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Abstract

Let G be a connected graph having more than two vertices and
let d; denote the degree of vertex v; in G. Let E(G) represent the
edge set of G. Then, the augmented Sombor (ASO) index of G is
defined as ASO(G) = 3, cp(a) \/(di +d; —2) (2 + ). T is
known that the cycle graph C,, uniquely minimizes the ASO index in
the class of all n-order unicyclic graphs. In this paper, we prove that
the unique n-order unicyclic graph of maximum degree n — 1 max-
imizes the ASO index in the aforementioned unicyclic graph class.
We also prove that ASO(G — viv;) < ASO(G) whenever neither of
the graphs G —v;v; and G contains any isolated edge. Utilizing this
edge-deletion property, we characterize the unique graph maximiz-
ing the ASO index among all fixed-order connected graphs with a
specified vertex connectivity (or edge connectivity).

1 Introduction

Chemical graph theory constitutes a significant subfield of mathematical

chemistry in which graph-theoretic methods are employed to represent,
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analyze, and predict the physical and chemical characteristics of chemical
compounds [22,31,32]. In a chemical graph, vertices model atoms while
edges correspond to chemical bonds, thereby providing a mathematically
rigorous framework for the study of molecular structure and related prop-
erties. Within this setting, real-valued graph invariants are commonly
referred to as topological indices.

Among several families of topological indices investigated to date, de-
gree-based indices [1,2,4,11,18] play a particularly prominent role. These
indices depend exclusively on the degrees of the vertices, thereby captur-
ing essential local connectivity features of the underlying molecular graph.
Their demonstrated success in correlating with a variety of physicochemi-
cal properties, together with their computational efficiency, has established
them as indispensable tools in quantitative structure-property relationship
(QSPR) studies, an area that underpins the prediction and rational design
of new chemical compounds [17].

A particularly influential member of the family of degree-based topo-
logical indices is the Sombor index, introduced by Gutman [19] around

half a decade ago. For a graph G, this index is defined as

S0(G)= ) yJd?+d},

vv; €EE(G)

where E(G) denotes the edge set of G, and d; and d; represent the degrees
of the adjacent vertices v; and v;, respectively. Since its introduction,
the Sombor index has spurred numerous studies dedicated to its chemical
applications and mathematical aspects; see, for instance, [6-10,12,13,15,
16,19-21,23-28]. Motivated by these developments, a new variant of the
Sombor index, termed the Augmented Sombor (ASO) index, was proposed
in [14] by considering not only the vertex degrees d; and d; of the endver-
tices of each edge v;v;, but also its edge degree d; +d; — 2. For any graph
G that contains no connected component isomorphic to the path graph P,
of order 2, the ASO index is defined by

AS0(G) = >

ViV EE(G)
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We now define the terms and notation that are used in the remainder of
this paper. The graph-theoretical terminology used in this paper, but not
explicitly defined here, can be found in some standard books such as [3,5].
For a vertex v; € V(G), let Ng(v;) denote the set consisting of all vertices
adjacent to v;. Throughout this paper, we adhere to the conventional
notation of graph theory: for example, C,, and K, denote the cycle and
complete graph of order n, respectively. A vertex of degree one is called a
pendant vertex, and an edge incident with such a vertex is called a pendant
edge. An edge whose endvertices are both pendant vertices is referred to
as an isolated edge. If v;v; is an edge of a graph G, then G — v;v; denotes
the graph obtained from G by deleting the edge v;v;. For two vertex-
disjoint graphs G and H, their disjoint union is written as G U H. The
join of G and H, denoted GV H, is the graph formed by taking GU H and
adding all possible edges between every vertex of G and every vertex of
H. The vertex connectivity of a nontrivial connected graph G is defined
as the minimum number of vertices whose removal results in a graph that
is either disconnected or trivial. Analogously, the edge connectivity of G
is the minimum number of edges whose deletion disconnects the graph. A
connected graph whose order and size coincide is referred to as a unicyclic
graph.

