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Abstract

In this paper, we extend the classical first and second Zagreb
indices to the setting of graphons. We introduce their rigorous inte-
gral definitions, M7 (W) and M2(W), and establish their asymptotic
properties, which provide a bridge between these graphon-based
indices and the traditional Zagreb indices of finite graphs. Fur-
thermore, we develop a general framework for extending arbitrary
degree-based graph indices to graphons, enabling the analysis of
large-scale networks. We investigate extremal problems for these
indices and explore their relationship with network assortativity.

Overall, our results provide a powerful set of tools to analyze the
topological properties of large real-world networks. We demonstrate
their practical utility by applying the graphon framework to model
and analyze complex systems in various disciplines, including chem-
istry. These applications highlight how our graphon-based indices
can provide insights into key structural features, such as network
heterogeneity and inter-group interactions.
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1 Introduction

The asymptotic analysis of large, dense graphs is a cornerstone of modern
graph theory and network science, providing a powerful lens through which
to understand the structural properties of complex systems [2,16]. The
theory of graph limits, particularly the concept of graphons, has emerged
as the canonical framework for this endeavor. Graphons, as symmetric,
measurable functions W : [0, 1] — [0, 1], serve as continuous counterparts
to the adjacency matrices of finite graphs, equipping the space of graphs
with the cut metric (dg) and enabling the rigorous study of convergent
graph sequences [4,5,8,13].

Let G = (V(G), E(G)) be a simple, undirected finite graph with vertex
set V(@) and edge set E(G). For a vertex v € V(G), we denote its degree
by dg(v), which is the number of edges incident to v.

Within discrete graph theory, degree-based topological indices are fun-
damental invariants that quantify local connectivity and degree distribu-
tion. Specifically, the first Zagreb index Mi(G) and the second Zagreb
index Ms(G) are defined as:

M(G) = > da(v)?,
veV(G)

My(G) = Y de(u)da(v).
weE(G)

These indices are well-established in chemical graph theory and com-
binatorics, quantifying various structural properties of graphs [7,10,19,22,
25]. The study of their extremal values and other related degree-based
graph indices has been a rich area of research across various mathematical
disciplines, including combinatorics, chemical graph theory, and network
analysis [2,17,21]. While their utility in finite graph analysis is well-
established, their precise extension and analytical characterization within
the continuous graphon setting, particularly concerning their asymptotic
behavior and extremal properties, remain areas requiring deeper mathe-
matical investigation.

This paper addresses this critical gap by providing a comprehensive
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framework for extending degree-based graph indices to graphons, with a
specific focus on the first and second Zagreb indices. We formally de-
fine My (W) and M>(W) as integral functionals on graphons, rigorously
establishing their exact relationship with the normalized classical indices
of finite graphs. A central contribution lies in the development of a gen-
eral theory for degree-based graphon indices, IS)(W) and 19(92)(W)7 for
which we prove fundamental continuity theorems with respect to the cut
metric. These continuity results are paramount, as they guarantee the
convergence of these indices for sequences of graphs converging in the cut
metric, thereby providing a precise asymptotic characterization. Further-
more, building upon the extensive literature on extremal problems in finite
graphs, we undertake a detailed extremal analysis of M; (W) and Ma(W)
under fixed edge density, identifying the specific graphon structures that
minimize or maximize these measures. As an additional application, we
extend the concept of network assortativity to graphons, deriving a con-
tinuous analogue of Newman’s coefficient and analyzing its behavior for
various graphon types [14,15].

Our work provides a robust analytical foundation for the study of
degree-based graph invariants in the limit, bridging classical discrete graph
theory with continuous analysis. The established continuity properties and
the characterization of extremal graphons offer powerful tools for under-
standing the structural evolution and properties of large-scale networks,
opening new avenues for research in extremal graphon theory and the
analysis of network characteristics in the continuum, thereby enriching
the broader field of graph theory.

