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Abstract

The diminished Sombor index of a graph G with edge set E(G)
is defined as

DSO(G) =
∑

uv∈E(G)

√
d2u + d2v
du + dv

,

where du denotes the degree of vertex u. In this paper, we revisit
and refine some of the results reported in the recent paper [MATCH
Commun. Math. Comput. Chem. 95 (2026) 141–162]. One of the
obtained refined results guarantees that DSO(G) decreases when
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any of the edges of G is removed. Also, one of the new results gives
the graphs minimizing DSO over the class Gm,n of all connected
graphs of order n and size m for 3n ≥ 2m ≥ 2(n+ 2). The paper is
concluded with an open problem concerning the graphs minimizing
DSO over Gm,n for m ≥ max {n+ 3, ⌈3n/2⌉}.

1 Introduction

Let G = (V,E) be a simple undirected graph with vertex set V (G) and

edge set E(G). The number of vertices and edges of G are denoted by

n = |V (G)| and m = |E(G)|, respectively. For a vertex v ∈ V (G), the

degree of v, denoted by dv(G), is the number of edges incident to v. A

graph is connected if there is a path between every pair of its vertices.

The minimum and maximum degrees of G are denoted by δ(G) and ∆(G),

respectively. When there is no confusion about the graph under consid-

eration, we drop the symbol “(G)” from the notations dv(G), δ(G) and

∆(G). An edge e = uv is called a pendent edge if one of its endvertices

has degree 1. A nontrivial path P = u0u1 . . . ut in a graph G is referred to

as a pendent path if max{du0(G), dut(G)} ≥ 3, min{du0(G), dut(G)} = 1

and dui(G) = 2 when 1 ≤ i ≤ t − 1. We refer the reader to [7, 11] for

undefined notations and terminologies.

Topological indices are numerical graph invariants. In chemical graph

theory, these indices are used to predict physicochemical properties of

chemical compounds. Among the immense number of vertex-degree-based

topological indices, the Sombor index, introduced by Gutman in 2021 [5],

has received significant attention. Inspired by the geometric interpretation

of the Sombor index, several variants have been proposed in the literature.

For instance, the Euler–Sombor index [10], the elliptic Sombor index [6],

the augmented Sombor index [3], and the diminished Sombor index [9] are

among the notable modifications that have been introduced and studied

recently. For a graph G, the diminished Sombor index (DSO) is defined

as

DSO(G) =
∑

uv∈E(G)

√
d2u + d2v
du + dv

.

Some mathematical properties and bounds for this index have been inves-
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tigated in recent studies [2, 4, 8, 9].

In [9], the extremal values of the DSO index were investigated, and

several theorems regarding its behavior under graph transformations were

presented. We revisit the proofs of Theorem 3, Theorem 4 and Proposition

12 given in [9] and observe that they are incomplete. In this paper, we

present refined versions of Theorems 3 and 4 in [9]. We observe that

Theorems 3 and 4 of [9] follow from these refinements. We also present

alternative proofs for the results that depended on Proposition 12 of [9].

Furthermore, corresponding to Proposition 12 of [9], we provide a result

that gives the graphs minimizing DSO over the class Gm,n of all connected

graphs of order n and size m for 3n ≥ 2m ≥ 2(n + 2). We conclude the

paper with an open problem concerning the graphs minimizing DSO over

Gm,n for m ≥ max {n+ 3, ⌈3n/2⌉}.

2 Results and discussion

We start with the following result appeared in [9].

Theorem 1 (Theorem 3 in [9]). Let G be a graph of order n. Then

(i) DSO(G) > DSO(G−e)+
|du − dv|√
2(2n− 2)

, for any edge e = uv ∈ E(G);

(ii) DSO(G+ e) > DSO(G) +
|du − dv|√
2(2n− 2)

, where e = uv such that the

vertices u and v are not adjacent in G.

The proof provided for Theorem 1 is imperfect. For instance, the in-

equality

DSO(G) > DSO(G− e) +

√
d2u + d2v

du + dv
(1)

is invalid for the graph depicted in Figure 1 when e = uv is taken to be

the unique bridge of the considered graph G.

Here, we provide an extended version of Theorem 1, from which The-

orem 1 follows. For this, we first need the following lemma.



614
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Figure 1. A graph providing counterexamples to the inequalities (1)
and (10).

Lemma 1. Let ℓ1 and ℓ2 be integers satisfying ℓ2 ≥ ℓ1 + 1 ≥ 3. Then, it

holds that
ℓ2 − ℓ1 + 1

(ℓ1 + ℓ2 − 1)2
≤ 1

8(ℓ1 − 1)
. (2)

Proof. Define the function ϕ on the interval [ℓ1+1,∞) as ϕ(x) = x−ℓ1+1
(x+ℓ1−1)2 .

