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Abstract

In this paper, we determine the hypergraphs with maximum and
minimum Zagreb indices among all linear bicyclic uniform hyper-
graphs with m edges. For a given girth, we also determine the
linear bicyclic uniform hypergraphs with m edges that attain the
maximum and minimum Zagreb indices.

1 Introduction

In 1972, Gutman and Trinajstić [10] proposed the first Zagreb index of

graphs. The first Zagreb index of a graph G is defined as the sum of the

squares of the degrees of its vertices. The properties of the first Zagreb

index were summarized in [9, 14]. Deng [5] characterized the graphs with

maximum and minimum first Zagreb indices among all bicyclic graphs

with n vertices. Some results on the extremal first Zagreb index have been

obtained in the literature: see [1, 2, 9, 15] for trees, [16, 18] for unicyclic
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graphs, [11] for k-generalized quasi unicyclic graphs, [19] for triangle-free

graphs, and [4, 6, 7, 12,17] for graphs with given parameters.

Let H be a hypergraph with the vertex set V (H). In [3], the Zagreb

index M(H) of a hypergraph H is given by

M(H) =
∑

u∈V (H)

(dH(u))2,

where dH(u) is the degree of a vertex u in H. The bounds on the Zagreb

indices of hypergraphs, weak bipartite hypergraphs, hypertrees, k-uniform

hypergraphs, k-uniform weak bipartite hypergraphs, and k-uniform hy-

pertrees were given in [8]. The hypergraphs with maximum and minimum

Zagreb indices were determined for both uniform hypertrees and linear

unicyclic uniform hypergraphs [20].

In this paper, the hypergraphs with maximum and minimum Zagreb

indices among all linear bicyclic uniform hypergraphs with m edges are

given. We also determine the hypergraphs with maximum and minimum

Zagreb indices among all linear bicyclic uniform hypergraphs with m edges

and girth g.

2 Preliminaries

A hypergraph H is called k-uniform if every edge of H contains exactly

k vertices. A vertex of H is called a cored vertex if its degree is 1. An

edge e of H is called a pendant edge if it contains exactly |e| − 1 cored

vertices. A cored vertex in a pendant edge is also called a pendant vertex.

A hypergraph H is called linear if any two edges intersect into at most

one vertex. The girth of H is the minimum length of the hypercycles of H.

A connected k-uniform hypergraph with n vertices and m edges is called

bicyclic if n = m(k − 1)− 1.

Throughout this paper, all hypergraphs are considered k-uniform (k ≥
3) unless otherwise stated. The linear bicyclic k-uniform hypergraph con-

taining no pendant edges has exactly the following six cases [13].

Let C1 and C2 be linear k-uniform hypercycles of length p and q, re-

spectively. Suppose that v1,1 ∈ V (C1), v2,1 ∈ V (C2) are two vertices with
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degree 1, and v1,2 ∈ V (C1), v2,2 ∈ V (C2) are two vertices with degree 2.

Let P = u0e1u1 · · · elul be a k-uniform hyperpath of length l. Without

loss of generality, let q ≥ p ≥ 3.

Figure 1. The hypergraphs B1(p, l, q)(l > 0) and B1(p, 0, q).

Let B1(p, l, q) be the k-uniform bicyclic hypergraph obtained by iden-

tifying v1,2 with u0, and identifying v2,2 with ul (see Fig. 1).

Figure 2. Cases (a) and (c) of the hypergraph B2(p, l, q) for l > 0, and
cases (b) and (d) for l = 0.

Let B2(p, l, q) be the k-uniform bicyclic hypergraph obtained by either

identifying v1,2 with u0 and identifying v2,1 with ul (see (a) and (b) in Fig.

2), or identifying v1,1 with u0 and identifying v2,2 with ul (see (c) and (d)

in Fig. 2).

Let B3(p, l, q) be the k-uniform bicyclic hypergraph obtained by iden-

tifying v1,1 with u0, and identifying v2,1 with ul (see Fig. 3).

Let Pp = u1e1u2 · · · epup+1, Pq = v1f1v2 · · · fqvq+1 and Pl = w1g1w2,

· · · , glwl+1 be k-uniform hyperpaths of length p, q and l, respectively.
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Figure 3. The hypergraphs B3(p, l, q)(l > 0) and B3(p, 0, q).

Figure 4. The hypergraphs Ci(p, q, l), i = 1, 2, 3.

For p = 1, 1 < q ≤ l or 1 < p ≤ q ≤ l, let C1(p, q, l) be the k-

uniform bicyclic hypergraph obtained from Pp, Pq and Pl by identifying

three vertices u1, v1, w1, and identifying three vertices up+1, vq+1, wl+1 (see

Fig. 4).

