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Abstract

In this paper, we calculate the eccentricities and the distance vec-
tors of all vertices of the (5, 0)-nanotubes. Building on these com-
putations, we further determine several important distance-based
topological indices associated with these nanotubes. Specifically,
we investigate the eccentric connectivity index, eccentric adjacency
index, first and second eccentric connectivity indices, Wiener index,
generalized Wiener index, generalized Wiener polarity index, hyper-
Wiener index, and reciprocal complementary Wiener index. These
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indices are instrumental in characterizing the structural and con-
nectivity attributes of nanotubes, offering significant insights into
their topological properties. The arguments from this paper could
be readily adapted to obtain similar results for (6,0)-nanotubes.

1 Introduction

A fullerene is a molecule made entirely of carbon atoms organized into a

closed, hollow structure [15]. These structures can take various shapes, in-

cluding spheres, ellipsoids, or cylindrical tubes. Mathematically, fullerene

graphs are 3-connected, cubic planar graphs composed exclusively of pen-

tagonal and hexagonal faces [4]. According to Euler’s formula, every

fullerene must contain exactly twelve pentagonal faces, regardless of its

overall size or shape. The first discovered fullerene molecule, C60, consists

of 60 carbon atoms arranged in a structure resembling Richard Buckmin-

ster Fuller’s geodesic dome [13]. This resemblance inspired its name, buck-

minsterfullerene. The discovery of C60 marked a pivotal moment, laying

the foundation for fullerene chemistry and the advent of nanotechnology.

Grünbaum and Motzkin [9] demonstrated that fullerene graphs with n

vertices exist for all even n ≥ 24 and for n = 20. While the number of

pentagonal faces in a fullerene graph is minimal compared to the hexag-

onal faces, their arrangement is cruical in determining the graph’s overall

shape. When the pentagonal faces are evenly distributed, the fullerene

graph achieves icosahedral symmetry, with the dodecahedron being the

smallest example. Fullerene graphs can also form tubular structures, a

specialized class known as nanotubes.

Nanotubical graphs are essential for modeling and understanding car-

bon nanotubes, an allotrope of carbon characterized by their hollow cylin-

drical structure, with walls that are only one atom thick. The carbon

atoms are arranged in a hexagonal lattice, and the tubes typically have

a diameter of 1-3 nanometers. Carbon nanotubes were first discovered in

1991 (open-ended) [12] and later in 1996 (close-ended) [17]. While car-

bon nanotubes are often associated with fullerenes, they don’t have to be

capped with fullerene structures at their ends. Open-ended carbon nan-

otubes, which lack these fullerene caps, are also common and have their
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own unique properties and applications. Renowned for their exceptional

mechanical strength and electrical properties, carbon nanotubes are at

the forefront of nanotechnology and materials science. The mathematical

framework provided by nanotubical graphs facilitates the analysis of their

topological and geometrical properties, offering deeper insights into their

unique characteristics and applications.

In this paper, we will focus on close-ended nanotubes, which are a type

of fullerene graphs with distinct structural characteristics. These graphs

are cylindrical, with both ends capped by subgraphs, which are primar-

ily pentagonal (five-sided faces) and possibly a few hexagons. These pen-

tagons allow the structure to curve and close, forming the ends of the tube.

The cylindrical section of a nanotube is derived from a planar hexagonal

grid, where points along two parallel lines are identified and connected.

The method used to roll this hexagonal grid into a cylindrical form is

described by a pair of integers (p1, p2), which determine the rolling pat-

tern and overall structure of the nanotube [18]. Numbers p1 and p2 are

the components of the translation vector between atoms on the hexagonal

grid that will overlap when the tube is formed.

Although many mathematical properties of fullerenes have already

been established [2–6, 8, 18], numerous others remain unexplored. In this

paper, we calculate the eccentricities and the distance vectors of all ver-

tices of the (5, 0)-nanotubes. Building on these computations, we further

determine several important distance-based topological indices associated

with these nanotubes. Topological indices, in general, assist in comparing

different nanotube structures, helping to determine how small changes in

topology affect performance in nanotechnology applications. The indices

we analyzed help describe various aspects of molecular graphs, such as

connectivity, branching, and transport properties, and therefore play an

important role in characterizing the structural and connectivity properties

of the nanotubes. For example, the eccentric connectivity index shows how

well-connected distant parts of the nanotube are, which is relevant for elec-

trical conductivity, mechanical stability, and molecular interactions. The

eccentric adjacency index measures how eccentricities vary along adjacent

atoms and it is useful for understanding transport phenomena, such as
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heat or charge distribution, while the first and second eccentric connec-

tivity indices are useful in predicting reactivity, stability, and electronic

properties. Other indices that we calculate are much more familiar. The

paper is organized as follows. Section 2, Preliminaries, presents the fun-

damental definitions and results required for this paper. In Section 3, we

analyze the distance partition vectors of a (5, 0)-nanotube as a function of

its length and the type of vertex, distinguishing between two vertex types:

incoming and outgoing. In Section 4, we evaluate or establish bounds

for various distance-based topological indices of the given structures, in-

cluding the eccentric connectivity index, eccentric adjacency index, first

and second Zagreb eccentricity indices, Wiener index, generalized Wiener

index, generalized Wiener polarity index, hyper-Wiener index, and recip-

rocal complementary Wiener index.

