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Abstract

The Kemeny’s constant of a graph G, denoted by x(G), is defined
as the expected time to travel from a fixed starting vertex to a ran-
dom destination vertex (according to the stationary distribution).
This constant is shown to be a novel resistance distance-based graph
invariant, which indicates its crucial application in chemistry. In
this paper, comparison result on Kemeny’s constant of .S, T-isomers
is established. Then according to this comparison result, extremal
hexagonal chains with maximum and minimum Kemeny’s constant
are characterized. It turns out that among all hexagonal chains
with n hexagons, the linear chain L,, is the unique graph with the
maximum Kemeny’s constant, whereas the helicene chain H,, is the
unique graph with the minimum Kemeny’s constant.

1 Introduction

Let G be a connected graph with vertex set V(G) and edge set E(G). The
Kemeny’s constant of G, denoted by k(G), is defined as the expected time
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to travel from a fixed starting vertex to a random destination vertex (ac-
cording to the stationary distribution), averaged over all starting vertices.

More precisely, the Kemeny’s constant of G is defined as

G

K@) = Y L BT o

where d]G is degree of vertex j in G' and E;T} is the expected time for a
random walker to arrive at j for the first time when it begins at i. Amaz-
ingly, Kemeny and Snell [12] proved that this value is independent of the
choice of starting vertex, establishing x(G) as a genuine graph invariant.
In fact, the Kemeny’s constant can also be interpreted in terms of
resistance distances of graphs. It is well known that the traditional distance
function defined on a graph G is the (shortest-path) distance, where the
distance dg(u,v) between any two vertices u,v € V(G) is defined as the
length of a shortest path connecting them. Then another novel distance
function named resistance distance is defined by Klein and Randié [17].
For u,v € V(G), the resistance distance Q¢ (u,v) between vertices u and
v is defined as the net effective resistance between these two nodes in
the corresponding electrical network constructed from G by replacing each
edge of G with a 1-ohm resistor. It is proved that Qg (u,v) < dg(u,v)
with equality if and only if w and v are connected by unique path in G.
Palacios and Renom [15] established the following nice relation between

k(@) and resistance distances of G.

K(G)zﬁ S Y ddS(p,q) (2)

pEV(G) qeV(G)

Note that in [6], Chen and Zhang also defined a resistance distance-based

graph invariant called the multiplicative degree-Kirchhoff index of G as

KFG) =2 S S dSdS0a(p,q). (3)

2 peV(G) qeV(G)

It is interesting to note that x(G) and K f*(G) are equal up to a scale

factor.
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As an intrinsic graph invariant, Kemeny’s constant turns out to be
a well-established metric for measuring connectivity [2,20] and critical-
ity [8,19] of graphs. In addition, Kemeny’s constant has been widely used
in network analysis [13,20,23,28]. What’s more important, as an impor-
tant resistance distance-based molecular structure descriptor, Kemeny’s
constant has crucial applications in chemistry. Thus Kemeny’s constant
has been widely studied in mathematics, chemistry and network science.

Recently, the calculation of the Kemeny’s constant of graphs has be-
come a research hotspot. For one thing, Kemeny’s constant for graphs
adding or reducing one edge, has attracted special attention. Li et al. [14]
calculated the maximum possible increase and decrease of Kemeny’s con-
stant when adding an edge to a tree with n vertices. Altafini et al. [1]
explored the computation of Kemeny’s constant for graphs resulting from
edge removal. For another, the establishment of the expressions for the
Kemeny’s constant of certain graphs has drawn attention. For instance,
Kooij and Dubbeldam [18] derived formulas for Kemeny’s constant of com-
plete bipartite graphs, diameter-constrained trees, and generalized wind-
mill graphs. Zaman et al. [26] established closed-form expressions for Ke-
meny’s constant in hexagonal ring networks. For more information, the
readers can refer to the literature [4,5,9,16,21].