The required inequality follows from the fact that the function ϕ is in-

creasing on [ℓ1 +1, 3ℓ1 − 3] and decreasing on [3ℓ1 − 3,∞). Hence, ϕ(x) ≤
ϕ(3ℓ1 − 3) for every x ∈ [ℓ1 + 1,∞). Particularly, for any integer ℓ2 with

ℓ2 ≥ ℓ1+1, we have ϕ(ℓ2) ≤ ϕ(3ℓ1−3), which is equivalent to the required

inequality.

Theorem 2. If G is a graph and uv ∈ E(G), then

DSO(G) > DSO(G− uv) +
4−

√
2

4
f(du, dv), (3)

where f(du, dv) =

√
d2
u+d2

v

du+dv
. In particular, DSO(G) > DSO(G− uv).

Proof. We note that

DSO(G)−DSO(G− uv) =
∑

w∈N(u)\{v}

(
f(du, dw)− f(du − 1, dw)︸ ︷︷ ︸

θu(w)

)
+

∑
x∈N(v)\{u}

(
f(dv, dx)− f(dv − 1, dx)︸ ︷︷ ︸

θv(x)

)
+ f(du, dv). (4)

Set

Θu =
∑

w∈N(u)\{v}

θu(w) and Θv =
∑

x∈N(v)\{u}

θv(x).
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If du = dv = 1, then Θu = Θv = 0, and hence, (4) yields the desired

inequality. Next, we consider the case where max{du, dv} ≥ 2. Without

loss of generality, we assume that du ≥ dv. Using the mean value theorem,

we observe that, for any vertex w ∈ N(u) \ {v}, there exists a real number

ξw such that 1 ≤ du − 1 < ξw < du and

θu(w) =
dw(ξw − dw)√

ξ2w + d2w (ξw + dw)2

< 0 if dw ≥ du,

> 0 if dw ≤ du − 1.
(5)

Similarly, if dv ≥ 2, then for any x ∈ N(v)\{u}, there exists a real number

ξx such that 1 ≤ dv − 1 < ξx < dv and

θv(x) =
dx(ξx − dx)√

ξ2x + d2x (ξx + dx)2

< 0 if dx ≥ dv,

> 0 if dx ≤ dv − 1.
(6)

Therefore, if dw ≤ du − 1 and dx ≤ dv − 1 for all w ∈ N(u) \ {v} and

x ∈ N(v) \ {u} (when dv ≥ 2), then min{Θu,Θv} ≥ 0, which together

with (4) implies the desired inequality. Now, we consider the case where

either dw ≥ du or dx ≥ dv ≥ 2 for some w ∈ N(u) \ {v} or x ∈ N(v) \ {u}.
Then, we have either θu(w) < 0 or θv(x) < 0 for some w ∈ N(u) \ {v}
or x ∈ N(v) \ {u}. Let A1(u) = {w′ ∈ N(u) \ {v} : dw′ ≥ du}, A2(u) =

(N(u) \ {v}) \ A1(u), B1(v) = {x′ ∈ N(v) \ {u} : dx′ ≥ dv ≥ 2} and

B2(v) = (N(v) \ {u}) \ B1(v). Then, for every w ∈ A1(u), using (5) and

(2), we have

−θu(w) <
dw − ξw

(ξw + dw)2
<

dw − (du − 1)

(dw + du − 1)2
≤ 1

8(du − 1)
, (7)

because du − 1 < ξw < du ≤ dw. Similarly, if dv ≥ 2 then, for every

x ∈ B1(v) ∪B2(v) = N(v) \ {u}, we have

−θv(x) <
1

8(dv − 1)
. (8)
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Since f(du, dv) ≥ 1√
2
, from (7) and (8) it follows that

∑
w∈N(u)\{v}

θu(w) +
∑

x∈N(v)\{u}

θv(x) > −1

4
≥ −f(du, dv)

2
√
2

(9)

Now, from (4) and (9), the required inequality follows.

We also remark that the proof of Theorem 4 in [9] is imperfect. For

instance, the inequality

DSO(G) > DSO(G− v) +
∑

uv∈E(G,v)

√
d2u + d2v
du + dv

(10)

is invalid for the graph depicted in Figure 1 when v is taken to be the

unique pendent vertex of the considered graph G, where E(G, v) denotes

the set of those edges of G that are incident to v. However, we note that

Theorem 4 of [9] (when vertex v is not isolated) follows from the following

corollary of Theorem 2.

