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Abstract

Despite being composed exclusively of pentagonal and hexago-
nal faces, fullerene graphs (planar, cubic, and 3-connected) exhibit
surprising properties. One of the most studied characteristics is the
graph diameter, which remains difficult to determine in general. In
2012, Andova and Škrekovski formulated a conjecture regarding this
parameter. They proposed that for a fullerene graph with n vertices,
the diameter satisfies diam(G) ≥ ⌊(5n/3)1/2⌋ − 1.

This conjecture is inspired by the study of a family of spherical
fullerene graphs Gi,j , with i, j ∈ N∗ and i ≤ j, which also pos-
sess icosahedral symmetry. However, in 2023, Silva et al. proved
the existence of infinite families of fullerene graphs with icosahe-
dral symmetry, say Gi,2i, that contradict this conjecture. Thus, a
natural question that arises is whether every graph Gi,j , when j is
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a multiple of i, satisfies the conjecture. In this paper, we provide
a negative answer to this question and develop new techniques for
determining the diameter of this family of graphs. These results
completely settle this conjecture for this entire family of graphs.

1 Introduction

Fullerene graphs were defined to model a specific allotrope of carbon, called

fullerene. In September 1985, Harold Kroto went to Rice University, where

he began working with Richard Smalley and Robert Curl on carbon va-

porization and the study of long-chain carbon molecules. Within days, on

September 12, they discovered the structure of C60, a molecule composed

of 60 carbon atoms [5]. This structure consists of 60 vertices and 32 faces

(12 pentagons and 20 hexagons) and was named buckyball or fullerene, in

honor of architect Buckminster Fuller, whose geodesic dome has a design

similar to that of Figure 1. For this groundbreaking discovery, Kroto, Curl,

and Smalley were awarded the Nobel Prize in Chemistry in 1996 [8].

Figure 1. The structure of the C60 fullerene graph and its planar rep-
resentation.

A fullerene graph is a planar, cubic, and 3-connected graph with only

pentagonal and hexagonal faces. A specific class of fullerene graphs, called

icosahedral fullerene graphs, was introduced by Andova and Škrekovski [1]

in 2013. Each graph Gi,j in this class is built from 20 copies of an (i, j)-

triangle within a hexagonal tessellation of the plane. The vector
−→
G = (i, j),

with 0 ≤ i ≤ j and j > 0, specifies the relative positions and distances of

the vertices in a single triangle, providing a precise construction of the full

icosahedral structure.

Fullerene graphs with complete icosahedral symmetry, specifically of



671

(a) G0,3 (b) Planar representation of G0,3

Figure 2. Fullerene graph with icosahedral symmetry G0,3.

the types Gi,i or G0,i, i > 0, are not only highly symmetric but also

perfectly spherical (see an example of G0,3 in Figure 2). Based on these

properties, Andova and Škrekovski [1] determined their diameters and con-

jectured that these values provide a lower bound for the diameter of all

fullerene graphs.

Conjecture 1. (Andova and Škrekovski [1]) For every fullerene graph

F with n vertices, diam(F ) ≥
⌊√

5n
3

⌋
− 1.

Surprisingly, Nicodemos and Stehlik [7] showed that the conjecture fails

for an infinite collection of nanodiscs, providing a clear counterexample.

But in the same year, these authors analyzed fullerene graphs with icosahe-

dral symmetry of type Gi,j , where j ≥ 11i
2 , identifying yet another family

that conforms to Conjecture 1; and initially suggesting that the conjecture

might hold for all icosahedral cases [6].

Silva, Nicodemos, and Dantas [3] refuted this idea and established that

spherical graphs of Gi,2i do not satisfy Andova and Škrekovski’s conjec-

ture. They discussed properties of spherical fullerene graphs and of the

hexagonal lattice itself, which simplified the proofs of results first intro-

duced in [6]. Their key property showed that all graphs Gi,j admit a
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reduction of the form Gi−ϕ,j−ϕ, where ϕ ≤ i, such that their triangular

faces are entirely contained within those of Gi,j . Moreover, by setting

ϕ = i, this property establishes a specific relation among Gi,j , Gi−1,j−1,

and G0,j−i, forming a chain of reductions of Gi,j . This, in turn, implies

that diam(Gi,j) ≥ diam(G0,j−i).

The results presented so far are summarized in Table 1 and represent

the state of the art for this problem.

