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Abstract

The hyperbolic Sombor index (HSO) is a recently introduced
vertex-degree—based topological index that originates from the geo-
metric properties of a hyperbola. In this work, we explore several
mathematical properties of the HSO index, as well as revisit and
refine some previously reported results. We first provide a coun-
terexample to the claim that HSO(G) always increases with the
addition of an edge and establish a sufficient condition under which
this monotonicity holds. We then present refined versions of some
existing results and proofs. Furthermore, we establish sharp up-
per and lower bounds for the HSO index across various classes of
graphs, including trees, unicyclic graphs, and bicyclic graphs, and
characterize the corresponding extremal graphs that attain these
bounds. Finally, we identify the first eight minimal trees, as well as
seven minimal unicyclic and bicyclic graphs with respect to HSO.

1 Introduction

Let G be a simple connected graph of order n and size m with vertex set
V(G) = {v1,v2,...,v,} and edge set E(G). The degree of a vertex v;
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is denoted by dg(v;). By A, we mean the maximum degree in G. The
path, cycle and star graphs of order n are represented by P,, Cy,, and S,
respectively. By T'(n), U(n), and B(n), we mean the collection of all trees,
unicyclic graphs, and bicyclic graphs of order n, respectively. We consider
n; to represent the number of vertices having degree i. A pendent edge
is an edge incident with a vertex of degree one, whereas a path vivs ... v;
is said to be a pendent path of length ¢ — 1 attached to vy if dg(v1) > 3,
dg(v;)) =2 for i =2,...,t — 1, and dg(vs) = 1. Throughout this work,
we consider ¢ and ¢; to represent the number of pendent paths and the
number of pendent paths of length 1, respectively.

The interplay between graph theory and chemistry, known as chemical
graph theory, provides a powerful framework for modeling and under-
standing the properties of molecules [12]. In this paradigm, a molecular
structure is represented by a graph where vertices correspond to atoms
and edges to chemical bonds. A central tool in this field is the topologi-
cal index, a numerical descriptor derived from the graph that encodes its
structural information. These indices have proven invaluable in establish-
ing quantitative structure-property relationships (QSPR) and quantitative
structure-activity relationships (QSAR), allowing researchers to predict
physicochemical properties and biological activities of chemical compounds
without costly and time-consuming laboratory experiments.

Among the plethora of topological indices proposed over the years,
degree-based indices are some of the most studied due to their intuitive
definition and strong correlative power [7]. These indices are formulated
as a sum over the edges of a graph of a function f(dq(v;),da(v;)), where
da(v;) and dg(vj;) are the degrees of the adjacent vertices v; and v;. Sem-
inal examples include the first Zagreb index [10], the Atom-Bond Connec-
tivity (ABC) index [4], and the Geometric-Arithmetic (GA) index [13].

A recent and fruitful trend in the field involves the geometric interpre-
tation of topological indices. This approach was pioneered by Gutman [6]
with the introduction of the Sombor index (SO), defined as SO(G) =
D i, €E(G) Vda(vi)? + de(v;)?. This index was conceived by viewing the

degree pair (dg(v;),dg(v;)) as coordinates of a point in the Cartesian

plane, with the index value being the Euclidean distance from the origin.
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The success and mathematical richness of the Sombor index [3,5,9,11,14]
inspired a family of related geometric indices. Following this paradigm, the
elliptic Sombor index [8] and the hyperbolic Sombor index (HSO) [1,2]
were subsequently developed.

The Hyperbolic Sombor index, which is the focus of this work, draws its
inspiration from the eccentricity of a hyperbola. For a hyperbola defined
by i—z — g—z = 1, the eccentricity is given by e = @
the degrees dg(v;) and dg(v;) of adjacent vertices with the semi-axes a
and b (with a <b), this formula leads to the definition of the HSO index

for a graph G:

. By associating

Z Vda(vi)? + da(vy)?

HSO(G) = min{dg(v;), da(v;)}

v;v; EE(G)

The aforesaid formulation can also be represented as

HSO(G) = Y 1+ (dG(”i))z . (1)

v;v; EE(G) dG (Uj)
dg(vi)>dg(vy)

Initial studies of the HSO index have demonstrated its significant po-
tential. Barman and Das [1] established fundamental mathematical prop-
erties and provided bounds for the index, while a subsequent work [2]
showcased its strong predictive power for properties such as m-electron en-
ergy and polarizability in benzenoid hydrocarbons through QSPR analysis.

However, as the mathematical theory of this new index continues to
develop, some initial claims require re-examination. For instance, it was
stated in [1] that HSO(G) > HSO(G — e) for any edge e, implying uni-
versal monotonicity with respect to edge addition. We demonstrate that
this property does not hold in general by providing a counterexample.
Furthermore, the characterization of the equality case for the lower bound
HSO(G) > +/2m was incompletely stated to be achieved only by complete
graphs, whereas it is, in fact, achieved by all regular graphs.

This manuscript aims to provide a rigorous and systematic mathemat-

ical analysis of the Hyperbolic Sombor index, addressing existing inac-



548

curacies and establishing a more complete theoretical foundation. Our
main contributions are as follows. We refute the general monotonicity
claim regarding edge addition and establish a sufficient condition un-
der which HSO(G) > HSO(G — e) holds. We prove the lower bound
HSO(G) > v/2m, precisely characterizing the extremal graphs as all reg-
ular graphs. We also present refined proofs of existing results. Moreover,
we derive sharp upper and lower bounds for HSO in unicyclic and bicyclic
graphs, characterizing the extremal graphs when the order n is fixed. Fi-
nally, we extend this analysis by identifying the first eight trees and seven
unicyclic and bicyclic graphs with minimal H SO values, thereby providing

a finer ordering of these graph families with respect to this index.

2 Main results

Consider a function f : [1, co) — R with
flx) =1+ 22

Clearly
x

"(z) = ———= >0,
f(e) = <=
which implies that f is a strictly increasing function and f(z) > v/2 with
equality iff x = 1. Thus, we can state the following remark, which will
be used frequently throughout this work. Let G and G’ be two graphs.

Consider v;v; € E(G) and vjv; € E(G') with 1 < 32&; < dG'E ’%7 then

we have
da(v; de (v}
f<G( )>§f G(/) , (2)
dg(vj) dG/(Uj)
with equality iff jgg:j; = dG'E ,g Employing the function f, we can rep-

resent the formulation (1) of H SO for graph G as follows.

dg(vi)

HSO(G) = f ( > ) (3)

vivjEZE(G') da(vj)
dg(vi)>dg(vj)
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Also for any edge v;v; € E(G), we have f (%) = V2 iff dg(v;) =
da(v;)-

In [1], it was claimed that the HSO value always increases when an

edge is added to a graph, i.e.,
HSO(G) > HSO(G —e), (4)

where e = v;v; is an edge of G. However, we provide a counterexample to

this claim. As shown in Figure 1, we have
HSO(G)— HSO(G —e) < —0.14 < 0,

which implies that
HSO(G) < HSO(G —e).

