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Abstract

In this paper, we extend the classical first and second Zagreb
indices to the setting of graphons. We introduce their rigorous inte-
gral definitions, M1(W ) and M2(W ), and establish their asymptotic
properties, which provide a bridge between these graphon-based
indices and the traditional Zagreb indices of finite graphs. Fur-
thermore, we develop a general framework for extending arbitrary
degree-based graph indices to graphons, enabling the analysis of
large-scale networks. We investigate extremal problems for these
indices and explore their relationship with network assortativity.

Overall, our results provide a powerful set of tools to analyze the
topological properties of large real-world networks. We demonstrate
their practical utility by applying the graphon framework to model
and analyze complex systems in various disciplines, including chem-
istry. These applications highlight how our graphon-based indices
can provide insights into key structural features, such as network
heterogeneity and inter-group interactions.
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1 Introduction

The asymptotic analysis of large, dense graphs is a cornerstone of modern

graph theory and network science, providing a powerful lens through which

to understand the structural properties of complex systems [2, 16]. The

theory of graph limits, particularly the concept of graphons, has emerged

as the canonical framework for this endeavor. Graphons, as symmetric,

measurable functions W : [0, 1]2 → [0, 1], serve as continuous counterparts

to the adjacency matrices of finite graphs, equipping the space of graphs

with the cut metric (δ□) and enabling the rigorous study of convergent

graph sequences [4, 5, 8, 13].

Let G = (V (G), E(G)) be a simple, undirected finite graph with vertex

set V (G) and edge set E(G). For a vertex v ∈ V (G), we denote its degree

by dG(v), which is the number of edges incident to v.

Within discrete graph theory, degree-based topological indices are fun-

damental invariants that quantify local connectivity and degree distribu-

tion. Specifically, the first Zagreb index M1(G) and the second Zagreb

index M2(G) are defined as:

M1(G) :=
∑

v∈V (G)

dG(v)
2,

M2(G) :=
∑

uv∈E(G)

dG(u)dG(v).

These indices are well-established in chemical graph theory and com-

binatorics, quantifying various structural properties of graphs [7,10,19,22,

25]. The study of their extremal values and other related degree-based

graph indices has been a rich area of research across various mathematical

disciplines, including combinatorics, chemical graph theory, and network

analysis [2, 17, 21]. While their utility in finite graph analysis is well-

established, their precise extension and analytical characterization within

the continuous graphon setting, particularly concerning their asymptotic

behavior and extremal properties, remain areas requiring deeper mathe-

matical investigation.

This paper addresses this critical gap by providing a comprehensive
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framework for extending degree-based graph indices to graphons, with a

specific focus on the first and second Zagreb indices. We formally de-

fine M1(W ) and M2(W ) as integral functionals on graphons, rigorously

establishing their exact relationship with the normalized classical indices

of finite graphs. A central contribution lies in the development of a gen-

eral theory for degree-based graphon indices, I
(1)
φ (W ) and I

(2)
φ (W ), for

which we prove fundamental continuity theorems with respect to the cut

metric. These continuity results are paramount, as they guarantee the

convergence of these indices for sequences of graphs converging in the cut

metric, thereby providing a precise asymptotic characterization. Further-

more, building upon the extensive literature on extremal problems in finite

graphs, we undertake a detailed extremal analysis of M1(W ) and M2(W )

under fixed edge density, identifying the specific graphon structures that

minimize or maximize these measures. As an additional application, we

extend the concept of network assortativity to graphons, deriving a con-

tinuous analogue of Newman’s coefficient and analyzing its behavior for

various graphon types [14,15].

Our work provides a robust analytical foundation for the study of

degree-based graph invariants in the limit, bridging classical discrete graph

theory with continuous analysis. The established continuity properties and

the characterization of extremal graphons offer powerful tools for under-

standing the structural evolution and properties of large-scale networks,

opening new avenues for research in extremal graphon theory and the

analysis of network characteristics in the continuum, thereby enriching

the broader field of graph theory.

The remainder of this paper is organized as follows. Section 2 reviews

fundamental concepts in finite graph theory and introduces graphons, in-

cluding the formal integral definitions for the first and second Zagreb in-

dices in the graphon setting. Section 3 presents a general framework for

extending degree-based graph indices to graphons and proves their con-

tinuity. Section 4 establishes the continuity and convergence properties

of the specific Zagreb indices, M1(W ) and M2(W ), as direct applications

of the general framework, and illustrates these findings with the conver-

gence of normalized Zagreb indices for complete bipartite graphs. Section
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5 provides further concrete examples by computing Zagreb indices for vari-

ous well-known graphon types, including constant, complete bipartite, and

rank-1 graphons. Section 6 addresses extremal problems for the Zagreb

indices on graphons, characterizing graphons that minimize or maximize

M1(W ) and maximize M2(W ) for a fixed edge density. Section 7 extends

the concept of network assortativity to graphons, deriving a continuous

analogue of Newman’s coefficient and analyzing its behavior for specific

graphon structures. Section 8 outlines future work and open problems,

with a particular focus on the minimization of M2(W ) and the broader

extremal behavior of degree-based graphon indices.

Finally, in Section 9, the graphon-based framework is naturally ex-

tended to chemical systems. By capturing patterns of molecular connectiv-

ity and interactions, it offers a systematic approach for analyzing reaction

networks, molecular assemblies, and other chemical processes.

2 Preliminaries and notation

This section defines the fundamental concepts and notation used through-

out the paper, focusing on the definition of graphons and their associated

properties.

A graphon is a symmetric, measurable function W : [0, 1]2 → [0, 1],

meaning W (x, y) = W (y, x) for almost every x, y ∈ [0, 1]. Graphons

are fundamental objects in the theory of graph limits, representing dense

graphs in the continuum [13]. The space of all graphons, denoted by W, is

endowed with the cut metric δ□. This metric is defined for two graphons

W and W0 as follows:

δ□(W,W0) = inf
φ

sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

W (x, y)−W0(φ(x), φ(y)) dx dy

∣∣∣∣ ,
where φ ranges over all measure-preserving transformations of [0, 1]. For a

comprehensive treatment, we refer the reader to [13]. For a given graphon
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W , its degree function dW (x) is defined as:

dW (x) :=

∫ 1

0

W (x, y) dy, x ∈ [0, 1].

The function dW : [0, 1] → [0, 1] can be interpreted as the continuous

analogue of a vertex degree, representing the expected edge density from

point x to the rest of the graph.

The first and second Zagreb indices for graphons W are specific in-

stances of I
(1)
φ (W ) and I

(2)
φ (W ) (defined in section 3):

M1(W ) :=

∫ 1

0

dW (x)2 dx,

M2(W ) :=

∫ 1

0

∫ 1

0

W (x, y)dW (x)dW (y) dxdy.

These definitions are natural continuous counterparts of their discrete

sums.

The edge density of a graphon W is defined as:

pW :=

∫ 1

0

∫ 1

0

W (x, y) dxdy.

It is important to note the relationship between the edge density and the

degree function:

pW =

∫ 1

0

(∫ 1

0

W (x, y) dy

)
dx =

∫ 1

0

dW (x) dx.

The connection between these graphon indices and their classical fi-

nite graph counterparts is established through the associated step-function

graphon.

Proposition 1. For any finite graph G with n = |V (G)| vertices, let WG

be its associated step-function graphon, defined by WG(x, y) = Aij for x ∈
[ i−1

n , i
n ) and y ∈ [ j−1

n , j
n ), where Aij is the (i, j)-th entry of the adjacency

matrix of G. Then the graphon Zagreb indices are related to the classical

Zagreb indices as follows: M1(WG) =
M1(G)

n3 and M2(WG) =
2M2(G)

n4 .
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Proof. Let G = (V,E) be a finite graph with n vertices, labeled 1, . . . , n.

The step-function graphonWG is defined such that for x ∈ [ i−1
n , i

n ) and y ∈
[ j−1

n , j
n ), WG(x, y) = Aij , where Aij is the (i, j)-th entry of the adjacency

matrix of G. First, we determine the degree function dWG
(x) for WG. For

any x ∈ [k−1
n , k

n ) (corresponding to vertex k), we have:

dWG
(x) =

∫ 1

0

WG(x, y) dy =

n∑
j=1

∫ j
n

j−1
n

WG(x, y) dy

=

n∑
j=1

Akj

∫ j
n

j−1
n

1 dy =

n∑
j=1

Akj

(
j
n − j−1

n

)
=

n∑
j=1

Akj
1
n = 1

n

n∑
j=1

Akj =
dG(k)

n .

