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Abstract

The Kemeny’s constant of a graph G, denoted by κ(G), is defined
as the expected time to travel from a fixed starting vertex to a ran-
dom destination vertex (according to the stationary distribution).
This constant is shown to be a novel resistance distance-based graph
invariant, which indicates its crucial application in chemistry. In
this paper, comparison result on Kemeny’s constant of S, T -isomers
is established. Then according to this comparison result, extremal
hexagonal chains with maximum and minimum Kemeny’s constant
are characterized. It turns out that among all hexagonal chains
with n hexagons, the linear chain Ln is the unique graph with the
maximum Kemeny’s constant, whereas the helicene chain Hn is the
unique graph with the minimum Kemeny’s constant.

1 Introduction

Let G be a connected graph with vertex set V (G) and edge set E(G). The

Kemeny’s constant of G, denoted by κ(G), is defined as the expected time
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to travel from a fixed starting vertex to a random destination vertex (ac-

cording to the stationary distribution), averaged over all starting vertices.

More precisely, the Kemeny’s constant of G is defined as

κ(G) =
∑
j

dGj
2m

EiTj , (1)

where dGj is degree of vertex j in G and EiTj is the expected time for a

random walker to arrive at j for the first time when it begins at i. Amaz-

ingly, Kemeny and Snell [12] proved that this value is independent of the

choice of starting vertex, establishing κ(G) as a genuine graph invariant.

In fact, the Kemeny’s constant can also be interpreted in terms of

resistance distances of graphs. It is well known that the traditional distance

function defined on a graph G is the (shortest-path) distance, where the

distance dG(u, v) between any two vertices u, v ∈ V (G) is defined as the

length of a shortest path connecting them. Then another novel distance

function named resistance distance is defined by Klein and Randić [17].

For u, v ∈ V (G), the resistance distance ΩG(u, v) between vertices u and

v is defined as the net effective resistance between these two nodes in

the corresponding electrical network constructed from G by replacing each

edge of G with a 1-ohm resistor. It is proved that ΩG(u, v) < dG(u, v)

with equality if and only if u and v are connected by unique path in G.

Palacios and Renom [15] established the following nice relation between

κ(G) and resistance distances of G.

κ(G) =
1

4m

∑
p∈V (G)

∑
q∈V (G)

dGp d
G
q ΩG(p, q). (2)

Note that in [6], Chen and Zhang also defined a resistance distance-based

graph invariant called the multiplicative degree-Kirchhoff index of G as

Kf∗(G) =
1

2

∑
p∈V (G)

∑
q∈V (G)

dGp d
G
q ΩG(p, q). (3)

It is interesting to note that κ(G) and Kf∗(G) are equal up to a scale

factor.
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As an intrinsic graph invariant, Kemeny’s constant turns out to be

a well-established metric for measuring connectivity [2, 20] and critical-

ity [8,19] of graphs. In addition, Kemeny’s constant has been widely used

in network analysis [13, 20, 23, 28]. What’s more important, as an impor-

tant resistance distance-based molecular structure descriptor, Kemeny’s

constant has crucial applications in chemistry. Thus Kemeny’s constant

has been widely studied in mathematics, chemistry and network science.

Recently, the calculation of the Kemeny’s constant of graphs has be-

come a research hotspot. For one thing, Kemeny’s constant for graphs

adding or reducing one edge, has attracted special attention. Li et al. [14]

calculated the maximum possible increase and decrease of Kemeny’s con-

stant when adding an edge to a tree with n vertices. Altafini et al. [1]

explored the computation of Kemeny’s constant for graphs resulting from

edge removal. For another, the establishment of the expressions for the

Kemeny’s constant of certain graphs has drawn attention. For instance,

Kooij and Dubbeldam [18] derived formulas for Kemeny’s constant of com-

plete bipartite graphs, diameter-constrained trees, and generalized wind-

mill graphs. Zaman et al. [26] established closed-form expressions for Ke-

meny’s constant in hexagonal ring networks. For more information, the

readers can refer to the literature [4, 5, 9, 16,21].