2 Preliminaries

This paper follows the standard notation and terminology of graph theory

as outlined in [7]. For u, v ∈ V (G), the distance dG(u, v) between vertices

u and v is defined as the number of edges in a shortest path connecting

them in G. Vertices at distance j from vertex v in G are referred to as the

j-neighbors of v and the number of such vertices is denoted by nj(v).

Let C10k, k ≥ 2 be a (5, 0)-nanotube. There are many ways to represent

a nanotube geometrically. We can use a Schlegel diagram or display the

nanotube unrolled. In both representations, we define the initial layer L0

as the set of vertices incident to the pentagon p which is the center of a

cap and set F0 = {p}. For each i = 1, . . . , k the set of faces Fi contains

all the faces incident with vertices form Li−1 that are not already in Fi−1.

Similarly, Li contains all the vertices incident to a face from Fi that are not

contained in Li−1. Thus, the nanotube C10k is composed of k + 1 layers.

The first and last layers, L0 and Lk, each contain 5 vertices, while every

intermediate layer has 10 vertices. In the unrolled form of C10k, the layers

are arranged from left to right, with the vertices of layer L0 positioned as

the leftmost vertices and the vertices of layer Lk as the rightmost vertices,

see Figure 1.
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L0 L1 L2 Li

L0 L1 L2 Li

Lk
Lk−1Lk−2Li+1

LkLk−1Lk−2Li+1

u w

Figure 1. The layers of a (5, 0)-nanotube. The filled blue vertices be-
long to layer L0, while the hollow blue vertices are in layer
Lk. Similarly, the filled red vertices are in L1 whereas the
hollow red vertices belong to layer Lk−1, etc. The vertex
u ∈ Li is an outgoing vertex, while the vertex w ∈ Li+1 is
an incoming vertex.

Let e = uw be an edge in C10k, where u ∈ Li and w ∈ Li+1. We

refer to the vertex u as an outgoing vertex for Li, and the vertex w as an

incoming vertex for Li+1, see Figure 1. Note that all vertices in the initial

layer are outgoing, while those in the final layer are incoming. Additionally,

each intermediate layer is composed of 5 outgoing and 5 incoming vertices,

which alternate along the layer. For 0 ≤ i < k (0 < i ≤ k) denote by Lout
i

(Lin
i ) the set of 5 outgoing (ingoing) vertices of Li.

Definition 1. Let G be a nonempty finite connected graph and v a vertex

of G. The distance partition πd(v) relative to v is a collection of disjoint

sets:

• D0 = {v},
• Dj = {u : d(v, u) = j}, j = 1, 2, 3, . . . , ecc(v),

where ecc(v) is the eccentricity of v, i.e. ecc(v) = max
u∈V (G)

d(v, u).

Definition 2. Let G be a nonempty finite connected graph and v a vertex

of G. The distance partition vector DV(v) ∈ Ndiam(G) of a vertex v is

defined as

DV(v) = (n0(v), n1(v), . . . , ndiam(G)(v)),

where nj(v) = |Dj | for j = 0, 1, . . . , ecc(v), and nj(v) = 0 for ecc(v) < j ≤
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diam(G).

For simplicity, in the next sections, we will omit zero components

of DV(v), leaving only the first ecc(v) nonzero components. Note that

n0(v) = 1 for each v ∈ V (G).

3 Distance partition vectors of

(5, 0)-nanotube

As noted in [5], on the infinite regular hexagonal grid the number of j-

neighbors is 3j for any vertex v. Furthermore, from a geometric stand-

point, when j > 1, the convex hull of these vertices, considered as points

in the plane, forms a hexagon Hj , with all such vertices evenly distributed

along its sides, see Figure 2. (For j = 1, the convex hull is a triangle.)

u u

(a) (b)

Figure 2. (a) The hexagons H2 (red) and H4 (green) with respect to
the vertex u. (b) The hexagons H3 (blue) and H5 (pink)
with respect to the vertex u.

The following result from [5] holds.

Proposition 1. For j > 1, let Hj denote the hexagon formed by the j-

neighbors of a vertex v in an infinite hexagonal grid. When j is even, each

side of Hj contains exactly j/2 + 1 vertices. For odd j, three nonadja-

cent sides contain precisely ⌈j/2⌉ vertices, while the remaining three sides

contain ⌈j/2⌉+ 1 vertices.
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Remark. From Figure 2 we can see that for each j > 1, there are two

vertical sides of Hj . Let j be odd. If v is an outgoing (incoming) vertex,

then the left (right) vertical side contains ⌈j/2⌉+ 1 its j-neighbors, while

the right (left) vertical side contains ⌈j/2⌉ j-neighbors.

