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Abstract

Despite being composed exclusively of pentagonal and hexago-
nal faces, fullerene graphs (planar, cubic, and 3-connected) exhibit
surprising properties. One of the most studied characteristics is the
graph diameter, which remains difficult to determine in general. In
2012, Andova and Skrekovski formulated a conjecture regarding this
parameter. They proposed that for a fullerene graph with n vertices,
the diameter satisfies diam(G) > | (5n/3)'/2| — 1.

This conjecture is inspired by the study of a family of spherical
fullerene graphs G j;, with 4,5 € N* and ¢ < j, which also pos-
sess icosahedral symmetry. However, in 2023, Silva et al. proved
the existence of infinite families of fullerene graphs with icosahe-
dral symmetry, say G;2;, that contradict this conjecture. Thus, a
natural question that arises is whether every graph Gj ;, when j is
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a multiple of 4, satisfies the conjecture. In this paper, we provide
a negative answer to this question and develop new techniques for
determining the diameter of this family of graphs. These results
completely settle this conjecture for this entire family of graphs.

1 Introduction

Fullerene graphs were defined to model a specific allotrope of carbon, called
fullerene. In September 1985, Harold Kroto went to Rice University, where
he began working with Richard Smalley and Robert Curl on carbon va-
porization and the study of long-chain carbon molecules. Within days, on
September 12, they discovered the structure of Cgg, a molecule composed
of 60 carbon atoms [5]. This structure consists of 60 vertices and 32 faces
(12 pentagons and 20 hexagons) and was named buckyball or fullerene, in
honor of architect Buckminster Fuller, whose geodesic dome has a design
similar to that of Figure 1. For this groundbreaking discovery, Kroto, Curl,

and Smalley were awarded the Nobel Prize in Chemistry in 1996 [8].

Figure 1. The structure of the Cgg fullerene graph and its planar rep-
resentation.

A fullerene graph is a planar, cubic, and 3-connected graph with only
pentagonal and hexagonal faces. A specific class of fullerene graphs, called
icosahedral fullerene graphs, was introduced by Andova and Skrekovski [1]
in 2013. Each graph G, ; in this class is built from 20 copies of an (4, j)-
triangle within a hexagonal tessellation of the plane. The vector 8 = (4,7),
with 0 <4 < j and j > 0, specifies the relative positions and distances of
the vertices in a single triangle, providing a precise construction of the full
icosahedral structure.

Fullerene graphs with complete icosahedral symmetry, specifically of
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(b) Planar representation of Go 3

Figure 2. Fullerene graph with icosahedral symmetry Go,3.

the types G;; or Go,, © > 0, are not only highly symmetric but also
perfectly spherical (see an example of Gy 3 in Figure 2). Based on these
properties, Andova and Skrekovski [1] determined their diameters and con-
jectured that these values provide a lower bound for the diameter of all

fullerene graphs.

Conjecture 1. (Andova and Skrekovski [1]) For every fullerene graph

F with n vertices, diam(F) > L,/%J -1 |

Surprisingly, Nicodemos and Stehlik [7] showed that the conjecture fails
for an infinite collection of nanodiscs, providing a clear counterexample.
But in the same year, these authors analyzed fullerene graphs with icosahe-
dral symmetry of type G; ;, where j > %, identifying yet another family
that conforms to Conjecture 1; and initially suggesting that the conjecture
might hold for all icosahedral cases [6].

Silva, Nicodemos, and Dantas [3] refuted this idea and established that
spherical graphs of G;2; do not satisfy Andova and Skrekovski’s conjec-
ture. They discussed properties of spherical fullerene graphs and of the
hexagonal lattice itself, which simplified the proofs of results first intro-

duced in [6]. Their key property showed that all graphs G;; admit a
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reduction of the form G;_4 j—4, where ¢ < 4, such that their triangular
faces are entirely contained within those of G; ;. Moreover, by setting
¢ = 1, this property establishes a specific relation among G; j, Gi—1,j—1,
and Gy j—;, forming a chain of reductions of G; ;. This, in turn, implies
that diam(G; ;) > diam(Go j—;).

