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Abstract
The Hyperbolic Sombor index HSO(G) of a graph G is defined

as
NG
HSO(G)= >

viv; €E(G) mln{di’ d]}
where d; and d; denote the degrees of the vertices v; and v;, respec-
tively. This index was recently introduced by Barman et al. [Geo-
metric approach to degree-based topological index: Hyper-
bolic Sombor index, MATCH Commun. Math. Comput.
Chem. 95 (2026) 63—94], who explored some of its mathematical
properties and applications. However, their work contains several
inaccuracies that require correction. In this paper, we first identify
and rectify the errors found in the earlier study. We then extend
the investigation by establishing new mathematical results for the
Hyperbolic Sombor index across various classes of graphs, including
trees, unicyclic graphs, and bicyclic graphs. In addition, we derive
some lower and upper bounds for HSO(G) in terms of the number
of edges, maximum degree and minimum degree, and we character-
ize the graphs that attain these bounds. Finally, we conclude the
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paper by outlining potential directions for future research in this
emerging area.

1 Introduction

All graphs considered in this paper are finite, simple, and connected. For
a graph G, we denote its vertex set and edge set by V(G) and E(G),
respectively. The order and size of G are given by |V(G)| = n and |E(G)| =
m, respectively. The edge set E(G) contains e = v;v; if and only if the
vertices v; and v; are adjacent. The graph modifications of edge removal
and insertion are expressed as G —{v;v;} and G+{v;v;}, respectively. The
degree of a vertex v; € V(G), written d;, is the number of neighbors of v;
in G, and the set of neighbors of v; is denoted by Ng(v;). The maximum
and minimum degrees of G are denoted by A(G) and 6(G), respectively.
A graph G is said to be regular if A(G) = §(G). A vertex of a graph G
with degree one is called a pendent vertex, and the edge incident to it is
called a pendent edge. A graph with m = n 4 ¢ — 1 edges is referred to as
a c-cyclic graph. In particular, for ¢ = 0,1, 2, such graphs are called trees,
unicyclic graphs, and bicyclic graphs, respectively.

We use the standard notations S,, P,, C,, and K, to denote the
star, path, cycle and complete graphs of order n, respectively. The degree
sequence of an n-vertex graph G is the sequence (di,ds,...,d,), where
d; denotes the degree of the i-th vertex of G, arranged in non-increasing
order, that is, d; > dy > --- > d,,. Whenever the graph G is clear from the
context, we omit the (G) part in the notation. For undefined terminology
and notation, we refer to [7].

Chemical graph theory, a branch of mathematical chemistry, employs
graph-theoretical concepts to model and analyze molecular structures. In
this framework, molecules are represented as graphs in which atoms cor-
respond to vertices and chemical bonds to edges, providing a rigorous
mathematical basis for investigating molecular properties. Molecular de-
scriptors, commonly referred to as topological indices when defined on
molecular graphs, are fundamental tools for virtual screening and for pre-

dicting physicochemical properties of molecules [6,18].
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Among these, degree-based topological indices play a central role due
to their computational efficiency and predictive power, making them indis-
pensable in quantitative structure—property relationship (QSPR) studies.
Such indices are generally defined as a sum, over all edges of a graph, of
quantities that depend on the degrees of the end-vertices.

A significant development in this area arose from Gutman’s introduc-
tion of a geometric interpretation for the Sombor index [19], which has
inspired extensive research in both mathematics [1,2,9,13,17,23,24,26,29,
32-34] and chemistry [28], as well as comprehensive surveys [22,27]. This
geometric viewpoint has since led to a growing family of related indices,
including the elliptic Sombor [3,21], Euler—Sombor [12,20,31], Hyperbolic
Sombor [4], diminished Sombor [16, 25], and augmented Sombor [15] in-
dices. In this paper, we focus on one such Hyperbolic geometric interpre-
tation—based index, namely the Hyperbolic Sombor index (HSO). For a
graph G, it is defined as

\J 47+ d5

HSO(G) = WEZE(G) AR
In [4], Barman and Das established several fundamental results concern-
ing the Hyperbolic Sombor index HSO(G). They derived lower bounds
in terms of the size of a graph, obtained inequalities involving the Som-
bor index together with the maximum and minimum degree, and pro-
vided bounds using the first Zagreb index. Furthermore, they proved that
among all graphs, the star graph maximizes and the cycle graph minimizes
HSO(G), while within the class of trees, the star graph maximizes and the
path graph minimizes this index. They also examined its predictive power,
structure sensitivity, and degeneracy in the context of alkane isomers. In
a subsequent study [5], Barman and Das investigated the chemical sig-
nificance of HSO(G) through curvilinear regression with physicochemical
properties of benzenoid hydrocarbons.

