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Abstract

The Hyperbolic Sombor index HSO(G) of a graph G is defined
as

HSO(G) =
∑

vivj∈E(G)

√
d2i + d2j

min{di, dj}
,

where di and dj denote the degrees of the vertices vi and vj , respec-
tively. This index was recently introduced by Barman et al. [Geo-
metric approach to degree-based topological index: Hyper-
bolic Sombor index, MATCH Commun. Math. Comput.
Chem. 95 (2026) 63–94], who explored some of its mathematical
properties and applications. However, their work contains several
inaccuracies that require correction. In this paper, we first identify
and rectify the errors found in the earlier study. We then extend
the investigation by establishing new mathematical results for the
Hyperbolic Sombor index across various classes of graphs, including
trees, unicyclic graphs, and bicyclic graphs. In addition, we derive
some lower and upper bounds for HSO(G) in terms of the number
of edges, maximum degree and minimum degree, and we character-
ize the graphs that attain these bounds. Finally, we conclude the
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paper by outlining potential directions for future research in this
emerging area.

1 Introduction

All graphs considered in this paper are finite, simple, and connected. For

a graph G, we denote its vertex set and edge set by V (G) and E(G),

respectively. The order and size ofG are given by |V (G)| = n and |E(G)| =
m, respectively. The edge set E(G) contains e = vivj if and only if the

vertices vi and vj are adjacent. The graph modifications of edge removal

and insertion are expressed as G−{vivj} and G+{vivj}, respectively. The
degree of a vertex vi ∈ V (G), written di, is the number of neighbors of vi

in G, and the set of neighbors of vi is denoted by NG(vi). The maximum

and minimum degrees of G are denoted by ∆(G) and δ(G), respectively.

A graph G is said to be regular if ∆(G) = δ(G). A vertex of a graph G

with degree one is called a pendent vertex, and the edge incident to it is

called a pendent edge. A graph with m = n+ c− 1 edges is referred to as

a c-cyclic graph. In particular, for c = 0, 1, 2, such graphs are called trees,

unicyclic graphs, and bicyclic graphs, respectively.

We use the standard notations Sn, Pn, Cn, and Kn to denote the

star, path, cycle and complete graphs of order n, respectively. The degree

sequence of an n-vertex graph G is the sequence (d1, d2, . . . , dn), where

di denotes the degree of the i-th vertex of G, arranged in non-increasing

order, that is, d1 ≥ d2 ≥ · · · ≥ dn. Whenever the graph G is clear from the

context, we omit the (G) part in the notation. For undefined terminology

and notation, we refer to [7].

Chemical graph theory, a branch of mathematical chemistry, employs

graph-theoretical concepts to model and analyze molecular structures. In

this framework, molecules are represented as graphs in which atoms cor-

respond to vertices and chemical bonds to edges, providing a rigorous

mathematical basis for investigating molecular properties. Molecular de-

scriptors, commonly referred to as topological indices when defined on

molecular graphs, are fundamental tools for virtual screening and for pre-

dicting physicochemical properties of molecules [6, 18].
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Among these, degree-based topological indices play a central role due

to their computational efficiency and predictive power, making them indis-

pensable in quantitative structure–property relationship (QSPR) studies.

Such indices are generally defined as a sum, over all edges of a graph, of

quantities that depend on the degrees of the end-vertices.

A significant development in this area arose from Gutman’s introduc-

tion of a geometric interpretation for the Sombor index [19], which has

inspired extensive research in both mathematics [1,2,9,13,17,23,24,26,29,

32–34] and chemistry [28], as well as comprehensive surveys [22, 27]. This

geometric viewpoint has since led to a growing family of related indices,

including the elliptic Sombor [3,21], Euler–Sombor [12,20,31], Hyperbolic

Sombor [4], diminished Sombor [16, 25], and augmented Sombor [15] in-

dices. In this paper, we focus on one such Hyperbolic geometric interpre-

tation–based index, namely the Hyperbolic Sombor index (HSO). For a

graph G, it is defined as

HSO(G) =
∑

vivj∈E(G)

√
d2i + d2j

min{di, dj}
.

In [4], Barman and Das established several fundamental results concern-

ing the Hyperbolic Sombor index HSO(G). They derived lower bounds

in terms of the size of a graph, obtained inequalities involving the Som-

bor index together with the maximum and minimum degree, and pro-

vided bounds using the first Zagreb index. Furthermore, they proved that

among all graphs, the star graph maximizes and the cycle graph minimizes

HSO(G), while within the class of trees, the star graph maximizes and the

path graph minimizes this index. They also examined its predictive power,

structure sensitivity, and degeneracy in the context of alkane isomers. In

a subsequent study [5], Barman and Das investigated the chemical sig-

nificance of HSO(G) through curvilinear regression with physicochemical

properties of benzenoid hydrocarbons.

The primary motivation of the present study arises from [4], as several

of their results contain flaws. In this paper, we both highlight these flaws

in the original results and establish new mathematical findings for the
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Hyperbolic Sombor index across various classes of graphs, including trees,

unicyclic graphs, and bicyclic graphs. In addition, we derive some lower

and upper bounds for HSO(G) in terms of the number of edges, maximum

degree and minimum degree, and we charcterize the graphs that attains

these bounds.

The remainder of this paper is organized as follows. In Sect. 2, we point

out flaws in the results of [4]. In Sect. 3, we present new results for the

Hyperbolic Sombor index for unicyclic and bicyclic graphs. In Sect. 4, we

derive some lower and upper bounds for HSO(G) in terms of the number

of edges, maximum degree and minimum degree, and we characterize the

graphs that attains these bounds. Finally, in Sect. 5, we conclude the

paper.

2 Flaws in the results of [4]

In this section, we point out the flaws in the results of [4]. We begin with

the following key observation.

Remark 1. In the statements of the Theorems 1, 2 and 3 in [4], the

authors mentioned that “the equality holds if and only if G is a complete

graph”. But these statements are not correct.