The results presented so far are summarized in Table 1 and represent

the state of the art for this problem.

Condition Formula Ref.
i=0 diam(0,7) =65 — 1 1]
i=1 diam(1,5) =65 +1 6]
i=j diam(j,j) = 10j 1 | [1]
Jj=2i diam(é,2i) = 75 = 14i [3]
jz U | diam(Gig) = /2] 1| 3.6

Table 1. Diameter diam(z, j) of fullerene graphs with icosahedral sym-
metry G;j,0<i<j.

From the results for G 2;, a natural question that arises is whether
every graph G; ; with j being a multiple of ¢ indeed satisfies the conjecture.

In this paper, we fully resolve this problem by showing that the only
graphs G, ; that do not satisfy Conjecture 1 are those with k € {2,3,4,5},
which completely settles Conjecture 1 for this infinite family of graphs.

2 Preliminaries

Let G = (V(G), E(G)) be an undirected, finite and simple graph where
V = V(G) is the set of vertices of G, and E = E(G) is the set of edges of
G. A path P between two vertices vg, v,—1 € V(G) is a finite sequence of
distinct vertices of V(G) that can be arranged in a linear order P = (v,
V1, ..., Up—1) in such a way that two vertices are adjacent if and only

if they are consecutive in the linear sequence. The length of a path P
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is the number of edges in P. The distance d(u,v) between two vertices
u,v € V(Q) is the number of edges in a shortest path connecting u and v
in G (if this path does not exist, d(u,v) = 00). The diameter of a graph
G is the length max, ,d(u,v) of the longest shortest path between two
vertices u,v € V(G). Thus, we define antipodal vertices as the pairs of
vertices that are the furthest apart in a graph, with their distance being
equal to the graph’s diameter.

Let 4,7 € N* with ¢ < j. We define the fullerene graph G;; as a
spherical fullerene with icosahedral symmetry. The construction of G; ;
is based on the hexagonal lattice. Consider the infinite hexagonal lattice
in the plane and the centers of its hexagons. We define a unit as the
line segment that joins the centers of two consecutive hexagons in a given
direction. Now, choose a reference center. From this center, the main
operation consists of moving ¢ units in one direction, passing through the
centers of the hexagons, and then j units in a second direction, with the

angle between these directions being 120°.

Corollary 1. (Goldberg [4]) Let G;;, with 0 < i < j, be a fullerene
graph with icosahedral symmetry. The numbers of vertices and edges are
given by n(G; ;) = 20(i*> 4+ ij + j*) and m(G; ;) = 30(i® +ij + j*), respec-
tively. |

A direct consequence of the Euler relation, |V|+ |F| = |E| + 2, where
|[V| is the number of vertices, |F| is the number of faces and |F| is the
number of edges of G, ensures that every fullerene graph has exactly 12
pentagonal faces. From now on, to avoid ambiguity, with the vertices of
the fullerene graph, we refer to the centers of the hexagons (or pentagons)
as nodes and the line segments between nodes as links.

The boundary of the planar unfolding generated by ¢ and j reconstructs
the surface of a regular icosahedron. The labeled vertices serve as a guide
for assembling the regular icosahedron, since identical labels indicate the
same vertex in the reconstructed solid. A local view of the surface of this
regular icosahedron, in the hexagonal lattice, reveals a solid whose surface
is composed of hexagons (arising from the hexagonal lattice) and twelve

pentagons determined by the vertices a,b, ¢, d, e, f,a’, b, ', d' €, f'.
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We refer to Figure 3 for an example of the construction of graph Gj ;
with 4 = 3 and j = 6, where pentagonal faces are filled in gray, and
solid lines correspond to links between nodes. The dashed lines show the
following construction process. We note that the triangular face abe is

obtained from an arbitrary node a.

Figure 3. Vector 8 = (3,6) generates fullerene graphs with icosahe-
dral symmetry G3,6. Pentagonal faces are filled in gray, and
solid lines are links between nodes. Dashed lines show the
construction process. Hexagons filled in gray with the same
label appear distinct in the planar representation but corre-
spond to a single pentagonal face in the reconstructed three-
dimensional graph.