The primary motivation of the present study arises from [4], as several
of their results contain flaws. In this paper, we both highlight these flaws

in the original results and establish new mathematical findings for the
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Hyperbolic Sombor index across various classes of graphs, including trees,
unicyclic graphs, and bicyclic graphs. In addition, we derive some lower
and upper bounds for HSO(G) in terms of the number of edges, maximum
degree and minimum degree, and we charcterize the graphs that attains
these bounds.

The remainder of this paper is organized as follows. In Sect. 2, we point
out flaws in the results of [4]. In Sect. 3, we present new results for the
Hyperbolic Sombor index for unicyclic and bicyclic graphs. In Sect. 4, we
derive some lower and upper bounds for HSO(G) in terms of the number
of edges, maximum degree and minimum degree, and we characterize the

graphs that attains these bounds. Finally, in Sect. 5, we conclude the
paper.

2 Flaws in the results of [4]

In this section, we point out the flaws in the results of [4]. We begin with
the following key observation.

Remark 1. In the statements of the Theorems 1, 2 and 3 in [4], the
authors mentioned that “the equality holds if and only if G is a complete

graph”. But these statements are not correct.

Comment on Theorems 1 and 3 [4]: The inequalities presented in the
theorems are correct; however, the statements regarding equality are not
accurate. The correct formulation is: “ Equality holds if and only if G is

a regular graph”. Both proofs rely on the following inequality:

For any edge v;v; € E(G), we have (d; — dj)? > 0 with equality if and
only if d; = d;. Since G is connected, equality in the statements of the
theorems holds if and only if dy = ds = --- = d,,, that is, if and only if G

is a regular graph.

Comment on Theorem 2 [4]: The inequality stated in Theorem 2 are
correct, but the condition for equality is not. To ensure correctness and

completeness, we provide a revised proof of the theorem. First, we define
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a graph H as follows:

Let T be the class of connected graphs H = (V, E) of order n, i.e.,
|[V(H)| = n, with minimum degree ¢, such that the vertex set V(H) is
partitioned into two disjoint subsets U and W, satisfying the following

conditions:
e V(H)=UUW,and UNW = 0),
e there are no edges within U (i.e., H[U] is an empty graph),
e edges may or may not exist within W,
e for every vertex v; € W, the degree d; = 4.

Four graphs Hy, Hs, H3 and H4 have been shown in Fig. 1. In particular,
H, is a graph of order 7, H, and Hj3 are graphs of order 8, while Hy is a
graph of order 9. One can easily see that H; € " for 1 <i < 4.

2EEEZ

Figure 1. Four graphs Hi, H2, Hs, and Hy.

We now provide a revision of Theorem 2 from [4], where we establish a
relationship between the Sombor index and the Hyperbolic Sombor index
of any connected graph G.

Theorem 1. Let G be a simple connected graph with maximum degree A,

minimum degree §, and Sombor index SO(G). Then

L so) < HSO@) <

X - SO(G).

| =

Moreover, the left equality holds if and only if G is a reqular graph, and
the right equality holds if and only if G is a regular graph or G € I
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Proof. Since § < d; < A(1<i<n), wehave x < &

0

IN
Sl

Upper Bound: Using the above, from the definition of the Hyperbolic

Sombor index, we obtain

[d2 + g2 Jd2 4+ g2
HSOG) = Y. VTG 3 fﬂl'sow).

< —
min{di, dj} o

’Ui’UjEE(G) ’UivjEE(G)

The above equality holds if and only if 6 = min{d;, d;} for any edge
ViV; € E(G)

Suppose that the above equality holds. Then 6 = min{d;, d,} for any
edge v;v; € E(G). Since G is connected, we can partition the vertex set
as V(G) = UUW with UNW = 0, where W counsists of all vertices
of degree §, while U contains the remaining vertices, each having degree
strictly greater than ¢, and there are no edges between vertices within U (
that is, the induced subgraph G[U] is empty). If |U| = 0, then all vertices
have the same degree ¢, and thus G is a regular graph. Otherwise, |U| > 0.
Then G = H, where H € T

Conversely, let G be an r-regular graph. Then § = r, HSO(G) = v/2 -
|E(G)|, and SO(G) = v2r-|E(G)|. Thus we have HSO(G) = % - SO(G).

Let G = H, where H € I'. From the definition, for any edge v;v; €

B+ \/d2 + 2
E(G) with d; > d; = 6, that is,

min{di, 4, . Hence
HSO(G) = E . Vd%er? — 7Vd$+d§ _ L SO(G)
B min{d;, d;} 0 B '
viv; €EE(G) v;v; EE(G)

Lower Bound: Similarly to the upper bound, we obtain:

[+ & Py
HSO(G) = Z Y > Z g—l-SO(G).

min{di, d]} - A B A

viv; €EE(G) v;v; EE(G)

The above equality holds if and only if A = min{d,, d;} for any edge
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vv; € E(G), that is, if and only if A = min{d;, d;} < A for any edge
v;v; € E(G), that is, if and only if d; = d; = A for any edge v;v; € E(G),
that is, if and only if G is a regular graph as G is connected. |

Uk ................... W

Figure 2. T'wo graphs Hs and Hg.