Condition Formula Ref.

i = 0 diam(0, j) = 6j − 1 [1]

i = 1 diam(1, j) = 6j + 1 [6]

i = j diam(j, j) = 10j − 1 [1]

j = 2i diam(i, 2i) = 7j = 14i [3]

j ≥ 11i
2 diam(Gi,j) ≥

⌊√
5n
3

⌋
− 1 [3, 6]

Table 1. Diameter diam(i, j) of fullerene graphs with icosahedral sym-
metry Gi,j , 0 ≤ i ≤ j .

From the results for Gi,2i, a natural question that arises is whether

every graph Gi,j with j being a multiple of i indeed satisfies the conjecture.

In this paper, we fully resolve this problem by showing that the only

graphs Gi,ki that do not satisfy Conjecture 1 are those with k ∈ {2, 3, 4, 5},
which completely settles Conjecture 1 for this infinite family of graphs.

2 Preliminaries

Let G = (V (G), E(G)) be an undirected, finite and simple graph where

V = V (G) is the set of vertices of G, and E = E(G) is the set of edges of

G. A path P between two vertices v0, vn−1 ∈ V (G) is a finite sequence of

distinct vertices of V (G) that can be arranged in a linear order P = (v0,

v1, . . ., vn−1) in such a way that two vertices are adjacent if and only

if they are consecutive in the linear sequence. The length of a path P
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is the number of edges in P . The distance d(u, v) between two vertices

u, v ∈ V (G) is the number of edges in a shortest path connecting u and v

in G (if this path does not exist, d(u, v) = ∞). The diameter of a graph

G is the length maxu,vd(u, v) of the longest shortest path between two

vertices u, v ∈ V (G). Thus, we define antipodal vertices as the pairs of

vertices that are the furthest apart in a graph, with their distance being

equal to the graph’s diameter.

Let i, j ∈ N∗ with i ≤ j. We define the fullerene graph Gi,j as a

spherical fullerene with icosahedral symmetry. The construction of Gi,j

is based on the hexagonal lattice. Consider the infinite hexagonal lattice

in the plane and the centers of its hexagons. We define a unit as the

line segment that joins the centers of two consecutive hexagons in a given

direction. Now, choose a reference center. From this center, the main

operation consists of moving i units in one direction, passing through the

centers of the hexagons, and then j units in a second direction, with the

angle between these directions being 120◦.

Corollary 1. (Goldberg [4]) Let Gi,j, with 0 ≤ i ≤ j, be a fullerene

graph with icosahedral symmetry. The numbers of vertices and edges are

given by n(Gi,j) = 20(i2 + ij + j2) and m(Gi,j) = 30(i2 + ij + j2), respec-

tively.

A direct consequence of the Euler relation, |V |+ |F | = |E|+ 2, where

|V | is the number of vertices, |F | is the number of faces and |E| is the

number of edges of G, ensures that every fullerene graph has exactly 12

pentagonal faces. From now on, to avoid ambiguity, with the vertices of

the fullerene graph, we refer to the centers of the hexagons (or pentagons)

as nodes and the line segments between nodes as links.

The boundary of the planar unfolding generated by i and j reconstructs

the surface of a regular icosahedron. The labeled vertices serve as a guide

for assembling the regular icosahedron, since identical labels indicate the

same vertex in the reconstructed solid. A local view of the surface of this

regular icosahedron, in the hexagonal lattice, reveals a solid whose surface

is composed of hexagons (arising from the hexagonal lattice) and twelve

pentagons determined by the vertices a, b, c, d, e, f, a′, b′, c′, d′, e′, f ′.
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We refer to Figure 3 for an example of the construction of graph Gi,j

with i = 3 and j = 6, where pentagonal faces are filled in gray, and

solid lines correspond to links between nodes. The dashed lines show the

following construction process. We note that the triangular face abc is

obtained from an arbitrary node a.

Figure 3. Vector
−→
G = (3, 6) generates fullerene graphs with icosahe-

dral symmetry G3,6. Pentagonal faces are filled in gray, and
solid lines are links between nodes. Dashed lines show the
construction process. Hexagons filled in gray with the same
label appear distinct in the planar representation but corre-
spond to a single pentagonal face in the reconstructed three-
dimensional graph.