Comment on Theorems 1 and 3 [4]: The inequalities presented in the

theorems are correct; however, the statements regarding equality are not

accurate. The correct formulation is: “ Equality holds if and only if G is

a regular graph”. Both proofs rely on the following inequality:

For any edge vivj ∈ E(G), we have (di − dj)
2 ≥ 0 with equality if and

only if di = dj . Since G is connected, equality in the statements of the

theorems holds if and only if d1 = d2 = · · · = dn, that is, if and only if G

is a regular graph.

Comment on Theorem 2 [4]: The inequality stated in Theorem 2 are

correct, but the condition for equality is not. To ensure correctness and

completeness, we provide a revised proof of the theorem. First, we define
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a graph H as follows:

Let Γ be the class of connected graphs H = (V,E) of order n, i.e.,

|V (H)| = n, with minimum degree δ, such that the vertex set V (H) is

partitioned into two disjoint subsets U and W , satisfying the following

conditions:

• V (H) = U ∪W , and U ∩W = ∅,

• there are no edges within U (i.e., H[U ] is an empty graph),

• edges may or may not exist within W ,

• for every vertex vi ∈ W , the degree di = δ.

Four graphs H1, H2, H3 and H4 have been shown in Fig. 1. In particular,

H1 is a graph of order 7, H2 and H3 are graphs of order 8, while H4 is a

graph of order 9. One can easily see that Hi ∈ Γ for 1 ≤ i ≤ 4.

H1 H2 H3 H4

Figure 1. Four graphs H1, H2, H3, and H4.

We now provide a revision of Theorem 2 from [4], where we establish a

relationship between the Sombor index and the Hyperbolic Sombor index

of any connected graph G.

Theorem 1. Let G be a simple connected graph with maximum degree ∆,

minimum degree δ, and Sombor index SO(G). Then

1

∆
· SO(G) ≤ HSO(G) ≤ 1

δ
· SO(G).

Moreover, the left equality holds if and only if G is a regular graph, and

the right equality holds if and only if G is a regular graph or G ∈ Γ.
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Proof. Since δ ≤ di ≤ ∆(1 ≤ i ≤ n), we have 1
∆ ≤ 1

di
≤ 1

δ .

Upper Bound: Using the above, from the definition of the Hyperbolic

Sombor index, we obtain

HSO(G) =
∑

vivj∈E(G)

√
d2i + d2j

min{di, dj}
≤

∑
vivj∈E(G)

√
d2i + d2j

δ
=

1

δ
· SO(G).

The above equality holds if and only if δ = min{di, dj} for any edge

vivj ∈ E(G).

Suppose that the above equality holds. Then δ = min{di, dj} for any

edge vivj ∈ E(G). Since G is connected, we can partition the vertex set

as V (G) = U ∪ W with U ∩ W = ∅, where W consists of all vertices

of degree δ, while U contains the remaining vertices, each having degree

strictly greater than δ, and there are no edges between vertices within U (

that is, the induced subgraph G[U ] is empty). If |U | = 0, then all vertices

have the same degree δ, and thus G is a regular graph. Otherwise, |U | > 0.

Then G ∼= H, where H ∈ Γ.

Conversely, let G be an r-regular graph. Then δ = r, HSO(G) =
√
2 ·

|E(G)|, and SO(G) =
√
2 r · |E(G)|. Thus we have HSO(G) = 1

δ ·SO(G).

Let G ∼= H, where H ∈ Γ. From the definition, for any edge vivj ∈

E(G) with di ≥ dj = δ, that is,

√
d2i + d2j

min{di, dj}
=

√
d2i + d2j

δ
. Hence

HSO(G) =
∑

vivj∈E(G)

√
d2i + d2j

min{di, dj}
=

∑
vivj∈E(G)

√
d2i + d2j

δ
=

1

δ
· SO(G).

Lower Bound: Similarly to the upper bound, we obtain:

HSO(G) =
∑

vivj∈E(G)

√
d2i + d2j

min{di, dj}
≥

∑
vivj∈E(G)

√
d2i + d2j

∆
=

1

∆
· SO(G).

The above equality holds if and only if ∆ = min{di, dj} for any edge
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vivj ∈ E(G), that is, if and only if ∆ = min{di, dj} ≤ ∆ for any edge

vivj ∈ E(G), that is, if and only if di = dj = ∆ for any edge vivj ∈ E(G),

that is, if and only if G is a regular graph as G is connected.

vk v`
vk v`

H5 H6

Figure 2. Two graphs H5 and H6.

Remark 2. In the proof of Theorem 4 in [4], the authors stated that “it

is obvious that the value of HSO(G) increases when we add edges to the

graph G”. Furthermore, they also mentioned that in the proof of Theorem

5 “it is obvious that the value of HSO(G) decreases when we remove edges

from the graph G”. However, these statements are not correct.

To illustrate this, consider the two graphs H5 and H6 shown in Fig. 2.

A direct calculation gives

HSO(H5)−HSO(H5 + vkvℓ) = 2
√
17− 2

√
5−

√
2 > 2.35 > 0,

which shows that HSO(H5) > HSO(H5 + vkvℓ). Similarly,

HSO(H6 + vkvℓ)−HSO(H6) = 2
√
5 + 4

√
17 +

√
2− 2

√
13
4
− 4

√
10 > 6.12 > 0,

implying that HSO(H6 + vkvℓ) > HSO(H6).

Remark 3. In Theorem 5 of [4], the proof of the inequality HSO(T ) ≤
HSO(Sn) is not entirely rigorous. Although the argument is conceptually

simple, the authors omitted a necessary justification: for any edge vivj ∈
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E(T ), √
d2i + d2j

min{di, dj}
≤

√
(n− 1)2 + 1.

Without this bound, the inequality lacks completeness.