Remark 2. In the proof of Theorem 4 in [4], the authors stated that “it
is obvious that the value of HSO(G) increases when we add edges to the
graph G”. Furthermore, they also mentioned that in the proof of Theorem
5 “it is obvious that the value of HSO(G) decreases when we remove edges
from the graph G”. However, these statements are not correct.

To illustrate this, consider the two graphs Hs and Hg shown in Fig. 2.

A direct calculation gives

HSO(Hs) — HSO(Hs + vyvg) = 2V17 — 2v/5 — /2 > 2.35 > 0,
which shows that HSO(H;) > HSO(Hs + vive). Similarly,
HSO(He + vive) — HSO(Heg) = 2V/5 + 4V17 + V2 — 24/ — 410 > 6.12 > 0,

implying that HSO(Hg + vive) > HSO(Hg).

Remark 3. In Theorem 5 of [4], the proof of the inequality HSO(T) <
HSO(S,,) is not entirely rigorous. Although the argument is conceptually

simple, the authors omitted a necessary justification: for any edge v;v; €



&G+ d5
< —1)2+1.
min{di, d]} - (n ) +

Without this bound, the inequality lacks completeness.

However, the proof of the inequality HSO(T) > HSO(P,), as pre-
sented in the same theorem, is incorrect. The authors attempted to es-
tablish this result using the principle of mathematical induction, but the
method was not applied properly. Specifically, to prove HSO(Ty+1)
HSO(Py4+1), one must use the induction hypothesis HSO(T})
HSO(Py), where Tyy1 and Ty are any trees of order k + 1 and k, re-

>
>

spectively. Instead, the authors considered a very special kind of tree for
T)+1, rather than an arbitrary tree of order k£ 4 1, which invalidates the
generality of their argument. Therefore, the proof method is flawed. This
issue is similar to what occurs in Theorem 4 of [4], where the proof contains
similar flaws.

Based on Remarks 2 and 3, it is evident that the proofs of Theorems
4 and 5 in [4] are incorrect. The concepts are wrong. We now revise the

proof of the Theorem 5 in [4]. For this first we prove the following result.

Lemma 1. Let G be a graph with mazimum degree A. Then

(1) For any pendent edge v;v; € E(G), we have
A2+ &2
bt < VAT
min{d;, d;}

with equality on the left if and only if d; = 2 > 1 = d;, and equality on the
right if and only if d; = A > 1 =d;.

(12) For any non-pendent edge v;v; € E(G), we have

\/ 47+ d3
V2 < <

1
v - _ 2

with equality on the left if and only if d; = d;, and equality on the right if
and only if d; = A > 2 = d;.
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Proof. Let v;v; be any edge in G with d; > d;. Then

B+ \/d2 A
min{d;, d;} d2 L )

(¢) For any pendent edge v;v; € E(G) (1 =d; < d; < A), we have

\f<‘/72 =\/d?+1< VA2 +1

where A is the maximum degree in G. Using the above result in (1), we

,/d2+d2
<VAZ4L

- mm{dl7 d;} —

obtain

(#2) For any non-pendent edge v;v; € E(G) (2 <d; < d; < A), we have

V2 < g%\/A2+4,

gw\s.\,

where A is the maximum degree in G. Using the above result in (1), we

obtain
&+ d5
VA2 +
- mm{dl, d; }
This completes the proof of the result. |

Corollary 1. Let G be a graph of order n. Then
(t) For any pendent edge v;v; € E(G), we have

\J/d? + d?
i T4
<4< -1)2+1
ﬁ_min{di,dj}_ (n =1+

with equality on the left if and only if d; = 2 > 1 = d;, and equality on the
right if and only if d; =n —1>1=d;.



522

(12) For any non-pendent edge v;v; € E(G), we have

\J 42+ d?
V2 <

1
< v _ —_1)2

with equality on the left if and only if d; = d;, and equality on the right if
and only ifdy=n—1>2=d;.

Theorem 2. Let T be a tree of order n. Then
2V5 4+ (n—3)V2 < HSO(T) < (n—1)v/n2 — 2n +2

with left equality if and only if T = P, and the right equality if and only
if T =25,.

Proof. Upper Bound: Let v;v; be any edge in 1" with d; > d;. Then by

Corollary 1, we obtain
47+ d3
— < —1)2+1.
min{di, dj} - (n ) +
Thus we have

&+ d5
HSO(T)= Y  —t———=<(n-1)Vn?-2n+2.

viv CB(T) min{d;, d;} ~

Moreover, the above equality holds if and only if d; =n —1 > 1 = d; for
any edge v;v; € E(T), that is, if and only if 7= S,,.