Starting at node a, move i = 3 units in one direction and then j = 6

units in a second direction, with the angle between the two directions equal

to 120◦; this reaches node b. We repeat this process starting at b (counter-

clockwise) until we reach node c, and, from c, we return to node a. Thus,

we obtain one of the 20 triangular faces (whose vertices are the nodes of

12 pentagons), which generate the fullerene graphs with icosahedral sym-

metry. We observe that the nodes labeled a (resp. a′) correspond to the

same node in the three-dimensional fullerene structure. In the planar rep-

resentation, these nodes appear as distinct, but in the three-dimensional

realization of the graph, they correspond to a single node because their
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corresponding pentagonal faces (filled in gray) on the boundary are identi-

fied. This identification closes the surface and enables the computation of

the graph’s diameter, defined as the mininum (geodesic) distance between

such antipodal vertices in the three-dimensional structure.

See an example in Figure 4 of part of the planar representation of

the fullerene graph with icosahedral symmetry generated by the vector
−→
G = (3, 6), denoted by G3,6. The edges of the fullerene graph highlighted

in thick lines represent the shortest path between the antipodal nodes a

and a′ in the three-dimensional structure.

Figure 4. Part of the planar representation of graph G3,6. The diam-
eter of the fullerene graph with icosahedral symmetry G3,6

is 42. Pentagonal faces are filled in gray, and those with
the same label a′ correspond to the same face in the recon-
structed three-dimensional graph. The edges of G3,6 within
the shortest path between the antipodal vertices a and a′

are highlighted in thick lines.



676

The problem of verifying Conjecture 1 has been studied for more than

ten years, and a closely related line of research aims to precisely determine

the diameter of the icosahedral fullerene graphs Gi,j .

Andova and Škrekovski [1] determined bounds for this parameter when

G is a fullerene graph with n vertices, and established that:

√
24n− 15− 3

6
≤ diam(G) ≤ n

5
+ 1.

Later, Nicodemos [6] proved that diam(G1,j) = 6j + 1. Furthermore,

diam(Gi,j) ≥ ⌊
√
5n/3⌋ − 1 for j ≥ 11i/2 was shown, thereby establishing

the validity of the conjecture for both families of graphs.

However, in 2023, Silva, Nicodemos, and Dantas [3] proved the exis-

tence of infinite families of fullerene graphs with icosahedral symmetry that

do not satisfy the conjecture, establishing that diam(Gi,2i) = 14i. This

result was obtained through a key property that every graph Gi,j admits a

reduction of the form Gi−ϕ, j−ϕ, with ϕ ≤ i, such that its triangular faces

are entirely contained within the triangular faces of Gi,j . This generates

a chain of reductions that leads to the following result.

Lemma 1 (Silva, Nicodemos and Dantas [3]). For every fullerene graph

with icosahedral symmetry Gi,j, with 0 < i < j:

diam(Gi,j) ≥ diam(G0,j−i) = 6j − 6i− 1.

Another property of spherical graphs Gi,j constructed using the hexag-

onal lattice is the existence of a parallelogram patch between the antipodal

pentagonal vertices.

We refer to Figure 5 to explain the construction of this parallelogram

patch. Let a and a′ be antipodal pentagonal nodes. If j > 2i, then there

is a parallelogram patch connecting the nodes of the pentagonal antipodal

faces a and a′, whose side length is j − 2i. Starting at node a, we rotate

the vector
−→
i counterclockwise by 120◦, obtaining the vector −→p . Following

direction −→p , we construct the side length of the parallelogram patch by

moving j − 2i units to reach node x.
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When j = 2i, the hexagons between a and a′ form a linear stack, which

we regard as a degenerate parallelogram patch (a = x and a′ = x′). Ac-

cording to [1], the minimum path between the pentagonal antipodal nodes

must lie within this parallelogram patch. Figure 5 depicts the parallelo-

gram patch of G2,6 and the degenerated one of G3,6.

Property 1 (Silva, Nicodemos and Dantas [3]). For every fullerene graph

with icosahedral symmetry Gi,j such that j ≥ 2i, there exists a parallelo-

gram patch whose side length equals j − 2i.

(a) G2,6 (b) G3,6

Figure 5. Part of the planar representation of graphs: (a) the parallel-
ogram patch of G2,6; and (b) the degenerated parallelogram
patch of G3,6. The square nodes are the vertices of the re-
spective parallelograms, say a, x, a′, and x′.

Property 1 indicates that the diameters of graphs Gi,j such that j ≥ 2i

might be computed using a similar method, as the constructed parallelo-

gram patch contains the minimum path between the antipodal pentagonal

vertices [1]. Therefore, it is natural to study the diameter of graphs such

that j ≥ 2i.
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3 Parametric construction of the lattice

In this section, we analyze the problem from a different perspective by

establishing the geometric and vector framework needed for the metric

analysis of fullerene graphs. Since the surface of a fullerene is locally

isomorphic to a planar hexagonal lattice, we simplify the complex task of

computing geodesics in 3D by mapping it to a 2D real vector-coordinate

system. Our goal is to formalize the construction of Gi,j using this new

methodology.