Therefore, the general claim in [1] does not hold. In the following, we es-

N ./ N/

?’\ 7 Nl

G G—e

Figure 1. The graphs G and G — e.

tablish a sufficient condition under which the H SO value indeed increases

after adding an edge.

Theorem 1. Let v;v; € E(G) with dg(v;) > da(v;). Define
di = max{da(vp) : vp € Na(vi) \{v;}}, & = max{da(vq) : vq € Na(vy)\ {vi}}.

If dg(vj) > max{d},d}}, then

(R
HSO(G) > HSO(G — v;v;).

Proof. Let dg(v;) > max{d},d;}. Then, it is clear that dg(vi) > da(vp)

for all v, € Ng(v;) \ {v;} and dg(vj) > da(vg) for all vy, € Ng(v)) \ {vi}.
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Now, we have

HSO(G) — HSO(G — vv;)

() s o) ()
o (s e

Tt is cleat that (( )) > do(vi) = for all v, € Ng(v;) \ {v;} and

( ) ( ) (vp)
dG Uj dG Vj . . .

> fOI‘ all v € Ng(v Vi, which implies by 2) that
7lG<'Uq> Zlg(’l)q) q G( ]) \{ } p ( )

F(5E) > 1 (TEBSE) e € oo\ o)

da(vp da (vp

f (dG(”j)> > f <dG(”3))1) Yo, € Ne(v)) \ {v;}.

dc(v,) dc(v,
Employing these facts in (5), we obtain HSO(G) > HSO(G—v;v;). Hence
the proof is completed. |

In Theorem 1 of [1], it is stated that HSO(G) > v/2m, where equality
appears iff G is complete. However, in Figure 2, we present three non-
complete graphs G, Go, and G3 that also satisfy HSO(G) = v/2m. Based

on this observation, we now propose a modification of Theorem 1 [1].

— N AN,
— N !

Figure 2. The graphs G1, G2 and G3.
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Theorem 2. Let G be a simple connected graph with m edges. Then
HSO(G) > v2m,

where equality appear if and only if G is reqular.

Proof. We know that f(z) is strictly increasing for = € [1,00), and that
f(z) > /2, with equality if and only if # = 1. Therefore, from (3) we

immediately obtain

da(v;
HSO(G)= Y f(fg;) > V2m, (6)
v;v; EE(G) G\Ys
dg(vi)>da(vj)

where equality holds if and only if dg(v;) = dg(v;) for all v;v; € E(G).
Since G is connected, the equality holds if and only if G is regular. ]

To prove the minimal case of Theorem 5 in [1], the relation (4) was
assumed to be obvious; however, it has been shown here that this assump-
tion does not hold in general. Therefore, we present a different proof as

follows.

Theorem 3. For a tree T of order n (> 3), we have
HSO(T) > v2(n — 3) + 25,

where the equality occurs iff T = P,.

Proof. Let T = P,. Then HSO(T) = v/2(n — 3) + 2/5, and therefore
equality is attained. Now consider the case T" 2 P,. In this case, T
contains at least three pendent edges. For any pendent edge v;v; € E(T)

with dr(v;) > dr(v;) = 1, we have f(g:g;’;g) > f(2). Moreover, for any

edge vv; € E(T) with dr(v;) > dp(v;), it holds that f(%) > f(1).

Therefore,

HSO(T) > 3f(2) 4+ (n—4)f(1) = 35+ (n — 4)V2

> V2(n - 3) 4+ 2V5 = HSO(P,). n
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To prove the minimal case of Theorem 4 in [1], the following reasoning
was provided: the only graph in which all vertices have degree 2 is C,,.

Here, we present a logical proof of this result.

Theorem 4. For a simple connected graph G of order n (> 3), we have
HSO(G) > V2n,

where the equality occurs iff G = C,.
Proof. Let G be a tree. Then G has at least two pendent edges and
|E(G)| =n — 1. Thus, we obtain

HSO(G) > 2f(2) + (n = 3)f(1) = 25 + (n - 3)V2
> 2V5 — 3V2 +V2n > HSO(C,,).

Next, suppose that G is not a tree. Then |E(G)| = m > n. Therefore,

by Theorem 2, we have
HSO(G) > V2m > V2n,

where equality holds if and only if G is regular and m = n, i.e., if and
only if G = C,. Hence, the lower bound and the extremal graph are
established. [}

Now, we are going to characterize the maximal unicyclic graph for
HSO, when n is given. Let us construct a unicyclic graph SJ, by connecting

two pendent vertices of S,, by an edge. It is clear that

n—1

HSO(S]) = (n—3)f(n—1)+2f< >+f(1)

= n=3)/(n—-12+1+/(n—1)2+4+ V2.

Theorem 5. Let G be a unicyclic graph of order n(> 3). Then

V2n < HSO(G) < (n—3)vV/(n =12+ 1++/(n—1)2 + 44+ V2,
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Figure 3. The unicyclic graph SY,.

where the left equality occurs iff G = C,, and the right equality occurs iff
Gx=S.

Proof. The lower bound and the minimal graph follow directly from The-
orem 4. Next, we will establish the upper bound. Let G be a unicyclic
graph of order n(> 3). If A = n — 1, then G = S/. In this case,
HSO(G) = (n —3)y/(n—1)2+1+ +/(n—1)2+4 + /2, and hence the
equality holds. Now, we consider A < n — 2. Let g be the number of
non-pendent edges in G. It is clear that ¢ > 3. Each non-pendent edge

-2
v;v; follows f M <f r . Again, for any edge v,v; € E(G),
dG(’Uj) 2

da(vi)
da(v))

we have f( < f(n —2). Employing these facts on (3), we derive

HSO(@)= 3 f(dG<U”)§<nq>f(n2>+qf(”;2)

v;v; EE(G) dG(Uj)
da(vi)2de(vj)
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= -3/l 5 1+ 2 g )y,

We aim to prove that fi1(n) < HSO(S),). Note that

fi(n) =HSO(S,) = —V2+35V4+ (=22 — 4+ (n—1)>
+(n=3)vV1+(n—-22—-(n—-3)y/1+(n—1)%

One can easily check with Mathematica software that fi(n)— HSO(S)) <
0 for 3 < n < 6. Now, we take n > 7. We consider A =,/ 1+ %(71—2)27

B=,/1+3(n-12,C=/1+(n—-2)2,D=+/1+(n—1)2. Then

fi(n) — HSO(S,) = —vV2+3A — 2B + (n — 3)(C — D).

—-1)2-n-2?% 2n-—
WehaveBQ—AQ:(n ) (n=2) = n4 3>O,WhichimpliesB>

4
A and hence 34 — 2B < A. Thus, we obtain

fi(n) — HSO(S,) < —V2+ A+ (n —3)(C — D).

Now, we have D? — C? = (n — 1)? — (n — 2)2 = 2n — 3 > 0, that yields
2n — 3
D>CandC—-D= _Cn—i— D It follows that

(n—3)(2n— 3).