As a fundamental graph invariant, Kemeny’s constant has been exten-

sively studied in relation to structural graph properties, with particular

interest in its extremal behavior under topological constraints. Recent in-

vestigations have focused on characterizing graphs that achieve minimal

or maximal Kemeny’s constant within given families, revealing profound

connections between random walk efficiency and graph structure. For in-

stance, Faught, Kempton and Knudson [10] proved that the path graph

attained maximum Kemeny’s constant among all connected trees with n

vertices. Breen et al. [3] conjectured that the barbell graph attained the

maximal Kemeny’s constant among all connected graphs with n vertices.

Ciardo, Dahl and Kirkland [7] characterized extremal graphs with min-

imal Kemeny’s constant among all trees with fixed order and diameter,

and they also gave upper bound for Kemeny’s constant among all trees

with fixed order and diameter. Jang, Kim and Song [11] gave a necessary



628

condition for a tree to attain maximum Kemeny’s constant for trees with

fixed diameter. Zeng [27] provided a characterization of weighted tree with

maximum and minimum Kemeny’s constant. Inspired by these studies on

the extremal properties of Kemeny’s constant, in this paper, we will char-

acterize the maximum and minimum values of the Kemeny’s constant of

hexagonal chains.

Hexagonal chains are the graph representations of unbranched cat-

acondensed benzenoid hydrocarbons. In graph theoretical language, a

hexagonal chain is a connected graph consisting of n regular hexagons

C1, C2, . . . , Cn such that (a) for any k, j with 1 ≤ k < j ≤ n − 1, Ck

and Cj have a common edge if and only if j = k + 1, and (b) each ver-

tex belong to at most two hexagons. Actually, a hexagonal chain with

n hexagons could also be obtained from a straight quadrilateral chain

with n squares by adding 2 vertices to each square in one of the follow-

ing three ways: (i) add two vertices to the top edge of the square. (ii)

add two vertices to the bottom edge of the square. (iii) add one vertex

to the top edge and one vertex to the bottom edge of the square. For

convenience, we always assume that C1 and Cn are formed by the third

way. For the remaining hexagons C2, C3, . . . , Cn−1, we assign a sign of

−, or 0, or + to each hexagon according to the hexagon is obtained from

the square by adding 0, or 1, or 2 vertices to the top edge. In this way,

a hexagonal chain with n-hexagons can be uniquely represented by an

(n− 2)-tuple S = (s1, s2, . . . , sn−2), where s1, s2, . . . , sn−2 are the signs of

C2, C3, . . . , Cn−1. Hence, hereinafter, we will always denote a hexagonal

chain with n hexagons as H(S) such that S is a (n−2)-tuple taking values

from {−, 0,+}. For a non-terminal hexagon in a hexagonal chain H(S), if

the sign of the hexagon is not 0, then we say that there is a kink at this

hexagon. If H(S) has no kink, i.e. S = (0, 0, . . . , 0︸ ︷︷ ︸
n−2

), then we call H(S)

a straight chain or linear chain, and denoted by Ln. For H(S), if S does

not contain 0, then H(S) is called a “all-kink” chain. In particular, the

“all-kink” chain H(−,−, . . . ,−︸ ︷︷ ︸
n−2

) (isomorphic to H(+,+, . . . ,+︸ ︷︷ ︸
n−2

)) is called

a helicene chain, which is denoted by Hn. The “all-kink” chain H(S) is
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called a zigzag chain if the signs in S alternate, i.e., H(+,−, . . .︸ ︷︷ ︸
n−2

) (isomor-

phic to H(−,+, . . .︸ ︷︷ ︸
n−2

)), which is denoted as Zn. For instance, the hexagonal

chains L5, H(+, 0,−), Z5, and H5 are illustrated in Fig. 1.

Figure 1. The hexagonal chains L5, H(+, 0,−), Z5 and H5.

2 Preliminaries

In this section, we will introduce a few notions,definitions and results that

we will use in this paper.

First, we introduce series and parallel connection rules (see Fig. 2) and

cut-vertex property on resistance distances.