Corollary 1. Let v be a non-isolated vertex of a graph G. Then

DSO(G) > DSO(G− v) +
4−

√
2

4

∑
uv∈E(G,v)

√
d2u + d2v
du + dv

. (11)

Proof. If v ∈ V (G) is a pendent vertex adjacent to a vertex u, then (3)

and (11) are equivalent. If N(v) = {v1, v2, . . . , vs} with s ≥ 2, then by (3),

we have

DSO(G) > DSO(G− v1v) +

(
4−

√
2

4

) √
d2v1 + d2v
dv1 + dv

> DSO(G− {v1v, v2v, . . . , vsv}) +
4−

√
2

4

s∑
i=1

√
d2vi + d2v

dvi + dv
,

which yields (11).

In [9], the proof of Proposition 12 relied on a specific graph transfor-

mation involving an (a, b)-edge, which is an edge connecting vertices of

degree a and b. The argument was stated as follows:
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“Let a branch (a tree) Θ be attached to a vertex v. Suppose

that Θ has t edges, at least one of which is pendent. Replace

one of the pendent edges of Θ with an edge in another part of

the graph G, so that it becomes a (2, 2)-edge.”

However, this transformation is not universally applicable to all graphs.

The assumption that a pendent edge can always be repositioned to form

a (2, 2)-edge does not hold in general. For instance, consider a graph

constructed by attaching a pendent vertex u to a vertex v of the complete

graph Kn, where n ≥ 4. In this case, the edge uv is an (1, n)-edge. If

we attempt to apply the described transformation by moving this pendent

edge, it is not possible to obtain a (2, 2)-edge.

Although we believe that the statement of Proposition 12 of [9] is likely

correct, the given proof is incomplete. Since the proofs of the lower bounds

in Theorems 13 and 14 in [9] relied on this proposition, we now provide

alternative proofs for these results.

Theorem 3 (see Theorem 13 in [9]). Among unicyclic graphs of order n,

DSO(Cn) ≤ DSO(G), with equality if and only if G ∼= Cn.

Proof. Let p be the number of pendent edges in a unicyclic graph G of

order n. If p = 0, then G is the cycle graph Cn.

If p ≥ 1, then

DSO(G) =
∑

uv∈E(G)

f(du, dv) =
∑

uv∈E(G)
du=1, dv≥2

f(du, dv) +
∑

uv∈E(G)
du, dv≥2

f(du, dv)

≥ p f(1, 2) + (n− p) f(2, 2) =

(√
5

3
− 1√

2

)
p+

n√
2

>
n√
2
= DSO(Cn).

Lemma 2. Let G be a connected graph of size m with k pendent paths

such that the maximum degree of G is at least 3. Then

DSO(G) ≥

(√
5

3
+

√
13

5
−
√
2

)
k +

1√
2
m.
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Proof. Let k1 and k2 be the number of pendent paths (in G) of lengths 1

and at least 2, respectively. Then, k1 + k2 = k. Hence,

DSO(G) ≥ k1f(1, 3) + k2[f(1, 2) + f(2, 3)] + (m− k1 − 2k2)f(2, 2)

= (k − k2)f(1, 3) + k2[f(1, 2) + f(2, 3)] + (m− k − k2)f(2, 2).

(12)

We note that the right-hand side of (12) attains its minimum value when

k2 is maximum; that is, when k2 = k. Hence, from (12), we obtain the

required inequality.

Theorem 4 (see Theorem 14 in [9]). Among bicyclic graphs of order n,

the graphs with minimal DSO are (a) those obtained by inserting an edge

into Cn, and (b) those obtained by connecting two disjoint cycles by an

edge (when n ≥ 6), both having DSO equal to

4 f(3, 2) + f(3, 3) + (n− 4) f(2, 2) =
1√
2
n+

(
4

5

√
13− 3

2

√
2

)
.

Proof. Let G be a bicyclic graph of order n, size m and p pendent paths.

Let ∆ be the maximum degree of G. We consider the following cases.

Case 1. p = 0. In this case, following the proof of Theorem 14 in [9], we

have the required conclusion.

Case 2. p = 1. Since 2m =
∑

u∈V (G) du, we have 2(n + 1) ≥ ∆ + 1 +

2(n − 2), implying 3 ≤ ∆ ≤ 5. Let P be the pendent path in G. First,

we consider the possibility where a vertex of degree ∆ has at least three

neighbors of degree 2. Then,

DSO(G) ≥ 3 f(∆, 2) + f(1, 2) + (n− 3) f(2, 2)

≥ 3 f(3, 2) + f(1, 2) + (n− 3) f(2, 2)

>
1√
2
n+

(
4

5

√
13− 3

2

√
2

)
.