By rolling the hexagonal grid by the vector 5⃗i + 0⃗j, and placing the

pentagonal caps at both ends of the cylinder, we obtain C10k. In this

configuration, for a vertex v ∈ V (C10k), its j-neighbors may either stay on

the sides of the hexagons Hj or shift to different positions, depending on

the location of v and the distance j. Andova et al. [5] studied the distances

of vertices in an infinite open (p1, p2)-nanotube G. For each j ∈ N, they
determined the number of j-neighbors of a vertex v ∈ V (G).

Theorem 2. Let v be an arbitrary vertex in an infinite open (p1, p2)-

nanotube and let q ∈ N, q ≤ p1 − p2. Then

nj(v) =


3j, 1 ≤ j < p1 + p2;

3j − (p2 + 1), j = p1 + p2;

3j − 2(p2 + 2q), j = p1 + p2 + q;

2(p1 + p2), j ≥ 2p1.

From Theorem 2 we obtain the numbers nj(v) of vertices at distance

j from v in an infinite open (5, 0)-nanotube:

nj(v) =


3j, 1 ≤ j < 5;

3j − 1, j = 5;

15− q, j = 5 + q, 1 ≤ q ≤ 4;

10, j ≥ 10.

(1)

Since C10k is finite, its distance vectors differ from those of an infinite

open (5, 0)-nanotube. However, the following observations show that the

distance vectors can be very different only if v ∈ L0 ∪ Lk.

Observation 1. Let x ∈ Li and y ∈ Lj, where 0 ≤ i ≤ j ≤ k. Then

there is a shortest path between x and y using only the vertices of Li, Li+1,

. . . , Lj.

For i = j = 1 and i = j = k − 1, there may exist shortest paths

between x and y that use vertices from L0 and Lk, respectively. In all
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other cases every shortest path between x and y uses only the vertices of

Li, Li+1, . . . , Lj .

Observation 2. Let x ∈ Li and y ∈ Lj, where 1 ≤ i < j ≤ k or i = 0 and

j > 2. Then there is a shortest path between x and y that passes through

at most two vertices in each layer Li, Li+1, . . . , Lj−1.

According to Observation 2, there exists a shortest path between x and

y that uses the smallest possible number of vertices of Li, Li+1, . . . , Lj−1

and the remaining vertices of the path are from Lj .

Observations 1 and 2 are significant when determining eccentricities of

vertices and calculating the distance vectors.

The smallest (5, 0)-nanotube is the dodecahedron C20 created only by

the two caps. Since it is a vertex-transitive graph, all of its vertices belong

to a single orbit under the automorphism group of C20. From the structure

and the symmetry of C10k, k ≥ 3 it follows that there are k orbits of

the automorphism group Aut(C10k), each having 10 vertices. We denote

them by O0 = Lout
0 ∪ Lin

k , O1 = Lin
1 ∪ Lout

k−1, O2 = Lout
1 ∪ Lin

k−1, . . . ,

Ok−1 = Lout
⌊k/2⌋ ∪ Lin

⌈k/2⌉. Note that for s ≥ 0, it holds O2s = Lout
s ∪ Lin

k−s

and O2s+1 = Lin
s+1 ∪ Lout

k−s−1. Furthermore, when k is even, all 10 vertices

of the orbit Ok−1 belong to Lk/2. Therefore, to determine distance vectors

of all vertices from C10k, it is sufficient to calculate the distance partition

vector of only one vertex from each orbit.

Before we calculate distance partition vectors of vertices of C10k, k ≥ 6,

let us mention a result from [3] concerning the diameter of C10k:

Lemma 1. We have

diam(C10k) =


2k + 1, k = 2;

2k, k = 3, 4;

2k − 1, k ≥ 5.

(2)

Now we calculate eccentricities of vertices in C10k, k ≥ 2. Because of

the symmetry of C10k for v ∈ Lin
i and u ∈ Lout

k−i we have ecc(v) = ecc(u).

So it suffices to consider eccentricities of vertices of Lin
i for 1 ≤ i ≤ ⌊k/2⌋

and Lout
i for 0 ≤ i ≤ ⌊(k − 1)/2⌋.
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Lemma 2. For eccentricities of vertices of C10k we have

i) If k = 2, then ecc(v) = 5 for all v ∈ V (C10k).

ii) If k = 3, then ecc(v) = 6 for all v ∈ V (C10k).

iii) If k ≥ 4 and v ∈ Lin
i ∪ Lout

k−i for 1 ≤ i ≤ ⌊k/2⌋, then

ecc(v) = 2(k − i) + δ,

where δ = 2 if (k, i) = (4, 2), δ = 1 for (k, i) ∈ {(4, 1), (5, 2), (6, 3)},
and δ = 0 otherwise.

iv) If k ≥ 4 and v ∈ Lout
i ∪ Lin

k−i for 0 ≤ i ≤ ⌊(k − 1)/2⌋, then

ecc(v) = 2(k − i)− 1 + δ,

where δ = 2 if (k, i) ∈ {(4, 1), (5, 2)}, δ = 1 if (k, i) ∈ {(4, 0), (5, 1),
(6, 2), (7, 3)}, and δ = 0 otherwise.