Definition 1. (Series connection rule) If n resistors with resistances r1, r2,

· · · , rn are connected in series between two vertices u and v, they can be

replaced by a single equivalent resistor between u and v. The resistance

ruv of this equivalent resistor is calculated as ruv = r1 + r2 + · · ·+ rn.
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Definition 2. (Parallel connection rule) If n resistors with resistances

r1, r2, · · · , rn are connected in parallel between two vertices u and v, they

can be substituted with a single equivalent resistor between u and v. The

resistance ruv of this equivalent resistor is calculated as ruv = ( 1
r1

+ 1
r2

+

· · ·+ 1
rn
)−1.

Figure 2. Illustration of series and parallel connection rules.

A cut vertex of G is a vertex whose deletion disconnects G.

Proposition 1. (Cut-vertex Property [17]) Let G be a connected graph

and x a cut vertex of graph G. Suppose u and v are vertices such that they

are in different components of G− x. Then we have

ΩG(u, v) = ΩG(u, x) + ΩG(x, v). (4)

Figure 3. Illustration of S, T -isomers.

Finally, we introduce the concept of S, T -isomers in chemistry. The

concept of S, T -isomers was proposed by Polansky and Zander [22] in 1982,

which entails a pair of graphical moieties doubly interconnected in two

different ways as in Fig. 3. A pair of vertices u and v in moiety A are
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connected to vertices x and y in moiety B, in one way in the S-isomer,

and in the other way in the T -isomer.

3 Extremal hexagonal chains with respect to

the Kemeny’s constant

Let H(S) be a hexagonal chain consisting of n + 2 hexagons with S =

(s1, s2, . . . , sn). As illustrated in Fig. 4, the hexagons in H(S) are la-

beled sequentially as C1, C2, . . . , Cn+2, and the common edges of adjacent

hexagons are labelled by h1l1, h2l2, . . . , hn+1ln+1. For simplicity, we use

ΩH(u, v) instead of ΩH(S)(u, v) to denote the resistance distance between

vertices u and v in H(S), and use dHv instead of d
H(S)
v to denote the degree

of vertex v in H(S).

Figure 4. Hexagonal chain H(S) with n+ 2 hexagons.

Lemma 1. [24] Let H(S) be a hexagonal chain determined by the sequence

S = (s1, s2, . . . , sn) as shown in Fig. 4. Denote by u the unique neighbor

of hn+1 in Cn+2 and by v the adjacent vertex to u satisfying v ̸= hn+1.

Then for any degree-2 vertex p ∈ C1, we have

ΩH(p, u) < ΩH(p, v).

In fact, even for the more general case that H(S) is a weighted hexago-

nal chain, as long as the weight on edge hn+1ln+1 is 1, the result in Lemma

1 still holds, as given in the following lemma.

Lemma 2. [24] Let H(S) be a weighted hexagonal chain such that the

weight on edge hn+1ln+1 is 1. Denote by u the unique neighbor of hn+1 in

Cn+2 and by v the adjacent vertex to u satisfying v ̸= hn+1. Then for any
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degree-2 vertex p ∈ C1, we have

ΩH(p, u) < ΩH(p, v).

Now we use Lemmas 1 and 2 to prove the following result, which plays

an essential rule in proving our main result.

Figure 5. Illustration of network simplifications in the proof of Lemma
3.

Lemma 3. Let H(S) and vertices u and v be shown in Fig. 4. Then we

have ∑
p∈V (H(S))

dHp [ΩH(p, u)− ΩH(p, v)] < 0.

Proof. Let V ′ = V (H(S)) \ V (Cn+2), which represents the set of vertices

in H(S) that do not belong to Cn+2. First, we show that for any p ∈ V ′,

ΩH(p, u) < ΩH(p, v). If p is a degree-2 vertex of C1, then Lemma 1

directly implies that dp(ΩH(p, u) − ΩH(p, v)) < 0. Now suppose that

p ∈ V (Ci) and p /∈ V (Ci+1) (2 ≤ i ≤ n+1), and we compare ΩH(p, u) and

ΩH(p, u). To this end, we make network simplification to H(S). By series

and parallel connection rules, it is easily seen thatH(S) could be simplified

to a weighted hexagonal chain consisting of hexagons Ci, Ci+1, . . . , Cn+2

such that the weight on the edge hi−1li−1 is β < 1 and all the other edges

still have unit weights, as shown in Fig. 5 (a). Thus by Lemma 2, we have
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ΩH(p, u) < ΩH(p, v). It thus follows that∑
p∈V ′

dHp [ΩH(p, u)− ΩH(p, v)] < 0. (5)