Figure 6. Basic direction vectors:
−→
ab =

−→
d1,

−→ac = −→v ,
−→
ad =

−→
d3,

−→ae =
−→
d2.

First, we define an origin node and a set of direction vectors that rep-

resent the possible moves between adjacent carbon atoms (see Figure 6).

This vector framework describes the path between any two nodes as

a linear combination of basic moves, thereby facilitating the derivation of

closed-form expressions for the diameter and other structural properties

of Goldberg polyhedra.

Let a ∈ R2 be an origin node, and let i, j ∈ R be step scalars. We

consider four basic direction vectors in R2: the upper-left diagonal vector
−→
ab =

−→
d1; the vertical vector −→ac = −→v ; the lower-right diagonal vector

−→ae =
−→
d2; and the upper-right diagonal vector

−→
ad =

−→
d3.

Let {
−→
d1,

−→v } be two linearly independent vectors that form a basis for

the plane R2. Thus, the vectors
−→
d2 and

−→
d3 can be uniquely expressed

as linear combinations of
−→
d1 and −→v , as follows:

−→
d2 = c1

−→
d1 + c2

−→v and
−→
d3 = c3

−→
d1 + c4

−→v , where c1, c2, c3, and c4 ∈ R are scalars whose values are

determined by the specific geometry of the lattice.
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Figure 7. Example of a geometric construction of nodes of graph Gi,j

from the origin node a = [0, 0].

We refer to Figure 7 for an example, where i = 1, j = 3, and the linearly

independent basis vectors are
−→
d1 = (−2,−1) and −→v = (0,−3). The other

vectors are expressed as linear combinations of these two, say
−→
d2 = (3,−1)

and
−→
d3 = (3, 2), such that

−→
d2 = − 3

2

−→
d1 +

5
6
−→v and

−→
d3 = − 3

2

−→
d1 − 1

6
−→v , with

c1 = − 3
2 , c2 = 5

6 , c3 = − 3
2 and c4 = − 1

6 .

The subsequent nodes of the hexagonal lattice, L = {b, c, d, e, f, h, s, l},
are iteratively generated as:

b = a+ i
−→
d1, c = b+ j−→v , d = c+ i

−→
d1, e = d+ j−→v ,

f = e+ i−→v , h = c+ i
−→
d2, l = f + j

−→
d2, s = h+ j

−→
d3.

(1)

This observation leads to the following result.

Lemma 2. From the previously described vector framework (Equation 1),

there exist explicit expressions for each node of the planar representation

of Gi,j in terms of the origin node a.

Proof. The formulas for nodes b, c, d, e, and f are obtained by directly

substituting the displacement definitions. On the other hand, obtaining
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nodes h, s, and l requires the explicit substitution of the vectors
−→
d2 and

−→
d3 by their linear combination in terms of the basis {

−→
d1,

−→v }, where
−→
d2 =

c1
−→
d1 + c2

−→v , and
−→
d3 = c3

−→
d1 + c4

−→v , where c1, c2, c3, and c4 ∈ R are scalars

whose values are determined by the specific geometry of the lattice.

We define vector h iteratively, by setting h = c+ i
−→
d2. From the calcu-

lation of node c, we obtain:

h = c+ i
−→
d2

= (b+ j−→v ) + i
−→
d2

= (a+ i
−→
d1 + j−→v ) + i(c1

−→
d1 + c2

−→v )

= a+ i
−→
d1 + ic1

−→
d1 + j−→v + ic2

−→v

= a+ i(1 + c1)
−→
d1 + (j + ic2)

−→v

(2)

To compute s from node h, we use s = h+ j
−→
d3. From Equation 2:

s = h+ j
−→
d3

= [a+ i(1 + c1)
−→
d1 + (j + ic2)

−→v ] + j(c3
−→
d1 + c4

−→v )

= a+ i(1 + c1)
−→
d1 + jc3

−→
d1 + (j + ic2)

−→v + jc4
−→v

= a+ (i+ ic1 + jc3)
−→
d1 + (j + ic2 + jc4)

−→v

(3)

By factoring the scalar components, we obtain the final explicit form:

s = a+ [i(1 + c1) + jc3]
−→
d1 + [j(1 + c4) + ic2]