For q = 1, 1 < p ≤ l or q > 1, 1 ≤ p ≤ q − 1 ≤ l, let C2(p, q, l) be the

k-uniform bicyclic hypergraph obtained from Pp, Pq and Pl by identifying

three vertices u1, v1, w1, identifying up+1 with vq+1, and identifying wl+1

with v, respectively (see Fig. 4), where v ∈ fq \ {vq, vq+1}.
For q = 1, k > 3, 1 < p ≤ l or q = 2, 1 ≤ p ≤ l or q > 2, 1 ≤ p ≤ q− 2 ≤

l, let C3(p, q, l) be the k-uniform bicyclic hypergraph obtained from Pp, Pq

and Pl by identifying u1 with v1, identifying up+1 with vq+1, identifying

w1 with v′, and identifying wl+1 with v′′, respectively (see Fig. 4), where

v′ ∈ f1 \ {v1, v2} and v′′ ∈ fq \ {vq, vq+1} (when q = 1, we choose v′ ̸= v′′).

All linear bicyclic k-uniform hypergraphs with m edges are classified
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into the following two sets B and C [13]. For i ∈ {1, 2, 3}, let Bi(p, l, q)

and Ci(p, q, l) be the sets of m-edge k-uniform bicyclic hypergraphs each of

which contains Bi(p, l, q) and Ci(p, q, l) as a sub-hypergraph, respectively.

Let B =
⋃3

i=1{Bi(p, l, q) | q ≥ p ≥ 3, l ≥ 0} and C = {C1(p, q, l) | p = 1, 1 <

q ≤ l or 1 < p ≤ q ≤ l}
⋃
{C2(p, q, l) | q = 1, 1 < p ≤ l or q > 1, 1 ≤ p ≤

q − 1 ≤ l}
⋃
{C3(p, q, l) | q = 1, k > 3, 1 < p ≤ l or q = 2, 1 ≤ p ≤ l or q >

2, 1 ≤ p ≤ q − 2 ≤ l}. Note that the girths of hypergraphs in Bi(p, l, q)

and Ci(p, q, l) are p and p+ q, respectively.

In the following, we present the transformation used to prove our main

result.

Transformation 1: Let H be a linear k-uniform hypergraph, u, v ∈
V (H), e1, . . . , et ∈ E(H) and u ∈ ei, v /∈ ei for i = 1, 2, . . . , t. Let dH(u) ≥
2 and dH(v) > dH(u) − t. Write e′i = (ei \ {u})

⋃
{v} for i = 1, 2, . . . , t.

Let H′ be the hypergraph with V (H′) = V (H) and E(H′) = (E(H) \
{e1, . . . , et})

⋃
{e′1, . . . , e′t}. We say that H′ is obtained from H by moving

edges (e1, . . . , et) from u to v.

Lemma 1. Let H′ be obtained from H by Transformation 1. Then M(H′)

> M(H).

Proof. By the definition of the Zagreb index, we have

M(H′)−M(H) = d2H′(v) + d2H′(u)− d2H(v)− d2H(u)

= (dH(v) + t)2 + (dH(u)− t)2 − d2H(v)− d2H(u)

= 2t(t+ dH(v)− dH(u)) > 0.

3 Main results

In this section, we determine the hypergraphs with maximum and mini-

mum Zagreb indices among all linear bicyclic uniform hypergraphs with m

edges, and the hypergraphs with maximum and minimum Zagreb indices

among all linear bicyclic uniform hypergraphs with m edges and girth g.

The following Theorem gives all hypergraphs with the minimum Zagreb

index among all linear bicyclic uniform hypergraphs with m edges.



500

Theorem 1. The hypergraph H has the minimum Zagreb index among

all linear bicyclic k-uniform hypergraphs with m edges if and only if the

maximum degree of H is 2.

Proof. Let H be a linear bicyclic k-uniform hypergraph with n vertices

and m edges. Let nt be the number of vertices of H whose degree is equal

to t, and ∆H be the maximum degree of H. Then

∆H∑
t=1

nt = n,

∆H∑
t=1

tnt = km, and M(H) =

∆H∑
t=1

t2nt.

By the above Equations, we have

M(H) =

∆H∑
t=1

((t− 1)(t− 2) + 3t− 2)nt =

∆H∑
t=1

(t− 1)(t− 2)nt + 3km− 2n.

Therefore, when ∆H = 2, H has the minimum Zagreb index, and M(H) =

3km− 2n.

Let H′ be a linear bicyclic k-uniform hypergraph with n vertices and

m edges that attains the minimum Zagreb index. Then

M(H′) =

∆H′∑
t=1

(t− 1)(t− 2)nt + 3km− 2n = 3km− 2n.

Hence, ∆H′ = 2.

From the proof of Theorem 1, we obtain the following Corollary.