The remainder of this paper is organized as follows. Section 2 reviews
fundamental concepts in finite graph theory and introduces graphons, in-
cluding the formal integral definitions for the first and second Zagreb in-
dices in the graphon setting. Section 3 presents a general framework for
extending degree-based graph indices to graphons and proves their con-
tinuity. Section 4 establishes the continuity and convergence properties
of the specific Zagreb indices, M1 (W) and My(W), as direct applications
of the general framework, and illustrates these findings with the conver-

gence of normalized Zagreb indices for complete bipartite graphs. Section
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5 provides further concrete examples by computing Zagreb indices for vari-
ous well-known graphon types, including constant, complete bipartite, and
rank-1 graphons. Section 6 addresses extremal problems for the Zagreb
indices on graphons, characterizing graphons that minimize or maximize
M7 (W) and maximize Mo (W) for a fixed edge density. Section 7 extends
the concept of network assortativity to graphons, deriving a continuous
analogue of Newman’s coefficient and analyzing its behavior for specific
graphon structures. Section 8 outlines future work and open problems,
with a particular focus on the minimization of My(W) and the broader
extremal behavior of degree-based graphon indices.

Finally, in Section 9, the graphon-based framework is naturally ex-
tended to chemical systems. By capturing patterns of molecular connectiv-
ity and interactions, it offers a systematic approach for analyzing reaction

networks, molecular assemblies, and other chemical processes.

2 Preliminaries and notation

This section defines the fundamental concepts and notation used through-
out the paper, focusing on the definition of graphons and their associated
properties.

A graphon is a symmetric, measurable function W : [0,1]> — [0,1],
meaning W(z,y) = W(y,z) for almost every z,y € [0,1]. Graphons
are fundamental objects in the theory of graph limits, representing dense
graphs in the continuum [13]. The space of all graphons, denoted by W, is
endowed with the cut metric . This metric is defined for two graphons
W and W, as follows:

og(W,Wy) =inf sup
¥ 8,TC0,1]

g TW(x,y) - Wole(z), ¢(y)) dr dy|,

where ¢ ranges over all measure-preserving transformations of [0, 1]. For a

comprehensive treatment, we refer the reader to [13]. For a given graphon
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W, its degree function dyy (x) is defined as:

dw () ::/O W(x,y)dy, x€][0,1].

The function dy : [0,1] — [0,1] can be interpreted as the continuous
analogue of a vertex degree, representing the expected edge density from
point = to the rest of the graph.

The first and second Zagreb indices for graphons W are specific in-
stances of IS)(W) and Ig(f) (W) (defined in section 3):

M (W) :2/0 dw (z)? dz,

1 1
My(W) = /0 /0 W (e, y)dw (2)dw (y) drdy.

These definitions are natural continuous counterparts of their discrete
sums.

The edge density of a graphon W is defined as:

1 1
pw = / / W (z,y) dvdy.
0 0

It is important to note the relationship between the edge density and the

degree function:

pwz/o1 (/Olvv(x,y)dy) d:c:/oldw(x)d:c.

The connection between these graphon indices and their classical fi-
nite graph counterparts is established through the associated step-function

graphon.

Proposition 1. For any finite graph G with n = |V(G)| vertices, let Wg
be its associated step-function graphon, defined by Wa(z,y) = A;j forx €
(=L, L) andy € [%, %), where A;; is the (i,j)-th entry of the adjacency

matriz of G. Then the graphon Zagreb indices are related to the classical
Zagreb indices as follows: My(Wg) = 22 9 and My(Wg) = %Af@

n3
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Proof. Let G = (V, E) be a finite graph with n vertices, labeled 1,.
The step-function graphon W is defined such that for « € [*

andy €

n’n)

(21, 1y W (x,y) = Ayj, where A;; is the (4, j)-th entry of the adjacency

n ’'n

matrix of G. First, we determine the degree function dy,, (x) for W¢. For

any x € [knl7 Z) (corresponding to vertex k), we have:
dwg (z /ngydy— / We(z,y)d
n E n
S
- zAkj/j_l wy:zAkj(% -2)
i=1 o i=1
n
11
=2 Auis = ZAM =
j=1
Thus, dw,(z) is a step function, constant on each interval [%, %)
with value dGT(k).