Now we consider ΩH(p, u)− ΩH(p, v) for p ∈ V (Cn+2). As before, we

simplify H(S) to a single weighted hexagonal chain which only consists

of hexagon Cn+2 such that the weight on hn+1ln+1 is β′ < 1 and all the

other edges have unit weights, as illustrated in Fig. 5 (b). Thus by series

and parallel connection rules, it is easily get that

ΩH(hn+1, u) =
4 + β′

5 + β′ , ΩH(ln+1, u) =
4(1 + β′)

5 + β′ ,ΩH(x, u) =
3(2 + β′)

5 + β′ ,

ΩH(r, u) =
2(3 + β′)

5 + β′ , ΩH(v, u) =
4 + β′

5 + β′ ,

and

ΩH(hn+1, v) =
2(3 + β′)

5 + β′ , ΩH(ln+1, v) =
3(2 + β′)

5 + β′ ,ΩH(x, v) =
2(3 + β′)

5 + β′ ,

ΩH(r, v) =
4 + β′

5 + β′ , ΩH(u, v) =
4 + β′

5 + β′ .

Thus it follows that∑
p∈V (Cn+2)

dHp [ΩH(p, u)− ΩH(p, v)]

= 3[ΩH(hn+1, u)− ΩH(hn+1, v)] + 3[ΩH(ln+1, u)− ΩH(ln+1, v)]

+ 2[ΩH(x, u)− ΩH(x, v)] + 2[ΩH(r, u)− ΩH(r, v)]

+ 2[ΩH(v, u)− ΩH(v, v)] + 2[ΩH(u, u)− ΩH(u, v)]

=
4(β′ − 2)

5 + β′ < 0. (6)
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According to Eqs. (5) and (6), we get∑
p∈V (H(S))

dHp [ΩH(p, u)− ΩH(p, v)] =
∑
p∈V ′

dHp [ΩH(p, u)− ΩH(p, v)]

+
∑

p∈V (Cn+2)

dHp [ΩH(p, u)− ΩH(p, v)] < 0.

This completes the proof of Lemma 3.

We now consider comparison of Kemeny’s constants of S, T -isomers.

Comparison result on resistance distances of S, T -isomers is given in the

following result.

Lemma 4. [25] For any two vertices p, q ∈ V (S) = V (T ), if p, q ∈ V (A)

or p, q ∈ V (B), then

ΩS(p, q) = ΩT (p, q),

whereas if p ∈ V (A) and q ∈ V (B), then

ΩS(p, q)− ΩT (p, q) =
[ΩA(p, u)− ΩA(p, v)][ΩB(q, y)− ΩB(q, x)]

2 + ΩA(u, v) + ΩB(x, y)
.

By Lemma 4, we could obtain the comparison result on Kemeny’s con-

stants of S, T -isomers, as given in the following result.

Lemma 5. Let S, T , A, B ,u, v, x, y be defined as illustrated in Fig.3.

Then

κ(S)− κ(T )

=

[ ∑
p∈V (A)

dSp [ΩA(p, u)− ΩA(p, v)]

][ ∑
q∈V (B)

dSq [ΩB(q, y)− ΩB(q, x)]

]
2m[2 + ΩA(u, v) + ΩB(x, y)]

.
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Proof. By Eq. (2) and Lemma 4, we have

κ(S)− κ(T )

=
1

4m

∑
p∈V (S)

∑
q∈V (S)

dSp d
S
q ΩS(p, q)−

1

4m

∑
p∈V (T )

∑
q∈V (T )

dTp d
T
q ΩT (p, q)

=
1

4m

∑
p∈V (S)

∑
q∈V (S)

dSp d
S
q ΩS(p, q)−

1

4m

∑
p∈V (S)

∑
q∈V (S)

dSp d
S
q ΩT (p, q)