As a fundamental graph invariant, Kemeny’s constant has been exten-
sively studied in relation to structural graph properties, with particular
interest in its extremal behavior under topological constraints. Recent in-
vestigations have focused on characterizing graphs that achieve minimal
or maximal Kemeny’s constant within given families, revealing profound
connections between random walk efficiency and graph structure. For in-
stance, Faught, Kempton and Knudson [10] proved that the path graph
attained maximum Kemeny’s constant among all connected trees with n
vertices. Breen et al. [3] conjectured that the barbell graph attained the
maximal Kemeny’s constant among all connected graphs with n vertices.
Ciardo, Dahl and Kirkland [7] characterized extremal graphs with min-
imal Kemeny’s constant among all trees with fixed order and diameter,
and they also gave upper bound for Kemeny’s constant among all trees

with fixed order and diameter. Jang, Kim and Song [11] gave a necessary
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condition for a tree to attain maximum Kemeny’s constant for trees with
fixed diameter. Zeng [27] provided a characterization of weighted tree with
maximum and minimum Kemeny’s constant. Inspired by these studies on
the extremal properties of Kemeny’s constant, in this paper, we will char-
acterize the maximum and minimum values of the Kemeny’s constant of
hexagonal chains.

Hexagonal chains are the graph representations of unbranched cat-
acondensed benzenoid hydrocarbons. In graph theoretical language, a
hexagonal chain is a connected graph consisting of n regular hexagons
Cy,Cy,...,C, such that (a) for any k,j with 1 < k < j <n-—1, Cy
and C; have a common edge if and only if j = k + 1, and (b) each ver-
tex belong to at most two hexagons. Actually, a hexagonal chain with
n hexagons could also be obtained from a straight quadrilateral chain
with n squares by adding 2 vertices to each square in one of the follow-
ing three ways: (i) add two vertices to the top edge of the square. (ii)
add two vertices to the bottom edge of the square. (iii) add one vertex
to the top edge and one vertex to the bottom edge of the square. For
convenience, we always assume that Cy and C), are formed by the third
way. For the remaining hexagons Cs,Cs,...,C,_1, we assign a sign of
—, or 0, or + to each hexagon according to the hexagon is obtained from
the square by adding 0, or 1, or 2 vertices to the top edge. In this way,
a hexagonal chain with n-hexagons can be uniquely represented by an
(n —2)-tuple S = (s1, 82, ..., Sp—2), where s1, S2, ..., S,—_2 are the signs of
C5,C5,...,Ch_1. Hence, hereinafter, we will always denote a hexagonal
chain with n hexagons as H(.S) such that S is a (n —2)-tuple taking values
from {—,0,+}. For a non-terminal hexagon in a hexagonal chain H(S), if
the sign of the hexagon is not 0, then we say that there is a kink at this
hexagon. If H(S) has no kink, i.e. S = (0,0,...,0), then we call H(S)

(AR

n—2

a straight chain or linear chain, and denoted by L,,. For H(S), if S does

not contain 0, then H(S) is called a “all-kink” chain. In particular, the

“all-kink” chain H(—,—,...,—) (isomorphic to H(+,+,...,+)) is called
———— —_———

n—2

n—2
a helicene chain, which is denoted by H,. The “all-kink” chain H(S) is
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called a zigzag chain if the signs in S alternate, i.e., H(+, —,...) (isomor-
——
n—2

phic to H(—,+,...)), which is denoted as Z,,. For instance, the hexagonal
———

n—2

chains L5, H(+,0,—), Z5, and Hjs are illustrated in Fig. 1.

o

ololol| A 1
@ Ls (b) H(+,0,-)
'+' - '+‘ ) -l -] - i
(©) Zs (d) Hs

Figure 1. The hexagonal chains Ls, H(+,0,—), Z5 and Hs.

2 Preliminaries

In this section, we will introduce a few notions,definitions and results that
we will use in this paper.
First, we introduce series and parallel connection rules (see Fig. 2) and

cut-vertex property on resistance distances.

Definition 1. (Series connection rule) If n resistors with resistances ry, 2,
-, Ty, are connected in series between two vertices u and v, they can be
replaced by a single equivalent resistor between u and v. The resistance

T4 Of this equivalent resistor is calculated as ry, =71 +79 4+ - + 74
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Definition 2. (Parallel connection rule) If n resistors with resistances

71,72, -+ ,T, are connected in parallel between two vertices u and v, they
can be substituted with a single equivalent resistor between v and v. The

resistance r,, of this equivalent resistor is calculated as r,, = (% + % +

1\-1
Tn)
r
r[ r] ru u ! v
2

r"" ril\’
Ue—TT—V u v

Figure 2. Illustration of series and parallel connection rules.
A cut vertex of G is a vertex whose deletion disconnects G.