However, the proof of the inequality HSO(T ) ≥ HSO(Pn), as pre-

sented in the same theorem, is incorrect. The authors attempted to es-

tablish this result using the principle of mathematical induction, but the

method was not applied properly. Specifically, to prove HSO(Tk+1) ≥
HSO(Pk+1), one must use the induction hypothesis HSO(Tk) ≥
HSO(Pk), where Tk+1 and Tk are any trees of order k + 1 and k, re-

spectively. Instead, the authors considered a very special kind of tree for

Tk+1, rather than an arbitrary tree of order k + 1, which invalidates the

generality of their argument. Therefore, the proof method is flawed. This

issue is similar to what occurs in Theorem 4 of [4], where the proof contains

similar flaws.

Based on Remarks 2 and 3, it is evident that the proofs of Theorems

4 and 5 in [4] are incorrect. The concepts are wrong. We now revise the

proof of the Theorem 5 in [4]. For this first we prove the following result.

Lemma 1. Let G be a graph with maximum degree ∆. Then

(i) For any pendent edge vivj ∈ E(G), we have

√
5 ≤

√
d2i + d2j

min{di, dj}
≤

√
∆2 + 1

with equality on the left if and only if di = 2 > 1 = dj, and equality on the

right if and only if di = ∆ > 1 = dj.

(ii) For any non-pendent edge vivj ∈ E(G), we have

√
2 ≤

√
d2i + d2j

min{di, dj}
≤ 1

2

√
∆2 + 4

with equality on the left if and only if di = dj, and equality on the right if

and only if di = ∆ > 2 = dj.
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Proof. Let vivj be any edge in G with di ≥ dj . Then√
d2i + d2j

min{di, dj}
=

√
d2i + d2j

dj
=

√
d2i
d2j

+ 1. (1)

(i) For any pendent edge vivj ∈ E(G) (1 = dj < di ≤ ∆), we have

√
5 ≤

√
d2i
d2j

+ 1 =
√
d2i + 1 ≤

√
∆2 + 1,

where ∆ is the maximum degree in G. Using the above result in (1), we

obtain

√
5 ≤

√
d2i + d2j

min{di, dj}
≤

√
∆2 + 1.

(ii) For any non-pendent edge vivj ∈ E(G) (2 ≤ dj ≤ di ≤ ∆), we have

√
2 ≤

√
d2i
d2j

+ 1 ≤ 1

2

√
∆2 + 4,

where ∆ is the maximum degree in G. Using the above result in (1), we

obtain

√
2 ≤

√
d2i + d2j

min{di, dj}
≤ 1

2

√
∆2 + 4.

This completes the proof of the result.

Corollary 1. Let G be a graph of order n. Then

(i) For any pendent edge vivj ∈ E(G), we have

√
5 ≤

√
d2i + d2j

min{di, dj}
≤

√
(n− 1)2 + 1

with equality on the left if and only if di = 2 > 1 = dj, and equality on the

right if and only if di = n− 1 > 1 = dj.
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(ii) For any non-pendent edge vivj ∈ E(G), we have

√
2 ≤

√
d2i + d2j

min{di, dj}
≤ 1

2

√
(n− 1)2 + 4

with equality on the left if and only if di = dj, and equality on the right if

and only if di = n− 1 > 2 = dj.

Theorem 2. Let T be a tree of order n. Then

2
√
5 + (n− 3)

√
2 ≤ HSO(T ) ≤ (n− 1)

√
n2 − 2n+ 2

with left equality if and only if T ∼= Pn and the right equality if and only

if T ∼= Sn.

Proof. Upper Bound: Let vivj be any edge in T with di ≥ dj . Then by

Corollary 1, we obtain √
d2i + d2j

min{di, dj}
≤

√
(n− 1)2 + 1.

Thus we have

HSO(T ) =
∑

vivj∈E(T )

√
d2i + d2j

min{di, dj}
≤ (n− 1)

√
n2 − 2n+ 2.

Moreover, the above equality holds if and only if di = n − 1 > 1 = dj for

any edge vivj ∈ E(T ), that is, if and only if T ∼= Sn.

Lower Bound: Let p be the number of pendent vertices in T . Then

p ≥ 2. By Corollary 1, we obtain

HSO(T ) =
∑

vivj∈E(T ),

di≥dj=1

√
d2i + d2j

min{di, dj}
+

∑
vivj∈E(T ),

di≥dj≥2

√
d2i + d2j

min{di, dj}

≥ p
√
5 + (n− p− 1)

√
2
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= (n− 1)
√
2 + p (

√
5−

√
2)

≥ (n− 1)
√
2 + 2 (

√
5−

√
2) = 2

√
5 + (n− 3)

√
2.

Moreover, the equality holds if and only if p = 2 with di = dj for any

non-pendent edge vivj ∈ E(T ), and di = 2 > 1 = dj for any pendent edge

vivj ∈ E(T ), that is, if and only if T ∼= Pn.

In the next result, we revisit Theorem 4 from [4] and offer a revised

proof for one of its parts.

Theorem 3. Let G be a connected graph of order n. Then HSO(G) ≥√
2n with equality if and only if G ∼= Cn.

Proof. Let m be the number of edges in G. Since G is connected, we have

m ≥ n− 1. If m = n− 1, then G is a tree T . By Theorem 2, we have

HSO(T ) ≥ 2
√
5 + (n− 3)

√
2

with equality if and only if T ∼= Pn. Using this result, we obtain

HSO(G) = HSO(T ) =
∑

vivj∈E(T )

√
d2i + d2j

min{di, dj}
≥ 2

√
5+(n−3)

√
2 >

√
2n.

The inequality strictly holds. Otherwise, m ≥ n. By Lemma 1, we obtain

HSO(G) =
∑

vivj∈E(T )

√
d2i + d2j

min{di, dj}
≥

√
2m ≥

√
2n.

Since G is connected, the above equality holds if and only if m = n and

di = dj for any edge vivj ∈ E(G), that is, if and only if G is a regular

graph with m = n, that is, if and only if G ∼= Cn.