−→v (4)

To express node l = f + β
−→
d2 in terms of the origin a, we first expand

f using the definitions from Equation 1:

f = e+ i−→v

= (d+ j−→v ) + i−→v

= (c+ i
−→
d1 + j−→v ) + i−→v

= (b+ j−→v + i
−→
d1 + j−→v ) + i−→v

= (a+ i
−→
d1 + j−→v + i

−→
d1 + j−→v ) + i−→v

= a+ 2i
−→
d1 + (2j + i)−→v
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Now, substituting f and
−→
d2 = c1

−→
d1 + c2

−→v into the expression for l:

l = f + j
−→
d2

= [a+ 2i
−→
d1 + (2j + i)−→v ] + j(c1

−→
d1 + c2

−→v )

= a+ (2i+ jc1)
−→
d1 + (2j + i+ jc2)

−→v

= a+ (2i+ jc1)
−→
d1 + [j(2 + c2) + i]−→v

4 Spherical graphs Gi,ki

Inspired by the results in the 2D real vector-coordinate system in the pre-

vious section, and by the structural properties of the graphs Gi,2i, it is

natural to investigate whether Gi,ki satisfies Conjecture 1. To achieve

insights into this problem, we study three additional classes of spherical

graphs that may cover the problem for all spherical graphs. Before ana-

lyzing Gi,ki in the hexagonal lattice, we establish a general construction of

this family of graphs using the vector framework introduced in Equation 1.

Corollary 2. [General Vector Form of Lattice Points] Let P(a, α, β,V)
be the set of nodes {b, c, d, e, f, h, s, l} constructed in Lemma 2, where V =

{
−→
d1,

−→v ,
−→
d2,

−→
d3} is the set of the four displacement vectors. Any node x ∈

P can be expressed in a vector form as x = a + −→v x, where −→v x (the

displacement vector from a to x) is a linear combination of vectors in V,
computed using scaling factors α ∈ R and β ∈ R, as:

−→v x = c1(α, β)
−→
d1 + c2(α, β)

−→v + c3(α, β)
−→
d2 + c4(α, β)

−→
d3,

with the coefficients cm are expressed as cm(α, β) = amα + bmβ such

that am ∈ N and bm ∈ N, m ∈ {1, 2, 3, 4}.

The previous results established the analytic framework for construct-

ing the graph Gi,j . We now return to the hexagonal lattice to reinterpret

these results in their original geometric settings. For each fullerene graph

Gi,ki, there exists a construction P(a, i, ki,V), where a is the origin node

of Gi,ki. According to Theorem 2, there is an i−homothety of P(a, i, ki,V)
of the form P(a, 1, k,V), which refers to the graph G1,k.
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Geometrically, this implies that the graph Gi,ki can be decomposed

into i identical substructures, or blocks, each isomorphic to G1,k, arranged

consecutively along the hexagonal lattice. From this perspective, Theo-

rem 3 suggests that the diameter of Gi,ki should scale linearly with i, since

traversing the graph essentially amounts to passing through these blocks

one after another. Nevertheless, this intuition must be verified carefully

within the geometry of the hexagonal lattice, where boundary identifica-

tions may affect distance measurements.

As an example of Theorem 2, graph G2,6 is a 2-homothety of graph

G1,3. Consequently, within G2,6, we can stack two blocks of G1,3, say Gz
1,3

with z ∈ {1, 2}, as depicted in Figure 9 (center). In this context, the path

length Davl(1, 3) (between nodes a and l in block G1,3) can be represented

as the distance between vertices A1 and L1, denoted as d(A1, L1), as de-

picted in Figure 10 in an enlarged view of this block. For each block, the

vertices A and L are respectively denoted as the first and last vertices of

the block.

The general vector formulation provides the description of all nodes

computed in the construction. Using this representation, we can inves-

tigate how two constructions are related under specific conditions of the

scaling factors α and β.

Theorem 2. Let P1(a, α1, β1,V) and P2(a, α2, β2,V) be a vector form

of lattice nodes, sharing the exact origin a, and the same displacement

vectors set V, as presented in 2. If there is k ∈ R such that α2 = kα1

and β2 = kβ1, then P2 is a k-homothety (scaling) of P1, both starting at

node a.