Now, we compute My (Wg):

n Lk

S [ dwe @) da

k=1 n

1
Ml(WG):/O dwg ()% dx =

n

k ) n k
_ " (dc(k)) do — de(k)? [ 1dx
k=1 \ n n? o k=1
1 n
d

k= k=1 n

S L=k do(k)? = M

3

—~
N
-

n

k=1

Next, we compute My (We):
MaWo) = [ [ Wolw.v)iu (o), () ey

- Z Z/ /Q Wa(z,y)dwe (x)dw, (y) dydz.

=1 j=1

Within each block (z,y) € [&2,

n

) X [;17%)7 we have WG({E,y) = Aij)

n

3|
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dw.(z) = dcn(i), and dy,(y) = dcn(j). Substituting these values:

w5550, (492) (42) ) ()

- Ny n
=1 j=1
Ny dede() 11
B I e e
i=1 j=1

n n

= % Z ZAijdG(i)dG(j)~

The sum .

DD Ayda(ida())

i=1j=1
is equivalent to summing dg(i)dg(j) for all ordered pairs (i, j) for which
there is an edge between ¢ and j. Since A;; =11if ij € E(G) and A;; =0
otherwise, this sum is

2 Y de(uwda(v) = 2My(G).
weEE(G)

Substituting this back, we obtain

M>(We) = 2]\/[;4(G)'

This completes the proof. |

3 A general framework for degree-based
graphon indices

With the necessary preliminaries and notation established in section 2,
we now introduce a general framework for extending degree-based graph
indices to graphons. This framework encompasses many common indices,

including the Zagreb indices, allowing for a unified analytical treatment.
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3.1 Indices of type 1

Many degree-based indices are defined as a sum over vertices, where each
term depends on the degree of a single vertex. Examples include the first
Zagreb index or the general Randi¢ index (Ra(G) = X, cv(q) da(v)?),
where « is an arbitrary real number.

We propose the following continuous analogue for graphons. Let ¢ :
[0,1] — R be a continuous function. The graphon-analogue of a degree-

based index of type }_,cy () ¢(da(v)) is defined as:

IOW) = / o (dw (2)) do.

Proposition 2. For a finite graph G with n vertices and its associated

step-function graphon Wg,

10 (We) = % T . (daév)> '

veV(G)

Proof. Let G = (V(G), E(G)) be a finite graph with n vertices. Its asso-
ciated step-function graphon We is defined such that the domain [0, 1] is
partitioned into n intervals Iy, ..., I,, each of length 1/n, corresponding
to the vertices v1,...,v, of G. For ¢ € I, and y € I;, Wg(x,y) = Aij,
where A;; is the entry of the adjacency matrix of G.

The degree function of the graphon W, for any x € I;, is given by:

1 n
dwe(@) = [ Wete)dy =Y [ Wale.nay

SNy oLy, o dew)
=" Ay n*n;A”’ m_—

=1

Here, dg(v;) is the degree of vertex v; in graph G.
Now, we use the definition of IS)(Wg):

IS)(WG)z/O o(dw, (2)) da.
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Since dw, (x) is constant on each interval I;, we can rewrite the integral

as a sum over these intervals:
100We) =3 [ el (@) da.
i=1 Y1

Substituting dw,, (z) = dg(v;)/n for © € I;, and noting that the length of

each interval I; is 1/n:

o =50 (481) [ - (1) L

i=1

Therefore,

1 (We) = % Yo <dG(U)> . m

n
veV(G)

Theorem 3 (Continuity of Iél)(W)). Let ¢ : [0,1] = R be a continuous
function. If (W, )n>1 is a sequence of graphons converging to W in the cut
metric, i.e., og(W,, W) — 0 as n — oo, then L,(ol)(Wn) — IS)(W).