=
1

4m

∑
p∈V (S)

∑
q∈V (S)

dSp d
S
q [ΩS(p, q)− ΩT (p, q)]

=
1

4m

 ∑
p∈V (A)

∑
q∈V (A)

+2
∑

p∈V (A)

∑
q∈V (B)

+
∑

p∈V (B)

∑
q∈V (B)


× dSp d

S
q [ΩS(p, q)− ΩT (p, q)]

=
1

2m

∑
p∈V (A)

∑
q∈V (B)

dSp d
S
q [ΩS(p, q)− ΩT (p, q)]

=
1

2m

∑
p∈V (A)

∑
q∈V (B)

dSp d
S
q [ΩA(p, u)− ΩA(p, v)][ΩB(q, y)− ΩB(q, x)]

2 + ΩA(u, v) + ΩB(x, y)

=

[ ∑
p∈V (A)

dSp [ΩA(p, u)− ΩA(p, v)]

][ ∑
q∈V (B)

dSq [ΩB(q, y)− ΩB(q, x)]

]
2m[2 + ΩA(u, v) + ΩB(x, y)]

,

which completes the proof.

In the following, we use comparison result on Kemeny’s constants of

S, T -isomers to characterize hexagonal chains with extremal Kemeny’s con-

stant. We first show that if there exist “kinks” in a hexagonal chain

H(S), then we could find a hexagonal chain H(S′) such that κ(H(S)) <

κ(H(S′)). For convenience, we define: −(−) = + and −(+) = −.

Lemma 6. Let H(S) be a hexagonal chain with S = (s1, s2, . . . , sn). If

there exists some integer i ∈ {1, 2, . . . , n} such that si ̸= 0, then let S′ =
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(s1, . . . , si−1, 0,−si+1, . . . ,−sn) and we have

κ(H(S)) < κ(H(S′)).

Proof. Since si ̸= 0, then either si = − or si = +. We prove that the

assertion holds for si = −, and the case that si = + could be proved in

the same way.

Now assume that si = −. Select vertices u, v, x and y in the (i + 1)-

th hexagon of H(S) as shown in Fig. 6. As illustrated in the same

Figure 6. Illustration of hexagonal chains H(S) and H(S′) in the proof
of Lemma 6.

figure, if we first delete edges {ux, vy} from H(S) and then add new

edges {uy, vx}, then we could obtain a new hexagonal chain H(S′) with

S′ = (s1, . . . , si−1, 0,−si+1, . . . ,−sn). The only thing left is to prove

that κ(H(S′)) < κ(H(S)). Clearly {ux, vy} and {uy, vx} are minimal

2-edge cuts of H(S) and H(S′), respectively. Let the two components of

H(S)− {ux, vy} (also H(S′)− {uy, vx}) are A and B such that the com-

ponent contains vertices u and v is A. From the construction of H(S′), it

is obvious that H(S) and H(S′) are S, T -isomers. Thus by Lemma 5, we

have
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κ(H(S))− κ(H(S′))

=

[ ∑
p∈V (A)

dHp [ΩA(p, u)− ΩA(p, v)]

][ ∑
q∈V (B)

dHq [ΩB(q, y)− ΩB(q, x)]

]
2m[2 + ΩA(u, v) + ΩB(x, y)]

.

(7)

First, we consider
∑

p∈V (A)

dHp (ΩA(p, u)− ΩA(p, v)). For convenience, we

distinguish the following two cases.

Case 1. p ∈ V (A)\{u, v}. Suppose that w is the unique neighbor of v in

A. Then by the cut-vertex property of resistance distances, we have

ΩA(p, v) = ΩA(p, w) + ΩA(w, v) = ΩA(p, w) + 1. (8)

On the other hand, it is clear that ΩA(u,w) < dA(u,w) = 1 since u and

w are connected by more than one path in A. Thus by the triangular

inequality of resistance distances, we have

ΩA(p, u) ≤ ΩA(p, w) + ΩA(w, u) < ΩA(p, w) + 1. (9)

Thus, for any p ∈ V (A) \ {u, v}, we have∑
p∈V (A)\{u,v}

dHp [ΩA(p, u)− ΩA(p, v)] < 0. (10)

