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Abstract

In this paper, we calculate the eccentricities and the distance vec-
tors of all vertices of the (5,0)-nanotubes. Building on these com-
putations, we further determine several important distance-based
topological indices associated with these nanotubes. Specifically,
we investigate the eccentric connectivity index, eccentric adjacency
index, first and second eccentric connectivity indices, Wiener index,
generalized Wiener index, generalized Wiener polarity index, hyper-
Wiener index, and reciprocal complementary Wiener index. These
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indices are instrumental in characterizing the structural and con-
nectivity attributes of nanotubes, offering significant insights into
their topological properties. The arguments from this paper could
be readily adapted to obtain similar results for (6,0)-nanotubes.

1 Introduction

A fullerene is a molecule made entirely of carbon atoms organized into a
closed, hollow structure [15]. These structures can take various shapes, in-
cluding spheres, ellipsoids, or cylindrical tubes. Mathematically, fullerene
graphs are 3-connected, cubic planar graphs composed exclusively of pen-
tagonal and hexagonal faces [4]. According to Euler’s formula, every
fullerene must contain exactly twelve pentagonal faces, regardless of its
overall size or shape. The first discovered fullerene molecule, Cg, consists
of 60 carbon atoms arranged in a structure resembling Richard Buckmin-
ster Fuller’s geodesic dome [13]. This resemblance inspired its name, buck-
minsterfullerene. The discovery of Cgy marked a pivotal moment, laying
the foundation for fullerene chemistry and the advent of nanotechnology.
Griinbaum and Motzkin [9] demonstrated that fullerene graphs with n
vertices exist for all even n > 24 and for n = 20. While the number of
pentagonal faces in a fullerene graph is minimal compared to the hexag-
onal faces, their arrangement is cruical in determining the graph’s overall
shape. When the pentagonal faces are evenly distributed, the fullerene
graph achieves icosahedral symmetry, with the dodecahedron being the
smallest example. Fullerene graphs can also form tubular structures, a
specialized class known as nanotubes.

Nanotubical graphs are essential for modeling and understanding car-
bon nanotubes, an allotrope of carbon characterized by their hollow cylin-
drical structure, with walls that are only one atom thick. The carbon
atoms are arranged in a hexagonal lattice, and the tubes typically have
a diameter of 1-3 nanometers. Carbon nanotubes were first discovered in
1991 (open-ended) [12] and later in 1996 (close-ended) [17]. While car-
bon nanotubes are often associated with fullerenes, they don’t have to be
capped with fullerene structures at their ends. Open-ended carbon nan-

otubes, which lack these fullerene caps, are also common and have their
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own unique properties and applications. Renowned for their exceptional
mechanical strength and electrical properties, carbon nanotubes are at
the forefront of nanotechnology and materials science. The mathematical
framework provided by nanotubical graphs facilitates the analysis of their
topological and geometrical properties, offering deeper insights into their
unique characteristics and applications.

In this paper, we will focus on close-ended nanotubes, which are a type
of fullerene graphs with distinct structural characteristics. These graphs
are cylindrical, with both ends capped by subgraphs, which are primar-
ily pentagonal (five-sided faces) and possibly a few hexagons. These pen-
tagons allow the structure to curve and close, forming the ends of the tube.
The cylindrical section of a nanotube is derived from a planar hexagonal
grid, where points along two parallel lines are identified and connected.
The method used to roll this hexagonal grid into a cylindrical form is
described by a pair of integers (pi1,p2), which determine the rolling pat-
tern and overall structure of the nanotube [18]. Numbers p; and py are
the components of the translation vector between atoms on the hexagonal
grid that will overlap when the tube is formed.

Although many mathematical properties of fullerenes have already
been established [2-6, 8, 18], numerous others remain unexplored. In this
paper, we calculate the eccentricities and the distance vectors of all ver-
tices of the (5, 0)-nanotubes. Building on these computations, we further
determine several important distance-based topological indices associated
with these nanotubes. Topological indices, in general, assist in comparing
different nanotube structures, helping to determine how small changes in
topology affect performance in nanotechnology applications. The indices
we analyzed help describe various aspects of molecular graphs, such as
connectivity, branching, and transport properties, and therefore play an
important role in characterizing the structural and connectivity properties
of the nanotubes. For example, the eccentric connectivity index shows how
well-connected distant parts of the nanotube are, which is relevant for elec-
trical conductivity, mechanical stability, and molecular interactions. The
eccentric adjacency index measures how eccentricities vary along adjacent