Corollary. The hypergraph H has the minimum Zagreb index among all

linear bicyclic k-uniform hypergraphs with m edges and girth g if and only

if the maximum degree of H is 2.

In what follows, we determine the hypergraph with the maximum Za-

greb index among all linear bicyclic uniform hypergraphs with m edges

and girth g, and the hypergraph with the maximum Zagreb index among

all linear bicyclic uniform hypergraphs with m edges. We proceed in three

steps.
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Firstly, we give the bicyclic hypergraph with the maximum Zagreb

index among all hypergraphs with girth g in B, and give the bicyclic hy-

pergraph with the maximum Zagreb index in B. Let D(p, q) denote the

m-edge k-uniform bicyclic hypergraph obtained from B1(p, 0, q) by attach-

ing m− p− q pendant edges at the unique vertex with degree 4 (see Fig.

5).

Figure 5. The hypergraph D(p, q).

Theorem 2. The hypergraph D(g, g) has the maximum Zagreb index

among all hypergraphs with girth g in B.

Proof. We distinguish the following 4 cases to prove our result.

Case 1. We consider the hypergraph in B1(g, l, q).

When l > 0, let H ∈ B1(g, l, q). If there exist u ∈ V (H) and t ̸= 0

such that u is incident with t pendant edges and dH(u) = t + 1, then we

move t pendant edges from u to a vertex adjacent to u that has degree

greater than 1 (see (a) in Fig. 6). Repeating this operation, H can be

changed into a k-uniform bicyclic hypergraph H0 such that all the edges

not in E(B1(g, l, q)) are pendant edges incident with non-cored vertices of

B1(g, l, q). If there exists no vertex u such that u is incident with t pendant

edges and dH(u) = t+ 1, then H itself is a k-uniform bicyclic hypergraph

such that all the edges not in E(B1(g, l, q)) are pendant edges incident

with non-cored vertices of B1(g, l, q), and we denote it by H0. Let v be

a vertex with the maximum degree in H0. If there exist pendant edges

not incident with v, then we move them from their non-pendant vertices
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to v (see (b) in Fig. 6). If v is not a vertex with the maximum degree

in B1(g, l, q), then we move all pendant edges from v to a vertex with the

maximum degree in B1(g, l, q). Hence, any hypergraph in B1(g, l, q) can be

changed into a k-uniform bicyclic hypergraph H1 obtained from B1(g, l, q)

by attaching m − g − q − l pendant edges at a vertex with degree 3. By

Lemma 1, the above 3 operations of moving edges strictly increase the

Zagreb index.

Figure 6. Two illustrations of Transformation 1

Without loss of generality, let dH1
(v2,2) = 3, dH1

(v1,2) ≥ 3. Suppose

that H2 is obtained from H1 by moving 2 edges incident with v2,2 in

E(C2) from v2,2 to v1,2. By Lemma 1, we have M(H2) > M(H1). If

H2 ̸= D(g, q), then we move the pendant edge not incident with v1,2 in

H2 from the non-pendant vertex to v1,2. Repeating the above operation

of moving edges, H2 can be changed into D(g, q). By Lemma 1, we have

M(D(g, q)) > M(H2).

When l = 0, similar to the first 3 operations of moving edges in the

l > 0 subcase of Case 1, any hypergraph in B1(g, 0, q) can be changed into

D(g, q).

The hypergraph D(g, q−1) can be obtained from D(g, q) by moving an

edge not incident with v1,2 in E(C2) from a vertex with degree 2 adjacent

to v1,2 to v1,2. By Lemma 1, we have M(D(g, q − 1)) > M(D(g, q)).

When q = g + s and s > 0, similar to the above operation of moving
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edges, we have M(D(g, q)) < · · · < M(D(g, q − s + 1)) < M(D(g, g)).

Therefore, D(g, g) is the hypergraph with the maximum Zagreb index in

{B1(g, l, q) | q ≥ g, l ≥ 0}.
Case 2. We consider the hypergraph in B2(g, l, q).

Similar to the first 3 operations of moving edges in the l > 0 subcase

of Case 1, any hypergraph in B2(g, l, q) can be changed into a k-uniform

bicyclic hypergraph H3 obtained from B2(g, l, q) by attaching m−g−q− l

pendant edges at the vertex with degree 3.

Without loss of generality, let B2(g, l, q) be the sub-hypergraph of H3

obtained by identifying v1,2 with u0, and identifying v2,1 with ul. LetH4 be

obtained from H3 by moving all edges incident with v2,1 in E(H3)\E(C2)

from v2,1 to v2,2. By Lemma 1, we have M(H4) > M(H3). Obviously,

H4 ∈ B1(g, l, q). Therefore, D(g, g) is the hypergraph with the maximum

Zagreb index in
⋃2

i=1{Bi(g, l, q) | q ≥ g, l ≥ 0}.
Case 3. We consider the hypergraph in B3(g, l, q).

