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Abstract
The hyperbolic Sombor index (HSO) is a recently introduced

vertex-degree–based topological index that originates from the geo-
metric properties of a hyperbola. In this work, we explore several
mathematical properties of the HSO index, as well as revisit and
refine some previously reported results. We first provide a coun-
terexample to the claim that HSO(G) always increases with the
addition of an edge and establish a sufficient condition under which
this monotonicity holds. We then present refined versions of some
existing results and proofs. Furthermore, we establish sharp up-
per and lower bounds for the HSO index across various classes of
graphs, including trees, unicyclic graphs, and bicyclic graphs, and
characterize the corresponding extremal graphs that attain these
bounds. Finally, we identify the first eight minimal trees, as well as
seven minimal unicyclic and bicyclic graphs with respect to HSO.

1 Introduction

Let G be a simple connected graph of order n and size m with vertex set

V (G) = {v1, v2, . . . , vn} and edge set E(G). The degree of a vertex vi
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is denoted by dG(vi). By ∆, we mean the maximum degree in G. The

path, cycle and star graphs of order n are represented by Pn, Cn, and Sn

respectively. By T (n), U(n), and B(n), we mean the collection of all trees,

unicyclic graphs, and bicyclic graphs of order n, respectively. We consider

ni to represent the number of vertices having degree i. A pendent edge

is an edge incident with a vertex of degree one, whereas a path v1v2 . . . vt

is said to be a pendent path of length t − 1 attached to v1 if dG(v1) ≥ 3,

dG(vi) = 2 for i = 2, . . . , t − 1, and dG(vt) = 1. Throughout this work,

we consider ℓ and ℓ1 to represent the number of pendent paths and the

number of pendent paths of length 1, respectively.

The interplay between graph theory and chemistry, known as chemical

graph theory, provides a powerful framework for modeling and under-

standing the properties of molecules [12]. In this paradigm, a molecular

structure is represented by a graph where vertices correspond to atoms

and edges to chemical bonds. A central tool in this field is the topologi-

cal index, a numerical descriptor derived from the graph that encodes its

structural information. These indices have proven invaluable in establish-

ing quantitative structure-property relationships (QSPR) and quantitative

structure-activity relationships (QSAR), allowing researchers to predict

physicochemical properties and biological activities of chemical compounds

without costly and time-consuming laboratory experiments.

Among the plethora of topological indices proposed over the years,

degree-based indices are some of the most studied due to their intuitive

definition and strong correlative power [7]. These indices are formulated

as a sum over the edges of a graph of a function f(dG(vi), dG(vj)), where

dG(vi) and dG(vj) are the degrees of the adjacent vertices vi and vj . Sem-

inal examples include the first Zagreb index [10], the Atom-Bond Connec-

tivity (ABC) index [4], and the Geometric-Arithmetic (GA) index [13].

A recent and fruitful trend in the field involves the geometric interpre-

tation of topological indices. This approach was pioneered by Gutman [6]

with the introduction of the Sombor index (SO), defined as SO(G) =∑
vivj∈E(G)

√
dG(vi)2 + dG(vj)2. This index was conceived by viewing the

degree pair (dG(vi), dG(vj)) as coordinates of a point in the Cartesian

plane, with the index value being the Euclidean distance from the origin.
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The success and mathematical richness of the Sombor index [3,5,9,11,14]

inspired a family of related geometric indices. Following this paradigm, the

elliptic Sombor index [8] and the hyperbolic Sombor index (HSO) [1, 2]

were subsequently developed.

The Hyperbolic Sombor index, which is the focus of this work, draws its

inspiration from the eccentricity of a hyperbola. For a hyperbola defined

by x2

a2 − y2

b2 = 1, the eccentricity is given by e =
√
a2+b2

a . By associating

the degrees dG(vi) and dG(vj) of adjacent vertices with the semi-axes a

and b (with a ≤ b), this formula leads to the definition of the HSO index

for a graph G:

HSO(G) =
∑

vivj∈E(G)

√
dG(vi)2 + dG(vj)2

min{dG(vi), dG(vj)}
.

The aforesaid formulation can also be represented as

HSO(G) =
∑

vivj∈E(G)
dG(vi)≥dG(vj)

√
1 +

(
dG(vi)

dG(vj)

)2

. (1)

Initial studies of the HSO index have demonstrated its significant po-

tential. Barman and Das [1] established fundamental mathematical prop-

erties and provided bounds for the index, while a subsequent work [2]

showcased its strong predictive power for properties such as π-electron en-

ergy and polarizability in benzenoid hydrocarbons through QSPR analysis.

However, as the mathematical theory of this new index continues to

develop, some initial claims require re-examination. For instance, it was

stated in [1] that HSO(G) > HSO(G − e) for any edge e, implying uni-

versal monotonicity with respect to edge addition. We demonstrate that

this property does not hold in general by providing a counterexample.

Furthermore, the characterization of the equality case for the lower bound

HSO(G) ≥
√
2m was incompletely stated to be achieved only by complete

graphs, whereas it is, in fact, achieved by all regular graphs.

This manuscript aims to provide a rigorous and systematic mathemat-

ical analysis of the Hyperbolic Sombor index, addressing existing inac-
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curacies and establishing a more complete theoretical foundation. Our

main contributions are as follows. We refute the general monotonicity

claim regarding edge addition and establish a sufficient condition un-

der which HSO(G) > HSO(G − e) holds. We prove the lower bound

HSO(G) ≥
√
2m, precisely characterizing the extremal graphs as all reg-

ular graphs. We also present refined proofs of existing results. Moreover,

we derive sharp upper and lower bounds for HSO in unicyclic and bicyclic

graphs, characterizing the extremal graphs when the order n is fixed. Fi-

nally, we extend this analysis by identifying the first eight trees and seven

unicyclic and bicyclic graphs with minimal HSO values, thereby providing

a finer ordering of these graph families with respect to this index.

2 Main results

Consider a function f : [1, ∞) → R with

f(x) =
√
1 + x2.

Clearly

f ′(x) =
x√

x2 + 1
> 0,

which implies that f is a strictly increasing function and f(x) ≥
√
2 with

equality iff x = 1. Thus, we can state the following remark, which will

be used frequently throughout this work. Let G and G′ be two graphs.

Consider vivj ∈ E(G) and v′iv
′
j ∈ E(G′) with 1 ≤ dG(vi)

dG(vj)
≤ dG′ (v′

i)
dG′ (v′

j)
, then

we have

f

(
dG(vi)

dG(vj)

)
≤ f

(
dG′(v′i)

dG′(v′j)

)
, (2)

with equality iff dG(vi)
dG(vj)

=
dG′ (v′

i)
dG′ (v′

j)
. Employing the function f , we can rep-

resent the formulation (1) of HSO for graph G as follows.

HSO(G) =
∑

vivj∈E(G)
dG(vi)≥dG(vj)

f

(
dG(vi)

dG(vj)

)
. (3)
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Also for any edge vivj ∈ E(G), we have f
(

dG(vi)
dG(vj)

)
=

√
2 iff dG(vi) =

dG(vj).

In [1], it was claimed that the HSO value always increases when an

edge is added to a graph, i.e.,

HSO(G) > HSO(G− e), (4)

where e = vivj is an edge of G. However, we provide a counterexample to

this claim. As shown in Figure 1, we have

HSO(G)−HSO(G− e) < −0.14 < 0,

which implies that

HSO(G) < HSO(G− e).

Therefore, the general claim in [1] does not hold. In the following, we es-

G G− e

evi vj vi vj

Figure 1. The graphs G and G− e.

tablish a sufficient condition under which the HSO value indeed increases

after adding an edge.

Theorem 1. Let vivj ∈ E(G) with dG(vi) ≥ dG(vj). Define

d∗i = max{dG(vp) : vp ∈ NG(vi)\{vj}}, d∗j = max{dG(vq) : vq ∈ NG(vj)\{vi}}.

If dG(vj) > max{d∗i , d∗j}, then

HSO(G) > HSO(G− vivj).