Thus, dWG
(x) is a step function, constant on each interval [k−1

n , k
n )

with value dG(k)
n .

Now, we compute M1(WG):

M1(WG) =

∫ 1

0

dWG
(x)2 dx =

n∑
k=1

∫ k
n

k−1
n

dWG
(x)2 dx

=

n∑
k=1

∫ k
n

k−1
n

(
dG(k)

n

)2
dx =

n∑
k=1

dG(k)2

n2

∫ k
n

k−1
n

1 dx

=

n∑
k=1

dG(k)2

n2 · 1
n = 1

n3

n∑
k=1

dG(k)
2 = M1(G)

n3 .

Next, we compute M2(WG):

M2(WG) =

∫ 1

0

∫ 1

0

WG(x, y)dWG
(x)dWG

(y) dxdy

=

n∑
i=1

n∑
j=1

∫ i
n

i−1
n

∫ j
n

j−1
n

WG(x, y)dWG
(x)dWG

(y) dydx.

Within each block (x, y) ∈ [ i−1
n , i

n ) × [ j−1
n , j

n ), we have WG(x, y) = Aij ,
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dWG
(x) = dG(i)

n , and dWG
(y) = dG(j)

n . Substituting these values:

M2(WG) =

n∑
i=1

n∑
j=1

Aij

(
dG(i)

n

)(
dG(j)

n

)(∫ i
n

i−1
n

dx

)(∫ j
n

j−1
n

dy

)

=

n∑
i=1

n∑
j=1

Aij
dG(i)dG(j)

n2
· 1
n
· 1
n

=
1

n4

n∑
i=1

n∑
j=1

AijdG(i)dG(j).

The sum
n∑

i=1

n∑
j=1

AijdG(i)dG(j)

is equivalent to summing dG(i)dG(j) for all ordered pairs (i, j) for which

there is an edge between i and j. Since Aij = 1 if ij ∈ E(G) and Aij = 0

otherwise, this sum is

2
∑

uv∈E(G)

dG(u)dG(v) = 2M2(G).

Substituting this back, we obtain

M2(WG) =
2M2(G)

n4
.

This completes the proof.

3 A general framework for degree-based

graphon indices

With the necessary preliminaries and notation established in section 2,

we now introduce a general framework for extending degree-based graph

indices to graphons. This framework encompasses many common indices,

including the Zagreb indices, allowing for a unified analytical treatment.
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3.1 Indices of type 1

Many degree-based indices are defined as a sum over vertices, where each

term depends on the degree of a single vertex. Examples include the first

Zagreb index or the general Randić index (Rα(G) =
∑

v∈V (G) dG(v)
α),

where α is an arbitrary real number.

We propose the following continuous analogue for graphons. Let φ :

[0, 1] → R be a continuous function. The graphon-analogue of a degree-

based index of type
∑

v∈V (G) φ(dG(v)) is defined as:

I(1)φ (W ) :=

∫ 1

0

φ(dW (x)) dx.

Proposition 2. For a finite graph G with n vertices and its associated

step-function graphon WG,

I(1)φ (WG) =
1

n

∑
v∈V (G)

φ

(
dG(v)

n

)
.

Proof. Let G = (V (G), E(G)) be a finite graph with n vertices. Its asso-

ciated step-function graphon WG is defined such that the domain [0, 1] is

partitioned into n intervals I1, . . . , In, each of length 1/n, corresponding

to the vertices v1, . . . , vn of G. For x ∈ Ii and y ∈ Ij , WG(x, y) = Aij ,

where Aij is the entry of the adjacency matrix of G.

The degree function of the graphon WG, for any x ∈ Ii, is given by:

dWG
(x) =

∫ 1

0

WG(x, y) dy =

n∑
j=1

∫
Ij

WG(x, y) dy

=

n∑
j=1

Aij ·
1

n
=

1

n

n∑
j=1

Aij =
dG(vi)

n
.

Here, dG(vi) is the degree of vertex vi in graph G.

Now, we use the definition of I
(1)
φ (WG):

I(1)φ (WG) =

∫ 1

0

φ(dWG
(x)) dx.
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Since dWG
(x) is constant on each interval Ii, we can rewrite the integral

as a sum over these intervals:

I(1)φ (WG) =
n∑

i=1

∫
Ii

φ(dWG
(x)) dx.

Substituting dWG
(x) = dG(vi)/n for x ∈ Ii, and noting that the length of

each interval Ii is 1/n:

I(1)φ (WG) =

n∑
i=1

φ

(
dG(vi)

n

)∫
Ii

dx =

n∑
i=1

φ

(
dG(vi)

n

)
· 1
n
.

Therefore,

I(1)φ (WG) =
1

n

∑
v∈V (G)

φ

(
dG(v)

n

)
.

Theorem 3 (Continuity of I
(1)
φ (W )). Let φ : [0, 1] → R be a continuous

function. If (Wn)n≥1 is a sequence of graphons converging to W in the cut

metric, i.e., δ□(Wn,W ) → 0 as n → ∞, then I
(1)
φ (Wn) → I

(1)
φ (W ).

Proof. If δ□(Wn,W ) → 0, then dWn
→ dW in L2([0, 1]) (see, for instance,

Theorem 8.13 in [13]). Since [0, 1] has finite measure, L2-convergence

implies convergence in measure.

The function φ : [0, 1] → R is continuous on the compact interval [0, 1].

Therefore, φ is uniformly continuous and bounded on its domain. Let

M = supt∈[0,1] |φ(t)|.
We want to show that

∫ 1

0
φ(dWn

(x)) dx →
∫ 1

0
φ(dW (x)) dx. Consider

the difference in integrals:

|I(1)φ (Wn)− I(1)φ (W )| =
∣∣∣∣∫ 1

0

(φ(dWn
(x))− φ(dW (x))) dx

∣∣∣∣
≤
∫ 1

0

|φ(dWn(x))− φ(dW (x))| dx.

We will show that the integral on the right-hand side converges to 0.

For any ε > 0, by the uniform continuity of φ, there exists a δ > 0

such that if |u − v| < δ, then |φ(u) − φ(v)| < ε. Let An = {x ∈ [0, 1] :
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|dWn(x)− dW (x)| < δ}. Since dWn → dW in measure, the measure of the

complement µ([0, 1] \An) tends to 0 as n → ∞.

Now, we decompose the integral:∫ 1

0

|φ(dWn
(x))− φ(dW (x))| dx =

∫
An

|φ(dWn
(x))− φ(dW (x))| dx︸ ︷︷ ︸

Integral over An

+

∫
[0,1]\An

|φ(dWn(x))− φ(dW (x))| dx︸ ︷︷ ︸
Integral over Ac

n

For the integral over An:∫
An

|φ(dWn(x))− φ(dW (x))| dx ≤
∫
An

ε dx = ε · µ(An) ≤ ε · µ([0, 1]) = ε.

For the integral over Ac
n:∫

[0,1]\An

|φ(dWn
(x))− φ(dW (x))| dx

≤
∫
[0,1]\An

(|φ(dWn
(x))|+ |φ(dW (x))|) dx

≤
∫
[0,1]\An

(M +M) dx = 2M · µ([0, 1] \An).

Combining these two parts, we get:∫ 1

0

|φ(dWn(x))− φ(dW (x))| dx ≤ ε+ 2M · µ([0, 1] \An).

As n → ∞, µ([0, 1] \An) → 0. Since ε can be chosen arbitrarily small, the

right-hand side tends to 0. Therefore,
∫ 1

0
|φ(dWn

(x))−φ(dW (x))| dx → 0,

which implies I
(1)
φ (Wn) → I

(1)
φ (W ).
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3.2 Indices of type 2

The second Zagreb index is a prominent example of an index summed over

edges, where it depends on the degrees of the incident vertices.

For such indices, we propose the following general graphon formulation.