It is known [14] that the cycle graph C,, uniquely minimizes the ASO
index in the class of all n-order unicyclic graphs. In this paper, we prove
that the unique n-order unicyclic graph of maximum degree n — 1 max-
imizes the ASO index in the aforementioned unicyclic graph class. We
also prove that ASO(G —v;v;) < ASO(G) whenever neither of the graphs
G — v;v; and G contains any isolated edge. Utilizing this edge-deletion
property, we show that (K3 U K,,_;_1) V K} is the unique graph max-
imizing the ASO index among all n-order connected graphs with vertex

connectivity (or edge connectivity) k, where n > 4.

2 Unicyclic graphs

In this section, we prove that the unique n-order unicyclic graph of maxi-

mum degree n — 1 maximizes the ASO index among all n-order unicyclic
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graphs. To achieve this, we first establish the following preliminary result.

Lemma 1. Forl1 <z <a anda > 1,

2 2
2

u§a+1+7

T+a—2 a—1

with equality if and only if v = 1.

Proof. Let
z? + a?
= 1<z < 1.
f(z) Tta_2 <z<a, a>
We have
() (r4+a—-2)2r— (22 +a®) 22+2(a—2)x—a?
x) = =

(x4+a—2)2 (x+a—2)2

Then one can easily see that f(x) is a increasing function on > —a +
2 4+ 4/2(a® —2a+2) and a decreasing function on 1 < z < —a + 2 +

V2(a? — 2a 4+ 2). Since 1 < z < a, we obtain

J(@) < max{f(1), fla)} = F(1) =a+1+——

a—1

with equality if and only if x = 1. |

d; +d3

We define a function h as h(d;, d;) = e e B

Lemma 2. [14] Let G be a graph of order n (> 8) with any edge v;v;. Then
h(di,d;) < h(n—2,n—2) <h(n—1,n—3)=h(n—2,1) <h(n—1,2) <
h(n—1,n—2) < h(n—1,n—1) < h(n—1,1) for (d;, d;) ¢ {(n—171)7 (n—

1,2), (n—2,1), (n—2,n—2), (n—1,n—3), (n—1,n—2), (n—l,n—l)}.

Theorem 1. Let G be a unicyclic graph of order n. Then

ASO(G) < (n—3) y/n +

2 4
2 -1 2 1
n—2Jr " +n—l+ (1)

with equality if and only if G = S!.

Proof. Let vy be the maximum degree vertex of degree A in G. Then
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ds =A. If A=n—1, then G = S], with

S
n—2

and hence the equality in (1) holds. Otherwise, A <n — 2. For n <9, by
Sage [29], one can easily check that the result (1) strictly holds. So we now

ASO(G) = (n— 3) \/

assume that n > 10. By Lemma 2, for any non-pendant edge v;v; € E(G)
satisfying 2 < d; < d; < n — 2, we obtain

d12+d? <+\/h 2 2 \/ 1 1 \/ 1 2

For any pendant edge v;v; € E(T') satisfying 1 =d; < d; <n—2,

d2+d2
d +d; -2

<+/h(n—-2,1) n—14+—— _3

From the above two inequalities, for any edge v;v; € E(G) satisfying
1<d; <d; <n— 2, we obtain

d; + d3
- (2)
di+d; —2 d; 2
Let Cy (> 3) be the cycle in G. Also, let v; be the second maximum degree

vertex of degree A, in G. Then d; = Ag and 2 < Ay < "”2”4. By Lemma
1, for v; € Ng(vt) with d; < A,, we obtain

A3+ d? 2
e B
Ay id g Sfetlt (3)

with equality if and only if d; = 1. Let S = {v;u; € E(G) : v; € Ng(vi)}.

We consider the following three cases:

Casel. Ay = 2. In this case, the maximum degree vertex vy lies on the

cycle C, and all other vertices on C}, have degree 2. Hence, there exists
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an edge vpv, € E(Cy) such that d, = d, = 2. For this edge, we obtain

dz + d2 5
dy+dy — 2

Using this fact together with (2), we obtain

2 + d2
AS0(G) =[S Y
P + q viv; EE(G)\{vpve}

<24 (n—1)4/ 1+L

" " n—3

<(n—3)\/n+i+21/n—1+i+2
n—2 n—1 "

Thus, the inequality (1) holds strictly in the present case.

i + d3
di-l—dj—Q

In the rest of the cases, the second maximum degree vertex v; is adja-

cent to at least (Ay — 1) vertices of degree at most As.