Now, we consider the possibility where every vertex of degree ∆ has at

most two neighbors of degree 2. Then, G can be obtained from either A1

or A2 (shown in Figure 1 of [9]) by attaching a pendent path, and hence,
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we have ∆ ∈ {3, 4}. We observe that G contains at least two edges, not

lying on P , having one endvertex of degree 2 and the other endvertex of

degree 3. Since f(1,∆) ≥ f(1, 3) > f(1, 2), we have

DSO(G) ≥ 2 f(3, 2) + f(1, 2) + (n− 2) f(2, 2)

>
1√
2
n+

(
4

5

√
13− 3

2

√
2

)
.

Case 2. p ≥ 2. Using Lemma 2, we obtain

DSO(G) ≥

(√
5

3
+

√
13

5
−
√
2

)
p+

√
2

2
(n+ 1)

≥ 2

(√
5

3
+

√
13

5
−
√
2

)
+

√
2

2
(n+ 1)

>
1√
2
n+

(
4

5

√
13− 3

2

√
2

)
,

which completes the proof.

The proof of the next result is similar to the proof of Theorem 3.

Proposition 5. Let G be a graph with m edges, from which p are pendent,

provided that G contains no component isomorphic to the path graph of

order 2. Then,

DSO(G) ≥ m− p√
2

+

√
5 p

3

with equality if and only if every pendent edge (if exists) is incident to

a vertex of degree 2, whereas every non-pendent edge (if exists) has both

endvertices of the same degree.

Proof. We note that f(dv, 1) ≥ f(2, 1) for every vertex v ∈ V (G) adjacent

to a pendent vertex, where the equality holds if and only if dv = 2. Also,

f(du, dw) ≥ f(ℓ, ℓ) = 1√
2
for every non-pendent edge uw ∈ E(G), where

the equality holds if and only if du = dw = ℓ for some integer larger ℓ than

1. Hence, DSO(G) ≥ p f(2, 1) + (m− p) f(ℓ, ℓ).

We remark here that, for n ≥ 3, the lower bound of Theorem 10 re-

ported in [9] follows from Theorem 2 and Proposition 5, whereas the upper
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bound of Theorem 10 in [9] follows from Theorem 2.

For a non-negative integer k, a connected graph G with size |V (G)|+
k − 1 is known as a k-cyclic graph.

Proposition 6. If G is a graph minimizing the DSO index among all k-

cyclic graphs of order n, then G does not contain any pendent edge, where

n ≥ 2(k − 1) ≥ 4.

Proof. If n = 2(k − 1) ≥ 4, then there exists at least one 3-regular graph.

Hence, by Proposition 5, only 3-regular graph(s) minimize(s) the DSO

index among all k-cyclic graphs of order n, which proves the required

conclusion for the considered case.

For n > 2(k − 1), let G∗ be the k-cyclic graph of order n obtained

from a 3-regular k-cyclic graph of order 2(k − 1) by inserting n − 2(k −
1) vertex/vertices of degree 2 on one edge. Then, m3,3(G

∗) = 3k − 4,

m2,2(G
∗) = n− 2k+1 and m2,3(G

∗) = 2. Let p be the number of pendent

edges of G. We contrarily assume that p ≥ 1. Since |E(G)| = |E(G∗)| =
n+ k − 1, by Proposition 5, we have

DSO(G) ≥ n+ k − 2√
2

+

√
5

3
>

n+ k − 3√
2

+
2
√
13

5
= DSO(G∗),

a contradiction to the minimality of DSO(G). Hence, p = 0.

By Proposition 6 and the observation given in the first paragraph of

the concluding remarks section in [2], we have the following result, which

supports Proposition 12 of [9].

Proposition 7. If G is a k-cyclic graph of order n such that n ≥ 2(k−1) ≥
4, then

DSO(G) ≥ n+ k − 3√
2

+
2
√
13

5
,

with equality if and only if G is isomorphic to either a 3-regular graph

(when n = 2k− 2) or the graph G∗ (when n > 2k− 2) defined in the proof

of Proposition 6.