Proof. Let dG(vj) > max{d∗i , d∗j}. Then, it is clear that dG(vi) > dG(vp)

for all vp ∈ NG(vi) \ {vj} and dG(vj) > dG(vq) for all vq ∈ NG(vj) \ {vi}.
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Now, we have

HSO(G)−HSO(G− vivj)

= f

(
dG(vi)

dG(vj)

)
+

∑
vp∈NG(vi)\{vj}

[
f

(
dG(vi)

dG(vp)

)
− f

(
dG(vi)− 1

dG(vp)

)]

+
∑

vq∈NG(vj)\{vi}

[
f

(
dG(vj)

dG(vq)

)
− f

(
dG(vj)− 1

dG(vq)

)]
(5)

It is cleat that
dG(vi)

dG(vp)
>
dG(vi)− 1

dG(vp)
for all vp ∈ NG(vi) \ {vj} and

dG(vj)

dG(vq)
>
dG(vj)− 1

dG(vq)
for all vq ∈ NG(vj) \ {vi}, which implies by (2) that

f

(
dG(vi)

dG(vp)

)
> f

(
dG(vi)− 1

dG(vp)

)
∀vp ∈ NG(vi) \ {vj},

and

f

(
dG(vj)

dG(vq)

)
> f

(
dG(vj)− 1

dG(vq)

)
∀vq ∈ NG(vj) \ {vi}.

Employing these facts in (5), we obtainHSO(G) > HSO(G−vivj). Hence

the proof is completed.

In Theorem 1 of [1], it is stated that HSO(G) ≥
√
2m, where equality

appears iff G is complete. However, in Figure 2, we present three non-

complete graphs G1, G2, and G3 that also satisfyHSO(G) =
√
2m. Based

on this observation, we now propose a modification of Theorem 1 [1].

G1 G2 G3

Figure 2. The graphs G1, G2 and G3.
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Theorem 2. Let G be a simple connected graph with m edges. Then

HSO(G) ≥
√
2m,

where equality appear if and only if G is regular.

Proof. We know that f(x) is strictly increasing for x ∈ [1,∞), and that

f(x) ≥
√
2, with equality if and only if x = 1. Therefore, from (3) we

immediately obtain

HSO(G) =
∑

vivj∈E(G)
dG(vi)≥dG(vj)

f

(
dG(vi)

dG(vj)

)
≥

√
2m, (6)

where equality holds if and only if dG(vi) = dG(vj) for all vivj ∈ E(G).

Since G is connected, the equality holds if and only if G is regular.

To prove the minimal case of Theorem 5 in [1], the relation (4) was

assumed to be obvious; however, it has been shown here that this assump-

tion does not hold in general. Therefore, we present a different proof as

follows.

Theorem 3. For a tree T of order n (≥ 3), we have

HSO(T ) ≥
√
2(n− 3) + 2

√
5,

where the equality occurs iff T ∼= Pn.

Proof. Let T ∼= Pn. Then HSO(T ) =
√
2(n − 3) + 2

√
5, and therefore

equality is attained. Now consider the case T ≇ Pn. In this case, T

contains at least three pendent edges. For any pendent edge vivj ∈ E(T )

with dT (vi) ≥ dT (vj) = 1, we have f
(

dT (vi)
dT (vj)

)
≥ f(2). Moreover, for any

edge vivj ∈ E(T ) with dT (vi) ≥ dT (vj), it holds that f
(

dT (vi)
dT (vj)

)
≥ f(1).

Therefore,

HSO(T ) ≥ 3f(2) + (n− 4)f(1) = 3
√
5 + (n− 4)

√
2

>
√
2(n− 3) + 2

√
5 = HSO(Pn).
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To prove the minimal case of Theorem 4 in [1], the following reasoning

was provided: the only graph in which all vertices have degree 2 is Cn.

Here, we present a logical proof of this result.

Theorem 4. For a simple connected graph G of order n (≥ 3), we have

HSO(G) ≥
√
2n,

where the equality occurs iff G ∼= Cn.

Proof. Let G be a tree. Then G has at least two pendent edges and

|E(G)| = n− 1. Thus, we obtain

HSO(G) ≥ 2f(2) + (n− 3)f(1) = 2
√
5 + (n− 3)

√
2

> 2
√
5− 3

√
2 +

√
2n > HSO(Cn).

Next, suppose that G is not a tree. Then |E(G)| = m ≥ n. Therefore,

by Theorem 2, we have

HSO(G) ≥
√
2m ≥

√
2n,

where equality holds if and only if G is regular and m = n, i.e., if and

only if G ∼= Cn. Hence, the lower bound and the extremal graph are

established.

Now, we are going to characterize the maximal unicyclic graph for

HSO, when n is given. Let us construct a unicyclic graph S′
n by connecting

two pendent vertices of Sn by an edge. It is clear that

HSO(S′
n) = (n− 3)f(n− 1) + 2f

(
n− 1

2

)
+ f(1)

= (n− 3)
√
(n− 1)2 + 1 +

√
(n− 1)2 + 4 +

√
2.

Theorem 5. Let G be a unicyclic graph of order n (≥ 3). Then

√
2n ≤ HSO(G) ≤ (n− 3)

√
(n− 1)2 + 1 +

√
(n− 1)2 + 4 +

√
2,
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. . .

n− 3

S′
n

Figure 3. The unicyclic graph S′
n.

where the left equality occurs iff G ∼= Cn and the right equality occurs iff

G ∼= S′
n.

Proof. The lower bound and the minimal graph follow directly from The-

orem 4. Next, we will establish the upper bound. Let G be a unicyclic

graph of order n (≥ 3). If ∆ = n − 1, then G ∼= S′
n. In this case,

HSO(G) = (n − 3)
√

(n− 1)2 + 1 +
√
(n− 1)2 + 4 +

√
2, and hence the

equality holds. Now, we consider ∆ ≤ n − 2. Let q be the number of

non-pendent edges in G. It is clear that q ≥ 3. Each non-pendent edge

vivj follows f

(
dG(vi)

dG(vj)

)
≤ f

(
n− 2

2

)
. Again, for any edge vivj ∈ E(G),

we have f

(
dG(vi)

dG(vj)

)
≤ f (n− 2). Employing these facts on (3), we derive

HSO(G) =
∑

vivj∈E(G)
dG(vi)≥dG(vj)

f

(
dG(vi)

dG(vj)

)
≤ (n− q)f(n− 2) + qf

(
n− 2

2

)

= nf(n− 2)− q

[
f(n− 2)− f

(
n− 2

2

)]

≤ nf(n− 2)− 3

[
f(n− 2)− f

(
n− 2

2

)]
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= (n− 3)
√

(n− 2)2 + 1 +
3
√
(n− 2)2 + 4

2
= f1(n)(say).

We aim to prove that f1(n) < HSO(S′
n). Note that

f1(n)−HSO(S′
n) = −

√
2 + 3

2

√
4 + (n− 2)2 −

√
4 + (n− 1)2

+(n− 3)
√

1 + (n− 2)2 − (n− 3)
√

1 + (n− 1)2.

One can easily check with Mathematica software that f1(n)−HSO(S′
n) <

0 for 3 ≤ n ≤ 6. Now, we take n ≥ 7. We consider A =
√

1 + 1
4 (n− 2)2 ,

B =
√

1 + 1
4 (n− 1)2 , C =

√
1 + (n− 2)2 , D =

√
1 + (n− 1)2 . Then

f1(n)−HSO(S′
n) = −

√
2 + 3A− 2B + (n− 3)(C −D).

We have B2 −A2 =
(n− 1)2 − (n− 2)2

4
=

2n− 3

4
> 0, which implies B >

A and hence 3A− 2B < A. Thus, we obtain

f1(n)−HSO(S′
n) < −

√
2 +A+ (n− 3)(C −D).

Now, we have D2 − C2 = (n − 1)2 − (n − 2)2 = 2n − 3 > 0, that yields

D > C and C −D = −2n− 3

C +D
. It follows that

(n− 3)(C −D) < − (n− 3)(2n− 3)

2D
.

As D =
√
1 + (n− 1)2 < n, this implies

(n− 3)(C −D) < − (n− 3)(2n− 3)

2n
.

Again note that A < n
2 + 1. Therefore, finally we derive

f1(n)−HSO(S′
n) < 1−

√
2+

n

2
− (n− 3)(2n− 3)

2n
=

11

2
−
√
2− 1

2

(
n+

9

n

)
.