Case 2. 3 < Ay < 5. Then, by (2) and (3), we obtain

d? + A3 2 13
e B 14— = (Ay—1).
v Il Vi b Sl Vi s C Rl

Using this with (2), we obtain

vi€ENg (ve)

2 2
&2 + d2

ASO(G) = > p R —
’L)il}jEE(G) * 7
_ d? + A2 d? 4 d2
i+ Ao — 2 i i — 2
v, ENg(ve) di + Az viv; EE(G)\S d +dj

<,/n—1+%+@(A2—1)+(n—A2),/n_1+n33. @)

We now prove the following claim:
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Claim 1.
13 2
- (A2 = 1)+ (n— Ay) —3

2
<(n—3)\/n—|—2 +\/n—1+2 +2.
n—2 -3

Proof of Claim 1. Since n > 10, for 4 < Ay < 5, we obtain

[(Az—n (n—As) 4/ 2
T

<( 3)\/+ 2 +\/ 1+2 +2

13 2
3 <8< 2y n—1+—F+2.
2 n—3

Otherwise, Ag = 3. Now,

\fmz—n (n—A),/ -
_zf (n—3

2 2
<(n-3
(n >\/n+n—2+\/ n—3
as n > 10, 2,/ <%<,/n+%+2and

n .
n—3 n—2

as
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Hence, Claim 1 holds.

Using Claim 1 in (4), we obtain

ASO(G (n—=3)y/n —|—2 n—1+
(n—3 \/ +2 n—1+

Thus, in the present case, (1) holds strictly.

Case 3. Ay = 6. Then, by (2) and (3), we obtain

| d?+ A2 / /37
Z TL—].+ + 7A2—1
veeNa(o) d; +A2—2 5
2 37
—/n—14+ " 154/,
A S Vi

Since n > 10, using the above inequality with (2), we obtain

w

d? + A2 d? + d?

A _ 7 2 v J
SO(G) Z di"i‘Ag—Q+ Z d'+dj—2
v ENG (vy) viv; €E(G)\S

2 37
\yn—1+—— — — -1
</n +n73+5 5+(n 6)4/n +
1361 2
-1
< 100+( —5)4/n +n—3
(n—1)4/ 1+ 2 +2
n — n —
n—3
2

( 3)\/ —&-L—i- \/ 1—|—i+2
n n n—2 n n—3

/ 2 1361
4 -1+ —+2>14> —
n —|— 3+ > > 100

;

<
<

as n > 10 and
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The inequality (1) holds strictly.

Cased. 7 < Ay < "‘T’M. Now,

AS0(G) \ 7oA 44 At
mENG (ve) di + Az B 2 vivjeE(G di + dj -2

Case4.1.7< Ay < "7_3 In this case n > 17. We note that Ag—&—l—i—ﬁ
attains its maximum value over 7 < Ay < ”T_?’ at Ay = "T_?’ Hence, for
d; < Ag, from (3), we obtain

A3+ d? n-1 4 1

n < (+ 2 ) (6)
Atdi—2- 2 "nmop o 2\"Tn2

as n > 17. Recall that the second maximum degree vertex v, is adjacent
to at least (A — 1) vertices of degree at most Ay. Hence, using (6) and
(2), we obtain

d? + A3 \/1 2 \/ 2
T2 (Ay—1)4/= -1 .
> di+A2—2<( 2= 1) 2(”+n—2>Jr nolt T
v;€Ng(ve)
(7)

Since Ay > 7, using (2) and (7) in (5), we obtain
1 2 2
ASO(G)<(A2—1)\/2<n+n_2)+\/ p—
n—A2 “
1 2 2
5(%-1-72)"‘1‘ \/n—l—&-fg
B
-3

2 4
- o2yl —— 42
<(n 3)\/71 p— \/n 3—|—
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. 2 2 4
aanl?and\/n+ﬁ>\/n—1+m< n —1+ —=5. Hence, the
inequality (1) strictly holds.