Case 2. p ∈ {u, v}. In this case,∑
p∈{u,v}

dHp [ΩA(p, u)− ΩA(p, v)]

=dHu [ΩA(u, u)− ΩA(u, v)] + dHv [ΩA(v, u)− ΩA(v, v)]

=2[0− ΩA(u, v)] + 1× [ΩA(v, u)− 0]

=− ΩA(u, v) < 0. (11)
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From Cases 1 and 2, we have∑
p∈V (A)

dHp [ΩA(p, u)− ΩA(p, v)] =
∑

p∈V (A)\{u,v}

dHp [ΩA(p, u)− ΩA(p, v)]

+
∑

p∈{u,v}

dHp [ΩA(p, u)− ΩA(p, v)] < 0. (12)

Next, we consider
∑

q∈V (B)

dHq (ΩB(q, y)− ΩB(q, x)). We also distinguish

the following two cases.

Case 1. q ∈ V (B)\{x, y}. Let w′ denote the unique adjacent vertex of y

in B. Then by the cut-vertex property, we have

ΩB(q, y) = ΩB(q, w
′) + ΩB(w

′, y) = ΩB(q, w
′) + 1. (13)

Since ΩB(x,w
′) < dB(x,w

′) = 1, by the triangular inequality, we have

ΩB(q, x) ≤ ΩB(q, w
′) + ΩB(w

′, x) < ΩB(q, w
′) + 1 = ΩB(q, y). (14)

Thus, for any q ∈ V (B)\{x, y}, (ΩB(q, y)−ΩB(q, x) > 0 and it gives that∑
q∈V (B)\{x,y}

dHq [ΩB(q, y)− ΩB(q, x)] > 0. (15)

Case 2. q ∈ {x, y}. In this case,∑
q∈{x,y}

dHq [ΩB(q, y)− ΩB(q, x)]

=dHx [ΩB(x, y)− ΩB(x, x)] + dHy [ΩB(y, y)− ΩB(y, x)]

=2[ΩB(x, y)− 0] + 1× [0− ΩB(y, x)]

=ΩB(x, y) > 0. (16)
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From Cases 1 and 2, we get∑
q∈V (B)

dHq [ΩB(q, y)− ΩB(q, x)] =
∑

q∈V (B)\{x,y}

dHq [ΩB(q, y)− ΩB(q, x)]

+
∑

q∈{u,v}

dHq [ΩB(q, y)− ΩB(q, x)] > 0. (17)

Substituting Eqs. (12) and (17) into Eq. (7), we conclude that κ(H(S))

− κ(H(S′)) < 0.

By Lemma 6, we know that if H(S) has “kinks”, then we could find

a hexagonal chain H(S′) which has one less kink than H(S) but larger

Kemeny’s constant than H(S). Thus for any non-straight hexagonal chain

H(S), the process of removing “kinks” may be iterated. Each such op-

eration strictly increases the Kemeny’s constant. This monotonic growth

process continues until the hexagonal chain converges to the linear chain.

Consequently, we have the following result.

Theorem 2. Among all hexagonal chains with n hexagons, the linear

chain Ln has the maximum Kemeny’s constant.

According to the proof of Lemma 6, we also know that for hexagonal

chain H(S) with S = (s1, s2, . . . , sn), if there exists some integer i ∈
{1, 2, . . . , n} with si = 0, then the hexagonal chain H(S′) with either S′ =

(s1, . . . , si−1,−,−si+1, . . . ,−sn) or S′ = (s1, . . . , si−1,+,−si+1, . . . ,−sn)

has larger Kemeny’s constant than H(S). Hence if a hexagonal chain is

not a “all-kink” chain, then the process of adding “kinks” in the hexagonal

chain may be iterated, each time reducing the Kemeny’s constant, till

finally arriving at an “all-kink” chain. Hence we have

Theorem 3. Among all hexagonal chains, the minimum Kemeny’s con-

stant is attained only when the hexagonal chain is an “all-kink” chain.

In the next section, we will determine which “all-kink” chains have

extremal Kemeny’s constant among all “all-kink” chains.