Similar to the first 2 operations of moving edges in the l > 0 subcase

of Case 1, any hypergraph in B3(g, l, q) can be changed into a k-uniform

bicyclic hypergraph H5 obtained from B3(g, l, q) by attaching m−g−q− l

pendant edges at a vertex with degree 2.

Let H6 be obtained from H5 by moving all edges incident with v1,1 in

E(H5) \E(C1) from v1,1 to v1,2. By Lemma 1, we have M(H6) > M(H5).

Obviously, H6 ∈ B2(g, l, q).

Therefore, D(g, g) is the hypergraph with the maximum Zagreb index

in
⋃3

i=1{Bi(g, l, q) | q ≥ g, l ≥ 0}.

Theorem 3. The hypergraph D(3, 3) has the maximum Zagreb index in

B.

Proof. By Theorem 2, we know that D(g, g) is the hypergraph with the

maximum Zagreb index among all hypergraphs with girth g in B. For

3 ≤ g ≤ m
2 , we have

M(D(g, g)) = 2g(k − 2) + (m− 2g)(k − 1) + 8(g − 1) + (m− 2g + 4)2

= −10g +mk + 7m+ 8 +m2 + 4g2 − 4mg.
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Let f(x) = −10x + mk + 7m + 8 + m2 + 4x2 − 4mx, x ∈ [3, m
2 ]. Since

df(x)
dx = −10+8x−4m < 0, f(x) is a strictly monotone decreasing function.

Then M(D(g, g)) ≤ M(D(3, 3)) for 3 ≤ g ≤ m
2 , and equality holds if and

only if g = 3. Hence, D(3, 3) is the hypergraph with the maximum Zagreb

index in B.

Secondly, we give the bicyclic hypergraph with the maximum Zagreb

index among all hypergraphs with girth g in C, and give the bicyclic hyper-

graph with the maximum Zagreb index in C. For i ∈ {1, 2}, let Fi(p, q, l)

denote the m-edge k-uniform bicyclic hypergraph obtained from Ci(p, q, l)

by attaching m− p− q − l pendant edges at the vertex with degree 3 (see

Fig. 7).

Figure 7. The hypergraphs Fi(p, q, l), i = 1, 2.

Theorem 4. For m ≥ 3g
2 , when g is even, F1(

g
2 ,

g
2 ,

g
2 ) is the hypergraph

with the maximum Zagreb index among all hypergraphs with girth g in

C. When g is odd, F2(⌊ g
2⌋, ⌈

g
2⌉, ⌊

g
2⌋) is the hypergraph with the maximum

Zagreb index among all hypergraphs with girth g in C.

Proof. We distinguish the following 3 cases to prove our result.

Case 1. We consider the hypergraph in C1(p, g − p, l).

Similar to the first 3 operations of moving edges in the l > 0 subcase of

Case 1 in Theorem 2, any hypergraph in C1(p, g−p, l) can be changed into

a k-uniform bicyclic hypergraph F1(p, g−p, l) obtained from C1(p, g−p, l)

by attaching m− g − l pendant edges at a vertex with degree 3. Without

loss of generality, let dF1(p,g−p,l)(u1) = m− g − l + 3.

Note that g − p ≤ l. When g − p < l, F1(p, g − p, l − 1) can be

obtained from F1(p, g − p, l) by moving g2 from w2 to u1. By Lemma
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1, we have M(F1(p, g − p, l − 1)) > M(F1(p, g − p, l)). Similarly, we get

M(F1(p, g − p, l)) < M(F1(p, g − p, l − 1)) < · · · < M(F1(p, g − p, g − p)).

If g is even, then p ≤ g
2 . When p < g

2 , we have M(F1(p + 1, g − p −
1, g−p−1))−M(F1(p, g−p, g−p)) = (m−2g+p+4)2+12−(m−2g+p+

3)2−22 = 2(m−2g+p)+4 > 0. Similarly, we get M(F1(p, g−p, g−p)) <

M(F1(p+ 1, g − p− 1, g − p− 1)) < · · · < M(F1(
g
2 ,

g
2 ,

g
2 )).

