory of normal forms and the computation of the

first Lyapunov exponent. Bifurcation control is studied via implementation

of state feedback control method which has been frequently used for chaos

control in discrete-time dynamical systems. Arguing as in [23–28], OGY

(Ott–Grebogi–Yorke) method [22] has sometimes drawbacks for applica-

tion of discrete-time models, that is, it may be ineffective for controlling

chaotic or bifurcating behavior of iterative maps. But our investigation re-

veals that bifurcation control method is effective for wide range of control

parameters. Consequently, OGY control method can be more effective for

controlling bifurcation for chemical reaction systems governed by ordinary

differential systems. In the end, a consistency preserving non-standard

finite difference scheme is implemented to obtain a discrete-time chemical

reaction model. The qualitative behavior is explored for proposed model

and our investigation proves the consistency preserving properties. Taking

into account the fact that the fractional-order chemical reaction systems

have the potential to improve our understanding of a wide range of chem-

ical processes and to provide new insights into the behavior and control

of these systems [29–34], we will consider a fractional-order counterpart of

the system (3) for our future investigation.
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