Starting at node a, move ¢ = 3 units in one direction and then j = 6
units in a second direction, with the angle between the two directions equal
to 120°; this reaches node b. We repeat this process starting at b (counter-
clockwise) until we reach node ¢, and, from ¢, we return to node a. Thus,
we obtain one of the 20 triangular faces (whose vertices are the nodes of
12 pentagons), which generate the fullerene graphs with icosahedral sym-
metry. We observe that the nodes labeled a (resp. a’) correspond to the
same node in the three-dimensional fullerene structure. In the planar rep-
resentation, these nodes appear as distinct, but in the three-dimensional

realization of the graph, they correspond to a single node because their
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corresponding pentagonal faces (filled in gray) on the boundary are identi-
fied. This identification closes the surface and enables the computation of
the graph’s diameter, defined as the mininum (geodesic) distance between
such antipodal vertices in the three-dimensional structure.

See an example in Figure 4 of part of the planar representation of
the fullerene graph with icosahedral symmetry generated by the vector
8 = (3,6), denoted by G5 6. The edges of the fullerene graph highlighted
in thick lines represent the shortest path between the antipodal nodes a

and a’ in the three-dimensional structure.
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Figure 4. Part of the planar representation of graph G3¢. The diam-
eter of the fullerene graph with icosahedral symmetry Gs,¢
is 42. Pentagonal faces are filled in gray, and those with
the same label a’ correspond to the same face in the recon-
structed three-dimensional graph. The edges of G3,6 within
the shortest path between the antipodal vertices a and a’
are highlighted in thick lines.
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The problem of verifying Conjecture 1 has been studied for more than
ten years, and a closely related line of research aims to precisely determine
the diameter of the icosahedral fullerene graphs Gj ;.

Andova and Skrekovski [1] determined bounds for this parameter when

G is a fullerene graph with n vertices, and established that:

V24n — 15 -3

- < diam(G) < % +1.

Later, Nicodemos [6] proved that diam(G; ;) = 65 + 1. Furthermore,
diam(G; ;) > [\/5n/3] — 1 for j > 11i/2 was shown, thereby establishing
the validity of the conjecture for both families of graphs.

However, in 2023, Silva, Nicodemos, and Dantas [3] proved the exis-
tence of infinite families of fullerene graphs with icosahedral symmetry that
do not satisfy the conjecture, establishing that diam(G; 2;) = 14i. This
result was obtained through a key property that every graph G; ; admits a
reduction of the form G;_4 j—¢, with ¢ < ¢, such that its triangular faces
are entirely contained within the triangular faces of G; ;. This generates

a chain of reductions that leads to the following result.

Lemma 1 (Silva, Nicodemos and Dantas [3]). For every fullerene graph

with icosahedral symmetry G; ;, with 0 <1 < j:

diam(Gm) Z diam(Go,]‘_i) = 6] — 67 — 1. |

Another property of spherical graphs G; ; constructed using the hexag-
onal lattice is the existence of a parallelogram patch between the antipodal
pentagonal vertices.

We refer to Figure 5 to explain the construction of this parallelogram
patch. Let a and a’ be antipodal pentagonal nodes. If j > 2i, then there
is a parallelogram patch connecting the nodes of the pentagonal antipodal
faces a and a’, whose side length is j — 2i. Starting at node a, we rotate
the vector ? counterclockwise by 120°, obtaining the vector 7. Following
direction 7/, we construct the side length of the parallelogram patch by

moving j — 2¢ units to reach node x.
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When j = 2i, the hexagons between a and a’ form a linear stack, which
we regard as a degenerate parallelogram patch (a = x and o/ = a’). Ac-
cording to [1], the minimum path between the pentagonal antipodal nodes
must lie within this parallelogram patch. Figure 5 depicts the parallelo-

gram patch of G2 and the degenerated one of G5 .