An (i, j)-edge in a graph is an edge whose endvertices have degrees i

and j. Let Un be the graph of order n and maximum degree n − 1. In



621

the proof of Theorem 13 of [9], it was written that “Un is the unicyclic

graph with maximum number of (n − 1, 1)-edges, which implies the up-

per bound.” This implication was based on the fact that the function

f(du, dv) =

√
d2
u+d2

v

du+dv
attains its maximum value on the interval [1, n − 1]

when {du, dv} = {n − 1, 1}. However, the implication under considera-

tion does not hold in general. To disprove it, we define the following new

variant of the Sombor index:

RRS(G) =
∑

uv∈E(G)

max{du, dv}√
d2u + d2v

.

Based on the definition of this index, we refer to it as the refined reciprocal

Sombor (RRS) index. Clearly, for any du, dv ∈ [1, n− 1], we have

max{du, dv}√
d2u + d2v

≤ n− 1√
(n− 1)2 + 1

,

where the equality holds if and only if {du, dv} = {1, n− 1}. However, for

every n ≥ 9, we have

RRS(Un) < RRS(U⋆
n),

where U⋆
n is the graph obtained from Un−1 by attaching a pendent vertex

to a vertex of degree 2. Based on this discussion, we conclude that the

proof of the upper bound of Theorem 13 in [9] is not complete. Similarly,

the proof of Theorem 15 in [9] as well as the one for Theorem 1 in [8] are

not complete. We remark here that the upper bound of Theorem 13 in [9]

follows from Theorem 2.2 in [1] for n ≥ 12. On the other hand, although

we believe that the statement of Theorem 15 in [9] as well as the one for

Theorem 1 in [8] are true, we do not have their valid proofs at present.

We end this section by providing a lower bound on DSO. For estab-

lishing this lower bound, we require a lemma first.

Lemma 3. Let a, b ≥ 1. Then the following holds:

√
a2 + b2

a+ b
≥ 1√

2
+

(a− b)2

4(a+ b)2
.
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Proof. With no loss of generality, assume that a ≥ b. Let t = a−b
a+b . Then,

t ∈ [0, 1) and √
a2 + b2

a+ b
=

√
1 + t2

2
.

The required inequality is equivalent to

√
1 + t2 ≥ 1 +

t2

2
√
2
,

which, for t ∈ (0, 1), is equivalent to t2 ≤ 8− 4
√
2.

Now, we have the following corollary.

Corollary 2. Let G be a graph of size m and maximum degree ∆. If p is

the number of those edges of G whose endvertices have different degrees,

then

DSO(G) >
m√
2
+

p

4(2∆− 1)2
.

3 An open problem

Let m and n be positive integers provided that m ≥ n − 1. Define

DSOmin(m,n) as the minimum diminished Sombor index among all con-

nected graphs of order n and size m. By Theorems 3 and 4, Propositions 5

and 7, we know the value of DSOmin(m,n) when (i) m ∈ {n− 1, n, n+1},
(ii) 3n ≥ 2m ≥ 2(n+ 2). Also, recall that there is only one graph of order

n ≥ 2 and size m for each m ∈
{(

n
2

)
,
(
n
2

)
− 1
}
. This leads to the following

problem.

Problem. Let m and n be positive integers satisfying the inequality

max

{
n+ 3,

⌈
3n

2

⌉}
≤ m ≤

(
n

2

)
− 2.

Determine DSOmin(m,n).

This problem seems not to be easy to solve. Based on the computer

search for small values of n and m, we expected that the difference between
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the maximum and minimum degrees of every extremal graph correspond-

ing to the solution of this problem will be at most 1; however, this is

not true in general. For instance, let us consider the determination of

DSOmin(30, 14). We can construct a candidate extremal graph by min-

imizing the number of edges with unequal endvertex degrees. Since the

function f(x, y) =

√
x2+y2

x+y attains its minimum value of 1√
2
when x = y,

the optimal strategy is likely to maximize the number of edges connecting

vertices of equal degrees. Ideally, we seek a structure composed of vertex-

disjoint regular (or nearly regular) components connected by a minimal

number of edges. Specifically, if we can construct a graph with only a

single edge connecting vertices of unequal degrees a and b, the DSO index

of G would be

DSO(G) = (m− 1)
1√
2
+

√
a2 + b2

a+ b
.

For n = 14 and m = 30, the average degree is 30
7 . We explore integer

degrees a and b close to this average degree satisfying the degree sum

equation ana+ b nb = 2m = 60, subject to na+nb = 14, where ni denotes

the number of vertices of degree i. The pair (a, b) = (3, 5) yields the unique

integer solution:

3na + 5nb = 60 and na + nb = 14 =⇒ na = 5, nb = 9.

It is graph-theoretically possible to construct such a graph G (shown in

Figure 1).

Figure 2. The graph G with minimum DSO for n = 14 and m = 30.
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