Proof. Denote

V1 =

⌊k/2⌋⋃
i=1

Lin
i

⋃ ⌊(k−1)/2⌋⋃
i=0

Lout
i and V2 =

k⋃
i=⌊k/2⌋+1

Lin
i

⋃ k−1⋃
i=⌊k/2⌋

Lout
i .

It suffices to consider the vertices v ∈ V1. Then, the vertices at the biggest

distance from v must be in V2 (see Figure 1), somewhere close to Lk. We

consider all the possible cases and start with incoming vertices.

Case 1: v ∈ Lin
k−1. This is possible only if k = 2 since v ∈ V1. Then

all vertices of Lin
k are at distance at most 4 from v, but there is a vertex of

Lout
k−1 which is at distance 5 from v (use Observations 1 and 2 for a shortest

path). So ecc(v) = 5.

Case 2: v ∈ Lin
k−2. This is possible only if k ∈ {3, 4}. Then all vertices

of Lin
k are at distance at most 5 from v, but there is a vertex of Lin

k−1 which

is at distance 6 from v. So ecc(v) = 6.

Case 3: v ∈ Lin
k−3. This is possible only if k ∈ {4, 5, 6}. Then all

vertices of Lin
k are at distance at most 7 from v, and one of them is at

distance exactly 7 from v, so as one vertex of Lout
k−1. So ecc(v) = 7.
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Case 4: v ∈ Lin
k−i for i ≥ 4. Then all vertices of Lin

k are at distance

exactly 2(k − i) from v.

Now we consider the cases v ∈ Lout
i . Here the case v ∈ Lout

k−1 is impos-

sible since that would mean k = 1.

Case 5: v ∈ Lout
k−2. If k = 2 then v ∈ Lout

0 and there is a unique vertex

of Lin
2 at distance 5 from v, all other vertices are closer. So ecc(v) = 5.

Now suppose that v /∈ Lout
0 . This is possible only if k = 3. Then all

vertices of Lin
k are at distance at most 5 from v, but there is a vertex of

Lout
k−1 at distance 6 from v. So ecc(v) = 6.

Case 6: v ∈ Lout
k−3. If k = 3 then v ∈ Lout

0 . Then all vertices of Lin
k and

Lk−1 are at distance at most 6 from v (for the latter one should use paths

having first edges in L0) and two vertices of Lin
k are at distance exactly 6

from v. So ecc(v) = 6. Now suppose that v /∈ Lout
0 . This is possible only

if k ∈ {4, 5}. Then all vertices of Lin
k are at distance at most 6 from v, but

there is a vertex of Lin
k−1 at distance 7 from v. So ecc(v) = 7.

Case 7: v ∈ Lout
k−4. This is possible only if k ∈ {4, 5, 6, 7}. Then all

vertices of Lin
k are at distance at most 8 from v, one being at distance

exactly 8 from v. Also one vertex of Lout
k−1 has distance 8 from v if k ≥ 4.

So ecc(v) = 8.

Case 8: v ∈ Lout
k−i for i ≥ 5. Then all vertices of Lin

k are at distance

exactly 2(k − i)− 1 from v.

Observe that if k = 2, then ecc(v) = 5 (Cases 1 and 5), while if k = 3,

then ecc(v) = 6 (Cases 2, 5 and 6).

Observe that Lemma 1 is a consequence of Lemma 2, and the diameter

is achieved by the vertices of Lout
0 . In the next table, we show eccentricities

of the vertices of V1 when 4 ≤ k ≤ 7. If k ∈ {2, 3}, then all the vertices

have the same eccentricity, and if k ≥ 8, then there is no irregularity.

Lout
0 Lin

1 Lout
1 Lin

2 Lout
2 Lin

3 Lout
3

k = 4 8 7 7 6
k = 5 9 8 8 7 7
k = 6 11 10 9 8 8 7
k = 7 13 12 11 10 9 8 8

Table 1. Eccentricities of vertices of V1 for 4 ≤ k ≤ 7.
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For k ≥ 2 and each i = 0, 1, . . . , k, the layer Li divides the nanotube

C10k into two distinct parts (one of them being empty if i = 0 or i = k).

The left-hand side part consists of layers Lj for j = 0, 1, . . . , i − 1, while

the right-hand side part consists of layers Lj for j = i+ 1, . . . , k. By L(v)

and R(v) we denote the distance partition vector for the left-hand side

part and the right-hand side part, respectively, and by D(v) we denote the

distance partition vector within the layer Li.