atoms and it is useful for understanding transport phenomena, such as
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heat or charge distribution, while the first and second eccentric connec-
tivity indices are useful in predicting reactivity, stability, and electronic
properties. Other indices that we calculate are much more familiar. The
paper is organized as follows. Section 2, Preliminaries, presents the fun-
damental definitions and results required for this paper. In Section 3, we
analyze the distance partition vectors of a (5,0)-nanotube as a function of
its length and the type of vertex, distinguishing between two vertex types:
incoming and outgoing. In Section 4, we evaluate or establish bounds
for various distance-based topological indices of the given structures, in-
cluding the eccentric connectivity index, eccentric adjacency index, first
and second Zagreb eccentricity indices, Wiener index, generalized Wiener
index, generalized Wiener polarity index, hyper-Wiener index, and recip-

rocal complementary Wiener index.

2 Preliminaries

This paper follows the standard notation and terminology of graph theory
as outlined in [7]. For u,v € V(G), the distance dg(u,v) between vertices
u and v is defined as the number of edges in a shortest path connecting
them in G. Vertices at distance j from vertex v in G are referred to as the
j-neighbors of v and the number of such vertices is denoted by n;(v).

Let Ciok, k > 2 be a (5,0)-nanotube. There are many ways to represent
a nanotube geometrically. We can use a Schlegel diagram or display the
nanotube unrolled. In both representations, we define the initial layer Lg
as the set of vertices incident to the pentagon p which is the center of a
cap and set Fy = {p}. For each i = 1,...,k the set of faces F; contains
all the faces incident with vertices form L;_; that are not already in F;_;.
Similarly, L; contains all the vertices incident to a face from F; that are not
contained in L;_1. Thus, the nanotube C1g is composed of k + 1 layers.
The first and last layers, Ly and Ly, each contain 5 vertices, while every
intermediate layer has 10 vertices. In the unrolled form of Cygg, the layers
are arranged from left to right, with the vertices of layer Lq positioned as
the leftmost vertices and the vertices of layer Lj as the rightmost vertices,

see Figure 1.
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Figure 1. The layers of a (5,0)-nanotube. The filled blue vertices be-
long to layer Lg, while the hollow blue vertices are in layer
L. Similarly, the filled red vertices are in L; whereas the
hollow red vertices belong to layer Lj_1, etc. The vertex
u € L; is an outgoing vertex, while the vertex w € L;41 is
an incoming vertex.

~

Lk,1 Lk

Let e = uw be an edge in Ciox, where v € L; and w € L;41. We
refer to the vertex u as an outgoing vertex for L;, and the vertex w as an
incoming vertex for L;;1, see Figure 1. Note that all vertices in the initial
layer are outgoing, while those in the final layer are incoming. Additionally,
each intermediate layer is composed of 5 outgoing and 5 incoming vertices,
which alternate along the layer. For 0 <i < k (0 < i < k) denote by L
(L™ the set of 5 outgoing (ingoing) vertices of L;.

Definition 1. Let G be a nonempty finite connected graph and v a vertex

of G. The distance partition mq4(v) relative to v is a collection of disjoint

sets:
e Dy = {v},
e D; ={u:dw,u)=j},j=1,23,... ecc(v),
where ecc(v) is the eccentricity of v, i.e. ecc(v) = max d(v,u).

ueV(Q)

Definition 2. Let G be a nonempty finite connected graph and v a vertex
of G. The distance partition vector DV(v) € NUam(@) of a vertex v is
defined as

DV(U) = (’I’Lo(U), nl(v)7 -+ Ndiam(G) (U))a

where n;(v) = |D;| for j =0,1,...,ecc(v), and n;(v) = 0 for ecc(v) < j <
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diam(G).

For simplicity, in the next sections, we will omit zero components
of DV(v), leaving only the first ecc(v) nonzero components. Note that
ng(v) =1 for each v € V(G).

3 Distance partition vectors of
(5, 0)-nanotube

As noted in [5], on the infinite regular hexagonal grid the number of j-
neighbors is 35 for any vertex v. Furthermore, from a geometric stand-
point, when j > 1, the convex hull of these vertices, considered as points
in the plane, forms a hexagon Hj, with all such vertices evenly distributed

along its sides, see Figure 2. (For j = 1, the convex hull is a triangle.)