Case4.2. Ay > 222 We have 253 < A, < 2=ktd < ntl 45k > 3. Since
G is unicyclic, we have A < ”T% We note that Ag + 1+ ﬁ attains its
maximum value over % <Ay < "T'H at Ag = "T'H Hence, for d; < Ao,

from (3), we obtain

2, 72
A3+ d; <n+3 4 1 (n+ 2 )

Ao +d;i—2— 2 +n—1<1.44 n—2

as n > 10. Using this result with (2), we obtain

d? + A2 A2—1¢ 2 V 2
j 14—
> P N T 1 B VL B S VAl
v, ENg(ve)

Since A < ”T'H", by Lemma 1, for v; € Ng(vs), we obtain

A? 4+ 2 2 n+7 4 2
el e A N |
Ard At R < o<t ©®

as n > 10. Since Ay > 7, using the above results with (2), from (5), we

obtain

aso@) < B2 s 2o a1

1.2 n—2 -3
2
6 2 2
< — - -1
ST\t t -y n-le o
2 2
= -6 -1
n+n_2+(n Jym +n—S
< (n—3) + 2 +2 1+ 1 +2
n n n—29 n n—3 .

Therefore, in the present case, the inequality (1) strictly holds. |
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3 Edge-deletion property

In this section, we prove that ASO(G —wv;v;) < ASO(G) whenever neither
of the graphs G —v;v; and G contains any isolated edge. To establish this

result, we first present the following lemma:
Lemma 3. The inequality

22 4+ 22y — y? — 4z 1

> -
(wry-2 2t Ve

holds for all real numbers x and y satisfying x > 2 and y > 1.

Proof. Consider

1

a+y -2,
VT
where z > 2 and y > 1. Then, we have to prove that f(x,y) > 0. If
1<y <zand z > 2, then we have

of _ylz+y—2)32 N 3Vt +yiJr+y—2
By~ alrr ) N

flzy) =2+ 22y —y* — 4z +

+ 2z — 2y > 0.

If x <y <3z and = > 2, then

2 1 2 —
8i> Vs +ysvxr+y 2+2z72y
oy vV
- \/me\/j;y—Q oy —a)

_ (e +y—2) -4y —2)?
V2yle +y—2)+2(y — o)

2 (2072 (2052) — dly — 2
V2ylz+y—2)+2(y — )

Therefore, if 1 <y < 3z and z > 2, then % > 0, and hence

> 0.

>

_1)\3/2, /72
f(:l:,y)Zf(x,l):x2+(x 1)\[w+129§1>z22x20.
X
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It remains to prove f(z,y) > 0 for y > 3z > 6. Since each of the inequali-
ties 2 —4x > —4x?, x +y —2 >y and /22 + y2 > y holds for z > 2 and
y > 1, the following chain of inequalities holds for y > 3z > 6:

5/2
f(x,y)>2xy—y2—4x2+%
5/2
2 2, Y
> -y —3 —
Y er\/E
yg y5/2
zfyz—s(f) +4 o n
T

The following result shows that the ASO index decreases (increases,
respectively) whenever an edge is removed (added, respectively) to a graph

under a mild condition.

Theorem 2. Let G be a graph containing no isolated edge. If v;v; € E(G)

such that G — v;v; contains no isolated edge, then
ASO(G) > ASO(G — v;vj).

Proof. In this proof, we set

o '1'2—"-:[/2

and we denote by d; the degree of a vertex v, € V(G — v;v;) = V(G) in
G. We note that

ASO(G) — ASO(G — vvj) = Z (f(dh dy) — f(di — 1, dr))
vr€NG (vi)\{v;}
+ S (fdyd) — f(dy - 1,d,))

vs€Ng(vj)\{vi}

+ f(di, dy). (10)

Set ©; = ZvTeNc(vi)\{vj} 8;(vr) and ©; = szeNc(W)\{w} 8;(vs), where
0i(v.) = f(di,d,) — f(di — 1,d,) and 0;(vs) = f(dj,ds) — f(dj — 1,ds).
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Then, (10) yields
ASO(G) — ASO(G — vjv;) = ©; + ©; + f(d;, d;) (11)

We note that max{d;,d;} > 2. Without loss of generality, we assume that
d; > d;. We observe that ©; = 0 for d; = 1. Hence, whenever we consider
0;(vs), it will be assumed that d; > 2.