By Observations 1 and 2, the following statement holds.

Proposition 3. Let k ≥ 2 and let v be a vertex from C10k such that

v ∈ Li, 0 ≤ i ≤ k. Then

D(v) =

{
(1, 2, 2), if i ∈ {0, k};
(1, 2, 2, 2, 2, 1), otherwise,

(3)

and

DV(v) = L(v) +D(v) +R(v).

By symmetry, if u ∈ Lin
i then for v ∈ Lout

k−i we have R(u) = L(v), and

if u ∈ Lout
i then for v ∈ Lin

k−i we have R(u) = L(v). Hence, it suffices to

calculate L(v). These vectors are presented in the following table.

L(v) v ∈ Lin
i v ∈ Lout

i
i = 1 (0,1,2,2) (0,0,2,2,1)

i = 2, k = 2 (0,1,4,6,3,1)
i = 2, k ≥ 3 (0,1,2,4,4,3,1) (0,0,2,3,5,4,1)
i = 3, k = 3 (0,1,4,6,6,6,2)
i = 3, k ≥ 4 (0,1,2,4,5,7,5,1) (0,0,2,3,5,6,7,2)
i = 4, k = 4 (0,1,4,6,6,6,6,5,1)
i = 4, k ≥ 5 (0,1,2,4,5,7,7,7,2) (0,0,2,3,5,6,7,6,6)
i = 5, k = 5 (0,1,4,6,6,6,6,5,6,5)
i = 5, k ≥ 6 (0,1,2,4,5,7,7,7,6,6) (0,0,2,3,5,6,7,6,6,5,5)

i = k, k ≥ 6 (0,1,4,6,6,6,6,5,6,5#(2k−9))
6≤ i≤ k−1,

k ≥ 7
(0,1,2,4,5,7,7,7,6,6,5#2(i−5)) (0,0,2,3,5,6,7,6,6,5#2(i−4))

Table 2. Distance partition vectors for the left-hand side in C10k. The
notation 5#k represents a sequence of k elements, all equal to
5.

Now using Proposition 3 we get the following theorem from Table 2.
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Theorem 4. Let k ≥ 10. Moreover, let x = ‘in’ or x = ‘out’ if k is

even. Then the distance partition vectors of all vertices of C10k are listed

in Table 3.

We remark that the rows for i = 5 are redundant since the following two

(those in which i > 5) are valid also for i = 5. We have them emphasize

the change at i = 5.

Observe that for i > 5, the distance vectors for v ∈ Lin
i and v ∈ Lout

i

differ only by the parity of exponents at 10 and by the exponent at 5.

Therefore, we can unify the description of these distance vectors using the

orbits Ot, where t ≥ 9, since the orbit O9 consists of all vertices from

Lin
5 ∪Lout

k−5. However, distance vectors for vertices in orbits O0, O1, . . . ,O8

are slightly different (see the first 9 lines of Table 3).

Distance vector DV(v)

i = 0 and v ∈ Lout
i (1,3,6,6,6,6,6,5,6,5#(2k−9))

i = 1 and v ∈ Lin
i (1,3,6,7,7,7,7,6,6,5#(2k−10))

i = 1 and v ∈ Lout
i (1,3,6,8,8,8,7,7,6,6,5#(2k−12))

i = 2 and v ∈ Lin
i (1,3,6,9,11,10,8,6,6,5#(2k−12))

i = 2 and v ∈ Lout
i (1,3,6,9,12,12,8,7,6,6,5#(2k−14))

i = 3 and v ∈ Lin
i (1,3,6,9,12,14,12,7,6,5#(2k−14))

i = 3 and v ∈ Lout
i (1,3,6,9,12,14,14,9,6,6,5#(2k−16))

i = 4 and v ∈ Lin
i (1,3,6,9,12,14,14,13,8,5#(2k−16))

i = 4 and v ∈ Lout
i (1,3,6,9,12,14,14,13,12,6,5#(2k−18))

i = 5 and v ∈ Lin
i (1,3,6,9,12,14,14,13,12,11,5#(2k−19))

i = 5 and v ∈ Lout
i (1,3,6,9,12,14,14,13,12,11,10,5#(2k−21))

i > 5 and v ∈ Lin
i (1,3,6,9,12,14,14,13,12,11,10#(2i−10),5#(2k−4i+1))

i > 5 and v ∈ Lout
i (1,3,6,9,12,14,14,13,12,11,10#(2i−9),5#(2k−4i−1))

i = ⌊k/2⌋, k is odd,
and v ∈ Lin

i
(1,3,6,9,12,14,14,13,12,11,10#(k−11),5,5,5)

i = ⌊k/2⌋, k is odd,
and v ∈ Lout

i
(1,3,6,9,12,14,14,13,12,11,10#(k−10),5)

i = k/2, k is even,
and v ∈ Lx

i
(1,3,6,9,12,14,14,13,12,11,10#(k−10),5)

t ≥ 9 and v ∈ Ot (1,3,6,9,12,14,14,13,12,11,10#(t−9),5#(2k−2t−1))

Table 3. Distance partition vectors for vertices of C10k, for k ≥ 10.
Unless otherwise stated, i < ⌊k/2⌋. The notation a#p repre-
sent a sequence of p elements, all equal to a.