Lower Bound: Let p be the number of pendent vertices in 7. Then

p > 2. By Corollary 1, we obtain

\J A7+ d? \J &7+ d?
HSOT)= Y. e Y ’

vivj EE(T), mln{di’ dj} viv; €E(T), mln{di’ dj}
di>d;j=1 d;>d;>2

>pVi+(n—p—1)v2
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=(n-1)V2+p(V5-V?2)
>(n—1)vV2+2(V5—Vv2) =2V5+ (n—3) V2.
Moreover, the equality holds if and only if p = 2 with d; = d; for any

non-pendent edge v;v; € E(T), and d; =2 > 1 = d; for any pendent edge
vv; € E(T), that is, if and only if T = P,. |

In the next result, we revisit Theorem 4 from [4] and offer a revised

proof for one of its parts.

Theorem 3. Let G be a connected graph of order n. Then HSO(G) >
V2n with equality if and only if G = C,,.

Proof. Let m be the number of edges in G. Since G is connected, we have

m>n—1. If m=n—1, then G is a tree T. By Theorem 2, we have
HSO(T) > 2V5+ (n—3) V2

with equality if and only if T'2 P,. Using this result, we obtain

[d2 + a2
HSO(G) = HSO(T) = Y VTS > 2V5+(n—3)vV2 > V2n.

v;v; EE(T) mln{di’ d]}

The inequality strictly holds. Otherwise, m > n. By Lemma 1, we obtain

HSOG) = Y| 7Vd?+d? >V2m>V2n
N v;v; EE(T) min{di’ d‘]} B a .

Since G is connected, the above equality holds if and only if m = n and

d; = d; for any edge v;v; € E(G), that is, if and only if G is a regular

graph with m = n, that is, if and only if G = C,. |

Remark 4. The other part of Theorem 4 of [4], HSO(G) < HSO(S,,) is

still open.
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3 Extremal results on unicyclic and

bicyclic graphs with respect to the
hyperbolic Sombor index

This section deals with two classes of graphs: unicyclic graphs, and bicyclic
graphs. In order to establish our main results, we first present the following

auxiliary result.

Lemma 2. Let

f@=z(@+2?+1+(n-2-3)/(n-z-1)0°+1, 1<z < V;SJ

. , : -3
Then f(x) is a decreasing function on 1 < x < VQ J

Proof. Since
flx)=z/(z+2)?24+14+n—2-3)y/(n—xz—-1)2+1,
we have

f'(z)
(x+2)2+1+2(x+2) (n—x—1)2+1+(n—x—1)(n—x—3)'

(x+2)2+1 (n—xz—-1)2+1

2
now prove the following claim.

Since 1 <z < V—_lsywehaven—x—?)zxandn—az—l2x+2. We

Claim 1.
[(z+2)2—|—1] [2(n—x—1)(n—x—2)+1}
> [(nf:vfl)erl] [2(x+2)(x+1)+1 :

Proof of Claim 1. We have to prove that

2@4+2°n—z—1)(n—z—-2)+2(n—a—1)(n—2z —2)+ (z +2)*
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>2x+2)(x+)(n—x—-1)2+2(x+2)(z+ 1)+ (n—z—1)%

that is,
2(z+2)(n—z—1) (x+2)(n—x—2)—(x+1)(n—m_1)}
+(n—z—-1)(n—2—3)—(x+2)z >0,
that is,
2@+2)(n—z-Dn-220-3)+n-xz-1)(n—2-3) - (v+2a
>0,
which is trueasn —x—3 >z and n—x —1 > x + 2. Hence
(@22 +1] 2 -2 1) (n -2 -2)+1]

> [(n—x—1)2—|—1] [2(33—!—2)(3:—&—1)4—1].

This proves the Claim 1.

Again sincen—x—2>x+1land n—z — 1> x + 2, we obtain
2ln—z—1)(n—2z—-2)+1>2(x+2)(x+1)+1.
From Claim 1 with the above result, we obtain
2
[(x+2)2+1] [2(%71’*1)(717’13*2)4’1]
2
> [(n—m—l)z—kl} {2(3:4—2)(3:—&—1)—!—1] ,
that is,
(x+2)2+1[2(n—x—1)(n—x—2)+1}

> (n—x—l)Q—l-l[2(1‘—&-2)(%4—1)—&-1},
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that is,

(x+2)2+1+z(x+2) < m—xz-12+1+n—-2—-1)(n—z-23)
(x+2)2+1 - (n—z—1)2+1 '

Using the above result, we conclude that f’(x) < 0. This proves the
result. |

f .
f j

S(ai1,az,as) S(n—3,0,0) 5"

Figure 3. Two graphs S(ai,az2,as3) and S(n — 3,0,0) = S,.