Proposition 1. (Cut-vertex Property [17]) Let G be a connected graph
and x a cut vertex of graph G. Suppose u and v are vertices such that they

are in different components of G — x. Then we have

Qe (u,v) = Qa(u, z) + Qa(z,v). (4)

Figure 3. Illustration of S, T-isomers.

Finally, we introduce the concept of S, T-isomers in chemistry. The
concept of S, T-isomers was proposed by Polansky and Zander [22] in 1982,
which entails a pair of graphical moieties doubly interconnected in two

different ways as in Fig. 3. A pair of vertices v and v in moiety A are
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connected to vertices z and y in moiety B, in one way in the S-isomer,

and in the other way in the T-isomer.

3 Extremal hexagonal chains with respect to

the Kemeny’s constant

Let H(S) be a hexagonal chain consisting of n + 2 hexagons with S =
(81,82,...,8n). As illustrated in Fig. 4, the hexagons in H(S) are la-
beled sequentially as C1,C5, ..., Cp42, and the common edges of adjacent
hexagons are labelled by hili, hala, ..., hnt1l,+1. For simplicity, we use
Qg (u,v) instead of Qg (s (u,v) to denote the resistance distance between
vertices v and v in H(S), and use d instead of all
of vertex v in H(S).

to denote the degree

p o h By v
clo|al-]c.,
L L L, x

Figure 4. Hexagonal chain H(S) with n + 2 hexagons.

Lemma 1. [24] Let H(S) be a hezagonal chain determined by the sequence
S = (s1,82,...,8,) as shown in Fig. 4. Denote by u the unique neighbor
of hnt1 in Cryo and by v the adjacent vertex to u satisfying v # hpyq.
Then for any degree-2 vertex p € Cy, we have

Qp(p,u) < Qu(p,v).

In fact, even for the more general case that H(S) is a weighted hexago-
nal chain, as long as the weight on edge h,11l,+1 is 1, the result in Lemma

1 still holds, as given in the following lemma.

Lemma 2. [24] Let H(S) be a weighted hexagonal chain such that the
weight on edge hyy1ln,41 is 1. Denote by u the unique neighbor of hy+1 in
Chrio and by v the adjacent vertex to u satisfying v # hni1. Then for any
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degree-2 vertex p € C1, we have
QH(pa u) < QH(pa U)-

Now we use Lemmas 1 and 2 to prove the following result, which plays

an essential rule in proving our main result.

p _h h, h h,uv

7

c|...|c

i ‘n+2

D e

H(S)

Py
\ 4 @

hz-l‘ hz h AUV hn+[ uv
B G Cona B Cosz
I, i L1, x laxr
(a) (b)
Figure 5. Illustration of network simplifications in the proof of Lemma
3.

Lemma 3. Let H(S) and vertices u and v be shown in Fig. 4. Then we
have
> df[Qulp,u) — Qu(p,v)] <O.
pEV(H(S))

Proof. Let V! = V(H(S)) \ V(Cr+2), which represents the set of vertices
in H(S) that do not belong to C),4o. First, we show that for any p € V',
Qr(p,u) < Qu(p,v). If pis a degree-2 vertex of Cy, then Lemma 1
directly implies that d,(Qg(p,u) — Qu(p,v)) < 0. Now suppose that
peV(C;) andp ¢ V(Cit1) (2 <i <n+1), and we compare Qg (p, u) and
Qg (p,u). To this end, we make network simplification to H(S). By series
and parallel connection rules, it is easily seen that H(S) could be simplified
to a weighted hexagonal chain consisting of hexagons C;,Ciy1,...,Chio
such that the weight on the edge h;_1l;—1 is 5 < 1 and all the other edges

still have unit weights, as shown in Fig. 5 (a). Thus by Lemma 2, we have
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Qp(p,u) < Qg (p,v). It thus follows that

Z dZI;I [QH(pa U) - QH(p7 ’U)] <0. (5)
peV’

Now we consider Qg (p,u) — Qu(p,v) for p € V(Chr12). As before, we
simplify H(S) to a single weighted hexagonal chain which only consists
of hexagon C,, 1o such that the weight on h,11l,41 is 8/ < 1 and all the
other edges have unit weights, as illustrated in Fig. 5 (b). Thus by series

and parallel connection rules, it is easily get that

A+ B 41+ 8 32+ p
QH(hn-‘rlau):%g/’ QH(ln+1,U)ZMaQH<x7U):Ma
QH(T,’IL):2(53+7+’§)> QH(’U,U):;L%/?”