Property 1 (Silva, Nicodemos and Dantas [3]). For every fullerene graph
with icosahedral symmetry G; ; such that j > 2i, there exists a parallelo-

gram patch whose side length equals j — 2.
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Figure 5. Part of the planar representation of graphs: (a) the parallel-
ogram patch of G2 ¢; and (b) the degenerated parallelogram
patch of G3,6. The square nodes are the vertices of the re-
spective parallelograms, say a, x, a’, and z’.

Property 1 indicates that the diameters of graphs G; ; such that j > 2¢
might be computed using a similar method, as the constructed parallelo-
gram patch contains the minimum path between the antipodal pentagonal
vertices [1]. Therefore, it is natural to study the diameter of graphs such
that j > 2i.



678
3 Parametric construction of the lattice

In this section, we analyze the problem from a different perspective by
establishing the geometric and vector framework needed for the metric
analysis of fullerene graphs. Since the surface of a fullerene is locally
isomorphic to a planar hexagonal lattice, we simplify the complex task of
computing geodesics in 3D by mapping it to a 2D real vector-coordinate
system. Our goal is to formalize the construction of G; ; using this new

methodology.

— - = —
Figure 6. Basic direction vectors: % =d, at = 7, ad = ds, at = ds.

First, we define an origin node and a set of direction vectors that rep-
resent the possible moves between adjacent carbon atoms (see Figure 6).

This vector framework describes the path between any two nodes as
a linear combination of basic moves, thereby facilitating the derivation of
closed-form expressions for the diameter and other structural properties
of Goldberg polyhedra.

Let a € R? be an origin node, and let i,j € R be step scalars. We
consider four basic direction vectors in R2?: the upper-left diagonal vector
% = d_>1; the vertical vector aé = 7; the lower-right diagonal vector
at = @; and the upper-right diagonal vector a—gl = £

Let {d—>1, 7} be two linearly independent vectors that form a basis for
the plane R2. Thus, the vectors @ and Z can be uniquely expressed
as linear combinations of z and 7, as follows: @ = c1d; + ¥ and
d—>3 = 032 + 047, where c1, co, c3, and ¢4 € R are scalars whose values are

determined by the specific geometry of the lattice.
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Figure 7. Example of a geometric construction of nodes of graph Gj ;
from the origin node a = [0, 0].

We refer to Figure 7 for an example, where ¢ = 1, 7 = 3, and the linearly
independent basis vectors are d_>1 = (—2,—1) and ¥ = (0,—3). The other
vectors are expressed as linear combinations of these two, say ds = (3, —1)
and d_>3 = (3,2), such that £ = —%z + %7 and £ = —%z - %7, with
c = —%, Cco = %, c3 = —% and ¢4 = —%.

The subsequent nodes of the hexagonal lattice, £ = {b,c,d, e, f, h, s, 1},

are iteratively generated as:
— —
b=a+id,, c=b+j0U, d=c+id, e=d+j0,
— — —
f=e+id, h=c+ids, l=f+jdy, s=h-+jds.
This observation leads to the following result.

Lemma 2. From the previously described vector framework (Equation 1),
there exist explicit expressions for each node of the planar representation

of G ; in terms of the origin node a.

Proof. The formulas for nodes b, ¢, d, e, and f are obtained by directly
substituting the displacement definitions. On the other hand, obtaining
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%
nodes h, s, and [ requires the explicit substitution of the vectors dy and
— — —
ds by their linear combination in terms of the basis {d;, 7}, where dy =

— - —
c1dy + 627, and d3 = c3dqi + 047, where ¢, ¢o, c3, and ¢4 € R are scalars
whose values are determined by the specific geometry of the lattice.
—>
We define vector h iteratively, by setting h = ¢ + ids. From the calcu-

lation of node ¢, we obtain:

h = c+i£
%
= (b+j7) +ida
— —
= (a+idy + V) +i(crdi + 2 V) (2)
-
=a+1idy +icidy —|—]7 + 2027
%
=a+i(1+c)dy + (j+ic)V

%
To compute s from node h, we use s = h + jds. From Equation 2:

rd
s=h+jds
= la+i(l+c)dr + (G +ica) V) + j(csdy + ea D)
- (3)