Therefore, when g is even, F1(
g
2 ,

g
2 ,

g
2 ) has the maximum Zagreb index

in {C1(p, g − p, l) | p = 1, 1 < g − p ≤ l or 1 < p ≤ g − p ≤ l}.
If g is odd, similar to the proof that g is even, we get that F1(⌊ g

2⌋, ⌈
g
2⌉,

⌈ g
2⌉) has the maximum Zagreb index in {C1(p, g− p, l) | p = 1, 1 < g− p ≤

l or 1 < p ≤ g − p ≤ l}.
Case 2. For p+ q = g, we consider the hypergraph in C2(p, q, l).
Similar to the first 3 operations of moving edges in the l > 0 subcase

of Case 1 in Theorem 2, any hypergraph in C2(p, q, l) can be changed into

a k-uniform bicyclic hypergraph H1 obtained from C2(p, q, l) by attaching

m− p− q − l pendant edges at the vertex with degree 3.

If q = 1 in H1, then the girth is p+1. Let H2 be obtained from H1 by

moving gl from v to v2. Obviously, H2 ∈ C1(1, p, l) and g(H2) = p+1. By

Lemma 1, we have M(H2) > M(H1).

If q > 1 in H1, then 1 ≤ p ≤ q − 1 ≤ l.

When 1 ≤ p < q − 1 = l, let H′
2 be obtained from H1 by moving gl

from v to vq. Obviously, H′
2 ∈ C1(p + 1, q − 1, l) and g(H′

2) = p + q. By

Lemma 1, we have M(H′
2) > M(H1).

When 1 ≤ p = q − 1 = l, H1 = F2(⌊ g
2⌋, ⌈

g
2⌉, ⌊

g
2⌋). We have

M(F2(⌊
g

2
⌋, ⌈g

2
⌉, ⌊g

2
⌋))

= (g +
g − 1

2
− 1)(k − 2) + (k − 3) + (m− g − g − 1

2
)(k − 1) + 4(g

+
g − 1

2
− 1) + (3 +m− g − g − 1

2
)2

= −6g +
23

4
+mk + 6m+m2 +

9g2

4
− 3mg.

Since g(H1) = 2l + 1, the girth of H1 is odd. When the girth is odd,

F1(⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉) has the maximum Zagreb index in {C1(p, g − p, l) | p =
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1, 1 < g − p ≤ l or 1 < p ≤ g − p ≤ l}. We have

M(F1(⌊
g

2
⌋, ⌈g

2
⌉, ⌈g

2
⌉))

= (g +
g + 1

2
)(k − 2) + (m− g − g + 1

2
)(k − 1) + 4(g +

g + 1

2
− 3) + 9

+ (3 +m− g − g + 1

2
)2

= −3g +
19

4
+mk + 4m+m2 +

9

4
g2 − 3mg.

Hence, M(F1(⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉))−M(F2(⌊ g

2⌋, ⌈
g
2⌉, ⌊

g
2⌋)) = 3g − 1− 2m < 0.

When 1 ≤ p ≤ q − 1 < l, let H′′
2 be obtained from H1 by moving gl

from v to vq+1. Obviously, H′′
2 ∈ C1(p, q, l) and g(H′′

2 ) = p+ q. By Lemma

1, we have M(H′′
2 ) > M(H1).

Therefore, when g is even, F1(
g
2 ,

g
2 ,

g
2 ) is the hypergraph with the maxi-

mum Zagreb index among all hypergraphs with girth g in {C1(p, q, l) | p =

1, 1 < q ≤ l or 1 < p ≤ q ≤ l}
⋃
{C2(p, q, l) | q = 1, 1 < p ≤ l or q >

1, 1 ≤ p ≤ q − 1 ≤ l}. When g is odd, F2(⌊ g
2⌋, ⌈

g
2⌉, ⌊

g
2⌋) is the hypergraph

with the maximum Zagreb index among all hypergraphs with girth g in

{C1(p, q, l) | p = 1, 1 < q ≤ l or 1 < p ≤ q ≤ l}
⋃
{C2(p, q, l) | q = 1, 1 <

p ≤ l or q > 1, 1 ≤ p ≤ q − 1 ≤ l}.
Case 3. For p+ q = g, we consider the hypergraph in C3(p, q, l).
Similar to the first 2 operations of moving edges in the l > 0 subcase

of Case 1 in Theorem 2, any hypergraph in C3(p, q, l) can be changed into

a k-uniform bicyclic hypergraph H3 obtained from C3(p, q, l) by attaching

m− p− q − l pendant edges at a vertex with degree 2.

If q = 1 in H3, then g(H3) = p + 1. Let H4 be obtained from H3 by

moving all edges incident with v′ in E(H3) \ (E(Pp)
⋃

E(Pq)) from v′ to

v1 and moving all edges incident with v′′ in E(H3)\ (E(Pp)
⋃

E(Pq)) from

v′′ to v2. Obviously, H4 ∈ C1(1, p, l) and g(H4) = p+ 1. By Lemma 1, we

have M(H4) > M(H3).