Remark 4. The other part of Theorem 4 of [4], HSO(G) ≤ HSO(Sn) is

still open.
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3 Extremal results on unicyclic and

bicyclic graphs with respect to the

hyperbolic Sombor index

This section deals with two classes of graphs: unicyclic graphs, and bicyclic

graphs. In order to establish our main results, we first present the following

auxiliary result.

Lemma 2. Let

f(x) = x
√
(x+ 2)2 + 1+(n−x−3)

√
(n− x− 1)2 + 1, 1 ≤ x ≤

⌊n− 3

2

⌋
.

Then f(x) is a decreasing function on 1 ≤ x ≤
⌊
n−3
2

⌋
.

Proof. Since

f(x) = x
√
(x+ 2)2 + 1 + (n− x− 3)

√
(n− x− 1)2 + 1,

we have

f ′(x)

=
(x+ 2)2 + 1 + x (x+ 2)√

(x+ 2)2 + 1
− (n− x− 1)2 + 1 + (n− x− 1) (n− x− 3)√

(n− x− 1)2 + 1
.

Since 1 ≤ x ≤
⌊
n−3
2

⌋
, we have n− x− 3 ≥ x and n− x− 1 ≥ x+ 2. We

now prove the following claim.

Claim 1.[
(x+ 2)2 + 1

] [
2 (n− x− 1) (n− x− 2) + 1

]
≥

[
(n− x− 1)2 + 1

] [
2 (x+ 2) (x+ 1) + 1

]
.

Proof of Claim 1. We have to prove that

2 (x+ 2)2 (n− x− 1) (n− x− 2) + 2 (n− x− 1) (n− x− 2) + (x+ 2)2
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≥ 2 (x+ 2) (x+ 1) (n− x− 1)2 + 2 (x+ 2) (x+ 1) + (n− x− 1)2,

that is,

2 (x+ 2) (n− x− 1)
[
(x+ 2) (n− x− 2)− (x+ 1) (n− x− 1)

]
+ (n− x− 1) (n− x− 3)− (x+ 2)x ≥ 0,

that is,

2 (x+ 2) (n− x− 1) (n− 2x− 3) + (n− x− 1) (n− x− 3)− (x+ 2)x

≥ 0,

which is true as n− x− 3 ≥ x and n− x− 1 ≥ x+ 2. Hence[
(x+ 2)2 + 1

] [
2 (n− x− 1) (n− x− 2) + 1

]
≥

[
(n− x− 1)2 + 1

] [
2 (x+ 2) (x+ 1) + 1

]
.

This proves the Claim 1.

Again since n− x− 2 ≥ x+ 1 and n− x− 1 ≥ x+ 2, we obtain

2 (n− x− 1) (n− x− 2) + 1 ≥ 2 (x+ 2) (x+ 1) + 1.

From Claim 1 with the above result, we obtain[
(x+ 2)2 + 1

] [
2 (n− x− 1) (n− x− 2) + 1

]2
≥

[
(n− x− 1)2 + 1

] [
2 (x+ 2) (x+ 1) + 1

]2
,

that is, √
(x+ 2)2 + 1

[
2 (n− x− 1) (n− x− 2) + 1

]
≥

√
(n− x− 1)2 + 1

[
2 (x+ 2) (x+ 1) + 1

]
,
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that is,

(x+ 2)2 + 1 + x (x+ 2)√
(x+ 2)2 + 1

≤ (n− x− 1)2 + 1 + (n− x− 1) (n− x− 3)√
(n− x− 1)2 + 1

.

Using the above result, we conclude that f ′(x) ≤ 0. This proves the

result.

a1




a2

a3

n− 3

S(a1, a2, a3) S(n− 3, 0, 0) ∼= S′
n

Figure 3. Two graphs S(a1, a2, a3) and S(n− 3, 0, 0) ∼= S′
n.

Let S(a1, a2, a3) be a unicyclic graph of order n with cycle length 3,

where n − 3 pendent vertices are attached to the vertices of the cycle

C3. Specifically, a1, a2, and a3 denote the numbers of pendent vertices

attached to the three vertices of C3, satisfying a1 + a2 + a3 = n − 3

and a1 ≥ a2 ≥ a3 ≥ 0. In particular, the graph S′
n is a special case

of S(a1, a2, a3), obtained by setting (a1, a2, a3) = (n − 3, 0, 0). For an

illustration, see Fig. 3. Now,

HSO(S(a1, a2, a3)) = a1
√
(a1 + 2)2 + 1 + a2

√
(a2 + 2)2 + 1

+ a3
√

(a3 + 2)2 + 1 +

√(
a1 + 2

a2 + 2

)2

+ 1

+

√(
a2 + 2

a3 + 2

)2

+ 1 +

√(
a1 + 2

a3 + 2

)2

+ 1. (2)

We now establish lower and upper bounds for HSO(G) in unicyclic

graphs in terms of their order n, and characterize the corresponding ex-
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tremal graphs.

Theorem 4. Let G be a unicyclic graph of order n. Then

√
2n ≤ HSO(G) ≤ (n− 3)

√
n2 − 2n+ 2 +

√
n2 − 2n+ 5 +

√
2 (3)

with equality on the left if and only if G ∼= Cn and equality on the right if

and only if G ∼= S′
n.