Figure 2. (a) The hexagons Ha (red) and Hy (green) with respect to
the vertex u. (b) The hexagons Hs (blue) and Hs (pink)
with respect to the vertex u.

The following result from [5] holds.

Proposition 1. For j > 1, let H; denote the hexagon formed by the j-
neighbors of a vertex v in an infinite hexagonal grid. When j is even, each
side of H; contains exactly j/2 + 1 vertices. For odd j, three nonadja-
cent sides contain precisely [j/2] vertices, while the remaining three sides

contain [j/2] + 1 vertices.
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Remark. From Figure 2 we can see that for each 7 > 1, there are two
vertical sides of H;. Let j be odd. If v is an outgoing (incoming) vertex,
then the left (right) vertical side contains [j/2] + 1 its j-neighbors, while
the right (left) vertical side contains [7/2] j-neighbors.

By rolling the hexagonal grid by the vector 50 + 0;', and placing the
pentagonal caps at both ends of the cylinder, we obtain Cyog. In this
configuration, for a vertex v € V(Cio), its j-neighbors may either stay on
the sides of the hexagons H; or shift to different positions, depending on
the location of v and the distance j. Andova et al. [5] studied the distances
of vertices in an infinite open (p1,p2)-nanotube G. For each j € N, they

determined the number of j-neighbors of a vertex v € V(G).

Theorem 2. Let v be an arbitrary vertex in an infinite open (p1,p2)-

nanotube and let ¢ € N, ¢ < p; — ps. Then

37, 1 <7 <p1+p
3j—(p2+1), J=pi+py

37 —2(p2+2q), j=p1+p2+g
2(p1 + p2), J=>2p;.

n;(v) =

From Theorem 2 we obtain the numbers n;(v) of vertices at distance

j from v in an infinite open (5, 0)-nanotube:

37, 1<5 <5
3j—1, 3=15;

n;(v) = o . (1)
15—-¢q, j=5+¢ 1< q¢< 4

10,  j>10.

Since Cqgy, is finite, its distance vectors differ from those of an infinite
open (5,0)-nanotube. However, the following observations show that the

distance vectors can be very different only if v € Lo U L.

Observation 1. Let x € L; and y € Lj, where 0 < i < j < k. Then
there is a shortest path between x and y using only the vertices of L;, L1,
L.

For i = j = 1and i = j = k — 1, there may exist shortest paths

between x and y that use vertices from Ly and L, respectively. In all
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other cases every shortest path between x and y uses only the vertices of
Li7Li+17 ERRE) Lj

Observation 2. Letx € L; andy € L;, where1 <i < j<kori=0 and
j > 2. Then there is a shortest path between x and y that passes through

at most two vertices in each layer L;, Liyq,...,Lj_1.

According to Observation 2, there exists a shortest path between x and
y that uses the smallest possible number of vertices of L;, Lit1,...,L;—1
and the remaining vertices of the path are from L;.

Observations 1 and 2 are significant when determining eccentricities of
vertices and calculating the distance vectors.

The smallest (5,0)-nanotube is the dodecahedron Cyg created only by
the two caps. Since it is a vertex-transitive graph, all of its vertices belong
to a single orbit under the automorphism group of Cyy. From the structure
and the symmetry of Cigr, K > 3 it follows that there are k orbits of
the automorphism group Aut(Ciox), each having 10 vertices. We denote
them by Oy = L§™ U LI", O = LB U LY, Oy = LY UL |, ...,
Op_1 = L‘E,‘;}QJ U Liﬂc/z}' Note that for s > 0, it holds Oa5 = LS U LI _
and Oggy1 = L;‘;l U L$™*, ;. Furthermore, when k is even, all 10 vertices
of the orbit Oy_1 belong to Ly /5. Therefore, to determine distance vectors
of all vertices from C1gg, it is sufficient to calculate the distance partition
vector of only one vertex from each orbit.

Before we calculate distance partition vectors of vertices of Cior, k > 6,

let us mention a result from [3] concerning the diameter of Cyog:

Lemma 1. We have

2k +1, k=2
diam(Clok) = Qk, k= 3,4; (2)
2k —1, k>5.