Let φ : [0, 1]2 → R be a continuous function. The graphon-analogue of a

degree-based index of type∑
uv∈E(G)

φ(dG(u), dG(v))

is defined as:

I(2)φ (W ) :=

∫ 1

0

∫ 1

0

W (x, y)φ(dW (x), dW (y)) dxdy.

Note that this formulation is based on the perspective that W (x, y) rep-

resents the edge existence probability between x and y in the continuum

setting. The factor of 1/2 that appears in the discrete-to-graphon conver-

sion for M2(G) is absorbed into the definition of the graphon index itself,

as the integral naturally accounts for pairs (x, y) and (y, x).

Proposition 4. For a finite graph G with n vertices and its associated

step-function graphon WG, if φ(u, v) is a symmetric function, then

I(2)φ (WG) =
2

n2

∑
uv∈E(G)

φ

(
dG(u)

n
,
dG(v)

n

)
.

Proof. For WG we have WG(x, y) = Aij for x ∈
[
i−1
n , i

n

)
and y ∈

[
j−1
n , j

n

)
,

and dWG
(x) = dG(i)/n on that interval. Hence

I(2)φ (WG) =

∫ 1

0

∫ 1

0

WG(x, y)φ(dWG
(x), dWG

(y)) dy dx

=

n∑
i=1

n∑
j=1

∫ i
n

i−1
n

∫ j
n

j−1
n

WG(x, y)φ(dWG
(x), dWG

(y)) dy dx

=

n∑
i=1

n∑
j=1

Aij φ
(dG(i)

n
,
dG(j)

n

) 1

n2
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=
1

n2

n∑
i=1

n∑
j=1

Aij φ
(dG(i)

n
,
dG(j)

n

)
.

The double sum above counts each (undirected) edge uv ∈ E(G) twice (as

(u, v) and (v, u)). If φ is symmetric, i.e. φ(a, b) = φ(b, a), then the two

ordered contributions agree, so

n∑
i=1

n∑
j=1

Aij φ
(dG(i)

n
,
dG(j)

n

)
= 2

∑
uv∈E(G)

φ
(dG(u)

n
,
dG(v)

n

)
.

Therefore

I(2)φ (WG) =
2

n2

∑
uv∈E(G)

φ
(dG(u)

n
,
dG(v)

n

)
.

Theorem 5 (Continuity of I
(2)
φ (W )). Let φ : [0, 1]2 → R be a continuous

function. If (Wn)n≥1 is a sequence of graphons converging to W in the cut

metric, then I
(2)
φ (Wn) → I

(2)
φ (W ).

Proof. If δ□(Wn,W ) → 0, then dWn
→ dW in L2([0, 1]) (see, for instance,

Theorem 8.13 in [13]).

The function φ : [0, 1]2 → R is continuous on the compact domain

[0, 1]2. Therefore, φ is uniformly continuous and bounded on its domain.

Let M = sup(u,v)∈[0,1]2 |φ(u, v)|.
We decompose the difference |I(2)φ (Wn)− I

(2)
φ (W )|:

|I(2)φ (Wn)− I(2)φ (W )|

=

∣∣∣∣∣
∫ 1

0

∫ 1

0

(
Wn(x, y)φ(dWn

(x), dWn
(y))

− W (x, y)φ(dW (x), dW (y))
)
dx dy

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 1

0

∫ 1

0

(Wn(x, y)−W (x, y))φ(dWn
(x), dWn

(y)) dx dy

∣∣∣∣∣︸ ︷︷ ︸
Term A
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+

∣∣∣∣∣
∫ 1

0

∫ 1

0

W (x, y)
(
φ(dWn(x), dWn(y))− φ(dW (x), dW (y))

)
dx dy

∣∣∣∣∣︸ ︷︷ ︸
Term B

.

For Term A, let

Fn(x, y) = φ(dWn(x), dWn(y)),

F (x, y) = φ(dW (x), dW (y)).

Since dWn
→ dW in L2([0, 1]), it implies dWn

→ dW in measure. Given that

φ is uniformly continuous and bounded, we now explicitly show that Fn →
F in L1([0, 1]2). For any ε > 0, by the uniform continuity of φ, there exists

a δ > 0 such that if ∥(u1, v1)−(u2, v2)∥∞ < δ, then |φ(u1, v1)−φ(u2, v2)| <
ε. Let An = {(x, y) ∈ [0, 1]2 : |dWn(x) − dW (x)| < δ and |dWn(y) −
dW (y)| < δ}. Since dWn → dW in measure, the measure of the complement

µ([0, 1]2 \An) tends to 0 as n → ∞. Now consider the L1 difference:∫ 1

0

∫ 1

0

|Fn(x, y)− F (x, y)| dxdy =

∫
An

|Fn(x, y)− F (x, y)| dxdy︸ ︷︷ ︸
Integral over An

+

∫
[0,1]2\An

|Fn(x, y)− F (x, y)| dxdy︸ ︷︷ ︸
Integral over Ac

n

For the integral over An:∫
An

|φ(dWn
(x))− φ(dW (x))| dx dy ≤

∫
An

ε dx dy = ε · µ(An)

≤ ε · µ([0, 1]2) = ε.

For the integral over Ac
n:∫

[0,1]2\An

|φ(dWn(x))− φ(dW (x))| dxdy

≤
∫
[0,1]2\An

(|φ(dWn(x))|+ |φ(dW (x))|) dxdy
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≤
∫
[0,1]2\An

(M +M) dxdy

= 2M · µ([0, 1]2 \An).

Combining these, we get:∫ 1

0

∫ 1

0

|Fn(x, y)− F (x, y)| dxdy ≤ ε+ 2M · µ([0, 1]2 \An).

As n → ∞, µ([0, 1]2 \ An) → 0. Since ε is arbitrary, this implies Fn → F

in L1([0, 1]2).

By a known result from graphon theory (e.g., a variant of Theorem 8.13

(ii) in [13]), if δ□(Wn,W ) → 0 and Fn → F in L1, then
∫ 1

0

∫ 1

0
(Wn(x, y)−

W (x, y))Fn(x, y) dxdy → 0. Thus, Term A converges to 0.

For Term B: Since W (x, y) ∈ [0, 1], we have:

Term B ≤
∫ 1

0

∫ 1

0

|φ(dWn(x), dWn(y))− φ(dW (x), dW (y))| dxdy

As explicitly shown for Term A, the integrand on the right-hand side con-

verges to 0 in L1([0, 1]2) (due to dWn → dW in measure and the uniform

continuity and boundedness of φ). Therefore, the integral itself converges

to 0. Thus, Term B converges to 0.

Since both Term A and Term B converge to 0, we conclude that

|I(2)φ (Wn)− I
(2)
φ (W )| → 0, proving the continuity of I

(2)
φ (W ).

It is well-known that the first Zagreb index in finite graph theory has

two equivalent definitions:

M1(G) =
∑

v∈V (G)

dG(v)
2,

M1(G) =
∑

uv∈E(G)

(
dG(u) + dG(v)

)
.

While these are indeed equivalent for finite graphs, their direct analogues

in the graphon setting exhibit a specific relationship.

In our paper, the first Zagreb index for graphons M1(W ) is defined as
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the integral of the squared degree function:

M1(W ) =

∫ 1

0

(dW (x))2 dx

This corresponds to the vertex-based definition (
∑

dG(v)
2).

The graphon analogue of the edge-based definition (
∑

uv∈E(G)(dG(u)+

dG(v))) would be:∫ 1

0

∫ 1

0

W (x, y)(dW (x) + dW (y)) dxdy

Through direct calculation, utilizing the definition of the degree function

dW (x) =
∫ 1

0
W (x, y) dy and the symmetry of W (x, y), this integral evalu-

ates to:∫ 1

0

∫ 1

0

W (x, y)(dW (x) + dW (y)) dxdy = 2

∫ 1

0

(dW (x))2 dx = 2M1(W ).

Therefore, in the graphon setting, the edge-based formulation of the first

Zagreb index is twice the value of the vertex-based formulation. This

highlights that while both expressions are meaningful and relate to the

classical index, their direct integral translations are distinct by a factor of

two, unlike their perfect equality in finite graphs.