Proof. Upper Bound: Let ∆ and p be the maximum degree and the

number of pendent vertices in G. By Lemma 1, for any pendent edge

vivj ∈ E(G) with di > dj = 1, we have√
d2i + d2j

min{di, dj}
≤

√
∆2 + 1. (4)

By Lemma 1, for any non-pendent edge vivj ∈ E(G) with di ≥ dj , we have√
d2i + d2j

min{di, dj}
≤ 1

2

√
∆2 + 4. (5)

Since G is unicyclic, we have p ≤ n − 3. We consider the following two

cases:

Case1. p = n−3. In this case G ∼= S(a1, a2, a3), where a1+a2+a3 = n−3

and a1 ≥ a2 ≥ a3 ≥ 0. If a2 = 0, then a2 = a3 = 0 and a1 = n − 3, that

is, G ∼= S(n− 3, 0, 0) ∼= S′
n with

HSO(G) = (n− 3)
√
n2 − 2n+ 2 +

√
n2 − 2n+ 5 +

√
2

and hence the equality holds. Otherwise, a2 ≥ 1. Since a1 ≥ a2 ≥ a3 ≥ 0

and a1 + a2 + a3 = n− 3, we have a2 ≤ ⌊n−3
2 ⌋. We consider the following

cases:

Case1.1. a2 = 1. In this case, we have either a3 = 0 or a3 = 1. For

a3 = 0 (a1 = n− 4), we obtain

HSO(S(n− 4, 1, 0)) = (n− 4)
√
(n− 2)2 + 1 +

√
10 +

√
3.25
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+

√(
n− 2

3

)2

+ 1 +

√(
n− 2

2

)2

+ 1

< (n− 4)
√
(n− 2)2 + 1 + 4.97 +

n− 1

3
+

n− 1

2

< (n− 3)
√
n2 − 2n+ 2 +

√
n2 − 2n+ 5 +

√
2

as n ≥ 5. The result (3) strictly holds.

For a3 = 1 (a1 = n− 5), we have

HSO(S(n− 5, 1, 1)) = (n− 5)
√
(n− 3)2 + 1 + 2

√
10 +

√(
n− 3

3

)2

+ 1

+
√
2 +

√(
n− 3

3

)2

+ 1

< (n− 5)
√
(n− 3)2 + 1 + 7.74 +

n− 1

3
+

n− 1

3

< (n− 3)
√

n2 − 2n+ 2 +
√
n2 − 2n+ 5 +

√
2

as n ≥ 6. The result (3) strictly holds.

Case1.2. a2 ≥ 2. Since a1 + a2 + a3 = n − 3 and a1 ≥ a2 ≥ a3, we have

a3 +2 ≤ a1 +2 ≤ n− a2 − 1. Moreover, a2 ≤ ⌊n−3
2 ⌋ and a1 ≤ n− 5. Thus

we have

a1

√
(a1 + 2)2 + 1 + a3

√
(a3 + 2)2 + 1 ≤ (a1 + a3)

√
(n− a2 − 1)2 + 1

= (n− a2 − 3)
√

(n− a2 − 1)2 + 1.

Since a2 ≥ 2, by Lemma 2, we obtain

a2
√

(a2 + 2)2 + 1 + (n− a2 − 3)
√
(n− a2 − 1)2 + 1

≤ 2
√
17 + (n− 5)

√
(n− 3)2 + 1.
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Using the above results, we obtain

a1
√
(a1 + 2)2 + 1 + a2

√
(a2 + 2)2 + 1 + a3

√
(a3 + 2)2 + 1

≤ a2
√
(a2 + 2)2 + 1 + (n− a2 − 3)

√
(n− a2 − 1)2 + 1

≤ 2
√
17 + (n− 5)

√
(n− 3)2 + 1.

Since n ≥ 7, we obtain√(
a1 + 2

a2 + 2

)2

+ 1 ≤

√(
n− 3

4

)2

+ 1 <
n− 1

4
,

√(
a2 + 2

a3 + 2

)2

+ 1 ≤

√(
n+ 1

4

)2

+ 1 <
n− 1

2
,

√(
a1 + 2

a3 + 2

)2

+ 1 ≤

√(
n− 3

2

)2

+ 1 <
n− 1

2
.

Using the above results, we obtain√(
a1 + 2

a2 + 2

)2

+ 1 +

√(
a2 + 2

a3 + 2

)2

+ 1 +

√(
a1 + 2

a3 + 2

)2

+ 1 <
5 (n− 1)

4
.

Using the above results, from (2), we obtain

HSO(S(a1, a2, a3)) <
5 (n− 1)

4
+ 2

√
17 + (n− 5)

√
(n− 3)2 + 1

< (n− 3)
√
n2 − 2n+ 2 +

√
n2 − 2n+ 5 +

√
2.

The result (3) strictly holds.

Case2. p ≤ n − 4. Since G is unicyclic, in this case, ∆ ≤ n − 2.

Thus we have
√
∆2 + 1 ≤

√
n2 − 4n+ 5 <

√
n2 − 2n+ 2 and

√
∆2 + 4 ≤√

n2 − 4n+ 8 <
√
n2 − 2n+ 2, as n ≥ 4. Using the above results with (4)
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and (5), we obtain

HSO(G) =
∑

vivj∈E(G)

√
d2i + d2j

min{di, dj}

=
∑

vivj∈E(G),

di≥dj=1

√
d2i + d2j

dj
+

∑
vivj∈E(G),

di≥dj≥2

√
d2i + d2j

dj

≤ p
√
∆2 + 1 +

n− p

2

√
∆2 + 4

=
n

2

√
∆2 + 4 + p

(√
∆2 + 1− 1

2

√
∆2 + 4

)

≤ n

2

√
∆2 + 4 + (n− 4)

(√
∆2 + 1− 1

2

√
∆2 + 4

)

= (n− 4)
√
∆2 + 1 + 2

√
∆2 + 4

< (n− 3)
√
n2 − 2n+ 2 +

√
n2 − 2n+ 5 +

√
2.

The result (3) strictly holds.

Lower Bound: Let m and p be the number of edges and the number of

pendent vertices in G. Since G is unicyclic, we have p ≥ 0 and m = n.

Using this with Lemma 1, we obtain

HSO(T ) =
∑

vivj∈E(T )

√
d2i + d2j

min{di, dj}

=
∑

vivj∈E(T ),

di≥dj=1

√
d2i + d2j

min{di, dj}
+

∑
vivj∈E(T ),

di≥dj≥2

√
d2i + d2j

min{di, dj}

≥ p
√
5 + (m− p)

√
2 = n

√
2 + p (

√
5−

√
2) ≥ n

√
2.
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Moreover, the equality holds if and only if p = 0 with di = dj for any edge

vivj ∈ E(G), that is, if and only if G is a regular graph, that is, G ∼= Cn

as G is unicyclic.