and

23+ 8’ 32+0 26+ 5

Qg (hpgr,v) = (5_:_5), Qp(lny1,v) = %ﬁﬁ,)aQH(% )= (5_:_5 )7

444 4+p
Qg (r,v) = %g,a Qg (u,v) = 51@/'

Thus it follows that

PEV (Cny2)

=3[Qu (hnt1,u) — Qo (hpg1,0)] + 3[Qa (b1, u) — Qp(lata,v)]
+ 2[QH(‘7;7 u) - QH(x7U)] + Q[QH(T7 u) - QH(Tv U)}
+2[Qn (v,u) — Qp(v,0)] + 2[Qu (v, v) — Qg (u,v)]

_ 4 -2)
= 5i < 0. (6)
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According to Egs. (5) and (6), we get

Z dzl)—l[QH(pau) - QH(pa’U)] = Z df[QH(p7 U) - QH(pa U)]

pEV (H(S)) peV’
pEV(Cry2)
This completes the proof of Lemma 3. |

We now consider comparison of Kemeny’s constants of S, T-isomers.
Comparison result on resistance distances of S, T-isomers is given in the

following result.

Lemma 4. [25] For any two vertices p,q € V(S) = V(T), if p,q € V(A)
orp,q € V(B), then
Qs(p7 q) = QT(pv Q),

whereas if p € V(A) and g € V(B), then

[QA(pa 'LL) — QA(pa ’U)] [QB(qa y) - QB (qa x)]
2+ Qa(u,v) + Qp(z,y) '

QS(pa Q) - QT(pa q) =
By Lemma 4, we could obtain the comparison result on Kemeny’s con-

stants of S, T-isomers, as given in the following result.

Lemma 5. Let S, T , A, B ,u, v, x, y be defined as illustrated in Fig.3.
Then

#(5) = K(T)

Z dg[QA(pv ’LL) - QA(pa 'U)]‘| [ Z qu[QB(% y) - QB(qv x)}
pEV(A) acV(B)

2m[2 + Qa(u,v) + Qp(z,y)]
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Proof. By Eq. (2) and Lemma 4, we have

K(S) = w(T)
! S 7S
“im 2 2 sl D g >, oo
V(S) geV (S) peV(T) qeV (T
Z S didiQs(pg)—— Y. Y. didiQr(p.q)
peV(S) qeV(S) peV(S) qeV(S)

:4L SN Ed0spa) - 0rp.9)]

peV(S) geV (S)
1
sl EDDREDDIESED DD IS 2D DI
peEV(A)qeV(A)  peV(A)qeV(B) peV(B)qeV(B)

x deS[QS( q) = Qr(p, )]
— > Z dyd; [Qs(p, q) — Qr(p, q)]

pGV(A) qeV (B

RS Z S1Qa(p,u) — Qa(p,v)][QB(¢,y) — (g, )]

™ pevia) gevim) 2+ Qa(u,v) + Qp(z,y)

Z d}? [QA(pv u) - QA(p7 U)]
_ peV(A)

> d5[Qs(q,y) — Qs(g, )]

qeV(B)
m[2+4 Qa(u,v) + Qp(z,y)]

which completes the proof. |

In the following, we use comparison result on Kemeny’s constants of
S, T-isomers to characterize hexagonal chains with extremal Kemeny’s con-
stant. We first show that if there exist “kinks” in a hexagonal chain
H(S), then we could find a hexagonal chain H(S") such that x(H(S)) <

k(H(S")). For convenience, we define: —(—) =+ and —(4) = —.

Lemma 6. Let H(S) be a hexagonal chain with S = (s1,52,...,5,). If
there exists some integer i € {1,2,...,n} such that s; # 0, then let S" =
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(s1,--+,8i-1,0,—8ix1,...,—8n) and we have
k(H(S)) < k(H(S")).

Proof. Since s; # 0, then either s; = — or s; = +. We prove that the
assertion holds for s; = —, and the case that s; = 4+ could be proved in
the same way.