659

4 Distance based indices of (5, 0)-nanotubes

In this section, we determine exact values or establish bounds for a wide

range of chemical indices for C10k. We start with indices based on eccen-

tricities.

Eccentric connectivity index [16] of G is

ξc(G) =
∑

v∈V (G)

degG(v) · eccG(v),

where degG(v) is the degree of v in G.

Eccentric adjacency index [1] of G is

ξad(G) =
∑

v∈V (G)

SG(v)

eccG(v)
,

where SG(v) is the sum of degrees of neighbours of v.

The eccentricity version of the Zagreb indices was first introduced by

Vukičević and Graovac [19]. First Zagreb eccentricity index is defined by

ξ1(G) =
∑

v∈V (G)

ecc2G(v),

and second Zagreb eccentricity index is

ξ2(G) =
∑

uv∈E(G)

(
eccG(u) · eccG(v)

)
.

By Lemma 2, the eccentricities are regular if k ≥ 8. Namely, if v ∈ Oi,

0 ≤ i ≤ k − 1, then ecc(v) = 2k − 1− i. Therefore, in the next statement,

we assume that k ≥ 8. For smaller k, the indices could be easily calculated

by a computer.

Theorem 5. Let k ≥ 8. Then

(a) ξc(C10k) = 45k2 − 15k;

(b) 90 ln(2) ≤ ξad(C10k) ≤ 90
(
ln(2k − 1)− ln(k − 1)

)
;

(c) ξ1(C10k) =
5

3
k(14k2 − 9k + 1);

(d) ξ2(C10k) = 35k3 − 45
2 k2 − 5k + δ,
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where δ = 15
2 if k is odd and δ = 10 if k is even.

Proof. (a) Since each orbit of C10k has 10 vertices, by Lemma 2 we have

ξc(C10k) =
∑

v∈V (C10k)

deg(v) · ecc(v) = 10

2k−1∑
t=k

3t

= 30

( 2k−1∑
t=1

t−
k−1∑
t=1

t

)
= 30

(
4k2 − 2k

2
− k2 − k

2

)
= 45k2 − 15k.

(b) We have

ξad(C10k) =
∑

v∈V (C10k)

9

ecc(v)
= 10

2k−1∑
t=k

9

t
= 90

2k−1∑
t=k

t−1.

Calculating the area below f(x) = x−1 and using the fact that f(x) = x−1

is positive and decreasing for all x > 0, we infer

∫ 2k

k

x−1dx ≤
2k−1∑
t=k

t−1 ≤
∫ 2k−1

k−1

x−1dx,

and so

90
(
ln(2k)− ln(k)

)
≤ ξad(C10k) ≤ 90

(
ln(2k − 1)− ln(k − 1)

)
.

Since ln(2k) = ln(2) + ln(k), we obtain the result.

(c) We have

ξ1(C10k) =
∑

v∈V (C10k)

ecc2(v)

= 10

2k−1∑
t=k

t2 = 10

(
2k−1∑
t=1

t2 −
k−1∑
t=1

t2

)

= 10

[
(2k − 1)2k(4k − 1)

6
− (k − 1)k(2k − 1)

6

]
=

5

3
k(14k2 − 9k + 1).

(d) To calculate ξ2(C10k), note that there are 5 edges with both end-
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vertices in Lout
0 and 5 edges with both endvertices in Lin

k . Furthermore,

there are 5 edges with one endvertex in Lout
t and the other in Lin

t+1, where

0 ≤ t ≤ k − 1, and 10 edges with one endvertex in Lin
t and the other in

Lout
t , where 1 ≤ t ≤ k− 1. Considering the orbits, there are 10 edges with

both endvertices in the last orbit Ok−1 if k is even, but there are only 5

edges with both endvertices in the last orbit Ok−1 if k is odd. Therefore,

it is natural to consider two cases according to the parity of k.

Case 1. k is odd. In the calculation below, in the first expression we

consider the edges between Ok−1 and Ok−2, Ok−3 and Ok−4, . . . , O2 and

O1. In each case, there are 20 edges between these orbits. In the second

expression we consider edges between Ok−2 and Ok−3, Ok−4 and Ok−5,

. . . , O1 and O0. In each case, there are 10 edges between these orbits.