Cp≥3 Cq≥3 Cp≥3 Cq≥3

C ′
n C ′′

n

Figure 4. Two graphs C′
n and C′′

n .

Let C ′
n and C ′′

n denote n-vertex bicyclic graphs constructed from cycles

Cp (p ≥ 3) and Cq (q ≥ 3) as follows: C ′
n is obtained by joining Cp and

Cq with a single edge (so that p+ q = n), while C ′′
n is formed by merging

Cp and Cq along a common edge (so that p + q − 2 = n); see Fig. 4. We

obtain

HSO(C ′
n) = (n− 3)

√
2 + 2

√
13 = HSO(C ′′

n).

We now establish a lower bound on HSO(G) for bicyclic graphs in terms

of their order n, and characterize the corresponding extremal graphs.

Theorem 5. Let G be a bicyclic graph of order n. Then

HSO(G) ≥ (n− 3)
√
2 + 2

√
13 (6)

with equality if and only if G ∼= C ′
n or G ∼= C ′′

n.

Proof. Let p (≥ 0) be the number of pendent vertices in G. We consider

the following three cases:

Case1. p = 0. Since G is bicyclic, the degree sequence of G is (3, 3,

2, . . . , 2︸ ︷︷ ︸
n−2

) or (4, 2, . . . , 2︸ ︷︷ ︸
n−1

). First we assume that the degree sequence of G is

(3, 3, 2, . . . , 2︸ ︷︷ ︸
n−2

). If two vertices of degree 3 are adjacent, then G ∼= C ′
n or
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G ∼= C ′′
n . For G

∼= C ′
n, we have

HSO(G) = 4

√
13

4
+ (n− 3)

√
2 = (n− 3)

√
2 + 2

√
13

and hence the equality holds in (6). For G ∼= C ′′
n , we have

HSO(G) = 4

√
13

4
+ (n− 3)

√
2 = (n− 3)

√
2 + 2

√
13

and hence the equality holds in (6). Otherwise, two vertices of degree 3

are not adjacent. Thus we obtain

HSO(G) = 6

√
13

4
+ (n− 5)

√
2 = (n− 5)

√
2 + 3

√
13

> (n− 3)
√
2 + 2

√
13.

The lower bound in (6) strictly holds.

Next we assume that the degree sequence of G is (4, 2, . . . , 2︸ ︷︷ ︸
n−1

). Thus we

obtain

HSO(G) = 4
√
5 + (n− 3)

√
2 > (n− 3)

√
2 + 2

√
13.

The lower bound in (6) strictly holds.

Case2. p = 1. Let vr and vk be the maximum degree vertex and the

pendent vertex in G. Then dr = ∆ and dk = 1. Then we have

2 (n+ 1) =

n∑
i=1

di ≥ ∆+ 2 (n− 2) + 1, that is, 3 ≤ ∆ ≤ 5.

Let vi ( ̸= vk) be any vertex in G. Then di ∈ {2, 3, 4, 5}. First we assume

that the pendent vertex vk is adjacent to the vertex vℓ of degree 3 or more.

Then we have √
d2ℓ + d2k
dk

≥
√
10.
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Using the above result with Lemma 1, we obtain

HSO(G) =
∑

vivj∈E(G)

√
d2i + d2j

min{di, dj}
=

√
d2ℓ + d2k
dk

+
∑

vivj∈E(G),

di≥dj≥2

√
d2i + d2j

dj

≥
√
10 + n

√
2 > (n− 3)

√
2 + 2

√
13.

The lower bound in (6) strictly holds.

Next we assume that only the pendent vertex vk is adjacent to the

vertex vℓ of degree 2. Then we have√
d2ℓ + d2k
dk

=
√
5. (7)

Let E1 = {vrvj ∈ E(G)| vj ∈ NG(vr)}. For ∆ = 5, the degree se-

quence of G is (5, 2, . . . , 2︸ ︷︷ ︸
n−2

, 1). For ∆ = 4, the degree sequence of G is

(4, 3, 2, . . . , 2︸ ︷︷ ︸
n−3

, 1). For 4 ≤ ∆ ≤ 5, one can easily see that the maximum

degree vertex vr is adjacent to at least two vertices of degree 2.

For ∆ = 3, the degree sequence of G is (3, 3, 3, 2, . . . , 2︸ ︷︷ ︸
n−4

, 1). Since G

is bicyclic and n ≥ 10, one can easily see that there exists a vertex vr of

degree 3 is adjacent to at least two vertices of degree 2. For 4 ≤ ∆ ≤ 5 or

∆ = 3, using the above result with Lemma 1, we obtain

∑
vj :vrvj∈E(G)

√
d2r + d2j

dj
≥

√
13 + (dr − 2)

√
2.

Using the above result with (7), we obtain

HSO(G) =

√
d2ℓ + d2k
dk

+
∑

vj :vrvj∈E(G)

√
d2r + d2j

dj
+

∑
vivj∈E(G)\E1,

di≥dj≥2

√
d2i + d2j

dj
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≥
√
5 +

√
13 + (dr − 2)

√
2 + (n− dr)

√
2 > (n− 3)

√
2 + 2

√
13.

The lower bound in (6) strictly holds.

Case3. p ≥ 2. By Lemma 1, we obtain

HSO(G) =
∑

vivj∈E(G),

di≥dj=1

√
d2i + d2j

dj
+

∑
vivj∈E(G),

di≥dj≥2

√
d2i + d2j

dj

≥ p
√
5 + (n+ 1− p)

√
2

= (n+ 1)
√
2 + p (

√
5−

√
2)

≥ (n+ 1)
√
2 + 2 (

√
5−

√
2)

= 2
√
5 + (n− 1)

√
2 > (n− 3)

√
2 + 2

√
13.