Proof. To demonstrate that P2 is a homothety of P1, starting at node

a with a factor k, it suffices to show that, for any node x1 ∈ P1 and

its corresponding node x2 ∈ P2,
−→ax2 = k · −→ax1. From Corollary 2, the

displacement vector from a to any other node x is a linear combination of
−→
dm ∈ V, written as:

−→ax =
4∑

m=1

cm(α, β)
−→
dm, (5)

where cm(α, β) = amα+ bmβ, am ∈ N and bm ∈ N.
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Considering the corresponding node x2, with parameters (α2, β2) =

(kα1, kβ1), the coefficient cm of x2 is:

cm(α2, β2) = cm(kα1, kβ1) = am(kα1) + bm(kβ1)

Factoring out k, we obtain:

cm(α2, β2) = k(amα1 + bmβ1) = k · cm(α1, β1).

Therefore, all coefficients of the vector −→ax2 scale by k. Substituting

this relation into the vector −→ax2:

−→ax2 =

4∑
m=1

cm(α2, β2)
−→
d m

=

4∑
m=1

(k · cm(α1, β1))
−→
d m = k ·

4∑
m=1

cm(α1, β1)
−→
d m = k ·

−−→
AX1

Since the relation −→ax2 = k · −→ax1 holds for all corresponding nodes x1 and

x2 (including a, where k · −→aa = −→aa), the vector form P2 is a homothety of

P1 with center at a and scale factor k.

Figure 8 illustrates the application of Theorem 2. As shown in the

examples, when the parameters α and β are scaled by a factor k, the

resulting construction P2 maintain a k-homothety relationship with P1,

preserving the same origin and displacement vectors.

Having established how constructions behave under scaling, the follow-

ing theorem examines a direct consequence of the structural linear scaling

of the distance between the antipodal vertices of the pentagon.

Theorem 3. Let a be the origin of a lattice, let B = {
−→
d1,

−→v } be its vector

basis, and let α, β ∈ R+ be the scaling factors. Let
−→
d2 be the displacement

vector expressed by the linear combination
−→
d2 = α

−→
d1 + β−→v .

Let Davl(α, β) be the path length (number of links) of the parallelogram

patch a → v → l, where v = a + (β − 2α)
−→
d2. If the parameters α and β

maintain a fixed linear proportion β = kα for some constant k > 0, then
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(a) Construction P(1.a, 2, 6,V) (b) Construction P(1.a, 3, 9,V)

Figure 8. Examples of k-homothety for constructions P(1.a, 2, 6,V)
and P(1.a, 3, 9,V). In (a), two chains of P(a, 1, 3,V), a ∈
{1.a, 1.l}, fit within P(1.a, 2, 6,V). In (b), three chains of
P(a, 1, 3,V), a ∈ {1.a, 1.l, 2.l}, fit within P(1.a, 3, 9,V).

the path length Davl scales linearly with α:

Davl(α, kα) = α ·Davl(1, k)

Proof. The total path length Davl is the sum of the norm of the vectors
−→av and

−→
vl :

Davl(α, β) = ∥−→av∥+ ∥
−→
vl∥

We substitute β = kα and express all displacement vectors in terms of the

basis {
−→
d1,

−→v }.
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Considering v = a+ (β − 2α)
−→
d2 and the relation

−→
d2 = α

−→
d1 + β−→v :

−→av = (β − 2α) ·
−→
d2

= (kα− 2α) · (α
−→
d1 + β−→v )

= α(k − 2) · (α
−→
d1 + β−→v ) = α ·

[
α(k − 2)

−→
d1 + β(k − 2)−→v

]
Replacing

−→
d2 = α

−→
d1 + β−→v , and β = kα, in the equation of

−→
vl =

(2α ·
−→
d1) + ((α+ 2β) · −→v ) + (2α ·

−→
d2), we have that:

−→
vl = 2α

−→
d1 + (α+ 2kα)−→v + 2α(α

−→
d1 + β−→v )

= 2α
−→
d1 + α(1 + 2k)−→v + 2αα

−→
d1 + 2αβ−→v

= α ·
[
(2 + 2α)

−→
d1 + ((1 + 2k) + 2β)−→v

]
Both vectors have the form α · −→w (k), where −→w (k) is a constant vector

determined only by k, α, β,
−→
d1, and

−→v . Now, let −→y be −→av or
−→
vl . In R2,

if −→y = α · −→w (k), then ∥−→y ∥ = ∥α · −→w (k)∥ = α · ∥−→w (k)∥. This follows from
the linearity of the norm, ∥c−→u ∥ = |c|∥−→u ∥, and from the fact that α > 0.