Then we consider the 5 edges with both endvertices in Ok−1 and finally

the 10 edges with both endvertices in O0. We have

ξ2(C10k) = 20

k−1
2∑

j=1

2(k − j)[2(k − j)− 1] + 10

k−3
2∑

j=0

[2(k − j)− 1]2(k − j − 1)

+ 5k2 + 10(2k − 1)2

= 120

k−3
2∑

j=1

(k − j)2 − 100

k−3
2∑

j=1

(k − j) + 35k(3k − 2)

= 120

k−1∑
t=1

t2 −

k+1
2∑

t=1

t2

− 100

k−1∑
t=1

t−

k+1
2∑

t=1

t

+ 35k(3k − 2)

= 35k3 − 45
2
k2 − 5k + 15

2
.

Case 2. k is even. Here, in the first expression we consider the edges

between Ok−2 and Ok−3, Ok−4 and Ok−5, . . . , O2 and O1, while in the

second expression we consider the edges betweenOk−1 andOk−2, Ok−3 and

Ok−4, . . . , O1 and O0. Then we consider 10 edges with both endvertices
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in Ok−1 and 10 edges with both endvertices in O0. We get

ξ2(C10k) = 20

k−2
2∑

j=1

2(k − j)[2(k − j)− 1] + 10

k−2
2∑

j=0

[2(k − j)− 1]2(k − j − 1)

+ 10k2 + 10(2k − 1)2

= 120

k−2
2∑

j=1

(k − j)2 − 100

k−2
2∑

j=1

(k − j) + 10(9k2 − 9k + 1)

= 120

k−1∑
t=1

t2 −
k/2∑
t=1

t2

− 100

k−1∑
t=1

t−
k/2∑
t=1

t

+ 10(9k2 − 9k + 1)

= 35k3 − 45
2 k2 − 5k + 10.

Observe that by Theorem 5 we have lim
k→∞

ξad(C10k) = 90 ln(2).

Now we calculate indices using the distance sequences.

Generalized Wiener polarity index [10], Wj(G), is the number of un-

ordered pairs of vertices u, v ∈ V (G) such that dG(u, v) = j. When j = 3,

we get the polarity index [20].

Observe that Wj(G) = 0 if j > diam(G), and for k ≥ 5, the diameter

of C10k is 2k − 1, by Lemma 1.

Theorem 6. Let k ≥ 10. Then, the values of Wj(C10k) for k ≥ 10 and

j = 1, . . . , 2k − 1 are given in Table 4.

j Wj(C10k) j Wj(C10k) j Wj(C10k)
1 15k 4 60k − 80 7 65k − 220
2 30k 5 70k − 135 8 60k − 230
3 45k − 30 6 70k − 180 9 55k − 250

≥ 10 50k − 25j

Table 4. Generalized Wiener polarity index of C10k for k ≥ 10 and
j = 1, . . . , 2k − 1.

Proof. The graph C10k has k orbits, each with 10 vertices. Further, ev-

ery pair of vertices, say u and v, with distance d(u, v) is counted twice

in Table 3; once in the row corresponding to u and once in the row cor-

responding to v. So using the distance sequences from Table 3 we have
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W1(C10k) =
10
2 ·3k = 15k, W2(C10k) =

10
2 ·6k = 30k, W3(C10k) =

10
2 (9k−

1− 2− 3) = 45k− 30 and W4(C10k) =
10
2 (12k− 1− 4− 5− 6) = 60k− 80.

In a similar way we obtain values of Wj(C10k) for j = 5, . . . , 9 as given in

Table 4. Now we calculate Wj(C10k) when j ≥ 10. We distinguish two

cases.

Case 1: 10 ≤ j ≤ k − 1. In Table 3, we have 5’s in the first rows

and 10’s in the last rows on j-th position (ignoring the very last row, of

course). When j = k− i, then in i rows we have 10’s and in the remaining

k − i rows we have 5’s. So

Wj(C10k) =
10

2
· 10(k − j) +

10

2
· 5j = 50k − 25j.

Case 2: k ≤ j ≤ 2k − 1. Observe that the longest sequence of 10’s

appears in the row that is above the last one in Table 3. So if there is a

non-zero number on i-th position, where i ≥ k, then this number is 5. If

j = k + i, then there are i orbits with 0 on j-th position, and k − i orbits

with 5 on j-th position. So

Wj(C10k) =
10

2
· 5
(
k − (j − k)

)
= 50k − 25j.

Using generalized Wiener polarity indices we can calculate other chem-

ical indices. The most famous chemical index is the Wiener index.

Wiener index, W (G), is the sum of distances in G [20]. That is

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

The hyper-Wiener index is defined [14] as

WW(G) =
1

2

∑
{u,v}⊆V (G)

(d(u, v) + d2(u, v)).