_>
=a+i(1+c))dy + jesdy 4+ (j+ i)V + jes ¥
%
=a+ (i+ic1 + jes)dy + (j+ico + jed)V

By factoring the scalar components, we obtain the final explicit form:

s=a+[i(1+e1)+jesld + L+ ca) +iea] T (4)

_>
To express node [ = f + [dsy in terms of the origin a, we first expand

f using the definitions from Equation 1:

f:e—i—i?
=(d+jV)+iV

= (c+idy +50) +i7

= b+ +idy +jT) +i7

(a+id, + 7 +id; +50) +i0

a+ 2idy + (2j +1)7
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— —
Now, substituting f and do = c1dy + co W into the expression for [:

I=f+jds
= [a+ 2id; + (2] + ) T] + j(crdy + 2 D)
= a+ (2i+jer)ds + (2 +i+ jea) T
=a+(2i +jc1)d—1> + @24 c) +i|V

4 Spherical graphs G i;

Inspired by the results in the 2D real vector-coordinate system in the pre-
vious section, and by the structural properties of the graphs Gj »;, it is
natural to investigate whether G, ; satisfies Conjecture 1. To achieve
insights into this problem, we study three additional classes of spherical
graphs that may cover the problem for all spherical graphs. Before ana-
lyzing G; j; in the hexagonal lattice, we establish a general construction of

this family of graphs using the vector framework introduced in Equation 1.

Corollary 2. [General Vector Form of Lattice Points] Let P(a,«, 3,V)
be the set of nodes {b,c,d,e, f,h,s,l} constructed in Lemma 2, where V =
{a, o, £7 z} is the set of the four displacement vectors. Any node x €
P can be expressed in a vector form as x = a + 7x, where U 4 (the
displacement vector from a to x) is a linear combination of vectors in 'V,

computed using scaling factors a € R and § € R, as:
— — —
71’ = Cl(a7ﬁ)d1 + 62(0[7ﬁ)7 + CS(Olvﬂ)dQ + C4(Ol7ﬂ)d3,

with the coefficients ¢, are expressed as ¢y (e, B) = ama + by, 8 such
that a,, € N and b, € N, m € {1,2,3,4}. |

The previous results established the analytic framework for construct-
ing the graph G; ;. We now return to the hexagonal lattice to reinterpret
these results in their original geometric settings. For each fullerene graph
Gi ki, there exists a construction P(a, i, ki, V), where a is the origin node
of G, ii- According to Theorem 2, there is an +—homothety of P(a, i, ki, V)
of the form P(a, 1, k,V), which refers to the graph Gy .
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Geometrically, this implies that the graph G;j; can be decomposed
into ¢ identical substructures, or blocks, each isomorphic to G , arranged
consecutively along the hexagonal lattice. From this perspective, Theo-
rem 3 suggests that the diameter of G j,; should scale linearly with 7, since
traversing the graph essentially amounts to passing through these blocks
one after another. Nevertheless, this intuition must be verified carefully
within the geometry of the hexagonal lattice, where boundary identifica-
tions may affect distance measurements.

As an example of Theorem 2, graph G is a 2-homothety of graph
G1,3. Consequently, within G2 6, we can stack two blocks of G 3, say G7 3
with z € {1,2}, as depicted in Figure 9 (center). In this context, the path
length D,y (1,3) (between nodes a and [ in block G 3) can be represented
as the distance between vertices A; and Lj, denoted as d(A41, Ly), as de-
picted in Figure 10 in an enlarged view of this block. For each block, the
vertices A and L are respectively denoted as the first and last vertices of
the block.

The general vector formulation provides the description of all nodes
computed in the construction. Using this representation, we can inves-
tigate how two constructions are related under specific conditions of the

scaling factors a and .

Theorem 2. Let Pi(a,a1,51,V) and Pa(a,as, 2, V) be a vector form
of lattice nodes, sharing the exact origin a, and the same displacement
vectors set V, as presented in 2. If there is k € R such that as = kay
and o = kf1, then Py is a k-homothety (scaling) of Py, both starting at

node a.