Again, applying the linearity of the norm, that is −→av = α · −→w 1(k) and−→
vl = α · −→w 2(k), we have:

Davl(α, kα) = ∥−→av∥+ ∥
−→
vl∥

= ∥α · −→w 1(k)∥+ ∥α · −→w 2(k)∥

= α · ∥−→w 1(k)∥+ α · ∥−→w 2(k)∥

= α · (∥−→w 1(k)∥+ ∥−→w 2(k)∥)

The term in parentheses is the path length for α = 1, say Davl(1, k).

Hence,

Davl(α, kα) = α ·Davl(1, k)

This shows that, by keeping a linear proportion between the scaling factors,

the path length a → v → l is directly proportional to the factor α.

Hence, the path length Davl(2, 6) of graph G2,6 includes two times

Davl(1, 3). However, we observe that from vertex L1 in Block 1 to vertex
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A2 in Block 2, we add one edge to connect the paths of these two blocks

G1
1,3 and G2

1,3. Therefore, Davl(2, 6) = Davl(1, 3) + 1 +Davl(1, 3).

Figure 9. Block of G1,3 (left); two blocks G1,3 within G2,6 (center);
and three blocks G1,3 within G3,9 (right); Arrows in solid
lines: corresponding number of links in Davl(1, 3) contribut-
ing to total path length; Arrows in dashed lines: the respec-
tive Davl(i, j). Vertices Ai and Li, i ∈ {1, 2, 3} are filled
in gray. Note that in the lowest G1,3 blocks, the solid lines
overlap the dashed lines.

Similarly, Figure 9 (right) shows that Davl(3, 9) = Davl(1, 3) + 1 +

Davl(1, 3) + 1 +Davl(1, 3), and this leads to the following result:

Theorem 4. Let Gi,j be a fullerene graph with icosahedral symmetry. If

j = ki where k > 2, then:

diam(Gi,ik) = i · diam(G1,k) + (i− 1)

Proof. The proof proceeds by induction on i, the number of blocks. For
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(a) Block 1: The arrows represent the
length of the parallelogram patch a →
v → l.

(b) Enlarged view of the hexagons of
nodes a and l, containing the first and
last vertices, A1 and L1 respectively.

Figure 10. Example of the hexagonal lattice with a representation of
Block 1, and its respective first and last vertices of G2,6

the Base Case (i = 1), for a single block, the total distance is, by definition,

the internal diameter of the block:

diam(G1,k) = dG(A1, L1) = α

Applying the proposed formula for i = 1 yields 1 ·α+(1− 1) = α+0 = α.

We assume, by the induction hypothesis, that the formula is true for an

arbitrary number of blocks i = t ≥ 1. That is: diam(Gt,tk) = t ·α+(t−1).

Now, we prove the property holds for i = t+ 1.

The total distance up to the end of block t+1 can be decomposed into

the distance up to block t, plus the connection and the new block:

diam(Gt+1,(t+1)k) = diam(Gt,tk)︸ ︷︷ ︸
ind. hyp.

+ dG(Lt, At+1)︸ ︷︷ ︸
connection

+ dG(At+1, Lt+1)︸ ︷︷ ︸
new block

Substituting using the Induction Hypothesis, the given definitions, and
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reorganizing the terms algebraically:

diam(Gt+1,(t+1)k) = [t · α+ (t− 1)] + 1 + α

= t · α+ α+ t− 1 + 1

= (t+ 1)α+ ((t+ 1)− 1)

and this ends the proof.

4.1 Verifying the Andova and Škrekovski’s conjecture

In this section, we analyze whether the graphs Gi,ki, for k ≥ 2, satisfy An-

dova and Škrekovski’s conjecture (Conjecture 1). From Theorem 4 and [6]:

diam(Gi,ki) = i · diam(G1,k) + i− 1 = 6ki+ 2i− 1 (6)

To verify the integer values of k such that the graphsGi,ki do not satisfy

Andova and Škrekovski’s conjecture, it suffices to compute the following:

6ki+ 2i− 1 <

⌊√
5 n(Gi,ki)

3

⌋
− 1. (7)

From Corollary 1, compute n(Gi,ki) as:

nGi,ki
= 20

(
i2 + ki2 + k2i2

)
. (8)

By substituting Equation (8) in Equation (7), we derive the following:

6ki+ 2i <

√
100

3
(i2 + ki2 + k2i2). (9)

Noting that Equation 9 is only valid for i ≥ 1, we obtain:

6k + 2 <

√
100

3
(1 + k + k2). (10)

Exploring the values of k that satisfy Equation 10, we find that k falls

within the range [−2, 11/2]. This result means that for all graphs Gi,ki

where k equals 2, 3, 4, or 5, Conjecture 1 is false. This finding aligns with
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the result presented in [6], which asserts that Conjecture 1 holds for all

Gi,j when j > 11i/2. Thus, Gi,ki, k ∈ {2, 3, 4, 5} are infinite families of

spherical fullerene graphs for which Conjecture 1 is not valid.