4 Continuity and convergence properties of

Zagreb indices

A crucial aspect of graphon theory is the behavior of graph parameters

under limits of graph sequences. In this section, we establish the continuity

of the Zagreb indices M1 and M2 with respect to the cut metric, which

directly implies their convergence for sequences of finite graphs. These

results are specific applications of the more general theorems proven in

section 3.

We first prove that the Zagreb indices are continuous functionals on

the space of graphons equipped with the cut metric.
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Theorem 6. Let (Wn)n≥1 be a sequence of graphons converging to a

graphon W in the cut metric, i.e., δ□(Wn,W ) → 0 as n → ∞. Then

M1(Wn) → M1(W ) and M2(Wn) → M2(W ).

Proof. The continuity of M1(W ) directly follows from theorem 3 by choos-

ing the function φ(t) = t2, which is continuous on [0, 1].

Similarly, the continuity of M2(W ) directly follows from theorem 5 by

choosing the function φ(u, v) = uv, which is continuous on [0, 1]2.

Corollary. Let (Gn)n≥1 be a sequence of finite graphs with n = |V (Gn)|,
and let WGn

be the associated step-function graphons. Suppose WGn
→ W

in the cut metric. Then

M1(Gn)

n3
→ M1(W ), and

M2(Gn)

n4
→ 1

2
M2(W ).

Proof. This follows immediately from the relations M1(WGn
) = M1(Gn)

n3

and M2(WGn
) = 2M2(Gn)

n4 (as shown in proposition 1), along with the

continuity of M1 and M2 with respect to the cut metric established in

theorem 6.

A significant application of graphon theory is in the study of random

graphs. For instance, it is well-known that the sequence of Erdős-Rényi

random graphs G(n, p) (with n vertices and edge probability p) converges

in probability to the constant graphon Wc(x, y) ≡ p in the cut metric [13].

By Corollary 4, our results directly imply that for G(n, p):

M1(G(n, p))

n3
→ M1(Wc) = p2 in probability as n → ∞,

and

M2(G(n, p))

n4
→ 1

2
M2(Wc) =

1

2
p3 in probability as n → ∞.

This demonstrates how our continuous definitions and continuity theorems

provide direct asymptotic formulas for classical graph invariants in large

random graph settings.



469

4.1 Illustrative example: Convergence of complete bi-

partite graphs

To demonstrate the relationship between the classical Zagreb indices of

finite graphs and their graphon counterparts, as established in proposi-

tion 1 and section 4, we consider a sequence of balanced complete bipartite

graphs.

Let Gn = Kn/2,n/2 be a complete bipartite graph with n vertices, where

n is an even integer. The vertices are divided into two equal parts of size

n/2. Every vertex in one part is connected to every vertex in the other

part.

For this graph:

• Every vertex v ∈ V (Gn) has degree dGn
(v) = n/2.

• The number of edges is |E(Gn)| = (n/2) · (n/2) = n2/4.

Now we compute the classical Zagreb indices for Gn:

M1(Gn) =
∑

v∈V (Gn)

dGn
(v)2 = n ·

(n
2

)2
= n · n

2

4
=

n3

4
.

M2(Gn) =
∑

uv∈E(Gn)

dGn
(u)dGn

(v).

Since all vertices have degree n/2, for every edge uv ∈ E(Gn), the product

dGn
(u)dGn

(v) = (n/2)(n/2) = n2/4. Therefore,

M2(Gn) = |E(Gn)| ·
(
n2

4

)
=

n2

4
· n

2

4
=

n4

16
.

Next, we consider the normalized Zagreb indices, which are expected

to converge to the graphon indices according to our theory:

M1(Gn)

n3
=

n3/4

n3
=

1

4
.

M2(Gn)

n4
=

n4/16

n4
=

1

16
.

As n → ∞, the sequence of balanced complete bipartite graphs Kn/2,n/2



470

converges in the cut metric to the balanced complete bipartite graphon

WK1/2,1/2
.

This graphon is defined as:

WK1/2,1/2
(x, y) =


1, if (x ≤ 1/2 and y > 1/2)

or (y ≤ 1/2 and x > 1/2),

0, otherwise.

Let’s compute the Zagreb indices for WK1/2,1/2
: The degree function for

this graphon is dWK1/2,1/2
(x) = 1/2 for all x ∈ [0, 1], as shown in example 2

with a = 1/2.

The first Zagreb index of WK1/2,1/2
is:

M1(WK1/2,1/2
) =

∫ 1

0

dWK1/2,1/2
(x)2 dx =

∫ 1

0

(
1

2

)2

dx =
1

4
.

Let W := WK1/2,1/2
, d := dWK1/2,1/2

.

M2(W ) =

∫ 1

0

∫ 1

0

W (x, y) d(x) d(y) dx dy.

Since dWK1/2,1/2
(x) = 1/2 for all x, the product equals

dWK1/2,1/2
(x) dWK1/2,1/2

(y) =
1

2
· 1
2
=

1

4
.

M2(WK1/2,1/2
) =

1

4

∫ 1

0

∫ 1

0

WK1/2,1/2
(x, y) dxdy.

The double integral
∫ 1

0

∫ 1

0
WK1/2,1/2

(x, y) dxdy is the edge density of the

graphon. ForWK1/2,1/2
, this is pW = (1/2)(1/2)+(1/2)(1/2) = 1/4+1/4 =

1/2. Therefore,

M2(WK1/2,1/2
) =

1

4
· 1
2
=

1

8
.

Comparing the limits from the finite graphs with the values from the

graphon:
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• For M1: limn→∞
M1(Gn)

n3 = 1
4 , which matches M1(WK1/2,1/2

) = 1
4 .

• For M2: limn→∞
M2(Gn)

n4 = 1
16 , which matches 1

2M2(WK1/2,1/2
) =

1
2 · 1

8 = 1
16 .

5 Examples of specific graphons and their

Zagreb indices

To illustrate the concepts introduced, we compute the Zagreb indices for

some well-known classes of graphons. These examples build intuition and

demonstrate the applicability of our analytic framework.

Example 1 (Constant Graphon). The simplest nontrivial graphon is the

constant graphon Wc : [0, 1]
2 → [0, 1] defined by

Wc(x, y) = p, for some fixed p ∈ [0, 1].

This graphon serves as the limit object for the Erdős–Rényi random graph

model G(n, p) as n → ∞.

Its degree function is constant:

dWc(x) =

∫ 1

0

Wc(x, y) dy =

∫ 1

0

p dy = p.

Therefore, the first Zagreb index is

M1(Wc) =

∫ 1

0

dWc
(x)2 dx =

∫ 1

0

p2 dx = p2.

The second Zagreb index is

M2(Wc) =

∫ 1

0

∫ 1

0

Wc(x, y)dWc
(x)dWc

(y) dxdy

=

∫ 1

0

∫ 1

0

p · p · p dxdy = p3.
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Example 2 (Complete Bipartite Graphon). Fix a ∈ (0, 1) and define the

bipartite graphon WKa,1−a as:

WKa,1−a
(x, y) =

1, if (x ≤ a and y > a) or (y ≤ a and x > a),

0, otherwise.

This graphon corresponds to a complete bipartite graph with parts of

relative sizes a and 1− a.

The degree function is piecewise constant:

dWKa,1−a
(x) =

∫ 1

0

WKa,1−a(x, y) dy =


∫ 1

a
1 dy = 1− a, x ≤ a,∫ a

0
1 dy = a, x > a.

Thus, the first Zagreb index is

M1(WKa,1−a
) =

∫ a

0

(1− a)2 dx+

∫ 1

a

a2 dx

= a(1− a)2 + (1− a)a2 = a(1− a)(1− a+ a) = a(1− a).

The second Zagreb index is

M2(WKa,1−a
) =

∫ 1

0

∫ 1

0

WKa,1−a
(x, y)dWKa,1−a

(x)dWa,1−a
(y) dxdy

=

∫ a

0

∫ 1

a

1 · (1− a) · a dydx+

∫ 1

a

∫ a

0

1 · a · (1− a) dydx

=

(∫ a

0

dx

∫ 1

a

dy

)
(1− a)a+

(∫ 1

a

dx

∫ a

0

dy

)
a(1− a)

= a2(1− a)2 + a2(1− a)2 = 2a2(1− a)2.