Let us construct f(x) = x + 9
x for x ≥ 7. Then f ′(x) = 1 − 9

x2 > 0 for
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x ≥ 7. So, f(x) is increasing and f(x) ≥ f(7) = 58
7 . Hence, we obtain

f1(n)−HSO(S′
n) <

11

2
−
√
2− 29

7
< 0 .

. . .

n− 4

B′
n

Figure 4. The bicyclic graph B′
n.

Now we characterize the maximal bicyclic graph for HSO when the

graph order n is provided. Let us construct a bicyclic graph B′
n (see

Figure 4) by attaching n − 4 pendent vertices to a vertex of degree 3 of

K4 − e. It is clear that

HSO(B′
n) = (n− 4)f(n− 1) + 2f

(
n− 1

2

)
+ f

(
n− 1

3

)
+ 2f

(
3

2

)

= (n− 4)
√
(n− 1)2 + 1 +

√
(n− 1)2 + 4 +

√
(n− 1)2 + 9

3

+
√
13.

Lemma 1. For every positive integer n,

F (n) = −
√
13 + 2

√
4 + (n− 2)2 + 1

3

√
9 + (n− 2)2 −

√
4 + (n− 1)2

− 1
3

√
9 + (n− 1)2 + (n− 4)

√
1 + (n− 2)2 − (n− 4)

√
1 + (n− 1)2

is strictly negative, i.e. F (n) < 0.
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Proof. One can easily check by the Mathematica software that F (n) < 0

for 1 ≤ n ≤ 3. Next we take n ≥ 4. Let us construct a function for x ≥ 4

as

F (x) = −
√
13 + 2

√
4 + (x− 2)2 + 1

3

√
9 + (x− 2)2 −

√
4 + (x− 1)2

− 1
3

√
9 + (x− 1)2 + (x− 4)

√
1 + (x− 2)2 − (x− 4)

√
1 + (x− 1)2 .

Now we have

F ′(x) =
√

1 + (x− 2)2 −
√

1 + (x− 1)2 + (x− 4)(
x− 2√

1 + (x− 2)2

− x− 1√
1 + (x− 1)2

) +
2(x− 2)√
4 + (x− 2)2

+
x− 2

3
√

9 + (x− 2)2

− x− 1√
4 + (x− 1)2

− x− 1

3
√

9 + (x− 1)2

=
(
ϕ(x− 2)− ϕ(x− 1)

)
+ (x− 4)

(
g1(x− 2)− g1(x− 1)

)
+ g4(x− 2)

+ 1
3
(g9(x− 2)− g9(x− 1)) + g4(x− 2)− g4(x− 1), (7)

where for any real c ≥ 0,

gc(x) =
x√
c+ x2

, ϕ(x) =
√

1 + x2.

Note that

g′c(x) =
c(

c+ x2
)3/2 ≥ 0,

which implies that gc(x) is increasing in x. Consequently, from (7) we

obtain

F ′(x) ≤ ϕ(x− 2)− ϕ(x− 1) + g4(x− 2).
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By the Mean Value Theorem, we can write

ϕ(x− 1)− ϕ(x− 2) =
ξ√

1 + ξ2
= g1(ξ),

for some ξ ∈ (x− 2, x− 1). Thus ϕ(x− 2)− ϕ(x− 1) ≤ −g1(x− 2). Thus

F ′(x) ≤ g4(x− 2)− g1(x− 2)

= (x− 2)

(
1√

4 + (x− 2)2
− 1√

1 + (x− 2)2

)
< 0.

So, F (x) is strictly decreasing. It is evident that F (n) ≤ F (4) < −1.7 < 0

for n ≥ 4. Hence, the proof is completed.

Theorem 6. Let G be a bicyclic graph of order n (≥ 4). Then

HSO(G) ≤ (n−4)
√
(n− 1)2 + 1+

√
(n− 1)2 + 4+

√
(n− 1)2 + 9

3
+
√
13,

where the equality occurs iff G ∼= B′
n.

Proof. Let G be a bicyclic graph of order n (≥ 4). We take q as the number

of non-pendent edges in G. Then q ≥ 5. Now we consider the following

cases.

Case 1. q = 5. In this case, G is of the form as shown in Figure 5, where

the non-pendent vertices v1, v2, v3 and v4 are adjacent with k1, k2, k3, and

k4 number of pendent vertices, respectively. Without loss of generality, we

assume that k1 ≥ max{k2, k3, k4}. Now we consider the following two

cases.

Case 1.1. dG(v1) = n− 1. In this case, k2 = k3 = k4 = 0 and k1 = n− 4.

Consequently, G ∼= B′
n and

HSO(G) = (n−4)
√
(n− 1)2 + 1+

√
(n− 1)2 + 4+

√
(n− 1)2 + 9

3
+
√
13,

which implies that the equality holds.

Case 1.2. dG(v1) ≤ n − 2. For each pendent edge vivj ∈ E(G), we can
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v1

v2

v3

v4

. . .

. . .

...
...

G

k1

k2

k3

k4

Figure 5. The bicyclic graph G for q = 5.

write

f

(
dG(vi)

dG(vj)

)
≤ f (n− 2).

Also from Figure 5, it is evident that there is at least one non-pendent

edge vivj ∈ E(G) such that

f

(
dG(vi)

dG(vj)

)
≤ f

(
n− 2

3

)
.

Again, we know that for any non-pendent edge vivj ∈ E(G)

f

(
dG(vi)

dG(vj)

)
≤ f

(
n− 2

2

)
.

Employing these facts on (3), we derive

HSO(G) =
∑

vivj∈E(G)
dG(vi)≥dG(vj)

f

(
dG(vi)

dG(vj)

)



559

≤ (n− 4)f(n− 2) + 4f

(
n− 2

2

)
+ f

(
n− 2

3

)

= (n− 4)
√
(n− 2)2 + 1 + 2

√
(n− 2)2 + 4 +

√
(n− 2)2 + 9

3

= f2(n)(say).

We have

f2(n)−HSO(B′
n)

= −
√
13 + 2

√
4 + (n− 2)2 + 1

3

√
9 + (n− 2)2 −

√
4 + (n− 1)2

− 1
3

√
9 + (n− 1)2 + (n− 4)

√
1 + (n− 2)2 − (n− 4)

√
1 + (n− 1)2 .

Now, by Lemma 1, it is evident that f2(n) < HSO(B′
n). Therefore,

HSO(G) < HSO(B′
n). Thus, this case is done.

Case 2. q = 6. It is clear that n ≥ 5. We construct this case in two

subcases.

Case. 2.1 ∆ = n− 1. In this case, G is of the form as shown in Figure 6.

. . .

G

n− 5

Figure 6. The bicyclic graph G for q = 6 and ∆ = n− 1.

Therefore, we have

HSO(G) = (n− 5)f(n− 1) + 4f

(
n− 1

2

)
+ 2f (1)
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= (n− 5)
√
(n− 1)2 + 1 + 2

√
(n− 1)2 + 4 + 2

√
2.

One can easily find that

HSO(G)−HSO(B′
n) = 2

√
2−

√
13 + f3(n),

where f3(n) = −
√
n2 − 2n+ 2 +

√
n2 − 2n+ 5− 1

3

√
n2 − 2n+ 10. Let us

construct a function for x > 0 as

ψ(x) = −
√
x2 + 1 +

√
x2 + 4− 1

3

√
x2 + 9.

Then, we have

ψ′(x) = x

(
− 1√

x2 + 1
+

1√
x2 + 4

− 1

3
√
x2 + 9

)
< 0,

which implies that ψ(x) is strictly decreasing. Note that f3(n) = ψ(n −
1) ≤ ψ(4) < −1.3 < 0, which implies that f3(n) < 0 for n ≥ 5. Conse-

quently, we have

HSO(G)−HSO(B′
n) < 2

√
2−

√
13 < 0.

Hence, this case is completed.