(n—3)(C - D) < — T

As D =4/1+ (n—1)% < n, this implies

(n—3)(2n— 3).

(n—3)(C - D) < — o

Again note that A < § + 1. Therefore, finally we derive

Let us construct f(z) = 2+ 2 for « > 7. Then f'(z) =1— 2% > 0 for
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x> 7. So, f(z) is increasing and f(z) > f(7) = 2. Hence, we obtain

fl(n)—HSO(S’)<——\/§——<0 ]
n—4
——

o\T/ )
/o\
°\ /o
o
B’
n
Figure 4. The bicyclic graph BJ,.

Now we characterize the maximal bicyclic graph for HSO when the
graph order n is provided. Let us construct a bicyclic graph B!, (see

Figure 4) by attaching n — 4 pendent vertices to a vertex of degree 3 of

K, —e. It is clear that
n—1 n—1 3
2 —

(n—1)249
3

HSO(B.,) = (n—4)f(n—1)+2f (

= (n—49yV(n-12+1+/(n—1)2+4+
+1/13.

Lemma 1. For every positive integer n,

Fn)=—V13+2y/4+(n—22 +1/9+(n—2)2 — /4 + (n—1)?

FVI+(n—12+(n-4)/14+n-2)2 - (n—4)y/1+(n—1)?

is strictly negative, i.e. Fi(n) <0.
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Proof. One can easily check by the Mathematica software that F(n) < 0

for 1 <n < 3. Next we take n > 4. Let us construct a function for z > 4

as

F(z)=—V13+2/4+ (2 -2)2 + 1/9+ (2 -2)2 — /4 + (a2 — 1)2

— V94t (@ —-12 +(z—4)V1+(x—2)2 — (z—4)V/ 1+ (z — 1)%.

Now we have

Fl(z) = 14+ (@—-22 -1+ (x—-1)? +(x—4)(1j_6(;2_2)2
x—1 )+ 2(x —2) x—2
I+ @12 it @-22 39+ (x-2)7

x—1 x—1
VAt (@—12 39+ (x—1)

= (@@-2-dz-1) + @-9(0(z-2) —g1(x = 1)) + ga(e —2)

+3 (99(z = 2) = go(x — 1)) +ga(x —2) — ga(z — 1), (7)

where for any real ¢ > 0,

ge(x) = \/%, o(z) =1+ 22

Note that
c

/ _
gp(l’) - (c+1‘2)3/2 > 07

which implies that g.(x) is increasing in z. Consequently, from (7) we

obtain
Fl(z) < ¢z —2) — ¢(x — 1) + ga(z — 2).
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By the Mean Value Theorem, we can write

75 =
Vite

for some € € (x —2, x —1). Thus ¢(x —2) — p(z — 1) < —gy(x — 2). Thus

¢z —1) —o(z —2) = 91(8);

F'(z) < ga(z—2)—gi(x—2)

(x —2) ! - ! <0
B Vit (—-27 1+ (@-2)? '

So, F(x) is strictly decreasing. It is evident that F(n) < F(4) < —=1.7 <0
for n > 4. Hence, the proof is completed. |

Theorem 6. Let G be a bicyclic graph of order n (> 4). Then

HSO(G) < (n=4)/(n = 1)> + 1+4/(n — 1) +4+W+x/ﬁ

where the equality occurs iff G = B,

Proof. Let G be a bicyclic graph of order n (> 4). We take ¢ as the number
of non-pendent edges in G. Then ¢ > 5. Now we consider the following
cases.

Case 1. ¢ = 5. In this case, G is of the form as shown in Figure 5, where
the non-pendent vertices vy, va, v3 and vy are adjacent with &y, ko, k3, and
k4 number of pendent vertices, respectively. Without loss of generality, we
assume that k1 > max{ks, k3, ksa}. Now we consider the following two

cases.

Case 1.1. dg(v1) = n— 1. In this case, ks = k3 = ks =0 and k1 =n —4.
Consequently, G = B/, and

HS0(G) = ()i = TP+ 1+ P+ YO0 g

which implies that the equality holds.
Case 1.2. dg(v1) < n —2. For each pendent edge v;v; € E(G), we can
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a
s okf/ \114_9 ks

Figure 5. The bicyclic graph G for ¢ = 5.

write

f(%) <fn-2).

Also from Figure 5, it is evident that there is at least one non-pendent
edge v;v; € E(G) such that

(i) < (52)

Again, we know that for any non-pendent edge v;v; € E(G)

aaey) = (77)

Employing these facts on (3), we derive

da(v;)
HSO(G) = > f ( )
ViV EE(G) dG(v‘j)
dg(vi)>da(vj)
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soaro-aey (7)o (55)

n—22+9

=(n—4V(n-22+1+2/(n-2)2 +4+ 5

= fa(n)(say).

We have

fa(n) = HSO(B,)

= —VI3+2/4+(n—22+3i/9+(n—2)2 — 4+ (n—1)2

IWVo+(n—12 +(n—-4)/1+(n—2)2 — (n—4)y/1+ (n—1)2.

Now, by Lemma 1, it is evident that fo(n) < HSO(B]). Therefore,
HSO(G) < HSO(BY},). Thus, this case is done.

Case 2. ¢ = 6. It is clear that n > 5. We construct this case in two
subcases.

Case. 2.1 A =n—1. In this case, G is of the form as shown in Figure 6.

U

Figure 6. The bicyclic graph G for ¢ =6 and A =n — 1.

Therefore, we have

HSO(G) = (n—5)f(n—1)+A4f ("2 1) +2f (1)
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= n-5)Vn-12+1+2/(n—1)2+4+2V2.
One can easily find that

HSO(G) — HSO(B!) = 2v/2 — V13 + f3(n),

where f3(n) = —vn2 —2n+2++vn2 —2n+5 — %\/712 — 2n + 10. Let us

construct a function for x > 0 as

1/)(x):f\/12+1+\/:1:2+47%\/x2+9.

Then, we have

W(:E)zm(— ! + L L )<07
Vaz+1 V2244 3Vz2+9

which implies that ¢(z) is strictly decreasing. Note that f3(n) = ¢(n —
1) < 9(4) < —1.3 < 0, which implies that f3(n) < 0 for n > 5. Conse-

quently, we have
HSO(G) — HSO(B.) < 2v/2 — V13 < 0.

Hence, this case is completed.

Case. 2.2 A < n — 2. For any edge v,v; € E(G), we can write

f(dG(Ui)> < f(n —2). For any non-pendent edge v;v; € E(G), we have
Vj

da(vj)

da(v; -2 . .

f( G(U’)> <f <n ) Employing these facts on (3), we derive
da(v;) 2

HS0(G)= ) f(dG(vi)><(n—5)f(n—2)+6f<n;2>

v;v; EE(G) dG(Uj)
dg(vi)>dg(vy)

— (n—5)y/(n =22+ 1+3/(n — 2% + 4 = fu(n)(say).
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Now we have

fa(n) = HSO(B,)

= VB4 614+ 1 -22 /14 512 —2y/1 4 L0 - 1)?
+(n=5v1+(n—-22—-(n—-4)v/1+(n—-1)>2.