We recall that the first family was introduced by Silva, Nicodemos,

and Dantas [3], and considered k = 2. They also posed the following

conjecture:

Conjecture 2 (Silva, Nicodemos, and Dantas [3]). Let Gi,j be a fullerene

graph with icosahedral symmetry. If j = ki where k > 1, then:

∣∣diam(Gi,ki)−
(
diam(G0,(k−1)i) + 8i

)∣∣ ≤ 1.

Our work confirms Conjecture 2, which leads to the following result.

Theorem 5. If Gi,ki is a fullerene graph with icosahedral symmetry, then

diam(Gi,ki) = diam(G0,(k−1)i) + 8i.

Proof. Recall from Equation (6) that our derived formula for the diameter

is:

diam(Gi,ki) = i · diam(G1,k) + i− 1 = 6ki+ 2i− 1. (11)

Consider the reference value for the case i = 0 given by diam(G0,j) =

6j − 1. Substituting j = (k − 1)i, we obtain:

diam(G0,(k−1)i) = 6((k − 1)i)− 1 = 6ki− 6i− 1.

Now, we evaluate the expression from the conjecture by adding the term 8i:

diam(G0,(k−1)i) + 8i = (6ki− 6i− 1) + 8i

= 6ki+ 2i− 1.

Comparing this result with Equation (11), we observe that:

diam(Gi,ki)−
(
diam(G0,(k−1)i) + 8i

)
= 0,

and hence the conjecture is verified.
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5 Conclusion

In this paper, we settle the Andova and Škrekovski’s Conjecture [1] (Con-

jecture 1), for fullerene graphs with icosahedral symmetry Gi,j where j is

a multiple of i.

In Table 2, we present the state of the art of the computation of

diam(Gi,j), for 1 ≤ i ≤ 5 and 1 ≤ j ≤ 25. The notation N/F (“Not

Found”) indicates that, even for small values of i and j, there is still no

study or general formula available.

i

j
1 2 3 4 5 6 7 8 9 10 11 12 13

0 5 11 17 23 29 35 41 47 53 59 65 71 77

1 9 13 19 25 31 37 43 49 55 61 67 73 79

2 — 19 N/F 28 N/F 39 N/F 51 N/F 63 N/F 75 N/F

3 — — 29 N/F N/F 42 N/F N/F 59 N/F N/F 77 N/F

4 — — — 39 N/F N/F N/F 56 N/F N/F N/F 79 N/F

5 — — — — 49 N/F N/F N/F N/F 70 N/F N/F N/F

i

j
14 15 16 17 18 19 20 21 22 23 24 25

0 83 89 95 101 107 113 119 125 131 137 143 149

1 85 91 97 103 109 115 121 127 133 139 145 151

2 87 N/F 99 N/F 111 N/F 123 N/F 135 N/F 147 N/F

3 N/F 95 N/F N/F 113 N/F N/F 131 N/F N/F 149 N/F

4 N/F N/F 103 N/F N/F N/F 127 N/F N/F N/F 151 N/F

5 N/F 99 N/F N/F N/F N/F 129 N/F N/F N/F N/F 159

Table 2. Diameter diam(Gi,j) of fullerene graphs with icosahedral
symmetry Gi,j , for 1 ≤ i ≤ 5 and 1 ≤ j ≤ 25, where N/F
(“Not Found”) indicates that there is no general formula.

Moreover, based on the study of graphs Gi,j where j is a multiple of

i, we propose a conjecture that the diameter of all graphs Gi,j can be

computed as the sum of two multiples, Gi,ki, plus 1. Specifically, since

every pair (i, j) can be decomposed into the sum of two pairs (i1, k1i1)

and (i2, k2i2), we conjecture the following:

Conjecture 3. If Gi,j is a fullerene graph with icosahedral symmetry such

that i = i1 + i2 and j = k1i1 + k2i2, with k1, k2 ∈ N∗, then

diam(Gi,j) = diam(Gi1,k1i1) + diam(Gi2,k2i2) + 1.
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