If q = 2, p = l = 1 of H3, then g(H3) = 3. Let H5 be obtained from H3

by moving all edges incident with v′ in E(H3) \ (E(Pp)
⋃

E(Pq)) from v′

to v1. Obviously, H5 ∈ C2(1, 2, 1) and g(H5) = 3. By Lemma 1, we have

M(H5) > M(H3).
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If q = 2, 1 = p < l (or q = 2, 1 < p ≤ l) of H3, then g(H3) = 3 (or

p + 2). Similar to the proof of q = 1 of H3, H3 can be changed into H4,

H4 ∈ C1(1, 2, l) (or C1(2, p, l)), g(H4) = 3 (or p+2) and M(H4) > M(H3).

If q > 2 of H3, then 1 ≤ p ≤ q − 2 ≤ l. When q ≥ 2, M(H3) =

−p−q+2−l+mk+3m+m2+p2+q2+l2−2mp−2mq−2ml+2pq+2pl+2ql.

When 1 ≤ p ≤ q − 2 = l, if 1 ≤ p = q − 2 = l, then M(H3) =

9l + mk − m + 9l2 − 6ml + m2 + 4. Since l = 1
2g − 1, M(H3) = − 9

2g +

mk + 5m+ 4 +m2 + 9
4g

2 − 3mg.

Since g(H3) = 2l + 2, the girth of H3 is even. When g is even,

F1(
g
2 ,

g
2 ,

g
2 ) is the hypergraph with the maximum Zagreb index among all

hypergraphs with girth g in {C1(p, q, l) | p = 1, 1 < q ≤ l or 1 < p ≤ q ≤
l}
⋃
{C2(p, q, l) | q = 1, 1 < p ≤ l or q > 1, 1 ≤ p ≤ q − 1 ≤ l}. We have

M(F1(
g

2
,
g

2
,
g

2
))

=
3

2
g(k − 2) + (m− 3

2
g)(k − 1) + 12(

g

2
− 1) + 9 + (3 +m− 3

2
g)2

= −9

2
g +mk + 5m+ 6 +m2 +

9

4
g2 − 3mg.

Therefore, M(F1(
g
2 ,

g
2 ,

g
2 ))−M(H3) = 2 > 0.

If 1 ≤ p < q − 2 = l, let H6 be obtained from H3 by moving all edges

incident with v′ in E(H3) \ (E(Pp)
⋃
E(Pq)) from v′ to v2. Obviously,

H6 ∈ C2(p+1, q−1, l) and g(H6) = p+q. By Lemma 1, we have M(H6) >

M(H3).

When 1 ≤ p ≤ q − 2 < l, similar to the proof of q = 2, p = l = 1

of H3, H3 can be changed into H5, H5 ∈ C2(p, q, l), g(H5) = p + q and

M(H5) > M(H3).

Therefore, when g is even, F1(
g
2 ,

g
2 ,

g
2 ) is the hypergraph with the max-

imum Zagreb index among all hypergraphs with girth g in C. When g is

odd, F2(⌊ g
2⌋, ⌈

g
2⌉, ⌊

g
2⌋) is the hypergraph with the maximum Zagreb index

among all hypergraphs with girth g in C.

Theorem 5. For m ≥ 6, F2(1, 2, 1) is the hypergraph with the maximum

Zagreb index in C.

Proof. The following determines the relationship between m and g that
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guarantees the sets {C1(p, q, l) | p = 1, 1 < q ≤ l or 1 < p ≤ q ≤
l}, {C2(p, q, l) | q = 1, 1 < p ≤ l or q > 1, 1 ≤ p ≤ q − 1 ≤ l} and

{C3(p, q, l) | q = 1, k > 3, 1 < p ≤ l or q = 2, 1 ≤ p ≤ l or q > 2, 1 ≤ p ≤
q − 2 ≤ l} are non-empty.

For the set {C1(p, q, l) | p = 1, 1 < q ≤ l or 1 < p ≤ q ≤ l}, since
g = p+ q and p ≤ q, g − q ≤ q, that is q ≥ g

2 . Since l ≥ q, we have l ≥ g
2 .

Then p+ q + l = g + l ≥ 3
2g. Thus, when m ≥ 3

2g, the set is non-empty.

For the set {C2(p, q, l) | q = 1, 1 < p ≤ l or q > 1, 1 ≤ p ≤ q−1 ≤ l}, we
have q ≤ l+1 and p ≤ l, which implies l ≥ g−1

2 . Then we have p+ q+ l ≥
g+ g−1

2 = 3
2g−

1
2 . Thus, when m ≥ 3

2g−
1
2 , the set is non-empty. Since we

consider m ≥ 3g
2 in Theorem 4, now we need consider 3g

2 − 1
2 ≤ m < 3g

2 .