Claim 1. For every integer n > 5 the function

F(n)z—\/ﬁ+6\/1+i(n—2)2—\/1+§(n—1)2—2,/1+i(n—1)2

+(n=5)v1+(n—-22-(n-4)y/14+(n-1)>2

satisfies F(n) < 0.

Proof. One can easily check with Mathematica software that F'(n) < 0 for
5 <n < 7. Next, we consider n > 8. For z > 0, we use the following

standard inequalities.
1 2 oz 1
Vita?<aoz+—, V1i+a2?2>uz, 1+ —< -+ -
2x 4 2z

Thus, we have
(n—>5) 1+(n—2)2<(n—5)(n—2+ﬁ),
(n— HVIT = 1F > (n—4)(n - 1),
n — 2)2 n—2 1
6 1+¥<6( +—2), ()

4 2 n—
CEE
4
(n—1)2 _ n-1

9 - 3

2/1+ > (n—1),

14

Thus, employing (8) on the expression of F'(n), we derive

Fn) < 6(n—2+ 1 )_n;l

—+— —(n—1)+(n—5)(n—2



562

1
+m) —(n—4)(n—1)=

5+ 15n — 2n?

> 8.
6(n—2) <0 for n>8

This completes the proof of claim 1.

Consequently, by claim 1, we can write f4(n) < HSO(B},), which im-
mediately implies HSO(G) < HSO(B),). Hence, this case is done.
Case 3. ¢ > 7. Suppose that A(G) = n — 1, and let v € V(G) be a
vertex of degree n — 1. Then |V(G) \ {v}| = n — 1. Let E'(G) be the
collection of edges incident on v. So, we have |E'(G)| = n — 1. Since G is
bicyclic, it has |E(G)| = n+ 1 edges, and hence |E(G)\ E'(G)| = 2. Let k
denote the number of vertices incident to the two edges in E(G) \ E'(G).
Clearly, k < 4, since each edge has two endpoints. Each of these k vertices
is adjacent to v and thus contributes to non-pendent edges. Therefore, the
total number of non-pendent edges is ¢ = k+ 2. Since ¢ > 7, we must have
k > 5, which contradicts the fact that £ < 4. Hence, no vertex can have

degree n — 1, and it follows that A(G) < n— 2. Consequently, we can write

da(v;)
HSO(G) = > f ( )
ViV EE(G) dG(v‘])
dg(vi)>dga(vj)

s(n—q+1>f<n—2>+qf(”‘2>

—<n6>f<n2>+7f<”;2>

<(n—5)f(n—2)+6f (”;2> ~ f(n).

In view of claim 1, we can write HSO(G) < HSO(B],). Hence, the proof
is completed. |
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Lemma 2. Let ¢ be the number of pendent paths of G. Then
HSO(G) > V3IE(@)| + ((f(2) + f(3) —2v2).

Proof. Since f(x) > f(1) = v/2 for all + > 1, summing v/2 over the
|E(G)| edges gives the baseline v/2 |FE(G)|. Now, fix a pendent path P =
v1vg ... v with ¢ > 3. The terminal edge v;_jv; contributes f(2), while
the edge vivy (with d(vz) = 2) contributes at least f(3/2). Hence, these
two distinguished edges together contribute at least f(2)+ f(3/2), whereas
their baseline contribution is 2¢/2. Thus, each pendent path of length at
least 2 yields a surplus of at least f(2)+ f(3/2)—2v/2 above the baseline. If
G contains a pendent path P = vyvy of length 1, then this edge contributes
at least f(3), so its surplus over baseline is at least f(3) — /2, which is
strictly greater than f(2) + f(3/2) — 2/2. Therefore every pendent path
contributes a surplus of at least f(2) + f(3/2) — 2v/2. Adding the baseline
V2|E(G)| and the ¢ surpluses completes the proof. |

Now we are going to characterize first eight minimum trees for HSO
when the tree order n is provided. For that, we construct some families
of trees as follows. Let T(n) be the family of trees of order n such that
A = 3. Now, we construct two families 7 (n) and 72(n) as T*(n) = {T €
T(n):n3 =1} and T?(n) = {T € T(n) : n3 = 2}. Then we construct the
following families. For n > 7, Ti(n) = {T € T(n) : 1 = 0} (see Figure
7(i)); for n > 6, Ta(n) = {T € T'(n) : £1 = 1} (see Figure 7(ii)); For
n>5, T3(n) = {T € T*(n) : {1 = 2} (see Figure 7(iii)).

.o/°
o o
- -
o—o —o - 0—0@
\o.,_/ e
R

(*] (ii (] (iii)
Figure 7. The example of trees belonging to (i) 71(n), (ii) 72(n) and
(i) Ts (n).

Let 72*(n) C T?2(n) be the collection of trees such that the two vertices

of degree 3 are adjacent. Then we construct the following families. For
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n > 10, Ta(n) = {T € T*(n) : {1 = 0} (see Figure 8(i)); for n > 9,
Ts(n) = {T € T*(n) : £; = 1} (see Figure 8(ii)); For n > 11, Tg(n) =
{T € T?(n)\T**(n) : ¢1 = 0} (see Figure 9); For n > 8, T7(n) = {T €
T2*(n) : 1 = 2} (see Figure 10).

Figure 10. The example of trees belonging to 77(n).

Theorem 7. Among all n-vertex trees, the following results hold for the
HSO index:

1. For n > 7, the HSO index attains its second minimum value

313
==

HSO(T) +3V5 4+ (n—T7)V2

if and only if T € Ti(n).
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2. Forn > 7, the HSO index attains its third minimum value
HSO(T) = V13 +2V5 + V10 + (n — 6)v2
if and only if T € Ta(n).
3. Forn > 7, the HSO index attains its fourth minimum value
HSO(T) = \/71»3+\/5+2\/ﬁ+(n—5)\/§
if and only if T € T3(n).
4. Forn > 10, the HSO index attains its fifth minimum value
HSO(T) = 2V/13 + 4V5 + (n — 9)V2
if and only if T € Ta(n).
5. For n > 10, the HSO indez attains its sixth minimum value
HSO(T) = 3r+3\[+\ﬁ+(n7 8)v2
if and only if T € Ts(n).
6. For n > 11, the HSO index attains its seventh minimum value
HSO(T) = 3V13+4V5 + (n — 11)v2
if and only if T € Tg(n).
7. Forn > 11, the HSO index attains its eighth minimum value
HSO(T) = V13 +2V5 + 210+ (n — 7)V2

if and only if T € T7z(n).