Now we calculate eccentricities of vertices in Cior, k > 2. Because of
the symmetry of Ciox for v € Li" and u € L8, we have ecc(v) = ecc(u).
So it suffices to consider eccentricities of vertices of Li* for 1 <i < |k/2]

and LY for 0 <i < [(k—1)/2].
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Lemma 2. For eccentricities of vertices of Cior we have
i) If k =2, then ecc(v) =5 for all v € V(Cio).
it) If k =3, then ecc(v) =6 for all v € V(Ciok).-

i) If k>4 and v € L™ U L™, for 1 <i < |k/2], then
ecc(v) =2(k — i)+,

where § = 2 if (k,i) = (4,2), 6 =1 for (k,i) € {(4,1),(5,2),(6,3)},

and 6§ = 0 otherwise.

w) If k>4 andv € LS U LM | for 0 <i < |(k—1)/2], then
ecc(v) =2(k—1i) — 1+,

where 6 = 2 if (k,i) € {(4,1),(5,2)}, 6 =1 4f (k,i) € {(4,0),(5,1),
(6,2),(7,3)}, and § =0 otherwise.

Proof. Denote

Lk/2] [(k—1)/2] k k-1
=y U ™ oad = | Yy U M
i=1 i=0 i=|k/2)+1 i=|k/2]

It suffices to consider the vertices v € V. Then, the vertices at the biggest
distance from v must be in V5 (see Figure 1), somewhere close to L. We
consider all the possible cases and start with incoming vertices.

Case 1: v € Li" |. This is possible only if k¥ = 2 since v € V4. Then
all vertices of Li" are at distance at most 4 from v, but there is a vertex of
Lz‘fl which is at distance 5 from v (use Observations 1 and 2 for a shortest
path). So ecc(v) = 5.

Case 2: v € Li" ,. This is possible only if k € {3,4}. Then all vertices
of L™ are at distance at most 5 from v, but there is a vertex of Li® | which
is at distance 6 from v. So ecc(v) = 6.

Case 3: v € Lik“73. This is possible only if k¥ € {4,5,6}. Then all
vertices of L}' are at distance at most 7 from v, and one of them is at

distance exactly 7 from v, so as one vertex of LY",. So ecc(v) = T.
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Case 4: v € Li" , for i > 4. Then all vertices of Li" are at distance
exactly 2(k — 7) from v.

Now we consider the cases v € L{"". Here the case v € L™

, is impos-
sible since that would mean k = 1.

Case 5: v € L",. If k = 2 then v € LJ"* and there is a unique vertex
of LI at distance 5 from v, all other vertices are closer. So ecc(v) = 5.
This is possible only if & = 3. Then all

vertices of L}C“ are at distance at most 5 from v, but there is a vertex of

Now suppose that v ¢ L§".

LoM, at distance 6 from v. So ecc(v) = 6.

Case 6: v € L9",. If k = 3 then v € LJ"". Then all vertices of Li* and
L1 are at distance at most 6 from v (for the latter one should use paths
having first edges in Lg) and two vertices of Li" are at distance exactly 6
from v. So ecc(v) = 6. Now suppose that v ¢ L§"*. This is possible only
if k € {4,5}. Then all vertices of Li® are at distance at most 6 from v, but
there is a vertex of Li" | at distance 7 from v. So ecc(v) = 7.

Case 7: v € Lg™,. This is possible only if k¥ € {4,5,6,7}. Then all
vertices of LI* are at distance at most 8 from v, one being at distance
exactly 8 from v. Also one vertex of L‘,;“_tl has distance 8 from v if & > 4.
So ecc(v) = 8.

Case 8: v € L9 for i > 5. Then all vertices of L}Cn are at distance
exactly 2(k —¢) — 1 from v.

Observe that if k = 2, then ecc(v) =5 (Cases 1 and 5), while if k = 3,
then ecc(v) = 6 (Cases 2, 5 and 6). |

Observe that Lemma 1 is a consequence of Lemma 2, and the diameter
is achieved by the vertices of L"*. In the next table, we show eccentricities
of the vertices of V; when 4 < k < 7. If k € {2,3}, then all the vertices

have the same eccentricity, and if k& > 8, then there is no irregularity.