Now assume that s; = —. Select vertices u, v,  and y in the (i + 1)-

th hexagon of H(S) as shown in Fig. 6. As illustrated in the same

u X

R et S ST S [ | S

wv yw'

u X
Sl St»l S +1 Sn
wyyw'
uy w'
8 e S 0 =S| e | 7S,
WV X

Figure 6. Illustration of hexagonal chains H(S) and H(S’) in the proof
of Lemma 6.

figure, if we first delete edges {ux,vy} from H(S) and then add new
edges {uy, vz}, then we could obtain a new hexagonal chain H(S’) with
S’ = (s1,.--,8i-1,0,—8i+1,...,—Sn). The only thing left is to prove
that k(H(S")) < w(H(S)). Clearly {uz,vy} and {uy,vz} are minimal
2-edge cuts of H(S) and H(S’), respectively. Let the two components of
H(S) — {ux,vy} (also H(S") — {uy,vz}) are A and B such that the com-
ponent contains vertices u and v is A. From the construction of H(S’), it
is obvious that H(S) and H(S’) are S, T-isomers. Thus by Lemma 5, we

have
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K(H(S)) — k(H(S"))

> df[QA(p,U)—QA(p,v)]H > dlQp(q,y) — Q(g, x)]

peV(A) q€V(B)
2m[2 + Qa(u,v) + Qp(z,y)]
(7)
First, we consider Y d¥(Qa(p,u) — Qa(p,v)). For convenience, we

peV(A)
distinguish the following two cases.

Case 1. p € V(A)\{u,v}. Suppose that w is the unique neighbor of v in
A. Then by the cut-vertex property of resistance distances, we have

Qa(p,v) = Qalp,w) + Qa(w,v) = Qa(p,w) + 1. (8)

On the other hand, it is clear that Q4(u,w) < da(u,w) = 1 since u and
w are connected by more than one path in A. Thus by the triangular

inequality of resistance distances, we have
Qa(p,u) < Qap,w) + Qu(w,u) < Qalp,w) + 1. (9)
Thus, for any p € V(A) \ {u, v}, we have

Z dzl){[QA(p7 u) - QA(pa U)] <0. (10)
peV (A)\{u,v}

Case 2. p € {u,v}. In this case,

Z df [Qa(p,u) —Qa(p,v)]

pef{u,v}
:dZI[QA(u,U) - QA(’LL,’U)] + df[QA(’Uvu) - QA(va)}
=2[0 — Qa(u,v)] + 1 % [Qa(v,u) — 0]
=—Qa(u,v) <0. (11)
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From Cases 1 and 2, we have

Z df[QA(p7u) _QA(p7U)] = Z df[QA(p7u) _QA(pa’U)]
peEV(A) peV (A)\{u,v}
+ Y dlQalp,u) — Qalp,v)] < 0. (12)
pe{u,v}

Next, we consider Y df(QB(q, y) — Qp(q,z)). We also distinguish
qeV(B)
the following two cases.

Case 1. ¢ € V(B)\{z,y}. Let w’ denote the unique adjacent vertex of y
in B. Then by the cut-vertex property, we have

Q5(q,y) = Qplg,w') + Qp(w',y) = (g w') + 1. (13)

Since Qp(z,w') < dp(z,w’) = 1, by the triangular inequality, we have
Qp(q,z) < Qplq,w') + Qp(w',z) < Qp(q,w') +1=Qp(q,y). (14)
Thus, for any q € V(B)\{z,y}, (25(¢,y) —Q2p(g, ) > 0 and it gives that

qeV(B)\{z,y}

Case 2. ¢ € {z,y}. In this case,

Z df[QB(q,y) - Qp(q, )]
ge{z,y}

:df[QB(x7y) - QB($737)] + df[QB(:%y) - QB(y7x)]
ZQ[QB(xvy) - O] +1x [0 - QB(yax)]
:QB(z,y) > 0. (16)
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From Cases 1 and 2, we get

Y. Ay - @)= Y dlQs(ay) - g,2)]
€V (B) g€V (B)\{w,y}
+ 3 d?Qs(q.y) — Qp(g.2)] > 0. (17)
q€{u,v}

Substituting Eqs. (12) and (17) into Eq. (7), we conclude that x(H (5))
—k(H(S")) <. |

By Lemma 6, we know that if H(S) has “kinks”, then we could find
a hexagonal chain H(S’) which has one less kink than H(S) but larger
Kemeny’s constant than H (S). Thus for any non-straight hexagonal chain
H(S), the process of removing “kinks” may be iterated. Each such op-
eration strictly increases the Kemeny’s constant. This monotonic growth
process continues until the hexagonal chain converges to the linear chain.

Consequently, we have the following result.