By using the mean value theorem, we observe that, for any vertex
vr € Ng(vi) \ {v;}, there exists & such that 1 < d; — 1 < & < d; and

9'(1) ) _ EE + 257'd7' — d% — 457
S 2 +d - 2822+ a2

Similarly, if d; > 2, then for any vertex v, € Ng(vj) \ {v;}, there exists &,
such that 1 <d; — 1 < & <d; and

(12)

T e+ ds - 232 r B

By Lemma 3, from (12) and (13), it follows that

! > — L and 6;(vs) > ! !
2&, 2/d; — 1 I

provided that d; > 2. Therefore,

Hi (’Ur) >

di—1 dj — 1
- and @jz—JT,

®i>_

where the last inequality holds not only for d; > 2 but also for d; = 1.

Consequently, we have

Vi =1+ /d; —1 di + dz
®i+@j+f(di,dj)>— D) + di+dj*2

>—¢ J;\/J +\/d;dj, (14)

where the last inequality in (14) holds because (d; — d;)* + 2(d; +d;) > 0,
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which gives 2[d? + d3] > (d; + d;)(d; + d; — 2). Also, we have

\/di—lzx/dj—l S\/(di—l);r(dj—l) <\/di42rdj. (15)

Hence, the desired inequality follows from (11), (14) and (15). |

4 Vertex/edge connectivity

In the present section, we show that (K U K, _x_1) V Kj is the unique
graph maximizing the ASO index among all n-order connected graphs
with vertex connectivity (or edge connectivity) k, where n > 4. First, we

establish a result concerning the vertex connectivity.

Theorem 3. Let G be a connected graph of order n > 4 with vertex

connectivity k. Then

ASO(G) < k WW+<’“) n+

n+k—3 2 n—2
+Ek(n—k-1) - -+ i
" " 2(2n — 5)
n—k—1 1
-1+ — 1
+< 5 ) n +n—3 (16)

with equality in (16) if and only if G = (K1 UK,—k-1)V Ky for k <n-—2,
whereas G =2 K, fork=n—1.

Proof. For k =n—1, we have G = K,, and hence the equality in (16) holds.
In what follows, we assume that k <n —2. If G = (K; UK,,_—1) V K},
then one can easily see that the equality holds in (16). Otherwise, G 2
(K1 UK, _k—1)V Ki. Since G has vertex connectivity k, there exists
a set S C V(G) consisting of k vertices such that G — S has at least
two components. If G — A consists of at least three components, then
inserting an edge connecting the vertices lying in two distinct components
of G — A enlarges the value of ASO(G) (by Theorem 2) but the vertex
connectivity of G remains the same. Thereby, it is sufficient to prove the

result when the graph G — A has only two components; we name them as
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G1 and G5 such that |V (G1)| < |[V(G2)|. Suppose that |V (G1)| = t. Then
[V(G2)| =n—k—tand t < 25%. By Theorem 2, we obtain

ASO(G) < ASO((Ky U Kp—i—t) V Kp).

Since G 2 (K1 UK,,—x—1)V Kj, we have 2 <t < ”gk, which yields n > 5
and k <n —4. Thus, wehave 2 < k+t—1<n—-t—1<n—3. Hence,

by Lemma 2, we obtain

1
hk+t—1k+t—1)<hn—2,n—2)=n—14 ——,

n—3
1
h(n—t—l,n—t—l)<h(n—2,n—2):n—1+73,
n—
4
A(n—1k+t=1) <h(n—1,2)=n—1+—,
n—
4
h(n—l,n—t—l)Sh(n—1,2):n—1—|—n_1.