Case. 2.2 ∆ ≤ n − 2. For any edge vivj ∈ E(G), we can write

f

(
dG(vi)

dG(vj)

)
≤ f (n− 2). For any non-pendent edge vivj ∈ E(G), we have

f

(
dG(vi)

dG(vj)

)
≤ f

(
n− 2

2

)
. Employing these facts on (3), we derive

HSO(G) =
∑

vivj∈E(G)
dG(vi)≥dG(vj)

f

(
dG(vi)

dG(vj)

)
≤ (n− 5)f(n− 2) + 6f

(
n− 2

2

)

= (n− 5)
√
(n− 2)2 + 1 + 3

√
(n− 2)2 + 4 = f4(n)(say).
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Now we have

f4(n)−HSO(B′
n)

=−
√
13 + 6

√
1 + 1

4 (n− 2)2 −
√
1 + 1

9 (n− 1)2 − 2
√
1 + 1

4 (n− 1)2

+ (n− 5)
√
1 + (n− 2)2 − (n− 4)

√
1 + (n− 1)2.

Claim 1. For every integer n ≥ 5 the function

F (n) =−
√
13 + 6

√
1 + 1

4 (n− 2)2 −
√
1 + 1

9 (n− 1)2 − 2
√

1 + 1
4 (n− 1)2

+ (n− 5)
√

1 + (n− 2)2 − (n− 4)
√

1 + (n− 1)2

satisfies F (n) < 0.

Proof. One can easily check with Mathematica software that F (n) < 0 for

5 ≤ n ≤ 7. Next, we consider n ≥ 8. For x > 0, we use the following

standard inequalities.

√
1 + x2 < x+

1

2x
,
√
1 + x2 > x,

√
1 +

x2

4
<
x

2
+

1

x
.

Thus, we have

(n− 5)
√
1 + (n− 2)2 < (n− 5)

(
n− 2 +

1

2(n− 2)

)
,

(n− 4)
√
1 + (n− 1)2 > (n− 4)(n− 1),

6

√
1 +

(n− 2)2

4
< 6
(n− 2

2
+

1

n− 2

)
,

2

√
1 +

(n− 1)2

4
> (n− 1),√

1 +
(n− 1)2

9
>
n− 1

3
.



(8)

Thus, employing (8) on the expression of F (n), we derive

F (n) < 6
(n− 2

2
+

1

n− 2

)
− n− 1

3
− (n− 1) + (n− 5)

(
n− 2
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+
1

2(n− 2)

)
− (n− 4)(n− 1) =

5 + 15n− 2n2

6(n− 2)
< 0 for n ≥ 8.

This completes the proof of claim 1.

Consequently, by claim 1, we can write f4(n) < HSO(B′
n), which im-

mediately implies HSO(G) < HSO(B′
n). Hence, this case is done.

Case 3. q ≥ 7. Suppose that ∆(G) = n − 1, and let v ∈ V (G) be a

vertex of degree n − 1. Then |V (G) \ {v}| = n − 1. Let E′(G) be the

collection of edges incident on v. So, we have |E′(G)| = n− 1. Since G is

bicyclic, it has |E(G)| = n+1 edges, and hence |E(G) \E′(G)| = 2. Let k

denote the number of vertices incident to the two edges in E(G) \ E′(G).

Clearly, k ≤ 4, since each edge has two endpoints. Each of these k vertices

is adjacent to v and thus contributes to non-pendent edges. Therefore, the

total number of non-pendent edges is q = k+2. Since q ≥ 7, we must have

k ≥ 5, which contradicts the fact that k ≤ 4. Hence, no vertex can have

degree n−1, and it follows that ∆(G) ≤ n−2. Consequently, we can write

HSO(G) =
∑

vivj∈E(G)
dG(vi)≥dG(vj)

f

(
dG(vi)

dG(vj)

)

≤ (n− q + 1)f(n− 2) + qf

(
n− 2

2

)

= (n+ 1)f(n− 2)− q

[
f(n− 2)− f

(
n− 2

2

)]

≤ (n+ 1)f(n− 2)− 7

[
f(n− 2)− f

(
n− 2

2

)]

= (n− 6)f(n− 2) + 7f

(
n− 2

2

)

< (n− 5)f(n− 2) + 6f

(
n− 2

2

)
= f4(n).

In view of claim 1, we can write HSO(G) < HSO(B′
n). Hence, the proof

is completed.
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Lemma 2. Let ℓ be the number of pendent paths of G. Then

HSO(G) ≥
√
2 |E(G)| + ℓ

(
f(2) + f

(
3
2

)
− 2

√
2
)
.

Proof. Since f(x) ≥ f(1) =
√
2 for all x ≥ 1, summing

√
2 over the

|E(G)| edges gives the baseline
√
2 |E(G)|. Now, fix a pendent path P =

v1v2 . . . vt with t ≥ 3. The terminal edge vt−1vt contributes f(2), while

the edge v1v2 (with d(v2) = 2) contributes at least f(3/2). Hence, these

two distinguished edges together contribute at least f(2)+f(3/2), whereas

their baseline contribution is 2
√
2. Thus, each pendent path of length at

least 2 yields a surplus of at least f(2)+f(3/2)−2
√
2 above the baseline. If

G contains a pendent path P = v1v2 of length 1, then this edge contributes

at least f(3), so its surplus over baseline is at least f(3) −
√
2, which is

strictly greater than f(2) + f(3/2) − 2
√
2. Therefore every pendent path

contributes a surplus of at least f(2)+ f(3/2)− 2
√
2. Adding the baseline√

2 |E(G)| and the ℓ surpluses completes the proof.

Now we are going to characterize first eight minimum trees for HSO

when the tree order n is provided. For that, we construct some families

of trees as follows. Let T (n) be the family of trees of order n such that

∆ = 3. Now, we construct two families T 1(n) and T 2(n) as T 1(n) = {T ∈
T (n) : n3 = 1} and T 2(n) = {T ∈ T (n) : n3 = 2}. Then we construct the

following families. For n ≥ 7, T1(n) = {T ∈ T 1(n) : ℓ1 = 0} (see Figure

7(i)); for n ≥ 6, T2(n) = {T ∈ T 1(n) : ℓ1 = 1} (see Figure 7(ii)); For

n ≥ 5, T3(n) = {T ∈ T 1(n) : ℓ1 = 2} (see Figure 7(iii)).

(i) (ii) (iii)

Figure 7. The example of trees belonging to (i) T1(n), (ii) T2(n) and
(iii) T3(n).

Let T 2∗(n) ⊆ T 2(n) be the collection of trees such that the two vertices

of degree 3 are adjacent. Then we construct the following families. For
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n ≥ 10, T4(n) = {T ∈ T 2∗(n) : ℓ1 = 0} (see Figure 8(i)); for n ≥ 9,

T5(n) = {T ∈ T 2∗(n) : ℓ1 = 1} (see Figure 8(ii)); For n ≥ 11, T6(n) =

{T ∈ T 2(n)\T 2∗(n) : ℓ1 = 0} (see Figure 9); For n ≥ 8, T7(n) = {T ∈
T 2∗(n) : ℓ1 = 2} (see Figure 10).

(i) (ii)

Figure 8. The example of trees belonging to (i) T4(n) and (ii) T5(n).

Figure 9. The example of tree belongs to T6(n).

Figure 10. The example of trees belonging to T7(n).

Theorem 7. Among all n-vertex trees, the following results hold for the

HSO index:

1. For n ≥ 7, the HSO index attains its second minimum value

HSO(T ) =
3
√
13

2
+ 3

√
5 + (n− 7)

√
2

if and only if T ∈ T1(n).
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2. For n ≥ 7, the HSO index attains its third minimum value

HSO(T ) =
√
13 + 2

√
5 +

√
10 + (n− 6)

√
2

if and only if T ∈ T2(n).

3. For n ≥ 7, the HSO index attains its fourth minimum value

HSO(T ) =

√
13

2
+
√
5 + 2

√
10 + (n− 5)

√
2

if and only if T ∈ T3(n).

4. For n ≥ 10, the HSO index attains its fifth minimum value

HSO(T ) = 2
√
13 + 4

√
5 + (n− 9)

√
2

if and only if T ∈ T4(n).

5. For n ≥ 10, the HSO index attains its sixth minimum value

HSO(T ) =
3
√
13

2
+ 3

√
5 +

√
10 + (n− 8)

√
2

if and only if T ∈ T5(n).

6. For n ≥ 11, the HSO index attains its seventh minimum value

HSO(T ) = 3
√
13 + 4

√
5 + (n− 11)

√
2

if and only if T ∈ T6(n).

