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Abstract

The diminished Sombor index of a graph G with edge set E(G)
is defined as

PSO@) = 3. S
uwvEE(G) “ v

where d,, denotes the degree of vertex u. In this paper, we revisit
and refine some of the results reported in the recent paper [MATCH
Commun. Math. Comput. Chem. 95 (2026) 141-162]. One of the
obtained refined results guarantees that DSO(G) decreases when
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any of the edges of G is removed. Also, one of the new results gives
the graphs minimizing DSO over the class 9m,n of all connected
graphs of order n and size m for 3n > 2m > 2(n + 2). The paper is
concluded with an open problem concerning the graphs minimizing
DSO over Gm,n for m > max {n + 3, [3n/2]}.

1 Introduction

Let G = (V, E) be a simple undirected graph with vertex set V(G) and
edge set E(G). The number of vertices and edges of G are denoted by
n = |V(G)| and m = |E(G)|, respectively. For a vertex v € V(G), the
degree of v, denoted by d,(G), is the number of edges incident to v. A
graph is connected if there is a path between every pair of its vertices.
The minimum and maximum degrees of G are denoted by §(G) and A(G),
respectively. When there is no confusion about the graph under consid-
eration, we drop the symbol “(G)” from the notations d,(G), 6(G) and
A(G). An edge e = uw is called a pendent edge if one of its endvertices
has degree 1. A nontrivial path P = uguy ... u; in a graph G is referred to
as a pendent path if max{d,,(G),d,,(G)} > 3, min{d,,(G),d.,(G)} =1
and d,,(G) = 2 when 1 < i <t — 1. We refer the reader to [7,11] for
undefined notations and terminologies.

Topological indices are numerical graph invariants. In chemical graph
theory, these indices are used to predict physicochemical properties of
chemical compounds. Among the immense number of vertex-degree-based
topological indices, the Sombor index, introduced by Gutman in 2021 [5],
has received significant attention. Inspired by the geometric interpretation
of the Sombor index, several variants have been proposed in the literature.
For instance, the Euler-Sombor index [10], the elliptic Sombor index [6],
the augmented Sombor index [3], and the diminished Sombor index [9] are
among the notable modifications that have been introduced and studied
recently. For a graph G, the diminished Sombor index (DSO) is defined

as
2 2
pso@G) = 3 vty
d, + d,
uwweE(G)

Some mathematical properties and bounds for this index have been inves-
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tigated in recent studies [2,4,8,9].

In [9], the extremal values of the DSO index were investigated, and
several theorems regarding its behavior under graph transformations were
presented. We revisit the proofs of Theorem 3, Theorem 4 and Proposition
12 given in [9] and observe that they are incomplete. In this paper, we
present refined versions of Theorems 3 and 4 in [9]. We observe that
Theorems 3 and 4 of [9] follow from these refinements. We also present
alternative proofs for the results that depended on Proposition 12 of [9].
Furthermore, corresponding to Proposition 12 of [9], we provide a result
that gives the graphs minimizing DSO over the class G, ,, of all connected
graphs of order n and size m for 3n > 2m > 2(n + 2). We conclude the
paper with an open problem concerning the graphs minimizing DSO over
Gm,n for m > max {n + 3, [3n/2]}.

2 Results and discussion

We start with the following result appeared in [9].

Theorem 1 (Theorem 3 in [9]). Let G be a graph of order n. Then

du B dv
(i) DSO(G) > DSO(G—€)+\/§(22), for any edge e = wv € E(G);
n —
|du B dv|

(i) DSO(G +¢) > DSO(G) + where e = wv such that the

V2(2n —2)’
vertices u and v are not adjacent in G.
The proof provided for Theorem 1 is imperfect. For instance, the in-
equality
VA2 +d?
DSO(G) > DSO(G — ¢) + Yu T % (1)
dy +d,

is invalid for the graph depicted in Figure 1 when e = ww is taken to be

the unique bridge of the considered graph G.
Here, we provide an extended version of Theorem 1, from which The-

orem 1 follows. For this, we first need the following lemma.
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Figure 1. A graph providing counterexamples to the inequalities (1)
and (10).