Lgut Llln Ltlmt L12n Lgut Lén Lgut
k=4 8 7 7 6
k=5 9 8 8 7 7
k=6 11 10 9 8 8 7
k=17 13 12 11 10 9 8 8

Table 1. Eccentricities of vertices of Vj for 4 < k < 7.
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For k > 2 and each ¢ = 0,1,...,k, the layer L; divides the nanotube
C1ox into two distinct parts (one of them being empty if ¢ = 0 or i = k).

The left-hand side part consists of layers L; for j = 0,1,...,% — 1, while
the right-hand side part consists of layers L; for j =i+1,...,k. By L(v)
and R(v) we denote the distance partition vector for the left-hand side
part and the right-hand side part, respectively, and by D(v) we denote the
distance partition vector within the layer L;.

By Observations 1 and 2, the following statement holds.

Proposition 3. Let k > 2 and let v be a vertex from Cior such that
ve L, 0<i<k. Then

D(v) = { (1,2,2), ifi e {Q,kz}; )
(1,2,2,2,2,1), otherwise,
and
DV(v) = L(v) + D(v) + R(v). |

By symmetry, if u € Li® then for v € L™, we have R(u) = L(v), and
if u € L9 then for v € LI® , we have R(u) = L(v). Hence, it suffices to

calculate L(v). These vectors are presented in the following table.

L(v) velLr v e Lo

i=1 (0,1,2,2) (0,0,2,2,1)
i=2 k=2 | (0146,3]1)
i=2k>3 | (012443]1) (0,0,2,3,5,4,1)
i=3k=3 | (0146652
i=3,k=>4 | (01,24575,1) (0,0,2,3,5,6,7,2)
i=4,k=4 ] (0,1,4,6,6,6,65,1)
i=4k>5 | (012457772 (0,0,2,3,5,6,7,6,6)
i=5k=5 | (0,1,46,6,,5,6,5)
i=5k>6 | (0,1,2,457,7,7,6,) (0,0,2,3,5,6,7,6,6,5,5)
i=k k>6 | (0,1,4,6,6,6,6,5,6,5%2k=9)
6 Sé E’;’l’ (0,1,2,4,5,7,7,7,6,6,5#2(0=2)) | (0,0,2,3,5,6,7,6,6,5%2(:=4))

Table 2. Distance partition vectors for the left-hand side in Cig. The
notation 5#% represents a sequence of k elements, all equal to

5.

Now using Proposition 3 we get the following theorem from Table 2.
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Theorem 4. Let k > 10. Moreover, let x = “in’ or x = ‘out’ if k is
even. Then the distance partition vectors of all vertices of Cio are listed
i Table 3. |

We remark that the rows for ¢ = 5 are redundant since the following two
(those in which ¢ > 5) are valid also for ¢ = 5. We have them emphasize
the change at ¢ = 5.

Observe that for i > 5, the distance vectors for v € L™ and v € L
differ only by the parity of exponents at 10 and by the exponent at 5.
Therefore, we can unify the description of these distance vectors using the
orbits O;, where t > 9, since the orbit Og consists of all vertices from
Lir U L™, . However, distance vectors for vertices in orbits Oy, Oy, ...,0s
are slightly different (see the first 9 lines of Table 3).

Distance vector DV (v)
(1,3,6,6,6,6,6,5,6,57 2F—9))
(1,3,6,7,7,7,7,6,6,57 2F—10))
(1,3,6,8,8,8,7,7,6,6,57 2E—12))
(1,3,6,9,11,10,8,6,6,57 2F—12))
i=2andve L{ | (1,3,6,9,12,12,8,7,6,6,57 2F— 1))
i=3andve L (1,3,6,9,12,14,12,7,6,57 2F—11)
i=3andve LY | (1,3,6,9,12,14,14,9,6,6,57 2 ~10))

(

(

(

(

(

(

(

i=0and v € L™
i=1landveL®
i=1andv € L™
i=2and v e L®

i=4andve L® 1,3,6,9,12,14,14,13,8,57 (2F~16))

i=4and ve L 1,3,6,9,12,14,14,13,12,6,57 2k~ 18))

i=5and ve L® 1,3,6,9,12,14,14,13,12,11,57 2F=19)

i=5and ve L 1,3,6,9,12,14,14,13,12,11,10,57 (¢ —21)

i>b5and ve L™ 1,3,6,9,12,14,14,13,12,11,107 27~ 10) 5#(k—4i+1)y

i>5and v e LS™ 1,3,6,9,12,14,14,13,12,11,107 27=9) 5#(k=4i-1))