Proof. Let T be a tree of order n. We know from Theorem 3 that P, is
the minimal tree for HSO. So in this proof, we consider T' 2 P,. One
can easily verify the results by Sage software for 7 < n < 10. Next, we
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consider n > 11. If T € T;(n) (1 < i < 7), then we denote the value of
HSO(T) as A;. Thus, we have

3/(3) +35@ + (n -7V = 313 L 354 (n - T)V2 for i = 1,
2/(3) + 2/ @+ F3) + (n — O)VE= VI3 +2V5 + VIO + (n — 6)VE for i = 2,
H(3)+7@+2i@+(-5)vE= Y3 4 V54+2VT0+ (n—5)VE  fori=3,
A; = 4f(%)+4f(2)+(n—9)\f:2\/ﬁ+4\/5+(n—9)\/§ for i = 4.

8(8) 435+ 5B + (n—8)v2 = 3YE L 3B+ VIO + (n - 9)VE  fori =35,

6f(%)+4f(2)+(n—11)\/§:3m+4\/§+(n—11)\/§ for i = 6,

f(%)+2f(2)+2f('3)+(n77)\/§—\/7+2\/7+2\/7+(71*7)\/7 for i = 7.

One can easily check that A7 > Ag > A5 > Ay > Az > Ay > A;. Let
U Ti(n). Now, it is sufficient to prove that HSO(T) > Ay for all

TeT(n )\A( ). Let T € T(n)\A(n). Since T' 2 P,,, we must have ¢ > 3.
If ¢ = 3, then since n > 11, we must have T € T1(n)UT2(n)UT3(n) C A(n),
which is a contradiction. So we consider ¢ > 4. Now, we construct the
proof in the following two cases.

Case 1. £ = 4. In this case 3 < A < 4. So, we construct this case into
following sub-cases.

Case. 1.1. A = 3. In this case, T' contains exactly two vertices of degree
3. Let u, v € V(T) such that dr(u) = dr(v) = 3. Now, we consider the
following two sub-cases.

Case. 1.1.1. wv € E(T). Then 0 < ¢; < 3,asn > 11. If 0 < ¢; < 2, then
we must have T € T4(n) U T5(n) U Tz(n) C A(n), a contradiction. Hence

we consider ¢; = 3, in which case

HSO(T) = f(g) 4 F2)+3£(3) + (n—6)V2

@+¢5+3m+(n—6)ﬂ>A7.

Case. 1.1.2. uwv ¢ E(T). Then 0
T € Ts(n) C A(n). So we consider 1

. For ¢; = 0, we must have

<46 <4
<ty < 4. If we represent the value
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of HSO(T) at ¢ =i by B;, then we have
57(8) + 352+ F3) + (n — 10)v2 = 313 4 36 + VIO + (n — 10)v3
4(3) +2/(2 +27(3) + (n - 9HVE = 2VIT + 2v5 + 2VI0 + (n — 9)VZ
3(8) + £(2) +3£(3) + (n —8)v2 = 38 L VB4 3VI0 + (n — 8)V2

2/(3) + 4/ @ + (0 - DVE=VIB +4VI0 + (n — IVE

One can easily check that

By > B3> By > By > V13+2V5+2V10+ (n — T)V2 =

for i = 1,
for i = 2,
for i = 3.

for i = 4.

Az.

Case. 1.2. A = 4. Note that T contains exactly one vertex of degree 4.
Let w € V(T') such that dp(u) =4. As, n > 11, we have 0 < ¢; < 3. If we

represent the value of HSO(T) at ¢1 =i by C;, then we have
4f(%) +4F(2) + (n—9VZ = 8V5 + (n — 9)V2
3£(4) +3£(2) + F(4) + (n = 8)V2 = 6V5 + VIT+ (n - 8)V2

24(3) +2£(2) + 2f(4) + (0~ V2 = 45 + 2VIT 4 (n — V2

H(4) + £2) +3£@) + (0~ 6)vZ = 2V5 + 3VIT + (n — 6)v2

One can easily check that

03>C2>C1>Co>\/ﬁ+2\/5+2\/ﬁ+(n—7)\/§=

Case 2. ¢ > 5. By Lemma 2, it is evident that

HSO(T) = V2(n—1) + 5(f(2) + f(3) - 2v2)

= (n—11)V2+5V5 4+ —— \F

> V13 +2V5 + 210 + (n — 7)V2 = A

for i =0,
for: =1,
for i = 2,
for i = 3.
A
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Table 1. Ordering of minimal trees with respect to the HSO index for
small values of n.

Second Third Fourth  Fifth Sixth Seventh Eighth
n=4 T - - - - - -
n= T T - - - - -
n=6 T Ts Te T Te - -
n="7 - - - Ty Tio Ti Tio
n=3 - - - Ti3,T14 Tis Tie Tiq
n= - - - Tys Thg,Too T Ty
n =10 T; (23 <14 < 26) Tor

Remark 1. Theorem 7 does mot completely determine the ordering of
trees with minimal HSO for small values of n. The remaining cases are
summarized in Table 1. The structures of T; for 1 < < 27 in Table 1 are
depicted in Figure 11.

Next, we identify the first seven minimal unicyclic graphs with respect
to the HSO index for a given order n. Accordingly, six families of unicyclic
graphs are constructed as follows.

1. Uy (n) is the collection of graphs generated by attaching a pendent path
of length n — k > 2 to a vertex of C, (see Figure 12 (i)).

2. Us(n) is the collection of graphs generated by attaching a pendent path
of length one to a vertex of C,,_1 (see Figure 12 (ii)).

3. Us(n) denotes the collection of graphs having exactly two adjacent
vertices of maximum degree 3, each of which is adjacent to two vertices of
degree 2. (see Figure 13).

4. Uy(n) is the collection of graphs generated by attaching a pendent path
of length at least 2 to each vertex of C3 (see Figure 14 ).

5. Us(n) denotes the collection of graphs having exactly two adjacent
vertices of maximum degree 3, where one of them is adjacent to two vertices
of degree 2, and the other is adjacent to one pendent vertex and one vertex
of degree 2 (see Figure 15).

6. Us(n) denotes the collection of graphs having exactly two non-adjacent
vertices of maximum degree 3, each of which is adjacent to three vertices

of degree 2. (see Figure 16).



569

° e o ° ° °
N/ N\ I
° 9—0—0 0—0—0 0—0—0—0—0 0o—o0—o0—o
I / I
° ° ° °
T1 T2 T3 T4 T5
° e o e o o o ° °
AN / N\ \1/ N
°o—o 0—0—0—0 0—0—o 0—0—0—0 o—o0—o
/ AN
° o o ° ° °
Ts T Ty T‘Q/° T1o
° ° ° ° ° ° °
\ /
90—0—0—0—0 0—0—0—0—0 °o—o °
° /o ° 0—0—0—0—0
Ty Tio ° T3 ‘I' T4 /°
o o ° ° ° °
| I I /
0—0—0—0—0—0 0—0—0—0—0—0 0—0—0—0—0 °o—o
T5 T N ° \°
° ° Ty o/ Tis \o
\ /
e o ° ° °
| I |/
0—0—0—0—0—0—0 0—0—0—0—0—0 o—o—o—o—o—o\
T19 T20 T21 o
° ° °
I \ /
° ° o o
0—0—0—0—0 o—o—o—l—o—o—o o—o—l—l—o—o—o—o
°
cla Tho Tos ° ° T °
\ / /
) ° ° °
o—o—o—cln—l—o—o—o o—o—cln—o—o—o—o 0o—o—o
Tos Tog ° °
o/ Tohr \o

Figure 11. The trees T;, 1 <17 < 27.
It is clear that the classes U (n), Ua(n), Us(n), Us(n), Us(n), and Us(n)
are defined for n > 5,4,8,9,7,8, respectively.