640

4 Extremal “all-kink” chains with respect to

the Kemeny’s constant

Recall that a hexagonal chain H(S) is defined as an“all-kink” chain if S

does not contain element 0. In this section, we aim to characterize the

“all-kink” chains that attain maximum and minimum Kemeny’s constant

among all “all-kink” chains with (n+ 2) hexagons.

Lemma 7. Let H be an “all-kink” chain with S = (s1, s2, . . . , sn). If

there exists some integer i ∈ {1, 2, . . . , n− 1} such that si ̸= si+1, then let

S′ = (s1, . . . , si,−si+1, . . . ,−sn) and we have

κ(H(S′)) < κ(H(S)).

Proof. Since si ̸= 0, either si = − or si = +. We will only prove that

the assertion holds for the si = −, as case for si = + can be proved

analogously.

Figure 7. Illustration of “all-kink” chains H(S) and H(S′) in the proof
of Lemma 7.

Now we suppose si = − and si+1 = +. Choose vertices u, v, x and y in

the (i+2)-th hexagon of H(S) as shown in Fig. 7. Deleting edges {ux, vy}
from H(S) and then adding two new edges {uy, vx}, we could obtain a

new hexagonal chain H(S′) with S′ = (s1, . . . , si,−si+1, . . . ,−sn) (see

Fig. 7). In the following, we show that κ(H(S′)) < κ(H(S)). Clearly,
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H(S) and H(S′) are S, T -isomers. Suppose that the two components of

H(S)− {ux, vy} are A and B such that A is the component containing u

and v. Then by Lemma 5, we have

κ(H(S))− κ(H(S′))

=

[ ∑
p∈V (A)

dHp [ΩA(p, u)− ΩA(p, v)]

][ ∑
q∈V (B)

dHq [ΩB(q, y)− ΩB(q, x)]

]
2m[(2 + ΩA(u, v) + ΩB(x, y)]

.

(18)

We first consider
∑

p∈V (A)

dHp [ΩA(p, u) − ΩA(p, v)]. Observing that A is

a hexgonal chain, thus by Lemma 3, we have∑
p∈V (A)

dAp [ΩA(p, u)− ΩA(p, v)] < 0.

Noticing that except for u and v, all the other vertices of A have the same

degree in A as in H. Thus∑
p∈V (A)

dHp [ΩA(p, u)− ΩA(p, v)] =
∑

p∈V (A)

dAp [ΩA(p, u)− ΩA(p, v)]

+ (dHu − dAu )[ΩA(u, u)− ΩA(u, v)] + (dHv − dAv )[ΩA(v, u)− ΩA(v, v)]

=
∑

p∈V (A)

dAp [ΩA(p, u)− ΩA(p, v)] < 0. (19)

Next, we consider
∑

q∈V (B)

dHq [ΩB(q, y)−ΩB(q, x)]. For convenience, we

distinguish the following two cases.

Case 1. q ∈ V (B)\{x, y, z}. Let z be the unique neighbor of x in B.

Then for any q ∈ V (B) \ {x, y, z}, by cut-vertex property and triangular

inequality of resistance distances, we have

ΩB(q, x) = ΩB(q, hi+2) + ΩB(hi+2, x) = ΩB(q, hi+2) + 2, (20)
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and

ΩB(q, y) ≤ ΩB(q, hi+2) + ΩB(hi+2, y) < ΩB(q, hi+2) + 1. (21)

It follows from (20) and (21) that

ΩB(q, y)− ΩB(q, x) < −1.

Thus we have ∑
q∈V (B)\{x,y,z}

dHq [ΩB(q, y)− ΩB(q, x)] < 0. (22)

Case 2. q ∈ {x, y, z}. In this case,∑
q∈{x,y,z}

dHp [ΩB(q, y)− ΩB(q, x)]

=dHx [ΩB(x, y)− ΩB(x, x)] + dHy [ΩB(y, y)− ΩB(y, x)]

+ dHz [ΩB(z, y)− ΩB(z, x)]

=2[ΩB(x, y)− 0] + 3[0− ΩB(y, x)] + 2[ΩB(z, y)− ΩB(z, x)]

=− ΩB(x, y) + 2[ΩB(z, y)− ΩB(z, x)]

=− [2 + ΩB(hi+2, y)] + 2[1 + ΩB(hi+2, y)− 1] = −2 + ΩB(hi+2, y) < 0.