Now,
ASO((K; U Ky _p—y) V Kp)
- <’; h(n—1,n—1)+ <”§t> Vh(n—t—1,n—t—1)

+(t) Vhk+t =1 k+t—1)+ktV/h(n—1k+t—1)

2
+k(n—k—t)\/h(n—1,n—t—1)

< k n 1 n n—k—t 14 1
) VT 2 2 " n—3
t 1 4
+(2)\/n1+n_3+kt\/nl+n_l
+Ekn—k—t)4/n—1+ 1
n—1
(D)4 (" ,/n—1+i+ Yt 1
—\\2 2 n—3 2 n—2
4
k) /n—1+——. 1
+k(n—k)y/n +— (17)
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Let us consider a function
f@)=z(z-1)+(n—-k—z)(n—-k—2z—-1), 2<z<

Then we obtain

n—=k

f/($)=2<2x—(n—k)>§0 as2<x <

Thus f(z) is a decreasing function on 2 < z < "%k, and hence

<;>+<n_§_t> :%f(t)ééf@):

= <n_§_1)(nk3).

1+ 4 < 1+ 5
n — _— n— — -
n—17" 2 2(2n-5)’

N =

Since

from (17) and (18), we obtain

ASO((Kt @] Kn—k:—t) Vv Kk)

(E) e o (8 e
2 n n—3 \2) V"2

4 1
- 1t —— —(n—k— —1+
+k(n—Fk)4/n —|—n 1 (n—k—3)4/n p—

- n—k—1 \/T+ k N 1
2 " n—3 \2) V"2

n+k—3

((n—k—?)(n—k—3)+2)

(18)

(19)
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For the last inequality in (19), it remains to prove that

1 121k
—(n—k—S)\/n—1+ <k\/(" il
n—3

ka/n—1+

n—1 n+k—3

which is equivalent to

k(\/h(kz,n—l)— \/h(Q,n—l)) Y (n—k—3)Vh(n—2,n—2) > 0.
(20)

If k=1or k=2, then by Lemma 2, \/h(k,n —1) — /h(2,n — 1) > 0,
and hence (20) holds. In what follows, we assume that k& > 3. Then, by
Lemma 2, we have \/h(k,n — 1) — /h(2,n — 1) < 0. Hence, in order to
prove (20), it is sufficient to show that

(n—4) (\/h(k,n—l)—\/h(2,n—1))+(n—k‘—3)\/h(n—2,n—2) >0

for 3 < k < n —4. We define a function ¢ on the set of real numbers

greater than or equal to 3 as

o) =(n—4) (\/h(m,n—l)—\/h(Q,n—l)) +(n—2—3)vVh(n—2,n-2),

where n > 7 is a fixed integer satisfying 3 < x < n — 4. Here, we have

e ()
dx? ( I, 1)) A(n+z — 3)5/2 ((n71)2+x2)3/2,

where
U(z) = [(n — 1)2(n(7n —30) 4+ 39) — ac4] +4z(n—3)[(n— 1)2 —mZ} +6(n— 1)2:52.

Since (n — 1)%(n(7n — 30) + 39) > n* > z* and (n — 1)? > 22, we have
U(z) > 0 and hence

d2

(Vi —1) >0
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Consequently, we obtain
¢ (x) < (n—4) i( h(mn—l)) —Vh(n—2,n-2)
— dx )
_ —4)(2n* —20n+39) /
B (2n —7)3/2/2n% —10n + 17
(n — 4)(2n2 — 20n + 39) [
2(2n — 8)3/2,/2n(n — 5) + 17

_ (2n* —20n +39) \/2(n — 3 8n—2\/n—4\/2nn—5)—|—17

8y/(n—4)(n —3)y/2n(n — 5) + 17

(2n% — 20n + 39) 2v/n — 4 — 8(n — 2)v/n — 4y/2n(n — 5) + 17
<
8y/(n —4)(n — 3)/2n(n — 5) + 17

<0,

where the last inequality holds because 2n(n — 5) + 17 > (n — 2)? and
2n? — 20n + 39 < 4(n — 2)? for n > 7. Therefore, by keeping in mind

Lemma 2, we have

o(z) = ¢(n —4)
4 (\/h(n—4,n—1)— \/h(2,n—1)) +/hln—2,n—2)

>(n—3)vVh(n—4,n—-1)—(n—4)v/h(2,n—-1)>0. (21)

The last inequality in (21) holds because, for n > 7,

n—3 2> h(2,n—1)
n—4 h(in —4,n—1)’

which is equivalent to

—3n(n —9) —n(116n — 319) — 407 < 0.