Theorem 2. Among all heragonal chains with n hexagons, the linear

chain L, has the maximum Kemeny’s constant.

According to the proof of Lemma 6, we also know that for hexagonal

chain H(S) with S = (s1,82,...,5p), if there exists some integer i €
{1,2,...,n} with s; = 0, then the hexagonal chain H(S’) with either S’ =
(8150 vs8im1, =, =Sit1s---, —Sn) OF ' = (S1,...,8i—1,+F, —Sit1,...,—Sn)

has larger Kemeny’s constant than H(S). Hence if a hexagonal chain is
not a “all-kink” chain, then the process of adding “kinks” in the hexagonal
chain may be iterated, each time reducing the Kemeny’s constant, till

finally arriving at an “all-kink” chain. Hence we have

Theorem 3. Among all hexagonal chains, the minimum Kemeny’s con-

stant is attained only when the hexagonal chain is an “all-kink” chain.

In the next section, we will determine which “all-kink” chains have

extremal Kemeny’s constant among all “all-kink” chains.
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4 Extremal “all-kink” chains with respect to

the Kemeny’s constant

Recall that a hexagonal chain H(S) is defined as an“all-kink” chain if S
does not contain element 0. In this section, we aim to characterize the
“all-kink” chains that attain maximum and minimum Kemeny’s constant

among all “all-kink” chains with (n + 2) hexagons.

Lemma 7. Let H be an “all-kink” chain with S = (s1,82,-..,8n). If
there exists some integer i € {1,2,...,n — 1} such that s; # s;+1, then let

S" = (81,.--,8i,—Sit1,---,—5n) and we have
k(H(S") < k(H(S)).
Proof. Since s; # 0, either s; = — or s; = +. We will only prove that

the assertion holds for the s; = —, as case for s; = + can be proved
analogously.

S e S TS| | TS

vxzh,,

Figure 7. Illustration of “all-kink” chains H(S) and H(S’) in the proof
of Lemma 7.

Now we suppose s; = — and s;+1 = +. Choose vertices u, v,z and y in
the (i +2)-th hexagon of H(S) as shown in Fig. 7. Deleting edges {ux, vy}
from H(S) and then adding two new edges {uy,vx}, we could obtain a
new hexagonal chain H(S’) with S = (s1,...,8;,—Sit1,-..,—5n) (see
Fig. 7). In the following, we show that x(H(S")) < k(H(S)). Clearly,
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H(S) and H(S’) are S,T-isomers. Suppose that the two components of
H(S) — {ux,vy} are A and B such that A is the component containing u
and v. Then by Lemma 5, we have

K(H(S)) — k(H(S"))

Z df[QA(p, ’LL) - QA(pa 'U)]‘| [ Z df[QB(Q7y) - QB(qa fE)]

PEV(A) acV(B)
2m[(2 + QA(U7 ’U) + QB(Ia y)]
(18)
We first consider Y- dX[Qa(p,u) — Qa(p,v)]. Observing that A is

pEV(A)
a hexgonal chain, thus by Lemma 3, we have

Z dﬁ[QA(p7 u) - QA(an)} <0.
peV(A)

Noticing that except for u and v, all the other vertices of A have the same
degree in A as in H. Thus

Z d[I;I[QA(pa u) - QA(pa U)] = Z dﬁ[QA(p7 U) - QA(p7U)]

pEV(A) pEV(A)

+ (dif — diD)[Qa(u,u) — Qa(u, )] + (dif — dH)[Qa(v,u) — Qa(v,v)]

= > d}Qup,u) — Qalp,v)] <0. (19)
peEV(A)

Next, we consider %B) df [Q5(q,y) — Q2p(g,x)]. For convenience, we
qe
distinguish the following two cases.

Case 1. ¢ € V(B)\{z,y,z}. Let z be the unique neighbor of = in B.
Then for any ¢ € V(B) \ {z,y, 2z}, by cut-vertex property and triangular
inequality of resistance distances, we have

Qp(q, ) = Qp(q, hit2) + QB (hit2, ) = Qp(q, hit2) + 2, (20)
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and

Qp(q,y) < Qp(q, hit2) + Qp(hit2,y) < Qp(q, hita) + 1. (21)

It follows from (20) and (21) that

Qp(q,y) — (g, z) < —1.