Example 3 (Rank-1 Graphons). Rank-1 graphons are of the form

Wf (x, y) = f(x)f(y),

where f : [0, 1] → [0, 1] is a measurable function.



473

The degree function is

dWf
(x) =

∫ 1

0

Wf (x, y) dy =

∫ 1

0

f(x)f(y) dy = f(x)

∫ 1

0

f(y) dy = f(x) ·µf

,where µf :=
∫ 1

0
f(y) dy.

The first Zagreb index becomes

M1(Wf ) =

∫ 1

0

dWf
(x)2 dx =

∫ 1

0

(f(x)µf )
2 dx = µ2

f

∫ 1

0

f(x)2 dx.

The second Zagreb index is

M2(Wf ) =

∫ 1

0

∫ 1

0

Wf (x, y)dWf
(x)dWf

(y) dxdy

=

∫ 1

0

∫ 1

0

f(x)f(y) · (f(x)µf ) · (f(y)µf ) dxdy

= µ2
f

∫ 1

0

∫ 1

0

f(x)2f(y)2 dxdy

= µ2
f

(∫ 1

0

f(x)2 dx

)(∫ 1

0

f(y)2 dy

)
= µ2

f

(∫ 1

0

f(x)2 dx

)2

.

If we take f(x) =
√
p for a constant p ∈ [0, 1], then Wf (x, y) = p. This

matches the definition of a constant graphon Wc(x, y) = p. In this case:

µf =
∫ 1

0

√
p dx =

√
p.
∫ 1

0
f(x)2 dx =

∫ 1

0
(
√
p)2 dx =

∫ 1

0
p dx = p. Sub-

stituting these into the formulas for M1(Wf ) and M2(Wf ): M1(Wf ) =

(
√
p)2 · p = p · p = p2. M2(Wf ) = (

√
p)2 · (p)2 = p · p2 = p3. These

results are consistent with those derived directly for the constant graphon

in example 1.

6 Extremal problems for Zagreb indices on

graphons

The study of extremal problems for degree-based indices on finite graphs

is a classic area of graph theory [2, 3]. Extending these problems to the

graphon setting allows us to analyze the asymptotic behavior and identify
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extremal structures in the continuous limit [6]. This section formalizes

several natural extremal problems for M1(W ) and M2(W ).

Theorem 7 (Minimum of M1 for fixed edge density). Let W ∈ W be a

graphon with fixed edge density pW . Then the first Zagreb index M1(W )

is minimized when its degree function dW (x) is constant almost every-

where, specifically dW (x) = pW for a.e. x ∈ [0, 1]. The minimum value is

M1(W ) = p2W , attained by the constant graphon W (x, y) = pW .

Proof. By definition, M1(W ) =
∫ 1

0
dW (x)2 dx. We know that the edge

density pW =
∫ 1

0
dW (x) dx. We want to minimize

∫ 1

0
dW (x)2 dx subject

to
∫ 1

0
dW (x) dx = pW and 0 ≤ dW (x) ≤ 1. This is a standard application of

Jensen’s inequality for convex functions. The function f(t) = t2 is convex

on [0, 1]. Therefore, by Jensen’s inequality:

(∫ 1

0

dW (x) dx

)2

≤
∫ 1

0

dW (x)2 dx.

Substituting the definition of pW , we get:

p2W ≤ M1(W ).

Equality holds if and only if dW (x) is constant almost everywhere.

Since
∫ 1

0
dW (x) dx = pW , this constant must be pW . Thus, the minimum

value of M1(W ) is p2W . This minimum is achieved by the constant graphon

W (x, y) = pW , because for this graphon, dW (x) =
∫ 1

0
pW dy = pW for all

x ∈ [0, 1]. Therefore, M1(Wc) =
∫ 1

0
p2W dx = p2W .

Theorem 8 (Maximum of M1 for fixed edge density). Let W ∈ W be a

graphon with fixed edge density pW . Then the first Zagreb index M1(W )

is maximized when the degree function dW (x) takes only two values: 0 and

1. Specifically, dW (x) = 1A(x) for some measurable set A ⊆ [0, 1] with

measure pW . The maximum value is M1(W ) = pW .
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Proof. We want to

maximize M1(W ) =
∫ 1

0
dW (x)2 dx

subject to
∫ 1

0
dW (x) dx = pW

0 ≤ dW (x) ≤ 1.

Since dW (x) ∈ [0, 1], we have dW (x)2 ≤ dW (x) for all x. Integrating both

sides,
∫ 1

0
dW (x)2 dx ≤

∫ 1

0
dW (x) dx. Thus, M1(W ) ≤ pW . Equality holds

if and only if dW (x)2 = dW (x) almost everywhere, which implies that

dW (x) ∈ {0, 1} for almost all x ∈ [0, 1]. Let A = {x ∈ [0, 1] : dW (x) = 1}.
Then for M1(W ) to be pW , we must have µ(A) = pW . It is a known result

in graphon theory that for any measurable function f : [0, 1] → [0, 1]

with
∫ 1

0
f(x) dx = pW , there exists a graphon W such that dW (x) = f(x)

for almost all x [13]. Thus, a graphon exists whose degree function is

dW (x) = 1A(x) for any measurable set A with µ(A) = pW . Such a graphon

will achieve the maximum value M1(W ) =
∫ 1

0
(1A(x))

2 dx =
∫
A
1 dx =

µ(A) = pW .

Theorem 9 (Maximum of M2 for fixed edge density). Let W ∈ W be a

graphon with fixed edge density pW . Then the second Zagreb index M2(W )

is maximized when W (x, y) corresponds to a single clique. Specifically, the

maximum value is M2(W ) = p2W , and this is achieved by the graphon

WA(x, y) = 1A×A(x, y) for some measurable set A ⊆ [0, 1] with measure

µ(A) =
√
pW .

Proof. We want to

maximize M2(W ) =
∫ 1

0

∫ 1

0
W (x, y)dW (x)dW (y) dxdy

subject to
∫ 1

0

∫ 1

0
W (x, y) dxdy = pW .

Let WA(x, y) = 1A×A(x, y), where A is a measurable set of measure α.

For this graphon, the edge density is pWA
=
∫ 1

0

∫ 1

0
1A×A(x, y) dxdy =

µ(A)2 = α2. Thus, for a given pW , we must choose α =
√
pW . Let A

be any measurable set with µ(A) =
√
pW . The degree function for WA is

dWA
(x) =

∫ 1

0
1A×A(x, y) dy = 1A(x)

∫
A
1 dy = 1A(x)µ(A) =

√
pW1A(x).
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Now, compute M2(WA):

M2(WA) =

∫ 1

0

∫ 1

0

WA(x, y)dWA
(x)dWA

(y) dxdy

=

∫ 1

0

∫ 1

0

1A×A(x, y)(
√
pW1A(x))(

√
pW1A(y)) dxdy

= pW

∫ 1

0

∫ 1

0

1A×A(x, y)1A(x)1A(y) dxdy

= pW

∫
A

∫
A

1 · 1 · 1 dxdy = pW · µ(A)2 = pW · pW = p2W .

Now, we prove that M2(W ) ≤ p2W for any graphon W with edge density

pW . Recall that for any graphon W , we have W (x, y) ∈ [0, 1] and its

degree function dW (y) ∈ [0, 1]. We can express M2(W ) as:

M2(W ) =

∫ 1

0

dW (x)

(∫ 1

0

W (x, y)dW (y)dy

)
dx.

Since W (x, y) ≤ 1 and dW (y) ≤ 1, we have∫ 1

0

W (x, y)dW (y) dy ≤
∫ 1

0

1 · dW (y) dy = pW .

Therefore,

M2(W ) ≤
∫ 1

0

dW (x) · pW dx = pW

∫ 1

0

dW (x) dx = p2W .

The upper bound is p2W , and the clique graphon

WA(x, y) = 1A×A(x, y)

with µ(A) =
√
pW achieves this bound.