(23)

From Cases 1 and 2, we obtain:∑
q∈V (B)

dHq [ΩB(q, y)− ΩB(q, x)] =
∑

q∈V (B)\{x,y,z}

dHq [ΩB(q, y)− ΩB(q, x)]

+
∑

q∈{x,y,z}

dHq [ΩB(q, y)− ΩB(q, x)] < 0. (24)

According to Eqs. (19) and (24), we get that κ(H(S))− κ(H(S′)) > 0

as desired.

Based on the proof of Lemma 7, we know that for a non-helicene “all-

kink” chain, the operation of eliminating “reverse kinks” can be iteratively
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carried out. With each iteration, the Kemeny’s constant decreases, until

the helicene chain is ultimately reached. As a direct consequence of Lemma

7, we have the following result.

Theorem 4. Among all “all-kink” chains with n hexagons, the helicene

chain Hn has the minimum Kemeny’s constant.

Since we have proved that among all hexagonal chains, the minimum

Kemeny’s constant is attained only when the hexagonal chain is an “all-

kink” chain. Thus Theorem 4 directly leads to the following result.

Theorem 5. Among all hexagonal chains with n hexagons, the helicene

chain Hn has the minimum Kemeny’s constant.

It is natural to inquire which “all-kink” chain attains the maximum

Kemeny’s constant. Analogously to the proof of Lemma 7, we can demon-

strate that for an “all-kink” chain H(S) with S = (s1, s2, . . . , sn), if there

exists some integer i ∈ {1, 2, . . . , n − 1} such that si = si+1, then the

“all-kink” chain H(S′) with S′ = (s1, . . . , si,−si+1, . . . ,−sn) has larger

Kemeny’s constant than H(S). Consequently, if an “all-kink” hexagonal

chain is non-zigzag, one can iteratively add “reverse kinks” to the hexago-

nal chain. Each step strictly increases the Kemeny’s constant until the it

becomes a zigzag chain. Thus, we have the following result.

Theorem 6. Among all “all-kink” chains with n hexagons, the zigzag

chain Zn has the maximum Kemeny’s constant.

As an example illustrating the validity of results obtained in this paper,

numerical results for Kemeny’s constants of all hexagons chains with 5

hexagons are given in the following table. Note that there are 10 different

hexagonal chains with 5 hexagons in the sense of isomorphism. It could

be seen that hexagonal chains with extremal Kemeny’s constants given in

the following table coincide with the results given in Theorems 3, 5 and 6.

Since all hexagonal chains with n hexagons have the same number of

m = 4n+2 edges, the multiplicative degree-Kirchhoff index of a hexagonal

chain H(S) with n-hexagon is 2m times of its Kemeny’s constant. Thus
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Table 1. Kemeny’s constants of all hexagons chains with 5 hexagons.

G κ(G) G κ(G)

L5 = H(0, 0, 0) 58.4520 H(0,+,−) 56.2252
H(0, 0,+) 57.3870 H(+,+, 0) 55.7352
H(0,+, 0) 57.0452 Z5 = H(+,−,+) 55.3839
H(+, 0,−) 56.3434 H(+,+,−) 54.9366
H(+, 0,+) 56.3007 H5 = H(+,+,+) 54.4039

the extremality results for Kemeny’s constant of hexagonal chains also

hold for multiplicative degree-Kirchhoff index, which are summerized in

the following result.

Theorem 7. Among all hexagonal chains with n hexagons, the linear

chain Ln has the maximum multiplicative degree-Kirchhoff index, whereas

the helicene chain Hn has the minimum multiplicative degree-Kirchhoff in-

dex. In addition, among all “all-kink” hexagonal chains with n hexagons,

the zigzag chain Zn has the maximum multiplicative degree-Kirchhoff in-

dex, whereas the helicene chain Hn has the minimum multiplicative degree-

Kirchhoff index.
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