Thus we have

> d'1Q5(q,y) — Qp(g, 2)] < 0. (22)
q€V(B)\{z,y,z}

Case 2. q € {z,y,z}. In this case,

Y 4 s(e.y) - (g )]

q€{z,y,2}
= [Qp(z,y) — Qp(z,2)] + df[QB(y,y) - Qp(y,z)]
+d7Qp(z,y) - Qp(z, )]
=2[Qp(z,y) — 0] +3[0 — Qp(y,2)] +2[Qp(2,y) — Qp(2, 7)]
=—Qp(z,y) +2[Qp(2,y) — Qp(z, )]
=— 24+ Qp(hit2,y)] + 2[1 + Qp(hit2,y) — 1] = =2+ Qp(hit2,y) <O0.

(23)
From Cases 1 and 2, we obtain:
> dis(q.y) - Qpg,2)] = > 4 9s(ay) — (g @)
qeV(B) g€V (B)\{z,y,z}
+ > dlQs(q.y) - Qs(g,7)] <0 (24)
q€{z,y,2}

According to Egs. (19) and (24), we get that x(H(S)) — x(H(S")) >0
as desired. |

Based on the proof of Lemma 7, we know that for a non-helicene “all-

kink” chain, the operation of eliminating “reverse kinks” can be iteratively
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carried out. With each iteration, the Kemeny’s constant decreases, until
the helicene chain is ultimately reached. As a direct consequence of Lemma

7, we have the following result.

Theorem 4. Among all “all-kink” chains with n hexagons, the helicene

chain H, has the minimum Kemeny’s constant.

Since we have proved that among all hexagonal chains, the minimum
Kemeny’s constant is attained only when the hexagonal chain is an “all-
kink” chain. Thus Theorem 4 directly leads to the following result.

Theorem 5. Among all hexagonal chains with n hexagons, the helicene

chain H, has the minimum Kemeny’s constant.

It is natural to inquire which “all-kink” chain attains the maximum
Kemeny’s constant. Analogously to the proof of Lemma 7, we can demon-
strate that for an “all-kink” chain H(S) with S = (s1,s2,...,8,), if there
exists some integer ¢ € {1,2,...,n — 1} such that s; = s;;1, then the
“all-kink” chain H(S’) with S = (s1,...,8i, —Sit1,..., —Sn) has larger
Kemeny’s constant than H(S). Consequently, if an “all-kink” hexagonal
chain is non-zigzag, one can iteratively add “reverse kinks” to the hexago-
nal chain. Each step strictly increases the Kemeny’s constant until the it

becomes a zigzag chain. Thus, we have the following result.

Theorem 6. Among all “all-kink” chains with n hexagons, the zigzag

chain Z, has the maximum Kemeny’s constant.

As an example illustrating the validity of results obtained in this paper,
numerical results for Kemeny’s constants of all hexagons chains with 5
hexagons are given in the following table. Note that there are 10 different
hexagonal chains with 5 hexagons in the sense of isomorphism. It could
be seen that hexagonal chains with extremal Kemeny’s constants given in

the following table coincide with the results given in Theorems 3, 5 and 6.

Since all hexagonal chains with n hexagons have the same number of
m = 4n+2 edges, the multiplicative degree-Kirchhoff index of a hexagonal

chain H(S) with n-hexagon is 2m times of its Kemeny’s constant. Thus



644

Table 1. Kemeny’s constants of all hexagons chains with 5 hexagons.

G k(G) G k(G)

Ls = H(0,0,0) 58.4520 H(0,+,—) 56.2252
(0,0,+) 57.3870 H(+,+,0) 55.7352
H(0,+,0) 57.0452 Zs = H(+,—,+) 55.3839
-) 56.3434 H(+,+,-) 54.9366
,0,4) 56.3007 Hs = H(+,+,+) 54.4039

the extremality results for Kemeny’s constant of hexagonal chains also
hold for multiplicative degree-Kirchhoff index, which are summerized in

the following result.

Theorem 7. Among all heragonal chains with n hexagons, the linear
chain L, has the mazimum multiplicative degree-Kirchhoff index, whereas
the helicene chain H, has the minimum multiplicative degree-Kirchhoff in-
dex. In addition, among all “all-kink” hexagonal chains with n hexagons,
the zigzag chain Z, has the mazimum multiplicative degree-Kirchhoff in-
dex, whereas the helicene chain H,, has the minimum multiplicative degree-
Kirchhoff indez.
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