The lower bound in (6) strictly holds.

Let C3,3 denote the graph obtained by merging one vertex from each

of two 3-cycles (triangles), and then attaching n− 5 pendent edges to the

common (merged) vertex; see Fig. 5. In total, the graph has n vertices.

We have

HSO(C3,3) = (n− 5)
√
n2 − 2n+ 2 + 2

√
n2 − 2n+ 5 + 2

√
2.

We define S′′
n as a connected bicyclic graph of order n, constructed from

K4 − e (where e is any edge of K4) by attaching n − 4 pendent edges to

one of its vertices of degree 3; see Fig. 5. We have

HSO(S′′
n) = (n− 4)

√
n2 − 2n+ 2 +

√
n2 − 2n+ 5 +

1

3

√
n2 − 2n+ 10 +

√
13.
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n− 5

n− 4

C3,3 S′′
n

Figure 5. Two graphs C3,3 and S′′
n .

We now establish an upper bound of HSO(G) for bicyclic graphs in

terms of their order n, and characterize the corresponding extremal graphs.

Theorem 6. Let G be a bicyclic graph of order n. Then

HSO(G) ≤ (n− 4)
√

n2 − 2n+ 2 +
√

n2 − 2n+ 5 +
1

3

√
n2 − 2n+ 10 +

√
13

(8)

with equality if and only if G ∼= S′′
n.

Proof. For 4 ≤ n ≤ 9, by Sage [30], one can easily see that the result holds.

Moreover, the equality holds if and only if G ∼= S′′
n. Otherwise, n ≥ 10.

Let v1 be the maximum degree vertex of degree ∆. For any vi ∈ V (G),

one can easily see that√
d2i + 1 < di +

1

2 di
and

√
d2i + 4 < di +

2

di
. (9)

Let v2 be the second maximum degree vertex of degree d2 in G. Let

HSO(ei) be the contribution of an edge ei toHSO(G). From the definition

of the Hyperbolic Sombor index, we have

HSO(G) =
∑

ei∈E(G)

HSO(ei). (10)

We consider the following five cases:

Case1. ∆ = n− 1. Since G is bicyclic, we have G ∼= S′′
n or G ∼= C ′

3,3. For
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G ∼= S′′
n, we have

HSO(G) = (n−4)
√
n2 − 2n+ 2+

√
n2 − 2n+ 5+

1

3

√
n2 − 2n+ 10+

√
13

and hence the equlity holds in (8). For G ∼= C ′
3,3, we have

HSO(G) = (n− 5)
√

n2 − 2n+ 2 + 2
√

n2 − 2n+ 5 + 2
√
2

< (n− 4)
√

n2 − 2n+ 2 +
√

n2 − 2n+ 5 +
1

3

√
n2 − 2n+ 10 +

√
13.

The upper bound in (8) strictly holds.

Case2. ∆ = n−2. In this case we have d2 ≤ 4. Let e1, e2, e3 be the edges

in G such that E(G) = {v1vi, vi ∈ NG(v1)} ∪ {e1, e2, e3}. For 1 ≤ i ≤ 3

with ei = vjvk, we obtain

HSO(ei) =

√
d2j + d2k

min{dj , dk}
≤

√
42 + 1 =

√
17.

Thus we have
3∑

i=1

HSO(ei) ≤ 3
√
17.

Since ∆ = |NG(v1)| = n − 2, there are at least two vertices vs and vt are

of degree 2 or more, where vs, vt ∈ NG(v1). Let v1vs = e4 and v1vt = e5.

Thus we have

HSO(e4) ≤
√(∆

2

)2

+ 1 and HSO(e5) ≤
√(∆

2

)2

+ 1.

Since n ≥ 10, by Lemma 1 with (9), from (10), we obtain

HSO(G) =
∑

ei∈E(G)

HSO(ei)

≤ (∆− 2)
√
∆2 + 1 + 2

√(∆
2

)2

+ 1 + 3
√
17
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< (n− 4)
√
(n− 2)2 + 1 +

√
(n− 2)2 + 4 + 12.37

< (n− 4)
(
n− 2 +

1

2 (n− 2)

)
+
(
n− 2 +

2

n− 2

)
+ 12.37

= n2 − 5n+ 18.87 +
1

n− 2

< (n− 4) (n− 1) +
√
n2 − 2n+ 5 +

1

3

√
n2 − 2n+ 10 +

√
13

< (n− 4)
√
n2 − 2n+ 2 +

√
n2 − 2n+ 5 +

1

3

√
n2 − 2n+ 10

+
√
13.

The upper bound in (8) strictly holds.

Case3. ∆ = n− 3. In this case we have d2 ≤ 5. Let e′1, e
′
2, e

′
3, e

′
4 be the

edges in G such that E(G) = {v1vi, vi ∈ NG(v1)} ∪ {e′1, e′2, e′3, e′4}. For

1 ≤ i ≤ 4 with e′i = vjvk, we obtain

HSO(e′i) =

√
d2j + d2k

min{dj , dk}
≤

√
52 + 1 =

√
26.

Thus we have
4∑

i=1

HSO(e′i) ≤ 4
√
26.

By (9), we obtain

∆
√
∆2 + 1 = (n− 3)

√
(n− 3)2 + 1 < (n− 3)

(
n− 3 +

1

2 (n− 3)

)
= n2 − 6n+ 9.5.

Since n ≥ 10, by Lemma 1 with the above results, from (10), we obtain

HSO(G) =
∑

ei∈E(G)

HSO(ei)

≤ ∆
√

∆2 + 1 + 4
√
26
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< n2 − 6n+ 29.9

< (n− 4)
√

n2 − 2n+ 2 +
√

n2 − 2n+ 5 +
1

3

√
n2 − 2n+ 10 +

√
13.

The upper bound in (8) strictly holds.