Lemma 1. Let {1 and {5 be integers satisfying £o > €1 +1 > 3. Then, it

holds that
by — 01 +1 1

(fl +ly — 1)2 - 8([1 — 1)'

(2)

Proof. Define the function ¢ on the interval [{1+1, 00) as ¢(z) = %.
The required inequality follows from the fact that the function ¢ is in-
creasing on [¢1 + 1,3¢; — 3] and decreasing on [3¢; — 3,00). Hence, ¢(x) <
@(3¢1 — 3) for every x € [¢; + 1,00). Particularly, for any integer ¢5 with
Ly > 01+ 1, we have ¢(l3) < ¢(3¢1 — 3), which is equivalent to the required

inequality. |

Theorem 2. If G is a graph and wv € E(G), then

4-42
4

DSO(G) > DSO(G — uv) + F(dy, dy), (3)

where f(dy,d,) = d(j?_ﬂfg . In particular, DSO(G) > DSO(G — uv).

Proof. We note that

DSO(G) = DSO(G —wv) = Y (f(du,dy) = f(dy — 1,du))

weN (u)\{v}

Ou(w)
+ Y (f(du,dy) — fldy—1,dy))
zEN (v)\{u} 0 (2)
+ f(du7 dv)- (4)

Set

0, = Z 0,(w) and ©, = Z 0, (x).

weN (u)\{v} zeN(v)\{u}
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If d, = d, =1, then ®, = 0, = 0, and hence, (4) yields the desired

inequality. Next, we consider the case where max{d,,d,} > 2. Without

loss of generality, we assume that d,, > d,. Using the mean value theorem,
we observe that, for any vertex w € N(u) \ {v}, there exists a real number
&y such that 1 < d, —1 <&, < d, and

dw(gw_dw) <0 ifdy > du,
VE+ & (Gu+du)® | >0 ifd, <d,—1.

Ou(w) = (5)

Similarly, if d,, > 2, then for any « € N(v)\ {u}, there exists a real number
&, such that 1 <d, — 1< &, <d, and

dy(&y — dy) <0 ifd, > d,,
VE+ 2 (& +d)? | >0 ifd, <d, — 1.

0(z) = (6)

Therefore, if d, < d, — 1 and d, < d, — 1 for all w € N(u) \ {v} and
x € N(v) \ {u} (when d, > 2), then min{©,,0,} > 0, which together
with (4) implies the desired inequality. Now, we consider the case where
either d, > d,, or dy > d, > 2 for some w € N(u)\ {v} or z € N(v)\ {u}.
Then, we have either 6, (w) < 0 or 6,(z) < 0 for some w € N(u) \ {v}
or z € N(w) \ {u}. Let A;(u) = {w' € N(u) \ {v} : dw > du}, A2(u) =
(N(@) \ {v}) \ Ar(u), Bi(v) = {z" € N(v)\{u} : dp > dy > 2} and
Bs(v) = (N(v) \ {u}) \ Bi(v). Then, for every w € A;(u), using (5) and

(2), we have

dy =& _ dy—(dy—1) _ 1
(b +dw)? ~ (dy +dy —1)2 = 8(dy, — 1)’

—0,.(w) <

(7)

because d, — 1 < &, < dy < dy. Similarly, if d, > 2 then, for every
x € By(v) U Ba(v) = N(v) \ {u}, we have

by () < m. (8)
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Since f(dy,d,) > —=, from (7) and (8) it follows that

ﬁa
1 dy, dy
> awr Y aws-pz-Tst )
weN (u)\{v} zEN (v)\{u}
Now, from (4) and (9), the required inequality follows. ]