Theorem 8. Among all n-vertex unicyclic graphs, the following results
hold for the HSO index:
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Figure 12. The example of unicyclic graphs belonging to (i) ¢ (n) and
(i) Uz (n).

Figure 13. The example of unicyclic graphs belonging to Uz (n).

Q——@------- —@

>°_° ....... o{———O

——@----- —O

Figure 14. The example of unicyclic graph belonging to Uy (n).

Q——@----- @—

.

Figure 16. The example of unicyclic graphs belonging to Ug(n).
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1. For n > 5, the HSO index attains its second minimum value

HSO(U) = 3f(3) + F(2) + (n — 4)v2 = 3‘ﬁ +V5+ (n—4)V2
if and only if U € Uy (n).
2. Forn > 5, the HSO index attains its third minimum value
HSO(U) = 2f(g) +1B3)+ (n—3)V2 = VI3 + VIO + (n — 3)v2
if and only if U € Uz (n).

8. Forn > 7, the HSO index attains its fourth minimum value
HSO(U) = 4f(3) +2f(2) + (n — 6)vV2 = 213+ 25 + (n — 6)v/2
if and only if U € Us(n).

4. Forn >9, the HSO index attains its fifth minimum value
HSO(U) = 3f(g) F3£(2) + (n—6)vV2 = 3‘ﬁ +3V5+ (n— 6)V2
if and only if U € Uy(n).

5. Forn > 9, the HSO index attains its sizth minimum value

150(0) = I 4 VB4 Vi + (n—5)v2
if and only if U € Us(n).

6. Forn > 9, the HSO index attains its seventh minimum value
HSO(U) = 6f(3) +2£(2) + (n = $)V2 = 3VI3 4+ 25 + (n — 8)v/2

if and only if U € Ug(n).

Proof. Let U be a unicyclic graph of order n. We know from Theorem
4 that C, is the minimal unicyclic graph for HSO. So in this proof, we
consider U 2 C,,. One can easily verify the results by Sage for 5 < n < 8.
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Next, we consider n > 9. If U € U;(n) (1 < i < 6), then we denote the
value of HSO(U) as D;. Thus, we have

3£(3) + £ + (n— V2= 2 4 B+ (n - 4)V2 for i =1,
2f(g)+f(3 +(n—3)V2=VI3+ VIO + (n - 3)v2 for i = 2,
4f(3) +2/@) + (n - OVZ=2VTB+2V5 + (n - 6)V2 for i = 3,
o 3/(3) +3/@) + (n - V2= 2B 4+ 3V5 + (n - 6)V2 for i = 4.
3(3) + 1@+ @) + (n-5)V2 = B 4 VB4 VIO + (n—5)v2  fori=5.
Gf(g)+2f(2)+(n—8)f_3f+2f+ (n —8)V2 for i = 6.

One can easily check that Dg > D5 > Dy > D3 > Dy > D;. Let
U U;(n). Now, it is sufficient to prove that HSO(U) > Ds for all

UeU(n )\.A( ). Let U € U(n)\A(n). As, U 2 C,,, we must have £ > 1.
If £ = 1, then we must have U € U;(n) UlUz(n) C A(n), a contradiction.
So we consider £ > 2. Now, we construct the proof in the following two
cases.

Case 1. ¢ = 2. In this case 3 < A < 4. So, we construct this case into
following sub-cases.

Case. 1.1. A = 3. In this case, U contains exactly two vertices of degree
3. Let u, v € V(U) such that dy(u) = dy(v) = 3. Now, we consider the
following two sub-cases.

Case. 1.1.1. wv € E(U). In this case, the only possibility is that each
pendent path of U is of length 1. Otherwise, U € Us(n) UlUs(n) C A(n),

a contradiction. Consequently, we obtain
HSO(U) = 2f(§) F2£(3) + (n—4)V2 = VI3+2V10+ (n— 4)vV2 > Ds.

Case. 1.1.2. wv ¢ E(U). Note that 0 < ¢; < 2. If ¢ = 0, then
U € Us(n) C A(n), a contradiction. Thus, we consider ¢; # 0. Then we
get at least two pendent edges vpv, and vyvs with dy(vg) = dy(vs) =1
such that ZUEZP; =3 and dU(ZT; > 2. Also, it is clear that there are at least
four edges v;v; with dy(vi) > dy(v;) such that d”EU]‘% = 2. Therefore, we
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can write
HSOWU) = 4f(3)+f3)+/2)+ (n—6)v2
= 2V13+ V10 + V5 + (n — 6)V2 > D.

Case. 1.2. A = 4. We know that 0 < ¢; < 2. First we consider
¢; # 0. Then we get at least two pendent edges v,v, and v,vs with
dy(vg) = dy(vs) = 1 such that o) — 4 and % > 2. Also, it is

du (vq) )
clear that there are at least two edges v;v; with dy (v;) > dy(v;) such that
dy(vi) — 4 Therefore, we can write
dy (vj) 2

HSO(U) > f(4) +3£(2) + (n — 4)vV2 = V17 + 3V5 + (n — 4)V2 > Ds.
Next we take ¢;7 = 0. In this case
HSO(U) = 6£(2) + (n— 6)vV2=6V5 + (n — 6)v2 > D.

Case 2. ¢ = 3. In this case 0 < ¢; < 3. First we consider ¢; > 1.

Then we get at least one pendent edge v;v; with dy(v;) = 1 such that

du (vi)
du (vj)

vpvg other than v;v; with dy(vp) > dy(ve) and dy (vr) > dy(vs) such that

I (flggzzg) + f (%) >f (%) + f(2). Therefor, we can write

> 3. It is clear that there are at least two pairs of edges v,v, and

HSOU) > f(3)+2f(2)+2f <;’) + (n—5)V2

= VI3+2V5+ V10 + (n —5)V2 > Dg.