Proof. To demonstrate that Py is a homothety of Py, starting at node
a with a factor k, it suffices to show that, for any node x; € P; and
its corresponding node zo € P, azy = k- azxi. From Corollary 2, the
displacement vector from a to any other node x is a linear combination of
Cm €V, written as: \
Cﬁ - Z Cm(a7 ﬂ)ﬂv (5)
m=1

where ¢, (a, 8) = ama + b8, an, € N and b, € N.
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Considering the corresponding node x5, with parameters (ag, 82) =
(kan, k1), the coeflicient ¢, of xo is:

cm(az, B2) = cm(kay, kB1) = am(kar) + by (kB1)
Factoring out k, we obtain:
cm(a2, B2) = k(amar + bmB1) =k - cm(aa, B1).

Therefore, all coefficients of the vector azh scale by k. Substituting

this relation into the vector azs:

4
(ﬁ% = Z cm(a2a62)7m
m4:1 \ -
= S (k- emlan, B)) dm =k emlan, B1) d o = k- AX,
m=1 m=1

Since the relation cﬁ% =k- a71> holds for all corresponding nodes x; and

2o (including a, where k - at = @), the vector form P, is a homothety of

P; with center at a and scale factor k. |

Figure 8 illustrates the application of Theorem 2. As shown in the
examples, when the parameters a and § are scaled by a factor k, the
resulting construction P, maintain a k-homothety relationship with P,
preserving the same origin and displacement vectors.

Having established how constructions behave under scaling, the follow-
ing theorem examines a direct consequence of the structural linear scaling

of the distance between the antipodal vertices of the pentagon.

Theorem 3. Let a be the origin of a lattice, let B = {z, U} be its vector
basis, and let o, B € RT be the scaling factors. Let do be the displacement
vector expressed by the linear combination z = az + 8.

Let Dy, B) be the path length (number of links) of the parallelogram
patch a — v — I, where v =a+ (8 — 20&)672). If the parameters o and B

maintain a fized linear proportion B = ka for some constant k > 0, then
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-10

(a) Construction P(1.a,2,6,V) (b) Construction P(1.a,3,9,V)

Figure 8. Examples of k-homothety for constructions P(1l.a,2,6,V)
and P(1.a,3,9,V). In (a), two chains of P(a,1,3,V), a €
{1l.a,1.l}, fit within P(1.a,2,6,V). In (b), three chains of
P(a,1,3,V), a € {1.a,1.1,2.l}, fit within P(1.q,3,9,V).

the path length D, scales linearly with o:
Dayi(ca, ka) = a- Dgyi (1, k)

Proof. The total path length Dg,; is the sum of the norm of the vectors

at and ﬁ:

Dyt B) = @] + | ol

~

We substitute S = ka and express all displacement vectors in terms of the
%
basis {dy, U'}.
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Considering v = a + (8 — 2a)£ and the relation z = az + 87

ab = (8 —20) - d3
— (ka —2a) - (ad; + B7)
= a(k~2) - (ady + B7) = a- [a(k — 2 + B(k —2)7|

Replacing d_>2 = az + 67, and 8 = ka, in the equation of ﬁ =
(2a- z) + (e +28)- 7))+ (2 - @), we have that:

ol = 2az + (a+ 2ka) W + 2a(az +B7)
= 2ad; + (1 + 2K) T + 2aad, + 2087
—a- [(2 +2a)d; + ((1+2k) + 25)7}

Both vectors have the form « - @(k), where W (k) is a constant vector
determined only by k, «, 3, z, and U. Now, let 7 be ab or ﬁ In R?,
if ¥ =a-W(k), then | 7| = ||la- @W(k)| = o ||&(k)||. This follows from
the linearity of the norm, ||¢%|| = |¢||| ||, and from the fact that a > 0.