1= 1k/2], k is odd,
and v € L;"

1= |k/2], k is odd,
and v € L§"*

i =k/2, k is even,
and v € LY

t>9and v e O (1,3,6,9,12,14,14,13,12,11,107 ¢ =9 5#2k=2t-1))

1,3,6,9,12,14,14,13,12,11,10% =11 5 5 5)

(1,3,6,9,12,14,14,13,12,11,10#(* 19 5)

(1,3,6,9,12,14,14,13,12,11,10#(*~10) 5)

Table 3. Distance partition vectors for vertices of Cigg, for £k > 10.
Unless otherwise stated, s < |k/2]. The notation a#P repre-
sent a sequence of p elements, all equal to a.
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4 Distance based indices of (5,0)-nanotubes

In this section, we determine exact values or establish bounds for a wide
range of chemical indices for Cyg;. We start with indices based on eccen-
tricities.

Eccentric connectivity indez [16] of G is

&(G) = Z degq(v) - eccq(v),

veV(G)

where degq(v) is the degree of v in G.

Eccentric adjacency indez [1] of G is

eio)= Y o

VeV (G) ecea (v)

where SG(v) is the sum of degrees of neighbours of v.
The eccentricity version of the Zagreb indices was first introduced by

Vukicevié and Graovac [19]. First Zagreb eccentricity index is defined by

Q@)=Y ecckv),

veV(G)

and second Zagreb eccentricity index is

&(G)= > (ecca(u)-ecca(v)).

weE(G)

By Lemma 2, the eccentricities are regular if £ > 8. Namely, if v € O;,
0 <i<k-—1, then ecc(v) = 2k — 1 — i. Therefore, in the next statement,
we assume that £ > 8. For smaller &, the indices could be easily calculated

by a computer.

Theorem 5. Let k > 8. Then

(a) &.(Chok) = 45k* — 15k;

(b) 901In(2) < £*(Cror) < 90(In(2k — 1) — In(k — 1));
5

(¢) & (Cior) = gk(14k2 — 9k +1);

(d) &(Chox) = 35k3 — k% — 5k + 6,
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15

where 6 = =2 if k is odd and § = 10 if k is even.

Proof. (a) Since each orbit of Cyg has 10 vertices, by Lemma 2 we have

2k—1
&(Crok) = Z deg(v) - ecc(v) = 10 Z 3t
’UGV(Clok) t=k
2k—1 k-1
4k? -2k k* —k
= - = - = 45k% — 15k.
SO(Zt ;) 30( 5 5 ) 5k — 15k
(b) We have
9 261 g 2k—1
ad _ _ i -1
£(Cior) = Z ccv)ilozt QOZt
vEV (Crok) t=k t=k

Calculating the area below f(z) = x~! and using the fact that f(z) = 27!
is positive and decreasing for all x > 0, we infer

2k 2k—1 2k—1
/ x ldr < Z 7l < / x_lda:,
k p— k—1

and so

90(In(2k) — In(k)) < £€*Y(Ciox) < 90(In(2k — 1) — In(k — 1)).

Since In(2k) = In(2) + In(k), we obtain the result.
(c) We have

&1(Chrok) = Z eccz(v)
veV(Ciok)
2k—1 2k—1
=10 Z t2—10<z 2 — ZR)
B (2k —1)2k(4k —1) (k- 1)k(2k —1)
=10 [ 6 B 6 }
= “k(14k* — 9k + 1).

Wl Ut

(d) To calculate £3(Chog), note that there are 5 edges with both end-
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vertices in L and 5 edges with both endvertices in Li®. Furthermore,
there are 5 edges with one endvertex in L™ and the other in Li% |, where
0 <t<k-—1,and 10 edges with one endvertex in L® and the other in
Lo% where 1 < ¢ < k — 1. Considering the orbits, there are 10 edges with
both endvertices in the last orbit Oy_; if k is even, but there are only 5
edges with both endvertices in the last orbit Oy_1 if k is odd. Therefore,
it is natural to consider two cases according to the parity of k.