Let S(a1,a2,as3) be a unicyclic graph of order n with cycle length 3,
where n — 3 pendent vertices are attached to the vertices of the cycle
Cs. Specifically, a1, a2, and a3z denote the numbers of pendent vertices
attached to the three vertices of Cj, satisfying a1 + as +a3 = n — 3
and a1 > as > a3z > 0. In particular, the graph S/ is a special case
of S(a1,as,as), obtained by setting (a1, az2,a3) = (n — 3,0,0). For an

illustration, see Fig. 3. Now,

HSO(S(a1,a2,a3)) = a1 v/(a1 +2)2 + 1 +az /(a2 +2)2 + 1

a1+ 2 2
2)2+1 1
+az/ (a3 +2)? +1+ <a2+2> +

2 2
as + 2 a; + 2
+\/(2 >+1+\/<1 >+1. (2)
as + 2 as + 2

We now establish lower and upper bounds for HSO(G) in unicyclic

graphs in terms of their order n, and characterize the corresponding ex-
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tremal graphs.

Theorem 4. Let G be a unicyclic graph of order n. Then

V2n < HSO(G) < VN2 —2m+2+Vn2—2n+5+v2  (3)

with equality on the left if and only if G = C), and equality on the right if
and only if G = S],.

Proof. Upper Bound: Let A and p be the maximum degree and the
number of pendent vertices in G. By Lemma 1, for any pendent edge
vv; € E(G) with d; > d; = 1, we have

i+ d3
< VA2 41

min{d;, d;} @)

By Lemma 1, for any non-pendent edge v;v; € E(G) with d; > d;j, we have

\/m
<ivarya (5)

min{d;, d;} ~ 2

Since G is unicyclic, we have p < n — 3. We consider the following two

cases:

Case l. p = n—3. In this case G = S(a1, as, as), where a1 +as+a3 =n—3
and a; > as > a3z > 0. If ag = 0, then as = a3 = 0 and a; = n — 3, that
is, G = S(n—3,0,0) =2 S/ with

HSO(G) = (n—3)vn2 —2n+24+vVn2 —2n+5+2

and hence the equality holds. Otherwise, as > 1. Since a; > as > ag > 0
and a1 + as + a3 = n — 3, we have ay < L%’SJ We consider the following

cases:

Casel.1. ap = 1. In this case, we have either a3 = 0 or a3 = 1. For

as = 0(a; =n —4), we obtain

HSO(S(n —4,1,0)) 4)/(n—2)2 + 1+ V10 + v3.25
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n—2 2 n—2 2
1 [ B
+¢(3)++¢<2)+
1 n-1
<(n—4)\/(71—2)2+1+4.97+"Tjtn2

<m=3)Vn2—2n+2+vVn2—2n+5+2

as n > 5. The result (3) strictly holds.

For a3 =1(a; = n —5), we have

HSO(S(n —5,1,1)) = (n = 5)/(n = 3)2 + 1+ 210 + (n;3) +1

n—3\°
V2 (5 ) 1

1 -1
<(n—5)\/(n—3)2—|—1+7.74—|—n3 +”3

<(n=3)Vn2—2m+2+n2—2n+5+2

as n > 6. The result (3) strictly holds.

Casel1.2. a; > 2. Since a1 +as +a3 =n — 3 and a; > as > ag, we have

as+2<a;+2<n—ay—1. Moreover, as < L";?’j and a; <n—>5. Thus

we have

a1vV(a+2)2+14+a3v/(az+2)2+1<(a14+a3z)v/(n—a2—1)2+1

=Mm—-a2—3)vV(n—a2—1)2+1.

Since as > 2, by Lemma 2, we obtain

agy/(ag +2)24+ 14+ (n—as—3)/(n—az —1)2 +1

<2V174 (n—-5)/(n—3)2 + 1.
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Using the above results, we obtain

a1V (a1 +2)2+1+ax /(a2 +2)2+1+a3+/(az+2)2+1

<az/(ag +2)2+14+(n—ag—3)/(n—az —1)2 +1

<2V174 (n—5)/(n—3)2 +1.

Since n > 7, we obtain
a1 +2\?

as + 2
a2—|—2 2

ag + 2

2 2

ai +2 n—3 n—1
1< 1 .

e e (150 <

Using the above results, we obtain

2\ 2 2\ 2 2\ 2 1
2N (2E2) g [(ar2) B D)
as + 2 az + 2 as + 2 4

Using the above results, from (2), we obtain

_|_

J—y

IN
&
/N
S
-1
w
N——
[ V)

+

—_

N
3

I

—_

+
—_
IN
&
VR
S
|+
—_
N———
[
+
—_
N
S
|
—_

HSO(S(ay,a2,a3)) < w +2V174+ (n—5)/(n—3)2 +1

<(m=3)vVn2—2n+2+Vn2—2n+5+V2.
The result (3) strictly holds.

Case2. p < n — 4. Since G is unicyclic, in this case, A < n — 2.
Thus we have vVAZ+1 < vVnZ2—4n+5< vVn2—2n+2 and VAZ+4 <
Vn? —4n +8 < v/n? —2n + 2, as n > 4. Using the above results with (4)
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and (5), we obtain

j{: &+ d5

H R

viv;€E(G
/12 2 [ 12 2
di +d; d; + d?
d; d;
viv  €B(G), v €E(G),
dizdj=1 dizdjEZ

<p A2+1+E%£ A2 44

g\/AQ—HH—p (\/A2+ —;\/A2+4>

IN

g A2+4+wn—4)(vA%+-—;VA2+4>
= (n—4) VA2 +1+2V/A2+4

<(m=3)vVn2—2n+24+vn2—2n+5+ V2

The result (3) strictly holds.