Proof. 1f sg(W,,, W) — 0, then dyw, — dw in L%*([0,1]) (see, for instance,
Theorem 8.13 in [13]). Since [0,1] has finite measure, L2-convergence
implies convergence in measure.

The function ¢ : [0, 1] — R is continuous on the compact interval [0, 1].
Therefore, ¢ is uniformly continuous and bounded on its domain. Let
M = sup,¢(o 1 lo(t)]-

We want to show that fol o(dw, (z))dz — fol o(dw (z)) dz. Consider
the difference in integrals:

IO W,) — IO (W) = / (o(dw, (1)) — pldw (2))) dz

< / lo(dw, (2)) — @(dw ()] d.

We will show that the integral on the right-hand side converges to 0.
For any £ > 0, by the uniform continuity of ¢, there exists a § > 0
such that if |u —v| < 9§, then |p(u) — p(v)| < e. Let 4, = {z € [0,1] :
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|dw, (z) —dw(x)] < §}. Since dw, — dw in measure, the measure of the
complement p([0, 1]\ A,,) tends to 0 as n — oo.

Now, we decompose the integral:

/O o(dw, (2)) — o(dw (2))|dz = / lo(dw, (2)) — o(dw ()| dx

An

Integral over A,

+ / o(dw, (2)) — o(dw ()| dx
[0,1\An

Integral over AS

For the integral over A,,:

[ letn @) ~ pldw@)lds < [ do=e-p(dn) < e p(l0.1]) =
An An

For the integral over A¢:

/ o(dw, (2)) — o(dw (x))] dz
[0,1\A,

< / (I (dw, ()] + |@(dw (2))]) dz
[0,1]\An

g/ (M + M)dz = 2M - u([0,1] \ Ay).
0.1\4,

Combining these two parts, we get:

/0 o(dw, (2)) — o(dw ()| di < & + 20 - pu([0,1] \ A,).

As n — oo, u([0,1]\ Ay,) — 0. Since € can be chosen arbitrarily small, the
right-hand side tends to 0. Therefore, fol lp(dw, (x)) — ¢(dw (z))|dz — 0,
which implies IS (W,,) — I8 (W). |



463

3.2 Indices of type 2

The second Zagreb index is a prominent example of an index summed over
edges, where it depends on the degrees of the incident vertices.

For such indices, we propose the following general graphon formulation.
Let ¢ : [0,1]> — R be a continuous function. The graphon-analogue of a

degree-based index of type

> eldg(u), dg(v))

weEE(G)

is defined as:

IQMWjAAW%wﬂW@MMWMW

Note that this formulation is based on the perspective that W(x,y) rep-
resents the edge existence probability between x and y in the continuum
setting. The factor of 1/2 that appears in the discrete-to-graphon conver-
sion for M3(G) is absorbed into the definition of the graphon index itself,

as the integral naturally accounts for pairs (z,y) and (y, x).

Proposition 4. For a finite graph G with n vertices and its associated

step-function graphon We, if o(u,v) is a symmetric function, then

e =5 Y (e ),

wveE(G)

Proof. For W¢ we have Wg(z,y) = A;j for z € [:1
and dw, (x) = dg(i)/n on that interval. Hence

) edy e [ ),

n ’'n

I(We) = //mﬂwwm>mmmm

*ZZ/"fmﬂwamumM»@m

1=1 j=1

=33 a1

i=1 j=1
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S ORWIECE 3l

The double sum above counts each (undirected) edge uv € E(G) twice (as
(u,v) and (v,u)). If ¢ is symmetric, i.e. p(a,b) = ¢(b,a), then the two

ordered contributions agree, so

n n

) da(j)y _ dg(u) dg(v)
;;AU ( T on )_quezE:(G)<p< n  n )
Therefore
PWe) == 3 (p( () d (v))_ -

quE(G)

Theorem 5 (Continuity of 1(2)(W)). Let ¢ :[0,1]> = R be a continuous

function. If (W,)n>1 is a sequence of graphons converging to W in the cut
metric, then Ig)(W ) — I(Q)(W).