We also remark that the proof of Theorem 4 in [9] is imperfect. For

instance, the inequality

DSOG) > DSOG —v)+ Y Vot (10)

wweE(G,v) du + do

is invalid for the graph depicted in Figure 1 when v is taken to be the
unique pendent vertex of the considered graph G, where E(G,v) denotes
the set of those edges of G that are incident to v. However, we note that
Theorem 4 of [9] (when vertex v is not isolated) follows from the following

corollary of Theorem 2.
Corollary 1. Let v be a non-isolated vertex of a graph G. Then
4—+/2 \d2 + d2
DSO(G) > DSO(G —v) + Tf > VO&td gy

uwveE(G,v) du + dy

Proof. If v € V(@) is a pendent vertex adjacent to a vertex u, then (3)
and (11) are equivalent. If N(v) = {v1,v2,...,vs} with s > 2, then by (3),

we have

DSO(G) > DSO(G — v1v) + (4 _ ﬂ) VA + a2

4 dy, +dy
4—V2 VI
D _ -
> SO(G {UIU7U2U7 7USU}) + 4 ; dvi +d, ’
which yields (11). "

In [9], the proof of Proposition 12 relied on a specific graph transfor-
mation involving an (a,b)-edge, which is an edge connecting vertices of

degree a and b. The argument was stated as follows:
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“Let a branch (a tree) © be attached to a vertex v. Suppose
that © has t edges, at least one of which is pendent. Replace
one of the pendent edges of © with an edge in another part of
the graph G, so that it becomes a (2,2)-edge.”

However, this transformation is not universally applicable to all graphs.
The assumption that a pendent edge can always be repositioned to form
a (2,2)-edge does not hold in general. For instance, consider a graph
constructed by attaching a pendent vertex u to a vertex v of the complete
graph K, where n > 4. In this case, the edge uv is an (1,n)-edge. If
we attempt to apply the described transformation by moving this pendent
edge, it is not possible to obtain a (2, 2)-edge.

Although we believe that the statement of Proposition 12 of [9] is likely
correct, the given proof is incomplete. Since the proofs of the lower bounds
in Theorems 13 and 14 in [9] relied on this proposition, we now provide

alternative proofs for these results.

Theorem 3 (see Theorem 13 in [9]). Among unicyclic graphs of order n,
DSO(C,) < DSO(G), with equality if and only if G = C,,.

Proof. Let p be the number of pendent edges in a unicyclic graph G of
order n. If p =0, then G is the cycle graph C,,.
If p > 1, then

DSO(G) = Z f(duydv) = Z f(dua dv) + Z f(du; dv)

uveE(G) uveE(G) uwveE(G)
dy=1,d,2>2 Ay, dy>2

\/5 1 n

> 1,2)+ (n — 2,2)=|-———— + —
>pf(1,2)+ (n—p) f(2,2) ( TRV L

n
> — = DSO(C,). ]
Lemma 2. Let G be a connected graph of size m with k pendent paths
such that the maximum degree of G is at least 3. Then
5 /13 1
v +— - \/i)
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Proof. Let k1 and ko be the number of pendent paths (in G) of lengths 1
and at least 2, respectively. Then, k1 + ko = k. Hence,

DSO(G) > klf(lv?’) + k2[f(17 2) + f(Qv 3)] + (m — k1 — 2k2)f(27 2)

= (k= k2)f(1,3) + k2[f(1,2) + f(2,3)] + (m — k — k2) (2,2).
(12)

We note that the right-hand side of (12) attains its minimum value when
ko is maximum; that is, when ko = k. Hence, from (12), we obtain the

required inequality. |

Theorem 4 (see Theorem 14 in [9]). Among bicyclic graphs of order n,
the graphs with minimal DSO are (a) those obtained by inserting an edge
into Cy, and (b) those obtained by connecting two disjoint cycles by an
edge (when n > 6), both having DSO equal to

4f(3,2)+f(3,3)+(n—4)f(2’2):%n+ (éﬁ—gﬁ)

Proof. Let G be a bicyclic graph of order n, size m and p pendent paths.

Let A be the maximum degree of G. We consider the following cases.

Case 1. p = 0. In this case, following the proof of Theorem 14 in [9], we
have the required conclusion.