Now, we consider £; = 0. It is clear that 3 < A < 5. Next, we construct
this case in the following sub-cases.
Case 2.1. A = 3. In this case U contains three vertices of degree 3.
Consider three vertices u, v, w such that dy(u) = dy(v) = dy(w) = 3.
If u, v, w are pairwise adjacent, then U € Uy(n) C A(n), a contradiction.
Thus, we consider that at most two pairs of u, v, w are adjacent. It is easy

to check that U contains three pendent edges vpv,, with dy(v,) = 1 such
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that ZU EZ”; = 2. Again, since n > 9, it is clear that there are at least five

edges v;v;, with dy(v;) > dy(v;) such that 358% = 3. Consequently, we
J

have
HSO(U) > 3f(2)+5f (2) +(n—8)V2 = 5‘F+3xf+(n 8)V2 > Dg.
Case 2.2. 4 < A < 5. In this case, one can easily obtain likewise previous
cases that
HSO(U) > 4f(2) +2f (2) +(n—6)v2=V13+4V5+ (n—6)vV2 > Dg.
Case 3. ¢ > 4. By Lemma 2, it is evident that

HSOW) > v2n + 4(f(2) + () - 2v2)

= (n—8)V2+4v5+2V13

> 3vV13 +2V5 4 (n — 8)V2 = Dg. [

Remark 2. Theorem 8 does mot completely determine the ordering of
unicyclic graphs with minimal HSO for small values of n. The remaining

cases are summarized in Table 2.

Table 2. Ordering of minimal unicyclic graphs with respect to the
HSO index for small values of n.

Third Fourth Fifth Sixth Seventh
n=>5 Uy Us Us - -
= - Uy Us, Us Uz Us
n=7 - - Uy, Uro, U1 Uiz, Uss U4
n-8 U(15<i<19)  Us Unt

The structures of U; for 1 < i < 21 are depicted in Figure 17.

Now we characterize the first seven minimal bicyclic graphs with re-
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Figure 17. The unicyclic graphs U;, 1 < < 21.

spect to the HSO index for a given graph order n. To this end, we con-
struct numerous families of bicyclic graphs. First, we define three families
of bicyclic graphs that contain no pendent vertices. Let Bj(n) C B(n)
denote the collection of bicyclic graphs obtained by joining two nonadja-
cent vertices of a cycle C; (4 <t < n) by a path of length n — ¢t + 1 (see
Figure 18(iii)). Next, let BZ(n) C B(n) denote the collection of bicyclic
graphs obtained by joining two disjoint cycles Cy and Cy (s +t < n) by a
path of length n — s —t + 1 (see Figure 18(ii)). Finally, let B3(n) C B(n)
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denote the collection of bicyclic graphs formed by two cycles Cy and Cy

sharing exactly one common vertex, where s+t —1 = n (see Figure 18(i)).

(i)

Figure 18. The example of bicyclic graphs belonging to (i) B3(n), (ii)
B2(n) and (iii) BL(n).

Now we construct four classes of bicyclic graphs from the aforesaid

families as follows (see Figures 19 (i), (ii)):
Bi(n)={B€Bi(n):t=n}, By(n)={BecBin):s+t=n},

Bs(n) ={B € Bi(n):t <n}, Byn)={Be€Bi(n):s+t<n}

(1) (i) (iif)

Figure 19. The example of bicyclic graphs belonging to (i) Bi(n), (ii)
Ba(n) and (iii) Bs(n).

Next, we construct six families of bicyclic graphs of order n having at
least one pendent vertices as follows:
(1) Bs(n) is the collection of graphs generated from C; : ujusg - - - uy with
4 <t <n—2 by joining u; and us by an edge, and attaching a pendent
path of length n —t to uy (see Figure 19 (iii)).
(2) Bs(n) is the collection of graphs B C B(n) generated from the unique
member of B;(4) by attaching a pendent path of length at least 2 on two
vertices u, v with dg(u) = dg(v) = 3 (see Figure 20 (i)).
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(3) Br(n) is the collection of graphs generated from Cj_1 : ujus -« - Up—1
by joining u; and uz by an edge, and attaching a pendent path of length
1 to ug (see Figure 20 (ii)).

Figure 20. The example of bicyclic graphs belonging to (i) Bg(n) and
(ii) Br(n).

Figure 21. The example of bicyclic graphs belonging to Bg(n).

(4) Bg(n) is the collection of graphs B generated from a member of
Bi(k) (k > 5) or By(k) (kK > 6) by attaching a pendent path of length
n—k > 2 to a vertex u with dg(u) = 3, where u is adjacent to a vertex of

degree 3 and two vertices of degree 2 (see Figure 21).

Figure 22. The example of bicyclic graphs belonging to Bg(n).

(5) By(n) is the collection of graphs B generated from a member of
Bs(k) (k > 5) or By(k) (k > 7) by attaching a pendent path of length
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n—k > 2 to a vertex u with dg(u) = 3, where v is adjacent to a vertex of
degree 2 and two vertices of degree 3 (see Figure 22).

(6) Bio(n) is the collection of graphs B generated from the unique member
of B1(4) by attaching a pendent path on two vertices u, v with dg(u) =
dp(v) = 3, where one pendent path has length 1, another has length
greater than 1.

It is clear that the classes B1(n), B2(n), Bs(n), Ba(n), Bs(n), Bs(n), B7(n),
Bsg(n), Bg(n) and Big(n) are defined for n > 4,6,5,7,6,8,5,7,7,7, respec-
tively.

Theorem 9. Among all n-vertex bicyclic graphs, the following results hold
for the HSO index:

1. For n >4, the HSO index attains its minimum value
HSO(B) =2V13 + (n — 3)v2
if and only if B € Bi(n) U Ba(n).
2. Forn > 6, the HSO index attains its second minimum value
HSO(B) = 3\ﬁ+\f+( 3)V2

if and only if B € Bs(n).

3. Forn > 6, the HSO index attains its third minimum value
HSO(B) = 3V13 + (n — 5)V2

if and only if B € Bs(n) U By(n).

4. Forn > 8, the HSO index attains its fourth minimum value
HSO(B) = V13 +2V5+ (n - 3)V2

if and only if B € Bg(n).
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5. Forn > 8, the HSO index attains its fifth minimum value
HSO(B) = V13 + V10 + (n — 2)v2

if and only if B € Bz(n).

6. For n > 8, the HSO index attains its sizth minimum value

HSO(B) = 5r+f+(n— 5)V2

if and only if B € Bg(n) U Bg(n).

7. For n > 8, the HSO index attains its seventh minimum value

HSO(B):‘/TE+\/E+\/5+(W2)\/§

if and only if B € Bip(n).

Proof. Let B be a unicyclic graph of order n. One can easily verify the
results by Sage for 4 < n < 7. Next, we consider n > 8. If B € B;(n)
(1 <4 <10), then we denote the value of HSO(B) as L;. Thus, we have

4f(4) + (n—3)V2 =2VI3 + (n - 3)V2 for i = 1,2,
3f(%)+f +(n-3)v2=343 4 /54 (n-3)V2 for i = 5,
6f(3) + (n —5)V2 =3VI3 + (n - 5)V2 for i = 3,4,
Li= zf(g)+2f(2 Y+ (n—3)V2=VIZ+2V5 + (n— 3)V2 for i = 6,
2/(3) +3) + (n = 2)VZ = VI3 + VIO + (n - 2)v2 for i =7,
57(3) + 1)+ (n—5)v2 = B 4 VB + (n - 5)v2 for i = 8,9,
(3)+1@) +F@+(n-2)v2= T + VIO +V5+ (n-2)v2 fori=10.