Lower Bound: Let m and p be the number of edges and the number of
pendent vertices in GG. Since G is unicyclic, we have p > 0 and m = n.

Using this with Lemma 1, we obtain

@+ &
HSO(T)= Y

v e(T) min{d;, d;}
N R \/ 47+ d;
- Z min{d;, d;} + Z min{d;, d;}
v  €B(T), L) v  €B(T), LR )
di>dj=1 d;>d;>2

Zp\/5+(mfp)\f2:n\/§+p(\[*\f2)2n\/§.
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Moreover, the equality holds if and only if p = 0 with d; = d; for any edge
v;v; € E(G), that is, if and only if G is a regular graph, that is, G = C,

as (G is unicyclic. |

Cpzs e Coz3 Cp>3 Cozs

4 "
o, cy

Figure 4. Two graphs C}, and C},.

Let C/, and C! denote n-vertex bicyclic graphs constructed from cycles
Cp (p > 3) and Cy (g > 3) as follows: C}, is obtained by joining C), and
C, with a single edge (so that p+ ¢ = n), while C}/ is formed by merging
C, and C; along a common edge (so that p+ ¢ — 2 = n); see Fig. 4. We
obtain

HSO(C) = (n—3)V2+2V13 = HSO(CY).

We now establish a lower bound on HSO(G) for bicyclic graphs in terms

of their order n, and characterize the corresponding extremal graphs.

Theorem 5. Let G be a bicyclic graph of order n. Then
HSO(G) > (n—3)vV2+2V13 (6)

with equality if and only if G = C!, or G = C/..

Proof. Let p(> 0) be the number of pendent vertices in G. We consider

the following three cases:

Casel. p = 0. Since G is bicyclic, the degree sequence of G is (3,3,
2,...,2)or (4,2,...,2). First we assume that the degree sequence of G is
—— ——

n—2 n—1

(3,3,2,...,2). If two vertices of degree 3 are adjacent, then G = C!, or
——

n—2
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G=(). For G=C]

no

we have

HSO(G)4\/ZS+(n3)\/§(n3)\/§+2\/E

and hence the equality holds in (6). For G = C}/, we have

HSO(G)4\/ZS+(n3)\/§(n3)ﬂ+2\/ﬁ

and hence the equality holds in (6). Otherwise, two vertices of degree 3

are not adjacent. Thus we obtain

HSO(G) =6 %+(n—5)\/§:(n—5)\/§+3\/ﬁ

> (n—3)V2+2V13.
The lower bound in (6) strictly holds.
Next we assume that the degree sequence of G is (4,2, ...,2). Thus we

obtain

HSO(G)=4V5+ (n—3)vV2> (n—3)V2+2V13.

The lower bound in (6) strictly holds.

Case2. p = 1. Let v, and v, be the maximum degree vertex and the
pendent vertex in G. Then d, = A and dx = 1. Then we have

2(n+1) Z >A+2(n—2)+1, thatis, 3<A <5,

Let v; (# v) be any vertex in G. Then d; € {2, 3, 4, 5}. First we assume

that the pendent vertex vy, is adjacent to the vertex vy of degree 3 or more.

2
VEXE | s

dy,

Then we have
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Using the above result with Lemma 1, we obtain

HSO(G)= ), W—W+ > Ve G

min{di, d]} - dk dj

v;v; €E(G),
d;>d;>2

viv; EE(G)

>VI10+nvV2> (n—3)vV2+2V13.

The lower bound in (6) strictly holds.

Next we assume that only the pendent vertex vy is adjacent to the

vertex vy of degree 2. Then we have

Vi + d _ 5

o . (7)

Let By = {v,v; € E(G)|v; € Ng(v,)}. For A = 5, the degree se-

quence of G is (5,2,...,2,1). For A = 4, the degree sequence of G is
——
n—2
(4,3,2,...,2,1). For 4 < A < 5, one can easily see that the maximum
——
n—3

degree vertex v, is adjacent to at least two vertices of degree 2.

For A = 3, the degree sequence of G is (3,3,3,2,...,2, 1). Since G
——

n—4
is bicyclic and n > 10, one can easily see that there exists a vertex v, of

degree 3 is adjacent to at least two vertices of degree 2. For 4 < A <5 or

A = 3, using the above result with Lemma 1, we obtain

\/ A2+ d3
DR AL PPN}
v 0,0, EE(G) 7

Using the above result with (7), we obtain

/ 2 /72 2
/d2+d2 d%+dj di +dj
HSO(G) = Xt "k § B A—— § Yy -
@) dp, " d; * o d;j
viv; EB(G)\Eq,
di>d;>2

v;:0,.v; €EE(G)
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> V5 +VI13+ (dy —2)V2+ (n—d) V2> (n— 3)V2 + 2/13.