Case 1. k is odd. In the calculation below, in the first expression we
consider the edges between Oy_1 and O_o, Or_3 and Ok_4, ..., Oz and
O;. In each case, there are 20 edges between these orbits. In the second
expression we consider edges between Oy_s and Og_3, Og—4 and Og_s,

, O1 and Op. In each case, there are 10 edges between these orbits.
Then we consider the 5 edges with both endvertices in O;_; and finally
the 10 edges with both endvertices in Oy. We have

k-3
2 2
2(Crox) = Z k=2 —5) —1]+10Y [2(k—j) - 1]2(k—j — 1)
7j=1 7=0
+ 5k% +10(2k — 1)°

k73

:1202( -7 —1002 — ) + 35k(3k — 2)

3 2
=35k° — Pk’ -5k + 2

Case 2. k is even. Here, in the first expression we consider the edges
between Op_o and Oy_3, Op_4 and Oy_5, ..., O and Oy, while in the
second expression we consider the edges between O;_1 and Oy_o, Of_3 and

Ok_4, ..., O1 and Oy. Then we consider 10 edges with both endvertices
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in Ok_1 and 10 edges with both endvertices in Oy. We get

§2(Cror) = 20 Z 2(k = j)[2(k = j) = 1] + 10 ip(k — ) —12(k—j—1)

+ 10k% 4 10(2k — 1)?

k—2 k—2

= Z — ) —1002 — ) +10(9k% — 9k +1)
j=1 Jj=1
k—1 k/2 k—1 k/2

=120 |> 2= "2 =100 | > t—> | +10(9k* — 9k + 1)
t=1 t=1 t=1 t=1

= 35k — Lk* — 5k + 10. [

Observe that by Theorem 5 we have klim 4(Chor) = 901n(2).
—00

Now we calculate indices using the distance sequences.

Generalized Wiener polarity index [10], W;(G), is the number of un-
ordered pairs of vertices u,v € V(G) such that dg(u,v) = j. When j = 3,
we get the polarity index [20].

Observe that W;(G) = 0 if j > diam(G), and for k£ > 5, the diameter
of Chok is 2k — 1, by Lemma 1.

Theorem 6. Let k > 10. Then, the values of W;(Ciox) for k > 10 and
j=1,...,2k —1 are given in Table 4.

J W;(Cror) || 7 | Wi(Crox) || J | W;(Chor)

1 15k 4 | 60k — 80 7 | 65k — 220

2 30k 5 | 70k —135 || 8 | 60k — 230

3 45k — 30 6 | 70k —180 || 9 | 55k — 250
>10 | 5Ok — 25;

Table 4. Generalized Wiener polarity index of Cigx for £ > 10 and
j=1,...,2k—1.

Proof. The graph Cigx has k orbits, each with 10 vertices. Further, ev-
ery pair of vertices, say u and v, with distance d(u,v) is counted twice
in Table 3; once in the row corresponding to u and once in the row cor-

responding to v. So using the distance sequences from Table 3 we have
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W1 (Cior) = 22 -3k = 15k, Wa(Chox) = L2 -6k = 30k, W5(Ciox) = 22 (9k —

1—2—3) =45k — 30 and Wy(Ciox) = 22(12k —1—4—5—6) = 60k — 80.

In a similar way we obtain values of W;(Ciox) for j =5,...,9 as given in

Table 4. Now we calculate W;(Ciox) when j > 10. We distinguish two
cases.

Case 1: 10 < j < k—1. In Table 3, we have 5’s in the first rows

and 10’s in the last rows on j-th position (ignoring the very last row, of

course). When j = k — 4, then in ¢ rows we have 10’s and in the remaining

k — i rows we have 5’s. So
10 10
W;(Chox) = 3 10(k —j)+ 5 5j = 50k — 257.

Case 2: k < j < 2k — 1. Observe that the longest sequence of 10’s
appears in the row that is above the last one in Table 3. So if there is a
non-zero number on i-th position, where ¢ > k, then this number is 5. If
j = k + 1, then there are ¢ orbits with 0 on j-th position, and k — ¢ orbits
with 5 on j-th position. So

10 , .
W;(Ciox) = 7-5(k— (j — k)) = 50k — 25;. [ ]

Using generalized Wiener polarity indices we can calculate other chem-
ical indices. The most famous chemical index is the Wiener index.
Wiener index, W(G), is the sum of distances in G [20]. That is

W(G) = Z d(u,v).
{uv}CV(G)

The hyper- Wiener index is defined [14] as

WWEG) =2 S (dlw,v) + d ().
{u,v}CV(G)