7 Network assortativity of graphons

Having characterized the extremal graphons for the Zagreb indices, it is

natural to investigate other fundamental network properties of these opti-
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mal structures. A crucial property in network science is assortativity (or

assortative mixing), which quantifies the tendency of nodes to connect to

others with similar (assortative mixing) or dissimilar (disassortative mix-

ing) degrees. Networks displaying assortative mixing often feature nodes

predominantly connecting to other nodes of comparable degrees, while

disassortative networks exhibit connections between high-degree and low-

degree nodes. This property plays a significant role in the resilience, func-

tionality, and information flow within complex networks [14,15].

For a finite undirected graph G = (V,E), Newman’s assortativity coef-

ficient r is essentially a normalized covariance of the degrees of connected

nodes:

r =

∑
uv∈E dG(u)dG(v)−

[∑
uv∈E

1
2 (dG(u) + dG(v))

]2
/|E|∑

uv∈E
1
2 (dG(u)

2 + dG(v)2)−
[∑

uv∈E
1
2 (dG(u) + dG(v))

]2
/|E|

.

where dG(u) and dG(v) are the degrees of vertices u and v connected by

an edge uv ∈ E, and |E| is the total number of edges.

To extend this concept to the continuous setting of graphons, we con-

sider a graphon W (x, y) on the unit square [0, 1]2. The continuous analog

of the degree of a vertex x ∈ [0, 1] is the degree function dW (x), de-

fined as dW (x) =
∫ 1

0
W (x, y) dy. The total edge density of the graphon is

p =
∫ 1

0

∫ 1

0
W (x, y) dx dy.

The Newman assortativity coefficient for a graphon W , denoted r(W ),

can be derived by considering the expectations of degree functions over

edges in the continuous limit. If we imagine picking an edge (x, y) with

probability density W (x,y)
p , then dW (x) and dW (y) are the degrees of its

endpoints. The assortativity coefficient is then defined as the Pearson

correlation coefficient between these two degree values.

Let X and Y be random variables representing the degrees of the two

endpoints of a randomly chosen edge in the graphon. The expected product

of these degrees is:

E[dW (X)dW (Y )] =
1

p

∫ 1

0

∫ 1

0

W (x, y)dW (x)dW (y) dx dy.
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The expected value of a single endpoint’s degree (e.g., dW (X)) is:

E[dW (X)] =
1

p

∫ 1

0

∫ 1

0

W (x, y)dW (x) dx dy =
1

p

∫ 1

0

dW (x)2 dx.

The variance of a single endpoint’s degree is:

V ar[dW (X)] = E[dW (X)2]− (E[dW (X)])2

=
1

p

∫ 1

0

dW (x)3 dx−
(
1

p

∫ 1

0

dW (x)2 dx

)2

.

Given that V ar[dW (X)] = V ar[dW (Y )] for symmetric graphons, the as-

sortativity coefficient for a graphon W is:

r(W ) =
E[dW (X)dW (Y )]− E[dW (X)]E[dW (Y )]

V ar[dW (X)]
.

Substituting the integral forms, we obtain the Newman assortativity coef-

ficient for graphons:

r(W ) =

1
p

∫ 1

0

∫ 1

0
W (x, y)dW (x)dW (y) dx dy −

(
1
p

∫ 1

0
dW (x)2 dx

)2
1
p

∫ 1

0
dW (x)3 dx−

(
1
p

∫ 1

0
dW (x)2 dx

)2 .

This coefficient r(W ) will range from −1 (perfectly disassortative) to 1

(perfectly assortative), with 0 indicating no assortative mixing.

7.1 Constant graphon

Consider the constant graphon W (x, y) = p, which represents the limit of

an Erdős-Rényi random graph. The degree function is dW (x) =
∫ 1

0
p dy =

p for all x ∈ [0, 1]. Substituting this into the terms of the assortativity

formula:∫ 1

0

∫ 1

0

W (x, y)dW (x)dW (y) dx dy =

∫ 1

0

∫ 1

0

p · p · p dx dy = p3
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0

dW (x)2 dx =

∫ 1

0

p2 dx = p2∫ 1

0

dW (x)3 dx =

∫ 1

0

p3 dx = p3

Plugging these into the formula for r(W ):

r(W ) =

1
p (p

3)−
(

1
p (p

2)
)2

1
p (p

3)−
(

1
p (p

2)
)2 =

p2 − p2

p2 − p2

This results in an indeterminate form 0
0 . In such cases, where there is no

variation in degrees to correlate, the assortativity coefficient is typically

defined as 0. Thus, for the constant graphon W (x, y) = p, r(W ) = 0. This

implies no assortative or disassortative mixing, as expected for a graph

where connections are formed uniformly at random regardless of degree.

7.2 Stochastic block model (SBM) graphon: Com-

plete bipartite limit

Let us consider a two-block SBM graphon that represents the limit of a

complete bipartite graph KN1,N2 . We define W (x, y) such that nodes in

the first block, x ∈ [0, α), connect only to nodes in the second block,

y ∈ [α, 1), and vice versa. Specifically,

W (x, y) =

1 if (x ∈ [0, α) and y ∈ [α, 1)) or (x ∈ [α, 1) and y ∈ [0, α))

0 otherwise

The edge density is p = 2α(1−α). The degree function dW (x) is piecewise

constant:

dW (x) =

1− α if x ∈ [0, α)

α if x ∈ [α, 1)

Let’s compute the necessary integrals:
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∫ 1

0

∫ 1

0

W (x, y) dW (x) dW (y) dx dy =

∫ α

0

∫ 1

α

(1− α)αdy dx

+

∫ 1

α

∫ α

0

α(1− α) dy dx

= 2α2(1− α)2

= pα(1− α)

∫ 1

0

dW (x)2 dx =

∫ α

0

(1− α)2 dx+

∫ 1

α

α2 dx = α(1− α)

∫ 1

0

dW (x)3 dx =

∫ α

0

(1− α)3 dx+

∫ 1

α

α3 dx = α(1− α)
(
α2 + (1− α)2

)
Now, substitute these into the assortativity formula:

r(W ) =

1
p (pα(1− α))−

(
1
pα(1− α)

)2
1
p α(1− α)(α2 + (1− α)2)−

(
1
pα(1− α)

)2
=

α(1− α)− 1
4

α2+(1−α)2

2 − 1
4

−(2α− 1)2

(2α− 1)2
= −1

Thus, for the complete bipartite graphon, r(W ) = −1, demonstrating

perfect disassortative mixing, where connections occur exclusively between

nodes of different degree classes.

7.3 Core-periphery graphon

A core-periphery structure features a densely connected core and a sparsely

connected periphery, with potentially fewer connections between the two.

Such structures are prevalent in many real-world networks (e.g., organi-

zational structures, metabolic networks). Let’s consider a simplified two-

block core-periphery graphon where:

• W (x, y) = A for x, y ∈ [0, α) (core-core connections)
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• W (x, y) = B for x, y ∈ [α, 1) (periphery-periphery connections)

• W (x, y) = C for (x ∈ [0, α) and y ∈ [α, 1)) or vice versa (core-

periphery connections)

Typically, A is large, B is small, and C is intermediate or small. For

instance, consider α = 0.2 (20% core), A = 1 (dense core), B = 0.1

(sparse periphery), and C = 0.5 (moderate core-periphery links).

The degree function dW (x) will take two values:

• For x ∈ [0, α) (core node): dW (x) = Aα+ C(1− α)

• For x ∈ [α, 1) (periphery node): dW (x) = Cα+B(1− α)

The edge density is p = Aα2 +B(1− α)2 + 2Cα(1− α).

Calculating r(W ) for a general core-periphery graphon involves more

extensive algebraic manipulation of the integrals for dW (x), dW (x)2,

dW (x)3, and the edge-weighted product integral. While the exact value

depends on the chosen parameters (A,B,C, α), core-periphery structures

typically exhibit assortativity that is either mildly positive (if core-core

links dominate assortativity) or disassortative (if many high-degree core

nodes connect to low-degree periphery nodes). The precise assortativity

value provides a quantitative measure of how degrees are correlated across

connections in such a network organization. This computation, while

lengthy for arbitrary parameters, can be performed for specific choices

to illustrate the behavior.