Let H ∈ {C2(p, q, l) | q = 1, 1 < p ≤ l or q > 1, 1 ≤ p ≤ q − 1 ≤ l}. For
3g
2 − 1

2 ≤ m < 3g
2 , we have m = 3g

2 − 1
2 and g is odd. If q = 1, H does

not exist. If q > 1, 1 ≤ g − q ≤ q − 1 ≤ l, then g
2 + 1

2 ≤ q ≤ l + 1. Since

m = 3g
2 − 1

2 , l ≥
g−1
2 and g

2 + 1
2 ≤ q ≤ l + 1, l = g−1

2 and q = g
2 + 1

2 .

Therefore, when 3g
2 − 1

2 ≤ m < 3g
2 , H = C2(⌊ g

2⌋, ⌈
g
2⌉, ⌊

g
2⌋) and g = 2m

3 + 1
3

is odd.

For the set {C3(p, q, l) | q = 1, k > 3, 1 < p ≤ l or q = 2, 1 ≤ p ≤
l or q > 2, 1 ≤ p ≤ q − 2 ≤ l}, we have q ≤ l + 2 and p ≤ l, which implies

l ≥ 1
2g − 1. Then we have p + q + l ≥ g + 1

2g − 1 = 3
2g − 1. Thus, when

m ≥ 3
2g − 1, the set is non-empty. Since we consider m ≥ 3g

2 in Theorem

4, now we need consider 3g
2 −1 ≤ m < 3g

2 . Let H ∈ {C3(p, q, l) | q = 1, k >

3, 1 < p ≤ l or q = 2, 1 ≤ p ≤ l or q > 2, 1 ≤ p ≤ q − 2 ≤ l}. If q > 2,

1 ≤ g − q ≤ q − 2 ≤ l, then g
2 + 1 ≤ q ≤ l+ 2. For 3g

2 − 1 ≤ m < 3g
2 , when

g is even, m = 3g
2 − 1. Since m = 3g

2 − 1, l ≥ 1
2g− 1 and g

2 +1 ≤ q ≤ l+2,

l = 1
2g − 1 and q = g

2 + 1. Therefore, H = C3(
g
2 − 1, g

2 + 1, g
2 − 1) and

g = 2m
3 + 2

3 is even. When g is odd, m = 3g
2 − 1

2 . Since m = 3g
2 − 1

2 ,

l ≥ 1
2g − 1 and g

2 + 1 ≤ q ≤ l + 2, l = 1
2g −

1
2 and q = 1

2g +
3
2 . Therefore,

H = C3(
1
2g − 3

2 ,
1
2g + 3

2 ,
1
2g − 1

2 ) and g = 2m
3 + 1

3 is odd. If q = 1 or

2, for 3g
2 − 1 ≤ m < 3g

2 and m ≥ 6, H does not exist. Hence, when
3g
2 −1 ≤ m < 3g

2 and H ∈ {C3(p, q, l) | q = 1, k > 3, 1 < p ≤ l or q = 2, 1 ≤
p ≤ l or q > 2, 1 ≤ p ≤ q− 2 ≤ l}, if g is even, H = C3(

g
2 − 1, g

2 +1, g
2 − 1)

and g = 2m
3 + 2

3 . If g is odd, H = C3(
1
2g−

3
2 ,

1
2g+

3
2 ,

1
2g−

1
2 ) and g = 2m

3 + 1
3 .

When g is even, we have M(F1(
g
2 ,

g
2 ,

g
2 )) = − 9

2g+mk+5m+6+m2+
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9
4g

2−3mg. Let f(x) = − 9
2x+mk+5m+6+m2+ 9

4x
2−3mx, 4 ≤ x ≤ 2m

3 .

Since df(x)
dx = − 9

2 + 9x
2 − 3m < 0, f(x) is a strictly monotone decreasing

function. Then when g is even, M(F1(
g
2 ,

g
2 ,

g
2 )) ≤ M(F1(2, 2, 2)) for 4 ≤

g ≤ 2m
3 , and equality holds if and only if g = 4. Since the maximum degree

of C3(
g
2 − 1, g

2 +1, g
2 − 1) is 2, M(F1(2, 2, 2)) > M(C3(

g
2 − 1, g

2 +1, g
2 − 1))

for g = 2m
3 + 2

3 .

When g is odd, we have M(F2(⌊ g
2⌋, ⌈

g
2⌉, ⌊

g
2⌋)) = −6g+ 23

4 +mk+6m+

m2 + 9g2

4 − 3mg. Let f(x) = −6x+ 23
4 +mk+6m+m2 + 9x2

4 − 3mx, 3 ≤
x ≤ 2m

3 + 1
3 . Since

df(x)
dx = −6 + 9x

2 − 3m < 0, f(x) is a strictly mono-

tone decreasing function. Then when g is odd, M(F2(⌊ g
2⌋, ⌈

g
2⌉, ⌊

g
2⌋)) ≤

M(F2(1, 2, 1)) for 3 ≤ g ≤ 2m
3 , and equality holds if and only if g = 3.