7. For n ≥ 11, the HSO index attains its eighth minimum value

HSO(T ) =
√
13 + 2

√
5 + 2

√
10 + (n− 7)

√
2

if and only if T ∈ T7(n).

Proof. Let T be a tree of order n. We know from Theorem 3 that Pn is
the minimal tree for HSO. So in this proof, we consider T ≇ Pn. One
can easily verify the results by Sage software for 7 ≤ n ≤ 10. Next, we
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consider n ≥ 11. If T ∈ Ti(n) (1 ≤ i ≤ 7), then we denote the value of
HSO(T ) as Ai. Thus, we have

Ai =



3f
(
3
2

)
+ 3f(2) + (n − 7)

√
2 = 3

√
13

2
+ 3

√
5 + (n − 7)

√
2 for i = 1,

2f
(
3
2

)
+ 2f(2) + f(3) + (n − 6)

√
2 =

√
13 + 2

√
5 +

√
10 + (n − 6)

√
2 for i = 2,

f
(
3
2

)
+ f(2) + 2f(3) + (n − 5)

√
2 =

√
13
2

+
√

5 + 2
√

10 + (n − 5)
√

2 for i = 3,

4f
(
3
2

)
+ 4f(2) + (n − 9)

√
2 = 2

√
13 + 4

√
5 + (n − 9)

√
2 for i = 4.

3f
(
3
2

)
+ 3f(2) + f(3) + (n − 8)

√
2 = 3

√
13

2
+ 3

√
5 +

√
10 + (n − 8)

√
2 for i = 5,

6f
(
3
2

)
+ 4f(2) + (n − 11)

√
2 = 3

√
13 + 4

√
5 + (n − 11)

√
2 for i = 6,

2f
(
3
2

)
+ 2f(2) + 2f(3) + (n − 7)

√
2 =

√
13 + 2

√
5 + 2

√
10 + (n − 7)

√
2 for i = 7.

One can easily check that A7 > A6 > A5 > A4 > A3 > A2 > A1. Let

A(n) =

7⋃
i=1

Ti(n). Now, it is sufficient to prove that HSO(T ) > A7 for all

T ∈ T (n)\A(n). Let T ∈ T (n)\A(n). Since T ≇ Pn, we must have ℓ ≥ 3.

If ℓ = 3, then since n ≥ 11, we must have T ∈ T1(n)∪T2(n)∪T3(n) ⊆ A(n),

which is a contradiction. So we consider ℓ ≥ 4. Now, we construct the

proof in the following two cases.

Case 1. ℓ = 4. In this case 3 ≤ ∆ ≤ 4. So, we construct this case into

following sub-cases.

Case. 1.1. ∆ = 3. In this case, T contains exactly two vertices of degree

3. Let u, v ∈ V (T ) such that dT (u) = dT (v) = 3. Now, we consider the

following two sub-cases.

Case. 1.1.1. uv ∈ E(T ). Then 0 ≤ ℓ1 ≤ 3, as n ≥ 11. If 0 ≤ ℓ1 ≤ 2, then

we must have T ∈ T4(n) ∪ T5(n) ∪ T7(n) ⊆ A(n), a contradiction. Hence

we consider ℓ1 = 3, in which case

HSO(T ) = f
(

3
2

)
+ f(2) + 3f(3) + (n− 6)

√
2

=

√
13

2
+
√
5 + 3

√
10 + (n− 6)

√
2 > A7.

Case. 1.1.2. uv /∈ E(T ). Then 0 ≤ ℓ1 ≤ 4. For ℓ1 = 0, we must have
T ∈ T6(n) ⊆ A(n). So we consider 1 ≤ ℓ1 ≤ 4. If we represent the value
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of HSO(T ) at ℓ1 = i by Bi, then we have

Bi =



5f
(
3
2

)
+ 3f(2) + f(3) + (n − 10)

√
2 = 5

√
13

2
+ 3

√
5 +

√
10 + (n − 10)

√
2 for i = 1,

4f
(
3
2

)
+ 2f(2) + 2f(3) + (n − 9)

√
2 = 2

√
13 + 2

√
5 + 2

√
10 + (n − 9)

√
2 for i = 2,

3f
(
3
2

)
+ f(2) + 3f(3) + (n − 8)

√
2 = 3

√
13

2
+

√
5 + 3

√
10 + (n − 8)

√
2 for i = 3.

2f
(
3
2

)
+ 4f(3) + (n − 7)

√
2 =

√
13 + 4

√
10 + (n − 7)

√
2 for i = 4.

One can easily check that

B4 > B3 > B2 > B1 >
√
13 + 2

√
5 + 2

√
10 + (n− 7)

√
2 = A7.

Case. 1.2. ∆ = 4. Note that T contains exactly one vertex of degree 4.
Let u ∈ V (T ) such that dT (u) = 4. As, n ≥ 11, we have 0 ≤ ℓ1 ≤ 3. If we
represent the value of HSO(T ) at ℓ1 = i by Ci, then we have

Ci =



4f
(

4
2

)
+ 4f(2) + (n − 9)

√
2 = 8

√
5 + (n − 9)

√
2 for i = 0,

3f
(

4
2

)
+ 3f(2) + f(4) + (n − 8)

√
2 = 6

√
5 +

√
17 + (n − 8)

√
2 for i = 1,

2f
(

4
2

)
+ 2f(2) + 2f(4) + (n − 7)

√
2 = 4

√
5 + 2

√
17 + (n − 7)

√
2 for i = 2,

f
(

4
2

)
+ f(2) + 3f(4) + (n − 6)

√
2 = 2

√
5 + 3

√
17 + (n − 6)

√
2 for i = 3.

One can easily check that

C3 > C2 > C1 > C0 >
√
13 + 2

√
5 + 2

√
10 + (n− 7)

√
2 = A7.

Case 2. ℓ ≥ 5. By Lemma 2, it is evident that

HSO(T ) ≥
√
2 (n− 1) + 5

(
f(2) + f

(
3
2

)
− 2

√
2
)

= (n− 11)
√
2 + 5

√
5 +

5
√
13

2

>
√
13 + 2

√
5 + 2

√
10 + (n− 7)

√
2 = A7.
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Table 1. Ordering of minimal trees with respect to the HSO index for
small values of n.

Second Third Fourth Fifth Sixth Seventh Eighth

n = 4 T1 – – – – – –

n = 5 T2 T3 – – – – –

n = 6 T4 T5 T6 T7 T8 – –

n = 7 – – – T9 T10 T11 T12

n = 8 – – – T13, T14 T15 T16 T17

n = 9 – – – T18 T19, T20 T21 T22

n = 10 – – – – – Ti (23 ≤ i ≤ 26) T27

Remark 1. Theorem 7 does not completely determine the ordering of

trees with minimal HSO for small values of n. The remaining cases are

summarized in Table 1. The structures of Ti for 1 ≤ i ≤ 27 in Table 1 are

depicted in Figure 11.

Next, we identify the first seven minimal unicyclic graphs with respect

to the HSO index for a given order n. Accordingly, six families of unicyclic

graphs are constructed as follows.

1. U1(n) is the collection of graphs generated by attaching a pendent path

of length n− k ≥ 2 to a vertex of Ck (see Figure 12 (i)).

2. U2(n) is the collection of graphs generated by attaching a pendent path

of length one to a vertex of Cn−1 (see Figure 12 (ii)).

3. U3(n) denotes the collection of graphs having exactly two adjacent

vertices of maximum degree 3, each of which is adjacent to two vertices of

degree 2. (see Figure 13).

4. U4(n) is the collection of graphs generated by attaching a pendent path

of length at least 2 to each vertex of C3 (see Figure 14 ).

5. U5(n) denotes the collection of graphs having exactly two adjacent

vertices of maximum degree 3, where one of them is adjacent to two vertices

of degree 2, and the other is adjacent to one pendent vertex and one vertex

of degree 2 (see Figure 15).

6. U6(n) denotes the collection of graphs having exactly two non-adjacent

vertices of maximum degree 3, each of which is adjacent to three vertices

of degree 2. (see Figure 16).



569

T1 T2 T3 T4 T5

T6 T7 T8 T9 T10

T11 T12 T13 T14

T15 T16
T17 T18

T19 T20 T21

T22
T23 T24

T25 T26

T27

Figure 11. The trees Ti, 1 ≤ i ≤ 27.