Again, applying the linearity of the norm, that is a0 = « - w1 (k) and
ol =a- Wy (k), we have:

Dawi(cv, ka) = @] + ||l
= lla- T1(R)] + la - B(h)]
— a- [TiR)] +a- [ Balh)]
— a- (@ (k)| + D2 ®)])

The term in parentheses is the path length for o = 1, say Dg.i(1, k).
Hence,
Doyi(a,ka) = a- Dayi(1, k)

This shows that, by keeping a linear proportion between the scaling factors,

the path length a — v — [ is directly proportional to the factor «. |

Hence, the path length Dg,(2,6) of graph Gz includes two times

D,.i(1,3). However, we observe that from vertex L; in Block 1 to vertex
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A, in Block 2, we add one edge to connect the paths of these two blocks
G1 3 and G7 5. Therefore, Dayi(2,6) = Davi(1,3) + 1+ Daui(1,3).
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Figure 9. Block of G1,3 (left); two blocks G1,3 within G2 (center);
and three blocks G1,3 within G3,9 (right); Arrows in solid
lines: corresponding number of links in Dg,;(1, 3) contribut-
ing to total path length; Arrows in dashed lines: the respec-
tive Dgqyi(4,7). Vertices A; and L;, ¢ € {1,2,3} are filled
in gray. Note that in the lowest G'1,3 blocks, the solid lines
overlap the dashed lines.

Similarly, Figure 9 (right) shows that Dg.,;(3,9) = Daywi(1,3) + 1 +
Dgyi(1,3) + 1+ Dyyyi(1, 3), and this leads to the following result:

Theorem 4. Let G;; be a fullerene graph with icosahedral symmetry. If
j = ki where k > 2, then:

diam(G, i) =i - diam(Gy ) + (i — 1)

Proof. The proof proceeds by induction on 4, the number of blocks. For
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(a) Block 1: The arrows represent the (b) Enlarged view of the hexagons of
length of the parallelogram patch a —+  nodes a and [, containing the first and
v — L. last vertices, A1 and L; respectively.

Figure 10. Example of the hexagonal lattice with a representation of
Block 1, and its respective first and last vertices of G26

the Base Case (i = 1), for a single block, the total distance is, by definition,

the internal diameter of the block:
diam(Glﬂk) = d(;(Al, Ll) =

Applying the proposed formula for i = 1 yields 1-a+(1—1) = a+0=a.
We assume, by the induction hypothesis, that the formula is true for an
arbitrary number of blocks ¢ = ¢ > 1. That is: diam(Gy4) = t-a+(t—1).
Now, we prove the property holds for i = ¢ + 1.
The total distance up to the end of block £+ 1 can be decomposed into

the distance up to block ¢, plus the connection and the new block:

diam(Gyp1,(141)%) = diam(Gy ix) +da(Le, Arr1) +da (A, Ley)

ind. hyp. connection new block

Substituting using the Induction Hypothesis, the given definitions, and
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reorganizing the terms algebraically:

diam(Gt+1,(t+1)k) = [to&+(t—1)] +1+O{
=t-at+a+t—-1+1
=@+ Da+((t+1)-1)

and this ends the proof. |

4.1 Verifying the Andova and Skrekovski’s conjecture

In this section, we analyze whether the graphs G; x;, for k > 2, satisfy An-

dova and Skrekovski’s conjecture (Conjecture 1). From Theorem 4 and [6]:
diam(G; i) =1 - diam(Gr ) +i— 1 =6ki +2i — 1 (6)

To verify the integer values of k such that the graphs G ;; do not satisfy

Andova and Skrekovski’s conjecture, it suffices to compute the following:

5 n(Gi ki
6ki+2i—1<{ 5 lGini) |y (7)
From Corollary 1, compute n(G; ;) as:
NG, . = 20 (% + ki® + k%) . (8)

By substituting Equation (8) in Equation (7), we derive the following:

100
6ki + 2 < \/3 (12 + ki2 + k242). (9)
Noting that Equation 9 is only valid for ¢ > 1, we obtain:
100
6k +2 < ?(1+k+k2). (10)

Exploring the values of k that satisfy Equation 10, we find that % falls
within the range [—2,11/2]. This result means that for all graphs G j;
where k equals 2, 3, 4, or 5, Conjecture 1 is false. This finding aligns with
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the result presented in [6], which asserts that Conjecture 1 holds for all
G;,; when j > 11i/2. Thus, G; i, k € {2,3,4,5} are infinite families of
spherical fullerene graphs for which Conjecture 1 is not valid.