Case 2. p = 1. Since 2m =} cy () du, We have 2(n +1) = A+ 1+
2(n — 2), implying 3 < A < 5. Let P be the pendent path in G. First,
we consider the possibility where a vertex of degree A has at least three

neighbors of degree 2. Then,
1 4 3
> — -V13—-=v2).
S+ (3vB-3v2)
Now, we consider the possibility where every vertex of degree A has at

most two neighbors of degree 2. Then, G can be obtained from either A,

or As (shown in Figure 1 of [9]) by attaching a pendent path, and hence,
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we have A € {3,4}. We observe that G contains at least two edges, not
lying on P, having one endvertex of degree 2 and the other endvertex of
degree 3. Since f(1,A) > f(1,3) > f(1,2), we have

DSO(G) =22 f(3,2) + f(1,2) + (n - 2) f(2,2)

>\}§n+(§\/ﬁ—;’\/§>.

Case 2. p > 2. Using Lemma 2, we obtain

DSO(G) > <\[+\5F\/§>p+ ?(n+1)

>2<\f+\/5173—\f2>+\f(n+1)

>\}§n+<§ﬁ—3\/§),

which completes the proof. |

The proof of the next result is similar to the proof of Theorem 3.

Proposition 5. Let G be a graph with m edges, from which p are pendent,
provided that G contains no component isomorphic to the path graph of
order 2. Then,

m—p bp
DSO(G) > -
(@) 2 V2 T3

with equality if and only if every pendent edge (if exists) is incident to
a vertex of degree 2, whereas every non-pendent edge (if exists) has both

endvertices of the same degree.

Proof. We note that f(d,,1) > f(2,1) for every vertex v € V(G) adjacent
to a pendent vertex, where the equality holds if and only if d, = 2. Also,
fldy,dyw) > f(£,0) = % for every non-pendent edge uw € E(G), where
the equality holds if and only if d,, = d,, = ¢ for some integer larger £ than
1. Hence, DSO(G) > p f(2,1) + (m —p) f(£,£). |

We remark here that, for n > 3, the lower bound of Theorem 10 re-

ported in [9] follows from Theorem 2 and Proposition 5, whereas the upper
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bound of Theorem 10 in [9] follows from Theorem 2.
For a non-negative integer k, a connected graph G with size |V (G)| +

k — 1 is known as a k-cyclic graph.

Proposition 6. If G is a graph minimizing the DSO index among all k-
cyclic graphs of order n, then G does not contain any pendent edge, where
n>2k-1)>4.

Proof. Tt n = 2(k — 1) > 4, then there exists at least one 3-regular graph.
Hence, by Proposition 5, only 3-regular graph(s) minimize(s) the DSO
index among all k-cyclic graphs of order n, which proves the required
conclusion for the considered case.

For n > 2(k — 1), let G* be the k-cyclic graph of order n obtained
from a 3-regular k-cyclic graph of order 2(k — 1) by inserting n — 2(k —
1) vertex/vertices of degree 2 on one edge. Then, ms3(G*) = 3k — 4,
mo 2(G*) = n—2k+1 and mg 3(G*) = 2. Let p be the number of pendent
edges of G. We contrarily assume that p > 1. Since |E(G)| = |E(G*)| =
n + k — 1, by Proposition 5, we have

k-2 5 k-3 2Vi3
ntk-2 V5 n+k-3 2V13
NCEREE 3 5

a contradiction to the minimality of DSO(G). Hence, p = 0. ]

DSO(G) > = DSO(G"),

By Proposition 6 and the observation given in the first paragraph of
the concluding remarks section in [2], we have the following result, which

supports Proposition 12 of [9].

Proposition 7. If G is a k-cyclic graph of order n such thatn > 2(k—1) >
4, then
n+k—3 213

5t
with equality if and only if G is isomorphic to either a 3-regular graph
(when n = 2k —2) or the graph G* (when n > 2k — 2) defined in the proof
of Proposition 6.