8 Future work and open problems

This work establishes a foundational analytical framework for degree-based

graph indices on graphons. While we have provided continuity theorems

and explored extremal properties for the first Zagreb index M1(W ) and

the maximum of M2(W ), several challenging and intriguing open problems

remain, particularly concerning the minimum of M2(W ) and other more

complex degree-based functionals.
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Open Problem 1 (Minimum ofM2(W ) for Fixed Edge Density). Charac-

terize the graphons W ∈ W that minimize the second Zagreb index M2(W )

for a fixed edge density pW .

min
W :pW fixed

M2(W ).

Discussion for Open Problem 1: For the minimum, this problem is notably

intricate. The constant graphon Wc(x, y) = pW yields M2(Wc) = p3W .

However, for pW ∈ (0, 1), the constant graphon is generally not the min-

imizer for M2(W ). Initial observations suggest that graphons exhibiting

extreme heterogeneity in degree distributions might lead to a minimum

for M2(W ). This could involve structures akin to sparse configurations,

even if the overall density pW is non-zero, or graphons where connections

are concentrated on a small measure of points. For instance, considering

graphons that approach a star-like structure in the continuum, or struc-

tures with many isolated vertices but a few very highly connected ones.

This is in contrast to M1(W ), which is minimized by a constant degree

function. Identifying such a graphon structure and rigorously proving its

minimality for M2(W ) presents a significant challenge.

Open Problem 2. Extend the extremal analysis to the general class of

degree-based functionals I
(1)
φ (W ) and I

(2)
φ (W ) for various continuous func-

tions φ. Specifically, investigate how the convexity or concavity properties

of φ influence the structure of the extremal graphons.

Discussion for Open Problem 2: For I
(1)
φ (W ) =

∫ 1

0
φ(dW (x)) dx:

• If φ is convex, Jensen’s inequality suggests that the minimum is

achieved when dW (x) is constant (as seen forM1(W ) with φ(t) = t2).

The maximum would likely involve dW (x) taking extreme values (0

and 1).

• If φ is concave, the situation is reversed: the maximum might be

achieved when dW (x) is constant, and the minimum when dW (x)

takes extreme values.

For I
(2)
φ (W ) =

∫ 1

0

∫ 1

0
W (x, y)φ(dW (x), dW (y)) dxdy, the interplay between

W (x, y) and dW (x), dW (y) makes the problem significantly more intricate.
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9 Applications in chemistry

This section provides a bridge between the abstract graphon framework

and its concrete applications in chemical research. We demonstrate the

utility of this approach through several examples, including molecular sim-

ilarity, the prediction of reaction pathways, and the analysis of metabolic

networks. To lay the necessary groundwork for our subsequent analysis,

we commence with a pivotal theorem whose proof is central to deriving

the numerical results presented hereafter.

Theorem 10. Let W : [0, 1]2 → [0, 1] be a bounded measurable graphon.

Sample latent positions x1, . . . , xn
i.i.d.∼ Unif[0, 1] and form the random

graph Gn on vertex set {1, . . . , n} by placing an (undirected) edge between

i ̸= j independently with probability W (xi, xj). Then, as n → ∞,

E[M1(Gn)] = n3M1(W ) + o(n3), E[M2(Gn)] =
n4

2
M2(W ) + o(n4).

Consequently the normalized estimators

ĉ1(Gn) :=
M1(Gn)

n3
, ĉ2(Gn) :=

2M2(Gn)

n4

converge in probability to M1(W ) and M2(W ), respectively (under the

above sampling model).

Proof. We work conditionally on the latent positions x = (x1, . . . , xn). For

i ∈ {1, . . . , n} the degree of vertex i is

di =
∑
j ̸=i

Aij , Aij ∼ Bernoulli(W (xi, xj)), Aij = Aji.

Conditioned on x,

E[di | x] =
∑
j ̸=i

W (xi, xj).

By the law of large numbers for the empirical measure of the independent
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draws {xj}j ̸=i,

∑
j ̸=i

W (xi, xj) =
(n− 1)

n− 1

∑
j ̸=i

W (xi, xj) → n

∫ 1

0

W (xi, y) dy = ndW (xi)

uniformly in probability (indeed the entries are bounded). Hence E[di |
x] = ndW (xi) +O(1).

Since di is a sum of independent Bernoulli variables,

Var(di | x) =
∑
j ̸=i

W (xi, xj)(1−W (xi, xj)) = O(n),

so

E[d2i | x] = (E[di | x])2 +Var(di | x) = n2dW (xi)
2 +O(n).

Summing over i gives

E[M1(Gn) | x] =
n∑

i=1

E[d2i | x] = n2
n∑

i=1

dW (xi)
2 +O(n2).

Now 1
n

∑n
i=1 dW (xi)

2 →
∫ 1

0
dW (x)2 dx = M1(W ) in probability, so

E[M1(Gn) | x] = n3M1(W ) + op(n
3).

Taking unconditional expectation yields E[M1(Gn)] = n3M1(W ) + o(n3).

By definition

M2(Gn) =
∑

{i,j}∈E

didj =
1
2

∑
i ̸=j

Aij didj .

Condition on x. For i ̸= j, Aij is Bernoulli(W (xi, xj)) and di, dj are sums

of O(n) independent Bernoulli variables; therefore by standard concen-

tration (Hoeffding/Bernstein) we may replace di, dj by their conditional

means ndW (xi) and ndW (xj) up to errors that are negligible at the n4

scale. More precisely, with high probability di = ndW (xi) + O(
√
n log n),

so fluctuations contribute only to lower-order terms after summation over

O(n2) pairs.

Using the leading-order approximation and E[Aij | x] = W (xi, xj),
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E[Aijdidj | x] ≈ W (xi, xj) · (ndW (xi)) · (ndW (xj))

= n2W (xi, xj) dW (xi) dW (xj).

Thus, summing over unordered pairs,

E[M2(Gn) | x] ≈ 1
2

∑
i̸=j

n2W (xi, xj) dW (xi) dW (xj).

Now

1

n2

∑
i ̸=j

W (xi, xj) dW (xi) dW (xj) →
∫∫

W (x, y) dW (x) dW (y) dx dy

= M2(W ),

in probability. Therefore

E[M2(Gn) | x] =
n4

2
M2(W ) + op(n

4),

and taking unconditional expectation yields E[M2(Gn)] = n4

2 M2(W ) +

o(n4).

Dividing the above identities by n3 and n4/2 respectively and applying

Chebyshev/Markov arguments or concentration for the empirical averages

gives convergence in probability

ĉ1(Gn) =
M1(Gn)

n3

p−→ M1(W ), ĉ2(Gn) =
2M2(Gn)

n4

p−→ M2(W ).

This completes the (heuristic but standard) proof. All error terms

above can be made explicit under stronger regularity on W (boundedness

is enough) by using concentration inequalities for sums of independent

Bernoulli variables and standard approximation results for U -statistics and

empirical measures.
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Air chemistry network analysis via graphon modeling

Urban and tropospheric air chemistry is governed by a complex network

of interacting reactive species. The most relevant chemical families are

oxidants (Ox: O3, OH, HO2), nitrogen oxides (Nx: NO, NO2, NO3), and

volatile organic compounds (VOCs: hydrocarbons, aldehydes, ketones).

Their mutual reactions drive cascades of radical propagation and termi-

nation steps that control ozone formation, secondary organic aerosol pro-

duction, and ultimately the phenomenon of photochemical smog [1, 20].

From a network perspective, each molecular species is represented as

a vertex, and an edge encodes an effective chemical interaction (reaction,

catalytic cycle, or radical transfer). Such atmospheric chemical networks

are heterogeneous: oxidants typically act as hubs with many partners,

while VOCs provide a large but more weakly connected background. Nx

species serve as intermediates that mediate cross-family interactions. This

natural block-structured organization makes atmospheric chemistry an ex-

cellent candidate for graphon modeling.

We model the atmospheric chemical system by a three-block graphon

W (x, y) = Pij , x ∈ Ii, y ∈ Ij ,

where I1, I2, I3 ⊂ [0, 1] correspond to the Ox, Nx, and VOC families with

proportions α = (0.3, 0.3, 0.4). The block probabilities are

P =

0.5 0.8 0.7

0.8 0.6 0.9

0.7 0.9 0.4

 .