We recall that the first family was introduced by Silva, Nicodemos,
and Dantas [3], and considered k¥ = 2. They also posed the following

conjecture:

Conjecture 2 (Silva, Nicodemos, and Dantas [3]). Let G, ; be a fullerene
graph with icosahedral symmetry. If j = ki where k > 1, then:

’diam(Gi,ki) — (diam(GO,(k,l)i) + 82)! < 1. [ |
Our work confirms Conjecture 2, which leads to the following result.
Theorem 5. If G 1; is a fullerene graph with icosahedral symmetry, then
diam(G; i) = diam(Go,(x—1);) + 8.

Proof. Recall from Equation (6) that our derived formula for the diameter
is:
diam(Gi i) =1 - diam(Gr ) +i— 1 = 6ki +2i — 1. (11)

Consider the reference value for the case i = 0 given by diam(Gy ;) =
65 — 1. Substituting j = (k — 1)i, we obtain:

diam(Go,(x—1);) = 6((k — 1)i) — 1 = 6ki — 6i — 1.
Now, we evaluate the expression from the conjecture by adding the term 8i:

= 6ki+ 27— 1.

Comparing this result with Equation (11), we observe that:
dzam(G“ﬂ) - (diam(G07(k_1)i) + 82) = 0,

and hence the conjecture is verified. |
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5 Conclusion

In this paper, we settle the Andova and Skrekovski’s Conjecture [1] (Con-
jecture 1), for fullerene graphs with icosahedral symmetry G; ; where j is
a multiple of 4.

In Table 2, we present the state of the art of the computation of
diam(G; ), for 1 < i < 5 and 1 < j < 25. The notation N/F (“Not
Found”) indicates that, even for small values of ¢ and j, there is still no

study or general formula available.

N1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘
i

o 5 11 17 23 29 35 41 a7 53 59 65 71 77
1 9 13 19 25 31 37 43 49 55 61 67 73 79
2 — | 19 | N/F 28 N/F 39 N/F 51 N/F 63 N/F 75 N/F
3 — | — 29 N/F | N/F 42 N/F | N/F 59 N/F | N/F 77 N/F
4 — | — — 39 N/F | N/F | N/F 56 N/F | N/F | N/F 79 N/F
5 — | — — — 49 N/F | N/F | N/F | N/F 70 N/F | N/F | N/F
) 14 15 16 17 18 19 20 21 22 23 24 25
i

o 83 89 95 101 107 113 119 125 131 137 143 149
1 85 91 97 103 109 115 121 127 133 139 145 151
2 87 N/F 29 N/F 111 N/F 123 N/F 135 N/F 147 N/F
3 N/F 95 N/F N/F 113 N/F N/F 131 N/F N/F 149 N/F
4 N/F N/F 103 N/F N/F N/F 127 N/F N/F N/F 151 N/F
5 N/F 99 N/F N/F N/F N/F 129 N/F N/F N/F N/F 159

Table 2. Diameter diam(G; ;) of fullerene graphs with icosahedral
symmetry G; j, for 1 <4 <5 and 1 < j < 25, where N/F
(“Not Found”) indicates that there is no general formula.

Moreover, based on the study of graphs G;; where j is a multiple of
i, we propose a conjecture that the diameter of all graphs G;; can be
computed as the sum of two multiples, G; x;, plus 1. Specifically, since
every pair (4,j) can be decomposed into the sum of two pairs (i1, k141)

and (ig, koio), we conjecture the following:

Conjecture 3. If G, ; is a fullerene graph with icosahedral symmetry such

that i = i1 + 13 and j = kyt1 + kots, with ki, ke € N*, then

diam(G; ;) = diam(Gi, k4, ) + diam(Gi, kyi,) + 1.
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