The lower bound in (6) strictly holds.

Case3. p > 2. By Lemma 1, we obtain

Jd? + d? Jd2 + a2
gsoG) = S Y T4 N> Y7

v;v; EE(G), J v;vj €E(G), J
d;>dj=1 d;>d;>2

>pVh+(n+1—p)Vv2
=(n+1D)V2+p(V5-V2)
>(n+1)vV2+2(V5—v2)
=2V5+(n—1)vV2> (n—3)vV2+2V13.

The lower bound in (6) strictly holds. u

Let C3 3 denote the graph obtained by merging one vertex from each
of two 3-cycles (triangles), and then attaching n — 5 pendent edges to the
common (merged) vertex; see Fig. 5. In total, the graph has n vertices.
We have

HSO(Cs3) = (n—5)Vn? —2n+2+2vVn?2—2n+5+2v2.

We define S]/ as a connected bicyclic graph of order n, constructed from
K, — e (where e is any edge of K4) by attaching n — 4 pendent edges to
one of its vertices of degree 3; see Fig. 5. We have

HSO(S;{):(n—4)\/n2—2n+2+\/n2—2n+5+%\/n2—2n+10+\/13.
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:}n5 :}n—4

"
CS,S Sn

Figure 5. Two graphs Cs 3 and S,,.

We now establish an upper bound of HSO(G) for bicyclic graphs in

terms of their order n, and characterize the corresponding extremal graphs.

Theorem 6. Let G be a bicyclic graph of order n. Then

HSO(G)_(n—4)\/n2—2n+2+\/n2—2n+5+%\/n2—2n+10+\/ﬁ
(8)

with equality if and only if G = S)!.

Proof. For 4 < n <9, by Sage [30], one can easily see that the result holds.
Moreover, the equality holds if and only if G = S!/. Otherwise, n > 10.
Let v; be the maximum degree vertex of degree A. For any v; € V(G),

one can easily see that

/ 1 / 2

Let vy be the second maximum degree vertex of degree ds in G. Let
HSO(e;) be the contribution of an edge e; to HSO(G). From the definition

of the Hyperbolic Sombor index, we have

HSO(G)= Y HSO(e). (10)

€; EE(G)
We consider the following five cases:

Casel. A =n — 1. Since G is bicyclic, we have G = S}/ or G = (7 3. For
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G = SV, we have

1
HSO(G) = (n—4) V/n? — 2n+2+v/n? — 2n + 5ty Vn? — 2n+10+V13

and hence the equlity holds in (8). For G = Cj 5, we have

HSO(G)=(n—5)vVn2—2n+2+2vn2—2n+5+2v2

< (n—4)\/n2—2n+2+\/n2—2n+5+§\/n2—2n+10+\/ﬁ.
The upper bound in (8) strictly holds.

Case 2. A = n—2. In this case we have dy < 4. Let ey, ea, e3 be the edges
in G such that F(G) = {v1v;, v; € Ng(v1)} U {e1, €2, e3}. For 1 <i <3

with e; = v;vk, we obtain

\/ 43+ dj,
HSO(e;) = V———— < V42 +1=1T.

min{d;, d}

Thus we have X

> HSO(e;) <3VIT.

i=1
Since A = |Ng(v1)] = n — 2, there are at least two vertices vy and vy are
of degree 2 or more, where vs, v, € Ng(v1). Let vivs = eq and viv; = es.

Thus we have

HSO(eq) < (%)2—&—1 and HSO(e5) < (%)2“.

Since n > 10, by Lemma 1 with (9), from (10), we obtain

HSO(G)= Y HSO(e;)

e, €E(G)

IN

(A—2)\/A24+1+2 (%)2+1+3ﬁ
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<(n—4)v(n—2)2 +14++/(n—2)2 +4+12.37

<(n—@(n—2+56%j5)+(n—2+ﬁ%§>+12W

1
<(n—4ﬂn—1y+v%2—2n+5+§\hﬂ—2n+10+VB

1
<(n—4)\/n2—2n+2+\/n2—2n+5+§\/n2—2n+10
+ v13.

The upper bound in (8) strictly holds.

Case3. A = n — 3. In this case we have dy < 5. Let ¢}, €}, e}, € be the
edges in G such that E(G) = {v1v;, v; € Ng(v1)} U {€], €5, e, €, }. For

1 <i <4 with €] = vjvg, we obtain
\/ 43 +dj,
HSO(e) = <+VBZ+1=
(ei) = mln{d]7 di} — = V26,

Thus we have

E:HSO ) < 4/26.

By (9), we obtain

AVAT+1=(n-3) <nf3>2+1<(”*3>(”*3*ﬁ>

=n?—6n+9.5.