Here W (x, y) encodes the probability of an effective interaction between

species x and y. The chosen proportions and probabilities reflect chem-

ically realistic conditions of polluted urban atmospheres: Ox and Nx

are highly reactive, justifying the high cross-family probabilities (e.g.,

P12 = 0.8, P13 = 0.7), while VOCs are numerous but less internally re-

active, explaining their larger share (≈ 40%) and lower self-interaction

probability (P33 = 0.4).
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The degree function of the graphon represents the expected connec-

tivity of a species. The graphon Zagreb indices quantify global struc-

tural features of the chemical network: a large M1(W ) reflects strong

degree heterogeneity dominated by oxidants, while a large M2(W ) cap-

tures cross-family interactions (Ox–Nx–VOC), the primary driving force

of photochemical smog formation. This model matches empirical obser-

vations that although VOCs are abundant, the fewer Ox and Nx species

play central, highly interconnected roles in atmospheric chemistry.

Remark. The block graphon model presented here provides a simplified

yet informative representation of atmospheric chemical networks. Several

approximations are made for tractability: (i) the Ox, Nx, and VOC families

are each treated as homogeneous blocks, although in reality they contain

diverse species with varying reactivities; (ii) the block probabilities Pij are

chosen to reflect general chemical trends rather than being directly fitted

to experimental rate constants; (iii) environmental factors such as sunlight

intensity, temperature, and humidity are not explicitly modeled, although

they significantly affect reaction kinetics. Despite these simplifications, the

graphon framework captures the essential structural features of the net-

work, including hub-mediated connectivity (Ox species) and cross-family

interactions driving photochemical smog formation. This approach pro-

vides a foundation for future extensions that incorporate species-specific

kinetics and environmental variability.

In view of Theorem 10, the Zagreb indices of sampled graphs are

asymptotically related to the graphon’s indices: for a sample of size n,

the expected values satisfy E[M1(Gn)] ≈ n3M1(W ) and E[M2(Gn)] ≈
n4M2(W )/2. This provides a direct method for validating the model

against empirical data.

The comparison between Figures 1 and 2 shows how block structure

manifests at different sample sizes. For n = 25, both the adjacency matrix

and the network layout clearly reveal family structure, while for n = 250

the network layout is too dense and only the adjacency matrix provides

an interpretable depiction. In both cases, the computed values of M1(Gn)

and M2(Gn) agree with the theoretical predictions.
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Figure 1. Atmospheric reaction network (n = 25) sampled from the
block graphon. Left: adjacency matrix sorted by families
(Ox, Nx, VOC), with black lines separating blocks. Right:
force-directed layout representation, with oxidants (circles),
nitrogen oxides (squares), and VOCs (triangles). For this
sample, we obtain M1(G25) = 7,132 and M2(G25) = 60,662.
According to Theorem 10, one expects E[M1(G25)] ≈
253M1(W ) = 7,517 and E[M2(G25)] ≈ 254

2
M2(W ) =

65,297, in close agreement with the sampled values.

Analysis of aromatic molecules using graphon theory

Aromatic molecules, including benzene (C6H6) and extended π-conjugated

systems such as graphene fragments or polycyclic aromatic hydrocarbons,

are characterized by delocalized π-electron networks. These systems con-

sist of cyclic arrangements of carbon atoms with resonance-stabilized al-

ternating single and double bonds, leading to bond-order equalization and

enhanced chemical stability [9, 18]. From a network perspective, vertices

represent carbon atoms and edges correspond to covalent bonds, with ef-

fective weights capturing the delocalization of π electrons. These networks

are nearly regular and highly symmetric, reflecting the uniform connectiv-

ity of aromatic rings.

To capture this periodic symmetry in a continuous, large-network limit,

we introduce a periodic graphon:

W (x, y) = pmax cos
2
(
π(x− y)

)
,

where the cosine kernel encodes the cyclic topology of π-conjugated sys-
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Ox Nx VOC

Ox

Nx

VOC

Figure 2. Atmospheric reaction network (n = 250) sampled from the
block graphon. The adjacency matrix is sorted by families
(Ox, Nx, VOC), with thin black gridlines separating blocks.

tems (see Figure 3). The degree function dW (x) is approximately constant,

consistent with the regularity of aromatic connectivity and bond-order

equalization. Accordingly, the first Zagreb index M1(W ) is nearly uni-

form, while the second Zagreb index M2(W ) reflects correlated connectiv-

ity patterns across the ring. In this context, M2(W ) should be interpreted

as a quantitative measure of structural correlation in the network rather

than a direct measure of stabilization energy.

It is important to note that while the periodic graphon provides a

mathematically convenient representation of aromatic symmetry and con-

nectivity, it is an idealized, continuous approximation. For small molecules

such as benzene, the discrete network with six carbon atoms is sufficient,

and the graphon framework becomes most useful for analyzing extended

π-conjugated systems where larger-scale periodicity emerges.

Metabolic networks and heavy-tailed graphons

Metabolic reaction networks in living cells are characterized by pronounced

degree heterogeneity. A small set of highly connected compounds, com-

monly called currency metabolites (e.g., ATP, NADH, H2O, H+), partici-

pate in many reactions, whereas most metabolites are specialized molecules

involved in only a few specific transformations. This heterogeneity re-

sults in a heavy-tailed degree distribution, a feature widely documented
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Figure 3. Sampled aromatic network generated from the periodic
graphon W (x, y) = pmax cos2(π(x − y)) with n = 60 ver-
tices. Left: adjacency matrix sorted by latent positions,
showing the quasi-regular connectivity induced by the co-
sine kernel. Right: force-directed layout of the sampled
network (vertices unlabeled), where each vertex represents
a carbon atom and edges represent effective π-bonding in-
teractions. For this sample, the computed indices are
M1(G60) = 42,662, M2(G60) = 575,675, with normalized
values ĉ1(G60) = 0.1975, ĉ2(G60) = 0.0888, and assortativ-
ity r = 0.089. These values illustrate the nearly uniform
degree distribution and the correlation structure character-
istic of aromatic networks.

in metabolic networks [12, 24]. Such networks typically exhibit hub-like

currency metabolites that act as central connectors. Note that in certain

analyses, highly abundant metabolites like H2O or H+ may be excluded

to better capture biologically meaningful interactions.

To capture this heterogeneity mathematically, we employ a power-law

graphon, which provides a flexible framework to model hierarchical struc-

ture and degree variability. We define

W (x, y) = min
(
1, θ(xy)−β

)
, x, y ∈ (0, 1],

where β ∈ (0, 1) controls the heaviness of the tail and θ > 0 sets the overall

interaction scale. The min(1, ·) cutoff ensures bounded edge probabilities,

reflecting saturation effects in highly connected hubs. In this formulation,

vertices with small latent positions (x ≪ 1) attain very large expected de-
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Figure 4. Sample metabolic reaction network (n = 60) generated from
a power-law graphon. Left: adjacency matrix sorted by la-
tent positions, highlighting dense connections among hub-
like vertices in the top-left corner. Right: force-directed
layout of the same network, with vertex size proportional
to degree. Hub-like currency metabolites connect to many
smaller, specialized metabolites. For this sample, the Zagreb
indices are M1(G60) = 64,666 and M2(G60) = 1,101,914,
in agreement with Theorem 10. The assortativity value
r = −0.200 confirms the network’s disassortative nature,
a pattern commonly observed in biological systems.

grees, corresponding to hub-like currency metabolites, while vertices with

latent positions near x ≈ 1 have low expected degrees, corresponding to

specialized compounds (see Figure 4).

The resulting Zagreb indices, M1(W ) and M2(W ), increase rapidly

with network size, reflecting the strong degree heterogeneity introduced by

hub metabolites. As shown in Theorem 10, these asymptotic values provide

predictions for sampled networks, enabling quantitative comparison with

empirical metabolic data.
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[19] M. Randić, On characterization of molecular branching, J. Am. Chem.
Soc. 97 (1975) 6609–6615.

[20] J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics:
From Air Pollution to Climate Change, Wiley, Hoboken, 2016.

[21] M. Simonovits, A method for solving extremal problems in graph
theory, stability problems, in: P. Erdős, G. Katona (Eds.), Theory of
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