Finally, the reciprocal complementary Wiener index [11] is

RCW(G) =
∑

{u,v}⊆V (G)

1

diam(G) + 1− d(u, v)
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Denote Rk =
∑9

j=1
Wj(C10k)

2k−j . By Theorem 6, we obtain

Rk =
15k

2k − 1
+

30k

2k − 2
+

45k − 30

2k − 3
+

60k − 80

2k − 4
+

70k − 135

2k − 5

+
70k − 180

2k − 6
+

65− 220k

2k − 7
+

60k − 230

2k − 8
+

55k − 250

2k − 9
.

Theorem 7. Let k ≥ 10. Then

(a) W (C10k) =
5

3
(20k3 + 235k − 402);

(b) WW(C10k) =
25

6
(4k4 + 4k3 − k2 + 407k − 864);

(c) RCW(G) = Rk + 50k − 250.

Proof. (a) Since C10k has diameter 2k − 1, we can use the generalized

Wiener polarity index to calculate the Wiener index. By using Theorem

6, we obtain

W (C10k) =

2k−1∑
j=1

j ·Wj(C10k) =

9∑
j=1

j ·Wj(C10k) +

2k−1∑
j=10

j(50k − 25j)

= 2650k − 7795 +
25

3
(4k3 − 271k + 855)

=
5

3
(20k3 + 235k − 402).

(b) Denote ∆ =
∑

{u,v}⊆V (C10k)
d2(u, v). We use a formula

∑a
j=1 j

3 =
a2

4 (a+ 1)2 to obtain

∆ =

2k−1∑
j=1

j2 ·Wj(C10k) =

9∑
j=1

j2 ·Wj(C10k) +

2k−1∑
j=10

j2(50k − 25j)

= 17250k − 57155 +
25

3
(4k4 − k2 − 1710k + 6075)

=
5

3
(20k4 − 5k2 + 1800k − 3918).

Since WW(C10k) =
1
2 (W (C10k) + ∆), by using (a) we obtain the result.

(c) We write a formula for RCW(G) by usind generalized Wiener polarity
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index and obtain

RCW(C10k) =

2k−1∑
j=1

Wj(C10k)

2k − j
= Rk +

2k−1∑
j=10

50k − 25j

2k − j

= Rk + 25(2k − 10).

Generalized Wiener index, Wα(G), is defined as

Wα(G) =
∑

{u,v}⊆V (G)

dα(u, v),

where α is any real number. If α = 1, we get the Wiener index, and if

α = 0, then W 0(G) =
(|V (G)|

2

)
. If α = −1, then W−1(G) = H(G), where

H(G) is the Harary index of G. For chemical purpuses, both W
1
2 , and the

general case Wα are examined.

Obviously, Wα(C10k) =

2k−1∑
j=1

jαWj(C10k). When α is a positive integer,

a compact formula for Wα(C10k) can be derived like the cases α = 1 and

α = 2; see the proof of Theorem 7. For other values of α, one can obtain

bounds for Wα(C10k).

Observe that

2k−1∑
j=10

jαWj(C10k) =

2k−1∑
j=10

jα(50k − 25j) = 50k

2k−1∑
j=10

jα − 25

2k−1∑
j=10

jα+1.

For any real number β ̸= 0, the function f(x) = xβ is monotonic on its

domain. If f is increasing, then for integers a and b with 1 < a < b, we

have ∫ b

a−1

f(x)dx <

b∑
i=a

f(i) <

∫ b+1

a

f(x)dx. (4)

If f decreases, the inequalities in (4) are reversed. Using the notation∫ b

a
f(x) dx = [F (x)]

b
a, we derive the following result from inequalities in

(4).

Theorem 8. Let α ∈ R \ {0, 1}. Denote Wα
9 =

9∑
j=1

jα ·Wj(C10k). We
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have

Wα
9 + L < Wα(C10k) < Wα

9 + P,

where

(a) L = 50k
α+1

[
xα+1

]2k
10

− 25
α+2

[
xα+2

]2k−1

9
and P = 50k

α+1

[
xα+1

]2k−1

9
−

25
α+2

[
xα+2

]2k
10

if α < 0 and α /∈ {−1,−2};

(b) L = 50k
α+1

[
xα+1

]2k−1

9
− 25

α+2

[
xα+2

]2k−1

9
and P = 50k

α+1

[
xα+1

]2k
10

−

25
α+2

[
xα+2

]2k
10

if 0 < α < 1;

(c) L = 50k
α+1

[
xα+1

]2k−1

9
− 25

α+2

[
xα+2

]2k
10

and P = 50k
α+1

[
xα+1

]2k
10

− 25
α+2

[
xα+2

]2k−1

9
if 1 < α;

(d) L = 50k
[
ln(x)

]2k
10

− 50k+ 250 and P = 50k
[
ln(x)

]2k−1

9
− 50k+ 250

if α = −1;

(e) L = −50k
[
x−1

]2k
10

− 25
[
ln(x)

]2k−1

9
and P = −50k

[
x−1

]2k−1

9
−

25
[
ln(x)

]2k
10

if α = −2.
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