Since n > 10, by Lemma 1 with the above results, from (10), we obtain

HSO(G)= > HSO(e:)

e; €E(G)

< AVAZ +1+4V26
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<n®—6n+299

<(nfﬁ\ﬂﬂf2n+2+\ﬂﬂ72n+5+%\ﬂﬂf2n+10+¢ﬁ.
The upper bound in (8) strictly holds.

Case4. A =n — 4. In this case we have dy < 6. Let e, e}, €%, e/, el be
the edges in G such that E(G) = {viv;, v; € Ng(vi)}U{el, e, €4, e}, ef }.

For 1 <14 <5 with e/ = v;vy, we obtain

\/ 43 +dy,
HSO(e!) = " < /62 +1=3T.

min{d;, d}
Thus we have s
> HSO(e]) <537
i=1

Since A =n —4, by (9), we have

AVAZ 1= (n—4) (nf4>2+1<("*4)(”*4+ﬁ)

=n? — 8n + 16.5.
Since n > 10, by Lemma 1 with the above results, from (10), we obtain

HSO(G)= > HSO(e;)

e.;EE(G)
< AVA2 414537

< n?—8n+ 46.92

1
<(n—S)(n—1)+§\/n2—2n+10+\/ﬁ

1
<(n—Q\ﬂﬂf2n+2+wﬂﬂ72n+5+§\Mﬂf2n+10
+/13.
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The upper bound in (8) strictly holds.

Case 5. A < n — 5. Similarly, as in Case 4, we have

(n+1) VAT £ 1< (n+1) <n—5>2+1<<"+1>("‘5+ﬁ)

n+1
2(n—25)

<(n—-1)(n-23),

=n?—4n -5+

and hence

HSO(G)= >  HSO(e;)
e, €EE(G)

<(n+1)V/A2Z+1

<(n-3)(n—-1)

<(n—4)\/n2—2n—|—2+\/n2—2n—|—5+%\/m
+/13.

The upper bound in (8) strictly holds. This completes the proof of the

theorem. [ |

4 Upper and Lower bounds on the Hyper-

bolic Sombor index of graphs

In this section we derive some lower and upper bounds for HSO(G) in
terms of the number of edges, maximum degree and minimum degree, and

we charcterize the graphs that attains these bounds.

Theorem 7. Let G be a graph of order n with m edges and mazximum

degree A, minimum degree §. Then

(1+\/%M)m§HSO(G)§ <?+\@—1> m
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with both equalities hold if and only if G is a reqular graph.

Proof. Let v;v; be an edge in G with d; > d;. Since the maximum degree

A and the minimum degree §, we have 1 < % < %. One can easily see
J

that

|2 d; A2 A VAT 4+A
V24+1< d2+1+d Sl s = %. (11)
J

Moreover, the above left equality holds if and only if d; = d;, and the right
equality holds if and only if d; = A, d; = 6.

Lower Bound: Using (11), we obtain

d2

d2 ,/2 2
/1+1+d A+6+A

which implies that

d? d; ) )
s 1>+ >1+
&z dj AT+ 2+ A VAZ + 682+ A
with equality if and only if A = 4.
Using this, we obtain

HSOG)= Y VS > (0 $)

- > + =
’Ui’UjGE(G) mln{di’ d‘]} ’U,;’UjEE(G) A2 + 52 + A

:(”Vﬁmﬁm

Moreover, the above equality holds if and only if A = 4, that is, if and
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only if G is a regular graph.

Upper Bound: Using (11), we obtain

d2
2t 1:\/5_1’
1/d2+1+

which implies that

d2
,/?+1< +\/§—1<—+\f2—1

with equality if and only if A = 4.

Using this, we obtain

@+ &
HSOG)= Y

vivjeE(G)m
< > (%+\/§_1):(%+\/§—1)m

v;v; EE(G)

Moreover, the above equality holds if and only if A = 4, that is, if and
only if G is a regular graph. This completes the proof of the theorem. W

5 Concluding Remarks

Very recently, Barman et al. [4] introduced the Hyperbolic Sombor index
of a graph G and established several related mathematical results. How-
ever, some of the proofs presented in their work contain inaccuracies. In
this paper, we address and correct those errors, and further contribute by
deriving new results concerning the Hyperbolic Sombor index for various
classes of graphs, including trees, unicyclic graphs, and bicyclic graphs.
Moreover, we presented some lower and upper bounds for HSO(G) in
terms of the number of edges, maximum degree and minimum degree, and

we charcterized the graphs that attains these bounds.
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There remain several unexplored directions in this area, which can be
the focus of future research. In particular, we propose the following open

problems:

Problem 1. Determine the maximal graphs with respect to the Hyper-
bolic Sombor index when the graph order n and the number of pendent

vertices p are fixed.

Problem 2. Determine the maximal graphs with respect to the Hyper-
bolic Sombor index when the graph order n and the chromatic number k

are fixed.
From Remark 4, we present the following conjecture.

Conjecture 1. For any connected graph G, HSO(G) < HSO(S,,).
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