Finally, the reciprocal complementary Wiener index [11] is

1
RCW(G) = ) .
(V@) diam(G) + 1 — d(u,v)
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Denote Ry = Z?Zl %jj‘”‘) By Theorem 6, we obtain

R 15k 30k 45k-30 6Ok —80 70k 135
T ok—1  2k—2 " 2k—3 2% — 4 2% — 5
70k — 180 65— 220k 60k — 230 55k — 250

9% —6 | 2k—7  2k—8 T 2k—9

Theorem 7. Leé k> 10. Then
(@) W(Cio) = 3(201:3 + 235k — 402);

25
(b) WW(Chor) = o Zo (4Kt 4 4k3 — K 4 407k — 864);

(¢) RCW(G) = Ry, + 50k — 250.

Proof. (a) Since Cior has diameter 2k — 1, we can use the generalized
Wiener polarity index to calculate the Wiener index. By using Theorem

6, we obtain

2k—1 9 2k—1
W(Ciok) = Y j-Wi(Cror) =D _j-W;(Crox) + > j(50k — 25)
Jj=1 j=1 j=10

= 2650k — 7795 + 3 (4k3 — 271k + 855)

5
= g(201c3 + 235k — 402).

( ) Denote A = 3, rcv(cron) d*(u,v). We use a formula Z?le?’
@ *(a+1)? to obtain

2k—1 9 2k—1
A= Z 72 Wi(Crox) = 3 52 W;(Crox) + Y j2(50k — 255)
j:1 j=10

= 17250k — 57155 + 3 (4k4 k* — 1710k + 6075)
5
= g(20k4 — 5k% 4 1800k — 3918).

Since WW (Ciox) = 2 (W(Chok) + A), by using (a) we obtain the result.
(¢) We write a formula for RCW(G) by usind generalized Wiener polarity
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index and obtain

2k1 2k—1

C 50k — 257
j=1 j=10 J
= Ry + 25(2k — 10). [ |

Generalized Wiener index, W (G), is defined as

WG = > d*(ww),

{u,v}CV(G)

where « is any real number. If & = 1, we get the Wiener index, and if
a =0, then W°(G) = (lV(QG)‘). If « = —1, then W=1(G) = H(G), where
H(Q) is the Harary index of G. For chemical purpuses, both Wz, and the

general case W are examined.
2k—1

Obviously, W(Cyor) = Z JOW;(Chor). When « is a positive integer,
j=1
a compact formula for W*(Ciog) can be derived like the cases o = 1 and

a = 2; see the proof of Theorem 7. For other values of o, one can obtain
bounds for W*(C1og).
Observe that

2k—1 2k—1 2k—1 2k—1
W (Cro) = 3 450k — 25) = 50k 3 o —25 3 o
j=10 j=10 =10 =

For any real number 3 # 0, the function f(x) = x? is monotonic on its
domain. If f is increasing, then for integers a and b with 1 < a < b, we

have
b+1

b b
/ﬂfwwx<§:ﬂﬂ< f(z)dz. (4)

If f decreases, the inequalities in (4) are reversed. Using the notation
f f(z)dx = [F (x)]i; we derive the following result from inequalities in
(4).

9

Theorem 8. Let « € R\ {0,1}. Denote W§ = Zja -W;(Chor). We
j=1



have
Wga + L < Wa(Clok) < W; + P,
where
(a) L = %[xa“rk - ﬁ[az"”rk_l and P = %[m‘”lrk_l
a+1 o 10 a+2 9 a+1 9
25 “ﬂ if a <0 and —1,-2};
a+2[$ 102f04 and o ¢ {—1, -2},
() [ = 30k [port] 70 2 [asa) ™0 g p S0k [pan]
- a4+l 9 a+2 9 - a4+l 10
2k
_25 | .a+2 if0 < <1:
ot2 [x Lo i @ ’

50k k=1 25 2k 50k 2k
(c) L =205 [:EO‘“] - == [m“*z} and P = 29% [mo‘“]
9 ot 10 atl 10

2k 2
(d) L = 50k [111(3;)] B0k +250 and P = 50k [m(x)] | —50k+250

if o = —1;
(e) L = —50k{x—1ﬁz = 25{1n(m)}2k_1 and P = —50k[x_1}zk_l -
25[1n(33)} jz if o ==2.
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