And M(F2(1, 2, 1)) > M(C2(⌊ g
2⌋, ⌈

g
2⌉, ⌊

g
2⌋)) for g = 2m

3 + 1
3 . Since the

maximum degree of C3(
1
2g − 3

2 ,
1
2g + 3

2 ,
1
2g − 1

2 ) is 2, M(F2(1, 2, 1)) >

M(C3(
1
2g −

3
2 ,

1
2g +

3
2 ,

1
2g −

1
2 )) for g = 2m

3 + 1
3 .

When m ≥ 6, since M(F1(2, 2, 2)) − M(F2(1, 2, 1)) = 16 − 4m < 0,

F2(1, 2, 1) is the hypergraph with the maximum Zagreb index in C.

Finally, we give the hypergraph with the maximum Zagreb index among

all linear bicyclic uniform hypergraphs with m edges and girth g, and the

hypergraph with the maximum Zagreb index among all linear bicyclic uni-

form hypergraphs with m edges.

Theorem 6. For m ≥ 3g
2 , when g is even, F1(

g
2 ,

g
2 ,

g
2 ) is the hypergraph

with the maximum Zagreb index among all linear bicyclic k-uniform hy-

pergraphs with m edges and girth g. When g is odd, F2(⌊ g
2⌋, ⌈

g
2⌉, ⌊

g
2⌋) is

the hypergraph with the maximum Zagreb index among all linear bicyclic

k-uniform hypergraphs with m edges and girth g.

For m ≥ 6, F2(1, 2, 1) is the hypergraph with the maximum Zagreb

index among all linear bicyclic k-uniform hypergraphs with m edges.

Proof. For 3g
2 ≤ m < 2g, the set B is empty. We need consider the

hypergraphs with girth g in C. Hence, by Theorem 4, when g is even,

F1(
g
2 ,

g
2 ,

g
2 ) is the hypergraph with the maximum Zagreb index among all

linear bicyclic k-uniform hypergraphs with m edges and girth g. When

g is odd, F2(⌊ g
2⌋, ⌈

g
2⌉, ⌊

g
2⌋) is the hypergraph with the maximum Zagreb
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index among all linear bicyclic k-uniform hypergraphs with m edges and

girth g.

For m ≥ 2g, when g is even, M(F1(
g
2 ,

g
2 ,

g
2 )) − M(D(g, g)) = 11

2 g −
2m − 2 − 7

4g
2 +mg, 4 ≤ g ≤ m

2 . Let f(x) = 11
2 x − 2m − 2 − 7

4x
2 +mx.

The roots of f(x) = 0 are easily obtained as x1 =
11+2m−2

√
(m− 3

2 )
2+14

7

and x2 =
11+2m+2

√
(m− 3

2 )
2+14

7 . Since x1 <
11+2m−2(m− 3

2 )

7 = 2 < 4 and

x2 >
11+2m+2(m− 3

2 )

7 = 4m+8
7 > m

2 , when 4 ≤ g ≤ m
2 , M(F1(

g
2 ,

g
2 ,

g
2 )) −

M(D(g, g)) > 0. Therefore, when g is even, F1(
g
2 ,

g
2 ,

g
2 ) is the hypergraph

with the maximum Zagreb index among all linear bicyclic k-uniform hy-

pergraphs with m edges and girth g.

When g is odd, M(F2(⌊ g
2⌋, ⌈

g
2⌉, ⌊

g
2⌋)) − M(D(g, g)) = 4g − m − 9

4 −
7
4g

2 + mg, 3 ≤ g ≤ m
2 . Let f(x) = 4x − m − 9

4 − 7
4x

2 + mx. The

roots of f(x) = 0 are easily obtained as x1 =
8+2m−2

√
(m+ 1

2 )
2

7 = 1 and

x2 =
8+2m+2

√
(m+ 1

2 )
2

7 = 4m+9
7 . Obviously, x1 < 3, x2 > m

2 . So, when

3 ≤ g ≤ m
2 , M(F2(⌊ g

2⌋, ⌈
g
2⌉, ⌊

g
2⌋)) − M(D(g, g)) > 0. Hence, when g is

odd, F2(⌊ g
2⌋, ⌈

g
2⌉, ⌊

g
2⌋) is the hypergraph with the maximum Zagreb index

among all linear bicyclic k-uniform hypergraphs with m edges and girth g.

From the proof of Theorem 5, we get that F2(1, 2, 1) is the hypergraph

with the maximum Zagreb index among all linear bicyclic k-uniform hy-

pergraphs with m edges.
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