Case4. ∆ = n− 4. In this case we have d2 ≤ 6. Let e′′1 , e
′′
2 , e

′′
3 , e

′′
4 , e

′′
5 be

the edges in G such that E(G) = {v1vi, vi ∈ NG(v1)}∪{e′′1 , e′′2 , e′′3 , e′′4 , e′′5}.
For 1 ≤ i ≤ 5 with e′′i = vjvk, we obtain

HSO(e′′i ) =

√
d2j + d2k

min{dj , dk}
≤

√
62 + 1 =

√
37.

Thus we have
5∑

i=1

HSO(e′′i ) ≤ 5
√
37.

Since ∆ = n− 4, by (9), we have

∆
√

∆2 + 1 = (n− 4)
√
(n− 4)2 + 1 < (n− 4)

(
n− 4 +

1

2 (n− 4)

)
= n2 − 8n+ 16.5.

Since n ≥ 10, by Lemma 1 with the above results, from (10), we obtain

HSO(G) =
∑

ei∈E(G)

HSO(ei)

≤ ∆
√

∆2 + 1 + 5
√
37

< n2 − 8n+ 46.92

< (n− 3) (n− 1) +
1

3

√
n2 − 2n+ 10 +

√
13

< (n− 4)
√
n2 − 2n+ 2 +

√
n2 − 2n+ 5 +

1

3

√
n2 − 2n+ 10

+
√
13.
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The upper bound in (8) strictly holds.

Case5. ∆ ≤ n− 5. Similarly, as in Case 4, we have

(n+ 1)
√
∆2 + 1 ≤ (n+ 1)

√
(n− 5)2 + 1 < (n+ 1)

(
n− 5 +

1

2 (n− 5)

)
= n2 − 4n− 5 +

n+ 1

2 (n− 5)

< (n− 1) (n− 3),

and hence

HSO(G) =
∑

ei∈E(G)

HSO(ei)

≤ (n+ 1)
√
∆2 + 1

< (n− 3) (n− 1)

< (n− 4)
√
n2 − 2n+ 2 +

√
n2 − 2n+ 5 +

1

3

√
n2 − 2n+ 10

+
√
13.

The upper bound in (8) strictly holds. This completes the proof of the

theorem.

4 Upper and Lower bounds on the Hyper-

bolic Sombor index of graphs

In this section we derive some lower and upper bounds for HSO(G) in

terms of the number of edges, maximum degree and minimum degree, and

we charcterize the graphs that attains these bounds.

Theorem 7. Let G be a graph of order n with m edges and maximum

degree ∆, minimum degree δ. Then

(
1 +

δ√
∆2 + δ2 +∆

)
m ≤ HSO(G) ≤

(
∆

δ
+

√
2− 1

)
m
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with both equalities hold if and only if G is a regular graph.

Proof. Let vivj be an edge in G with di ≥ dj . Since the maximum degree

∆ and the minimum degree δ, we have 1 ≤ di

dj
≤ ∆

δ . One can easily see

that

√
2 + 1 ≤

√
d2i
d2j

+ 1 +
di
dj

≤
√

∆2

δ2
+ 1 +

∆

δ
=

√
∆2 + δ2 +∆

δ
. (11)

Moreover, the above left equality holds if and only if di = dj , and the right

equality holds if and only if di = ∆, dj = δ.

Lower Bound: Using (11), we obtain√
d2i
d2j

+ 1− di
dj

=
1√

d2
i

d2
j
+ 1 + di

dj

≥ δ√
∆2 + δ2 +∆

,

which implies that√
d2i
d2j

+ 1 ≥ di
dj

+
δ√

∆2 + δ2 +∆
≥ 1 +

δ√
∆2 + δ2 +∆

with equality if and only if ∆ = δ.

Using this, we obtain

HSO(G) =
∑

vivj∈E(G)

√
d2i + d2j

min{di, dj}
≥

∑
vivj∈E(G)

(
1 +

δ√
∆2 + δ2 +∆

)

=
(
1 +

δ√
∆2 + δ2 +∆

)
m.

Moreover, the above equality holds if and only if ∆ = δ, that is, if and
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only if G is a regular graph.

Upper Bound: Using (11), we obtain√
d2i
d2j

+ 1− di
dj

=
1√

d2
i

d2
j
+ 1 + di

dj

≤ 1√
2 + 1

=
√
2− 1,

which implies that√
d2i
d2j

+ 1 ≤ di
dj

+
√
2− 1 ≤ ∆

δ
+
√
2− 1

with equality if and only if ∆ = δ.

Using this, we obtain

HSO(G) =
∑

vivj∈E(G)

√
d2i + d2j

min{di, dj}

≤
∑

vivj∈E(G)

(∆
δ
+
√
2− 1

)
=

(∆
δ

+
√
2− 1

)
m.

Moreover, the above equality holds if and only if ∆ = δ, that is, if and

only if G is a regular graph. This completes the proof of the theorem.

5 Concluding Remarks

Very recently, Barman et al. [4] introduced the Hyperbolic Sombor index

of a graph G and established several related mathematical results. How-

ever, some of the proofs presented in their work contain inaccuracies. In

this paper, we address and correct those errors, and further contribute by

deriving new results concerning the Hyperbolic Sombor index for various

classes of graphs, including trees, unicyclic graphs, and bicyclic graphs.

Moreover, we presented some lower and upper bounds for HSO(G) in

terms of the number of edges, maximum degree and minimum degree, and

we charcterized the graphs that attains these bounds.



542

There remain several unexplored directions in this area, which can be

the focus of future research. In particular, we propose the following open

problems:

Problem 1. Determine the maximal graphs with respect to the Hyper-

bolic Sombor index when the graph order n and the number of pendent

vertices p are fixed.

Problem 2. Determine the maximal graphs with respect to the Hyper-

bolic Sombor index when the graph order n and the chromatic number k

are fixed.

From Remark 4, we present the following conjecture.

Conjecture 1. For any connected graph G, HSO(G) ≤ HSO(Sn).
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