One can easily check that

Lig>Ls=Lg>L;y>Lg>L3=0L4s>Ls>Ly=Lo.

Let A(n U B;(n). Now, it is sufficient to prove that HSO(B) > Lig
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for all B € B(n)\A(n). Let B € B(n)\A(n). If £ = 0, then B € B3(n).
Evidently, HSO(B) = 4f(2) + (n—3)v/2 = 4v/5+ (n — 3)v/2 > Lyo. Next,
we consider £ > 1. Now, we construct the proof in the following three

cases.
Case 1. / =1. It is clear that 3 < A <5 and 0 < /¢; < 1. Now we divide
this case into the following sub-cases.

Case 1.1. A = 3. In this case, B contains three vertices of degree 3.
Let u,v,w € V(B) such that dg(u) = dp(v) = dg(w) = 3. Note that
u, v, w are not pairwise adjacent, otherwise, B € Bs(n) U Bz(n) C A(n),
a contradiction. Thus, at most two pairs of three vertices of degree 3 are
adjacent. Next we consider the following two cases.

Case 1.1.1. ¢; = 0. If two pairs of u,v,w are adjacent, then B €
Bg(n) U Byg(n) € A(n), a contradiction. Thus, we consider that at most
one pair of three vertices of degree 3 are adjacent. Then, B contains at
least seven edges connecting vertices of degree 2 and 3. Consequently, we

have
HSO(B) > 7f @) +f2)+ (-T2 = ‘ﬁ+f+(n 7)W2 > L.

Case 1.1.2. /7 = 1. In this case, the graph B necessarily contains at
least four edges incident with a vertex of degree 2 and a vertex of degree

3. Therefore, we can write
3
HSO(B) > Af <2) +£(3)+(n—4)V2 =2V13+V10+ (n — 4)V2 > Lyo.

Case 1.2. 4 < A < 5. We prove this case in following two sub-cases.
Case 1.2.1. ¢; = 0. In this case, B must contain at least three edges
joining vertices of degree 2 with a vertex of degree A. In addition, G has

one pendent edge. Consequently, we obtain

HSOG) > 3f (ﬁ) L)+ (n-3)VE

> 4f(2)+ (n —3)V2=4V5+ (n — 3)V2 > L.
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Case 1.2.2. /; = 1. In this case B must contain at least two edges joining
vertices of degree 2 and A. In addition, B has exactly one pendent edge.
Consequently, we obtain

HSO(B) > 2f(%)+f(3)+(n—2)\/§

Y

21(2) + F(3) + (n — 2)v2 = 2v5 + V10 + (n — 2)v2 > L.

Case 2. ¢/ = 2. It is clear that 3 < A < 6 and 0 < /1 < 2. Now we
construct the following two cases.

Case 2.1. A = 3. In this case, B contains four vertices of degree 3. Let
u,v,w,x € V(B) such that dg(u) = dg(v) = dg(w) = dp(x) = 3. Note
that, at most five pairs of vertices u, v, w,x are adjacent, as B is bicyclic.
If five pairs of them are adjacent, then n > 8 implies B € Bg(n)UBio(n) C
A(n), a contradiction. Thus, we consider that at most four pairs of them
are adjacent. It is evident that there exists at least two edges v;v; € E(B)
that do not belong to any pendent path with dg(v;) > dp(v;) such that

ZEE:; = g Again, we know that f(3) + f(1) > f (2) + f(2). Thus, we
obtain

HSO(B) > Af (g) +2f(2)+(n—5)v2 = 2V13+2V5+ (n—5)v2 > Lyy.

Case 2.2. 4 < A < 6. We consider the following three sub-cases.

Case 2.2.1. ¢; = 0. In this case, we definitely get two pendent edges
connecting the pendent vertex with a vertex of degree 2. Again, it is
clear that there exist at least two non-pendent edges v;v; € E(B) with

dp(v; 4 .
dp(v;) > dp(vj) such that 5(v:) > —. Consequently, we obtain
dp(v;) — 2

HSO(B) > 2f (3) +2£(2) + (n = 3)V2 = 4V5 + (n — 3)V2 > L.

Case 2.2.2. /; = 1. Then B contains at least three non-pendent edges

dp(v;

5(vi) > § Again, there are two
dB(Uj) 2

pendent edges upu,, uyus in B with dg(u,) = dp(us) = 1 such that

v;v; with dg(v;) > dp(v;) such that
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dp(up) > 3 and dp(ur) = 2. Thus, we derive
dp(ug) dp(us)

HSO(B) > 3f (2) +1@)+ F3)+ (n—4)V2

3\/>+\[+\/>+(n— 4)V2 > Lyo.

Case 2.2.3. /7 = 2. It is evident that there exist two pendent edges

dp(vi
v;v; € E(B) with dp(v;) = 1 such that BEU )
B(Yj

> 3. Therefore, we have

HSO(B) > 2f(3) + (n — 1)v2 =2V10 + (n — 1)v2 > Ly,.
Case 3. ¢ > 3. By Lemma 2, it is evident that

HSO(T) > vVZ(n+1) + 3(f(2)+f(g) —2\/5)
= (n— )\f+3\f+3f > L. u

Remark 3. Theorem 9 does mot completely determine the ordering of
bicyclic graphs with minimal HSO for small values of n. The remaining

cases are summarized in Table 3.

Table 3. Ordering of minimal bicyclic graphs with respect to the HSO
index for small values of n.

Second Third Fourth Fifth Sixth Seventh

n=>5 B1 BQ Bg B4 - -
- - Bs Bg B7, Bg By
n="7 - - By By, Bia B3 B4, Bis

The structures of B; for 1 < i < 15 are depicted in Figure 23.
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Figure 23. The bicyclic graphs B;, 1 <1i < 15.

3 Concluding remarks

In this work, we revisited and refined some existing results concerning
the Hyperbolic Sombor index. We disproved the general monotonicity
claim under edge addition and established a sufficient condition for its
validity. Sharp bounds were also obtained for trees, unicyclic, and bicyclic
graphs, with the corresponding extremal structures characterized. Finally,
we identified the first eight minimal trees and seven unicyclic and bicyclic
graphs with respect to HSO, providing a finer structural ordering and a
more complete theoretical foundation for this index.

To prove the maximal case of Theorem 4 in [1], the relation (4) was
assumed to be obvious, which is not true in general. Although the result

itself is correct, the proof remains incomplete. In [1], this result was estab-
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lished for trees. From Theorems 5 and 6, one can readily verify that the
same holds for unicyclic and bicyclic graphs as well. Therefore, proving
the result for the remaining graph classes can be considered as future work.
This study identifies the maximal graphs for the HSO index up to the bi-
cyclic family. Generalizing these findings to c-cyclic graphs may serve as an
interesting direction for future research. Furthermore, the characterization
of extremal graphs with respect to the HSO index for fixed parameters—
such as the number of pendent vertices, chromatic number, domination
number, and vertex or edge connectivity—also presents promising avenues

for further investigation.
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