DSO(G) >

An (i,j)-edge in a graph is an edge whose endvertices have degrees 4

and j. Let U, be the graph of order n and maximum degree n — 1. In
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the proof of Theorem 13 of [9], it was written that “U,, is the unicyclic

graph with maximum number of (n — 1,1)-edges, which implies the up-

per bound.” This implication was based on the fact that the function
Btz L . .

f(dy,dy) = 7 attains its maximum value on the interval [1,n — 1]

when {d,,d,} = {n — 1,1}. However, the implication under considera-

tion does not hold in general. To disprove it, we define the following new

variant of the Sombor index:

RRS(G) = Z max{d,,,d,}

weE(G) V d% + d%

Based on the definition of this index, we refer to it as the refined reciprocal
Sombor (RRS) index. Clearly, for any d,,d, € [1,n — 1], we have

max{dy,d,} < n—1
N AN RS EES

where the equality holds if and only if {d,,d,} = {1,n — 1}. However, for

every n > 9, we have

RRS(U,) < RRS(U?),

where U} is the graph obtained from U,,_; by attaching a pendent vertex
to a vertex of degree 2. Based on this discussion, we conclude that the
proof of the upper bound of Theorem 13 in [9] is not complete. Similarly,
the proof of Theorem 15 in [9] as well as the one for Theorem 1 in [8] are
not complete. We remark here that the upper bound of Theorem 13 in [9]
follows from Theorem 2.2 in [1] for n > 12. On the other hand, although
we believe that the statement of Theorem 15 in [9] as well as the one for
Theorem 1 in [8] are true, we do not have their valid proofs at present.
We end this section by providing a lower bound on DSO. For estab-

lishing this lower bound, we require a lemma first.

Lemma 3. Let a,b > 1. Then the following holds:

Va2 +b? 1 (a — b)?

> — 4
atb — B datb)?
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a

Proof. With no loss of generality, assume that a > b. Let t = fg Then,

t€1[0,1) and
Va2 +bv> 1412
at+b 2

The required inequality is equivalent to

2

t
VIFZ>14+ ——,
- 2v/2

which, for ¢t € (0,1), is equivalent to t? < 8 — 41/2. [ |
Now, we have the following corollary.

Corollary 2. Let G be a graph of size m and mazximum degree A. If p is
the number of those edges of G whose endvertices have different degrees,
then

DSO(G) > L

p
+
AR

2A —1)2

3 An open problem

Let m and n be positive integers provided that m > n — 1. Define
DSOpin(m,n) as the minimum diminished Sombor index among all con-
nected graphs of order n and size m. By Theorems 3 and 4, Propositions 5
and 7, we know the value of DSOypin(m,n) when (i) m € {n—1,n,n+1},
(ii) 3n > 2m > 2(n + 2). Also, recall that there is only one graph of order
n > 2 and size m for each m € {(’21)7 (Z) — 1}. This leads to the following

problem.

Problem. Let m and n be positive integers satisfying the inequality

w3 [ 2]} <= (7).

Determine DSOpin(m,n).

This problem seems not to be easy to solve. Based on the computer

search for small values of n and m, we expected that the difference between
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the maximum and minimum degrees of every extremal graph correspond-
ing to the solution of this problem will be at most 1; however, this is
not true in general. For instance, let us consider the determination of
DSOwmin(30,14). We can construct a candidate extremal graph by min-
imizing the number of edges with unequal endvertex degrees. Since the
function f(x,y) = Y T*9% attains its minimum value of = when 2 = Y,

Tty V2
the optimal strategy is likely to maximize the number of edges connecting

vertices of equal degrees. Ideally, we seek a structure composed of vertex-
disjoint regular (or nearly regular) components connected by a minimal
number of edges. Specifically, if we can construct a graph with only a
single edge connecting vertices of unequal degrees a and b, the DSO index
of G would be

1 Va>+p?

DSO(G) = (m — 1)+

For n = 14 and m = 30, the average degree is ?. We explore integer
degrees a and b close to this average degree satisfying the degree sum
equation an, +bn, = 2m = 60, subject to n, + ny = 14, where n; denotes
the number of vertices of degree 4. The pair (a,b) = (3, 5) yields the unique

integer solution:
3ng, +5n, =60 and n,+ny, =14 = n, =5, n =9.

Tt is graph-theoretically possible to construct such a graph G (shown in
Figure 1).

Figure 2. The graph G with minimum DSO for n = 14 and m = 30.
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