It is clear that the classes U1(n), U2(n), U3(n), U4(n), U5(n), and U6(n)

are defined for n ≥ 5, 4, 8, 9, 7, 8, respectively.

Theorem 8. Among all n-vertex unicyclic graphs, the following results

hold for the HSO index:
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(i) (ii)

Figure 12. The example of unicyclic graphs belonging to (i) U1(n) and
(ii) U2(n).

Figure 13. The example of unicyclic graphs belonging to U3(n).

Figure 14. The example of unicyclic graph belonging to U4(n).

Figure 15. The example of unicyclic graphs belonging to U5(n).

Figure 16. The example of unicyclic graphs belonging to U6(n).
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1. For n ≥ 5, the HSO index attains its second minimum value

HSO(U) = 3f
(

3
2

)
+ f(2) + (n− 4)

√
2 =

3
√
13

2
+

√
5 + (n− 4)

√
2

if and only if U ∈ U1(n).

2. For n ≥ 5, the HSO index attains its third minimum value

HSO(U) = 2f
(

3
2

)
+ f(3) + (n− 3)

√
2 =

√
13 +

√
10 + (n− 3)

√
2

if and only if U ∈ U2(n).

3. For n ≥ 7, the HSO index attains its fourth minimum value

HSO(U) = 4f
(

3
2

)
+ 2f(2) + (n− 6)

√
2 = 2

√
13 + 2

√
5 + (n− 6)

√
2

if and only if U ∈ U3(n).

4. For n ≥ 9, the HSO index attains its fifth minimum value

HSO(U) = 3f
(

3
2

)
+ 3f(2) + (n− 6)

√
2 =

3
√
13

2
+ 3

√
5 + (n− 6)

√
2

if and only if U ∈ U4(n).

5. For n ≥ 9, the HSO index attains its sixth minimum value

HSO(U) =
3
√
13

2
+
√
5 +

√
10 + (n− 5)

√
2

if and only if U ∈ U5(n).

6. For n ≥ 9, the HSO index attains its seventh minimum value

HSO(U) = 6f
(

3
2

)
+ 2f(2) + (n− 8)

√
2 = 3

√
13 + 2

√
5 + (n− 8)

√
2

if and only if U ∈ U6(n).

Proof. Let U be a unicyclic graph of order n. We know from Theorem
4 that Cn is the minimal unicyclic graph for HSO. So in this proof, we
consider U ≇ Cn. One can easily verify the results by Sage for 5 ≤ n ≤ 8.
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Next, we consider n ≥ 9. If U ∈ Ui(n) (1 ≤ i ≤ 6), then we denote the
value of HSO(U) as Di. Thus, we have

Di =



3f
(

3
2

)
+ f(2) + (n − 4)

√
2 = 3

√
13

2 +
√
5 + (n − 4)

√
2 for i = 1,

2f
(

3
2

)
+ f(3) + (n − 3)

√
2 =

√
13 +

√
10 + (n − 3)

√
2 for i = 2,

4f
(

3
2

)
+ 2f(2) + (n − 6)

√
2 = 2

√
13 + 2

√
5 + (n − 6)

√
2 for i = 3,

3f
(

3
2

)
+ 3f(2) + (n − 6)

√
2 = 3

√
13

2 + 3
√
5 + (n − 6)

√
2 for i = 4.

3f
(

3
2

)
+ f(2) + f(3) + (n − 5)

√
2 = 3

√
13

2 +
√
5 +

√
10 + (n − 5)

√
2 for i = 5.

6f
(

3
2

)
+ 2f(2) + (n − 8)

√
2 = 3

√
13 + 2

√
5 + (n − 8)

√
2 for i = 6.

One can easily check that D6 > D5 > D4 > D3 > D2 > D1. Let

A(n) =

6⋃
i=1

Ui(n). Now, it is sufficient to prove that HSO(U) > D6 for all

U ∈ U(n)\A(n). Let U ∈ U(n)\A(n). As, U ≇ Cn, we must have ℓ ≥ 1.

If ℓ = 1, then we must have U ∈ U1(n) ∪ U2(n) ⊆ A(n), a contradiction.

So we consider ℓ ≥ 2. Now, we construct the proof in the following two

cases.

Case 1. ℓ = 2. In this case 3 ≤ ∆ ≤ 4. So, we construct this case into

following sub-cases.

Case. 1.1. ∆ = 3. In this case, U contains exactly two vertices of degree

3. Let u, v ∈ V (U) such that dU (u) = dU (v) = 3. Now, we consider the

following two sub-cases.

Case. 1.1.1. uv ∈ E(U). In this case, the only possibility is that each

pendent path of U is of length 1. Otherwise, U ∈ U3(n) ∪ U5(n) ⊆ A(n),

a contradiction. Consequently, we obtain

HSO(U) = 2f
(

3
2

)
+2f(3) + (n− 4)

√
2 =

√
13+ 2

√
10+ (n− 4)

√
2 > D6.

Case. 1.1.2. uv /∈ E(U). Note that 0 ≤ ℓ1 ≤ 2. If ℓ1 = 0, then

U ∈ U6(n) ⊆ A(n), a contradiction. Thus, we consider ℓ1 ̸= 0. Then we

get at least two pendent edges vpvq and vrvs with dU (vq) = dU (vs) = 1

such that
dU (vp)
dU (vq)

= 3 and dU (vr)
dU (vs)

≥ 2. Also, it is clear that there are at least

four edges vivj with dU (vi) ≥ dU (vj) such that dU (vi)
dU (vj)

= 3
2 . Therefore, we
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can write

HSO(U) ≥ 4f
(

3
2

)
+ f(3) + f(2) + (n− 6)

√
2

= 2
√
13 +

√
10 +

√
5 + (n− 6)

√
2 > D6.

Case. 1.2. ∆ = 4. We know that 0 ≤ ℓ1 ≤ 2. First we consider

ℓ1 ̸= 0. Then we get at least two pendent edges vpvq and vrvs with

dU (vq) = dU (vs) = 1 such that
dU (vp)
dU (vq)

= 4 and dU (vr)
dU (vs)

≥ 2. Also, it is

clear that there are at least two edges vivj with dU (vi) ≥ dU (vj) such that
dU (vi)
dU (vj)

= 4
2 . Therefore, we can write

HSO(U) ≥ f(4) + 3f(2) + (n− 4)
√
2 =

√
17 + 3

√
5 + (n− 4)

√
2 > D6.

Next we take ℓ1 = 0. In this case

HSO(U) = 6f(2) + (n− 6)
√
2 = 6

√
5 + (n− 6)

√
2 > D6.

Case 2. ℓ = 3. In this case 0 ≤ ℓ1 ≤ 3. First we consider ℓ1 ≥ 1.

Then we get at least one pendent edge vivj with dU (vj) = 1 such that
dU (vi)
dU (vj)

≥ 3. It is clear that there are at least two pairs of edges vpvq and

vrvs other than vivj with dU (vp) ≥ dU (vq) and dU (vr) ≥ dU (vs) such that

f
(

dU (vp)
dU (vq)

)
+ f

(
dU (vr)
dU (vs)

)
≥ f

(
3
2

)
+ f(2). Therefor, we can write

HSO(U) ≥ f(3) + 2f(2) + 2f

(
3

2

)
+ (n− 5)

√
2

=
√
13 + 2

√
5 +

√
10 + (n− 5)

√
2 > D6.

Now, we consider ℓ1 = 0. It is clear that 3 ≤ ∆ ≤ 5. Next, we construct

this case in the following sub-cases.

Case 2.1. ∆ = 3. In this case U contains three vertices of degree 3.

Consider three vertices u, v, w such that dU (u) = dU (v) = dU (w) = 3.

If u, v, w are pairwise adjacent, then U ∈ U4(n) ⊆ A(n), a contradiction.

Thus, we consider that at most two pairs of u, v, w are adjacent. It is easy

to check that U contains three pendent edges vpvq, with dU (vq) = 1 such
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that
dU (vp)
dU (vq)

= 2. Again, since n ≥ 9, it is clear that there are at least five

edges vivj , with dU (vi) ≥ dU (vj) such that dU (vi)
dU (vj)

= 3
2 . Consequently, we

have

HSO(U) ≥ 3f(2)+5f

(
3

2

)
+(n−8)

√
2 =

5
√
13

2
+3

√
5+(n−8)

√
2 > D6.