Therefore, ¢(k) > 0, which implies (20). This completes the proof of the

theorem. [ |
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We now establish a result concerning the edge connectivity.

Theorem 4. Let G be a connected graph of order n > 4 with edge con-
nectivity k'. Then

—12+ k2 (K 1
A <k @;4444i
50(G) = n+k —3 +(2> i

/ T _1 5
+kK (n—k 1)\/71 2+2(2n—5)

+(n_k/_1> no14 (22)

2 n—3

with equality in (22) if and only if G =2 (K1UK,_x—1)V Ky fork’ <n-—2,
whereas G 2 K,, for k' =n—1.

Proof. For k' = n — 1, we have G = K, and hence, the equality in (22)
holds. In what follows, we assume that 1 < k' < n — 2. Thus, we have
1<k <k <n-—2. By the proof of Lemma 1, the function

(n—1)2 + a2

J@) = n+x—3

is a strictly increasing function on > —n + 3 + \/2(n?2 —4n +5) and a
strictly decreasing function on 1 <z < —n + 3 4 /2(n? — 4n +5). Thus
we have

%Zf(_n_i_:s-y\/%ﬂ——éln—lﬁ))

n-—+x—

~ [4(n?—4n+5) —2(n —3)\/2(n* —4n +5)
B 2(n? — 4n + 5)

= /22 —an+5) —2(n—3)
>\/2\/§(n—2)—2n+6>0.9\/ﬁ. (23)
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For 1 <z <n — 2, we obtain

x(x(2n+x—6)—(n—1)2> >—(n—1)>%z>-18yn(n—1)(n—2)%?
> —1.8vn+\/(n—1)2 + 22 (n+z — 3)%/?,
that is,

x(x(2n+1:—6)—(n—1)2>

2/ (n—1)2+22(n+x—3)3/?2 > =0.9v/n. (24)

Let us consider a function

T / 1 1 5
g($)<2> n+2+x(nz1)\/ §+m
(n—1)2+ a2 n—xz—1\ |/ 1
RS e
T n+z—3 + 2 " +n—3’

for 1 <o <n—2 If1 <z <25, then using (23) and (24), we have

(n—1)2+ a2 x(z(2n+x76)—(n,1)2>
ntr=3 212+ (nta-3)32

g (x) =

+(m—1) n+ ! +(n—2zx-1) nflJrL
2 n—2 2 " 2(2n - 5)

(e S

> ((a?—;>+(n—2x—1)—(n—m—1)+;> ,/n—1+ﬁ=o.

If 2 > 21 then using (23) and (24), we have

1
n—2

9/($)>((I—;)+(n—2x—l)—(n—x—1)+;) n -+ —0.
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Thus, g(x) is a strictly increasing function. Since 1 < k <k’ <n — 2, by

Theorem 3, we obtain

2 k 1
A < [ [
SO(G)_k\/n+n_2+(2> n+n_2

+k(n—k—1)\/n—;+2(2§_5)

n n—k—1 n71+i
2 n—3

n—Fk —1 L+ 1
2 n—3
Moreover, both equalities in the above chain of inequalities hold if and
only if G is isomorphic to (Ky U K,_g—1) V K. |

5 Concluding remarks

The augmented Sombor (ASO) index is a recently introduced topological
index that has already attracted attention, particularly for its chemical ap-
plications. In this work, we have investigated several mathematical prop-
erties of the ASO index. In particular, we establish the best possible upper
bound for the ASO index of unicyclic graphs in terms of their order and
characterized the corresponding extremal graphs. Also, we have shown
that the ASO index decreases (increases, respectively) whenever an edge
is removed (added, respectively) to a graph under a mild condition. Using
this result, we have characterized the graphs maximizing the ASO index

among all connected graphs of order n with prescribed vertex connectivity
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(or edge connectivity) for n > 4. Despite these contributions, the extremal

behavior of the ASO index remains largely unexplored for many classical

families of graphs, thereby presenting a variety of promising directions for

further investigation.
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