Case 2.2. 4 ≤ ∆ ≤ 5. In this case, one can easily obtain likewise previous

cases that

HSO(U) ≥ 4f(2)+ 2f

(
3

2

)
+(n− 6)

√
2 =

√
13+4

√
5+ (n− 6)

√
2 > D6.

Case 3. ℓ ≥ 4. By Lemma 2, it is evident that

HSO(U) ≥
√
2n + 4

(
f(2) + f

(
3
2

)
− 2

√
2
)

= (n− 8)
√
2 + 4

√
5 + 2

√
13

> 3
√
13 + 2

√
5 + (n− 8)

√
2 = D6.

Remark 2. Theorem 8 does not completely determine the ordering of

unicyclic graphs with minimal HSO for small values of n. The remaining

cases are summarized in Table 2.

Table 2. Ordering of minimal unicyclic graphs with respect to the
HSO index for small values of n.

Third Fourth Fifth Sixth Seventh

n = 5 U1 U2 U3 – –

n = 6 – U4 U5, U6 U7 U8

n = 7 – – U9,U10, U11 U12, U13 U14

n = 8 – – Ui (15 ≤ i ≤ 19) U20 U21

The structures of Ui for 1 ≤ i ≤ 21 are depicted in Figure 17.

Now we characterize the first seven minimal bicyclic graphs with re-
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U1 U2 U3 U4 U5

U6 U7 U8 U9

U10
U11

U12 U13

U14 U15 U16

U17

U18 U19

U20 U21

Figure 17. The unicyclic graphs Ui, 1 ≤ i ≤ 21.

spect to the HSO index for a given graph order n. To this end, we con-

struct numerous families of bicyclic graphs. First, we define three families

of bicyclic graphs that contain no pendent vertices. Let B1
0(n) ⊆ B(n)

denote the collection of bicyclic graphs obtained by joining two nonadja-

cent vertices of a cycle Ct (4 ≤ t ≤ n) by a path of length n − t + 1 (see

Figure 18(iii)). Next, let B2
0(n) ⊆ B(n) denote the collection of bicyclic

graphs obtained by joining two disjoint cycles Cs and Ct (s+ t ≤ n) by a

path of length n− s− t+ 1 (see Figure 18(ii)). Finally, let B3
0(n) ⊆ B(n)
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denote the collection of bicyclic graphs formed by two cycles Cs and Ct

sharing exactly one common vertex, where s+ t−1 = n (see Figure 18(i)).

(i) (ii) (iii)

Figure 18. The example of bicyclic graphs belonging to (i) B3
0(n), (ii)

B2
0(n) and (iii) B1

0(n).

Now we construct four classes of bicyclic graphs from the aforesaid

families as follows (see Figures 19 (i), (ii)):

B1(n) = {B ∈ B1
0(n) : t = n}, B2(n) = {B ∈ B2

0(n) : s+ t = n},

B3(n) = {B ∈ B1
0(n) : t < n}, B4(n) = {B ∈ B2

0(n) : s+ t < n}.

(i) (ii) (iii)

u1

u2

u3

Figure 19. The example of bicyclic graphs belonging to (i) B1(n), (ii)
B2(n) and (iii) B5(n).

Next, we construct six families of bicyclic graphs of order n having at

least one pendent vertices as follows:

(1) B5(n) is the collection of graphs generated from Ct : u1u2 · · ·ut with

4 ≤ t ≤ n − 2 by joining u1 and u3 by an edge, and attaching a pendent

path of length n− t to u2 (see Figure 19 (iii)).

(2) B6(n) is the collection of graphs B ⊆ B(n) generated from the unique

member of B1(4) by attaching a pendent path of length at least 2 on two

vertices u, v with dB(u) = dB(v) = 3 (see Figure 20 (i)).
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(3) B7(n) is the collection of graphs generated from Cn−1 : u1u2 · · ·un−1

by joining u1 and u3 by an edge, and attaching a pendent path of length

1 to u2 (see Figure 20 (ii)).

(i) (ii)

u v

u1

u2

u3

Figure 20. The example of bicyclic graphs belonging to (i) B6(n) and
(ii) B7(n).

u

u

Figure 21. The example of bicyclic graphs belonging to B8(n).

(4) B8(n) is the collection of graphs B generated from a member of

B1(k) (k ≥ 5) or B2(k) (k ≥ 6) by attaching a pendent path of length

n− k ≥ 2 to a vertex u with dB(u) = 3, where u is adjacent to a vertex of

degree 3 and two vertices of degree 2 (see Figure 21).

u
u

u

Figure 22. The example of bicyclic graphs belonging to B9(n).

(5) B9(n) is the collection of graphs B generated from a member of

B3(k) (k ≥ 5) or B4(k) (k ≥ 7) by attaching a pendent path of length
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n− k ≥ 2 to a vertex u with dB(u) = 3, where u is adjacent to a vertex of

degree 2 and two vertices of degree 3 (see Figure 22).

(6) B10(n) is the collection of graphs B generated from the unique member

of B1(4) by attaching a pendent path on two vertices u, v with dB(u) =

dB(v) = 3, where one pendent path has length 1, another has length

greater than 1.

It is clear that the classes B1(n), B2(n), B3(n), B4(n), B5(n), B6(n), B7(n),

B8(n), B9(n) and B10(n) are defined for n ≥ 4, 6, 5, 7, 6, 8, 5, 7, 7, 7, respec-

tively.

Theorem 9. Among all n-vertex bicyclic graphs, the following results hold

for the HSO index:

1. For n ≥ 4, the HSO index attains its minimum value

HSO(B) = 2
√
13 + (n− 3)

√
2

if and only if B ∈ B1(n) ∪ B2(n).

2. For n ≥ 6, the HSO index attains its second minimum value

HSO(B) =
3
√
13

2
+
√
5 + (n− 3)

√
2

if and only if B ∈ B5(n).

3. For n ≥ 6, the HSO index attains its third minimum value

HSO(B) = 3
√
13 + (n− 5)

√
2

if and only if B ∈ B3(n) ∪ B4(n).

4. For n ≥ 8, the HSO index attains its fourth minimum value

HSO(B) =
√
13 + 2

√
5 + (n− 3)

√
2

if and only if B ∈ B6(n).
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5. For n ≥ 8, the HSO index attains its fifth minimum value

HSO(B) =
√
13 +

√
10 + (n− 2)

√
2

if and only if B ∈ B7(n).

6. For n ≥ 8, the HSO index attains its sixth minimum value

HSO(B) =
5
√
13

2
+
√
5 + (n− 5)

√
2

if and only if B ∈ B8(n) ∪ B9(n).

7. For n ≥ 8, the HSO index attains its seventh minimum value

HSO(B) =

√
13

2
+
√
10 +

√
5 + (n− 2)

√
2

if and only if B ∈ B10(n).

Proof. Let B be a unicyclic graph of order n. One can easily verify the
results by Sage for 4 ≤ n ≤ 7. Next, we consider n ≥ 8. If B ∈ Bi(n)
(1 ≤ i ≤ 10), then we denote the value of HSO(B) as Li. Thus, we have

Li =



4f
(

3
2

)
+ (n − 3)

√
2 = 2

√
13 + (n − 3)

√
2 for i = 1, 2,

3f
(

3
2

)
+ f(2) + (n − 3)

√
2 = 3

√
13

2 +
√
5 + (n − 3)

√
2 for i = 5,

6f
(

3
2

)
+ (n − 5)

√
2 = 3

√
13 + (n − 5)

√
2 for i = 3, 4,

2f
(

3
2

)
+ 2f(2) + (n − 3)

√
2 =

√
13 + 2

√
5 + (n − 3)

√
2 for i = 6,

2f
(

3
2

)
+ f(3) + (n − 2)

√
2 =

√
13 +

√
10 + (n − 2)

√
2 for i = 7,

5f
(

3
2

)
+ f(2) + (n − 5)

√
2 = 5

√
13

2 +
√
5 + (n − 5)

√
2 for i = 8, 9,

f
(

3
2

)
+ f(3) + f(2) + (n − 2)

√
2 =

√
13
2 +

√
10 +

√
5 + (n − 2)

√
2 for i = 10.

One can easily check that

L10 > L8 = L9 > L7 > L6 > L3 = L4 > L5 > L1 = L2.

Let A(n) =

10⋃
i=1

Bi(n). Now, it is sufficient to prove that HSO(B) > L10
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for all B ∈ B(n)\A(n). Let B ∈ B(n)\A(n). If ℓ = 0, then B ∈ B3
0(n).

Evidently, HSO(B) = 4f(2)+ (n− 3)
√
2 = 4

√
5+ (n− 3)

√
2 > L10. Next,

we consider ℓ ≥ 1. Now, we construct the proof in the following three

cases.

Case 1. ℓ = 1. It is clear that 3 ≤ ∆ ≤ 5 and 0 ≤ ℓ1 ≤ 1. Now we divide

this case into the following sub-cases.

Case 1.1. ∆ = 3. In this case, B contains three vertices of degree 3.

Let u, v, w ∈ V (B) such that dB(u) = dB(v) = dB(w) = 3. Note that

u, v, w are not pairwise adjacent, otherwise, B ∈ B5(n) ∪ B7(n) ⊆ A(n),

a contradiction. Thus, at most two pairs of three vertices of degree 3 are

adjacent. Next we consider the following two cases.

Case 1.1.1. ℓ1 = 0. If two pairs of u, v, w are adjacent, then B ∈
B8(n) ∪ B9(n) ⊆ A(n), a contradiction. Thus, we consider that at most

one pair of three vertices of degree 3 are adjacent. Then, B contains at

least seven edges connecting vertices of degree 2 and 3. Consequently, we

have

HSO(B) ≥ 7f

(
3

2

)
+ f(2)+ (n− 7)

√
2 =

7
√
13

2
+
√
5+ (n− 7)

√
2 > L10.

Case 1.1.2. ℓ1 = 1. In this case, the graph B necessarily contains at

least four edges incident with a vertex of degree 2 and a vertex of degree

3. Therefore, we can write

HSO(B) ≥ 4f

(
3

2

)
+ f(3)+ (n−4)

√
2 = 2

√
13+

√
10+(n−4)

√
2 > L10.

Case 1.2. 4 ≤ ∆ ≤ 5. We prove this case in following two sub-cases.

Case 1.2.1. ℓ1 = 0. In this case, B must contain at least three edges

joining vertices of degree 2 with a vertex of degree ∆. In addition, G has

one pendent edge. Consequently, we obtain

HSO(G) ≥ 3f

(
∆

2

)
+ f(2) + (n− 3)

√
2

≥ 4f(2) + (n− 3)
√
2 = 4

√
5 + (n− 3)

√
2 > L10.
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Case 1.2.2. ℓ1 = 1. In this case B must contain at least two edges joining

vertices of degree 2 and ∆. In addition, B has exactly one pendent edge.

Consequently, we obtain

HSO(B) ≥ 2f

(
∆

2

)
+ f(3) + (n− 2)

√
2

≥ 2f(2) + f(3) + (n− 2)
√
2 = 2

√
5 +

√
10 + (n− 2)

√
2 > L10.

Case 2. ℓ = 2. It is clear that 3 ≤ ∆ ≤ 6 and 0 ≤ ℓ1 ≤ 2. Now we

construct the following two cases.

Case 2.1. ∆ = 3. In this case, B contains four vertices of degree 3. Let

u, v, w, x ∈ V (B) such that dB(u) = dB(v) = dB(w) = dB(x) = 3. Note

that, at most five pairs of vertices u, v, w, x are adjacent, as B is bicyclic.

If five pairs of them are adjacent, then n ≥ 8 implies B ∈ B6(n)∪B10(n) ⊆
A(n), a contradiction. Thus, we consider that at most four pairs of them

are adjacent. It is evident that there exists at least two edges vivj ∈ E(B)

that do not belong to any pendent path with dB(vi) ≥ dB(vj) such that
dB(vi)

dB(vj)
=

3

2
. Again, we know that f(3) + f(1) > f

(
3
2

)
+ f(2). Thus, we

obtain

HSO(B) ≥ 4f

(
3

2

)
+2f(2)+(n−5)

√
2 = 2

√
13+2

√
5+(n−5)

√
2 > L10.

Case 2.2. 4 ≤ ∆ ≤ 6. We consider the following three sub-cases.

Case 2.2.1. ℓ1 = 0. In this case, we definitely get two pendent edges

connecting the pendent vertex with a vertex of degree 2. Again, it is

clear that there exist at least two non-pendent edges vivj ∈ E(B) with

dB(vi) ≥ dB(vj) such that
dB(vi)

dB(vj)
≥ 4

2
. Consequently, we obtain

HSO(B) ≥ 2f

(
4

2

)
+ 2f(2) + (n− 3)

√
2 = 4

√
5 + (n− 3)

√
2 > L10.

Case 2.2.2. ℓ1 = 1. Then B contains at least three non-pendent edges

vivj with dB(vi) ≥ dB(vj) such that
dB(vi)

dB(vj)
≥ 3

2
. Again, there are two

pendent edges upuq, urus in B with dB(uq) = dB(us) = 1 such that
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dB(up)

dB(uq)
≥ 3 and

dB(ur)

dB(us)
= 2. Thus, we derive

HSO(B) ≥ 3f

(
3

2

)
+ f(2) + f(3) + (n− 4)

√
2

=
3
√
13

2
+
√
5 +

√
10 + (n− 4)

√
2 > L10.

Case 2.2.3. ℓ1 = 2. It is evident that there exist two pendent edges

vivj ∈ E(B) with dB(vj) = 1 such that
dB(vi)

dB(vj)
≥ 3. Therefore, we have

HSO(B) ≥ 2f(3) + (n− 1)
√
2 = 2

√
10 + (n− 1)

√
2 > L10.

Case 3. ℓ ≥ 3. By Lemma 2, it is evident that

HSO(T ) ≥
√
2 (n+ 1) + 3

(
f(2) + f

(
3
2

)
− 2

√
2
)

= (n− 5)
√
2 + 3

√
5 +

3
√
13

2
> L10.

Remark 3. Theorem 9 does not completely determine the ordering of

bicyclic graphs with minimal HSO for small values of n. The remaining

cases are summarized in Table 3.

Table 3. Ordering of minimal bicyclic graphs with respect to the HSO
index for small values of n.

Second Third Fourth Fifth Sixth Seventh

n = 5 B1 B2 B3 B4 – –

n = 6 – – B5 B6 B7, B8 B9

n = 7 – – B10 B11, B12 B13 B14, B15

The structures of Bi for 1 ≤ i ≤ 15 are depicted in Figure 23.
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B1 B2 B3 B4

B5 B6
B7

B8

B9 B10

B11

B12

B13 B14 B15

Figure 23. The bicyclic graphs Bi, 1 ≤ i ≤ 15.

3 Concluding remarks

In this work, we revisited and refined some existing results concerning

the Hyperbolic Sombor index. We disproved the general monotonicity

claim under edge addition and established a sufficient condition for its

validity. Sharp bounds were also obtained for trees, unicyclic, and bicyclic

graphs, with the corresponding extremal structures characterized. Finally,

we identified the first eight minimal trees and seven unicyclic and bicyclic

graphs with respect to HSO, providing a finer structural ordering and a

more complete theoretical foundation for this index.

To prove the maximal case of Theorem 4 in [1], the relation (4) was

assumed to be obvious, which is not true in general. Although the result

itself is correct, the proof remains incomplete. In [1], this result was estab-
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lished for trees. From Theorems 5 and 6, one can readily verify that the

same holds for unicyclic and bicyclic graphs as well. Therefore, proving

the result for the remaining graph classes can be considered as future work.

This study identifies the maximal graphs for the HSO index up to the bi-

cyclic family. Generalizing these findings to c-cyclic graphs may serve as an

interesting direction for future research. Furthermore, the characterization

of extremal graphs with respect to the HSO index for fixed parameters–

such as the number of pendent vertices, chromatic number, domination

number, and vertex or edge connectivity–also presents promising avenues

for further investigation.
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