Proof. 1f 6g(W,,, W) — 0, then dyw, — dy in L?([0,1]) (see, for instance,
Theorem 8.13 in [13]).

The function ¢ : [0,1]> — R is continuous on the compact domain
[0,1]2. Therefore, ¢ is uniformly continuous and bounded on its domain.
Let M = sup(, 0,12 [0 (u; v)]-

We decompose the difference |I( (Wy) — 1(2)(W)|

& (W, )—1(2)(W)|

de( )a de (y))

— W(a,y) p(dw (@), dw () ) da dy

W(z,y)) p(dw, (z), dw, (y)) dz dy

Term A
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[ [ ) (staie, (), 1) — oty () ) ey
0 0

+

Term B

For Term A, let

Fn(z7 y) = 90(de (I)v de (y))v
F(z,y) = ¢(dw (x), dw (y))-

Since dy, — dw in L?([0, 1]), it implies dy, — dy in measure. Given that
 is uniformly continuous and bounded, we now explicitly show that F,, —
Fin L'([0,1]?). For any ¢ > 0, by the uniform continuity of ¢, there exists
ad > 0such that if || (u1,v1)— (u2, v2)||ec < 9, then |p(u1,v1)—@(ug,v2)| <
e. Let A, = {(z,y) € [0,1)% : |dw, (z) — dw(x)| < & and |dw, (y) —
dw (y)| < 6}. Since dw,, — dw in measure, the measure of the complement
u([0,1]2\ A,,) tends to 0 as n — co. Now consider the L! difference:

1 1
/ / \Fu(z,y) — Fla,y)| dudy = / \Fu(a,) — F(z,y)| dady
0 0

n

Integral over A,,

+ / \Fo(2,9) — Fa,y)| dedy
[0,1]2\ A,

Integral over AS

For the integral over A,:

/ o(dw, (2)) — pldw (2))| dz dy < / cdudy = - u(A,)
A, A,

<e-p([0,1) =e.
For the integral over A¢:
[ el @)~ pldw ()] dody
0,112\ A,

< [ el ()] + o(dw (2)]) dady
[0,1]2\ Ay
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< / (M + M) dzdy
(0,1]2\ A,

— 20 - (0,117 \ A,).

Combining these, we get:

| [ 1P = Pl day < e 200 0.0\ 4,),

As n — oo, u([0,1]2\ A,) — 0. Since ¢ is arbitrary, this implies F,, — F
in L1([0,1)?).

By a known result from graphon theory (e.g., a variant of Theorem 8.13
(ii) in [13]), if dg(Wp, W) — 0 and F,, — F in L', then [, [5 (Wn(z,y) —
W (z,y))Fn(z,y) dedy — 0. Thus, Term A converges to 0.

For Term B: Since W (x,y) € [0, 1], we have:

1 1
Term B < / / lo(dw, (2), dw, (1)) — o(dw (2), dw ()| ddy

As explicitly shown for Term A, the integrand on the right-hand side con-
verges to 0 in L([0,1)2) (due to dw, — dw in measure and the uniform
continuity and boundedness of ¢). Therefore, the integral itself converges
to 0. Thus, Term B converges to 0.

Since both Term A and Term B converge to 0, we conclude that
I (W) — I (W)| — 0, proving the continuity of I& (W). ]

It is well-known that the first Zagreb index in finite graph theory has

two equivalent definitions:

M(G)= Y da(v)?,

veV(G)

MG = Y (da(u)+da(v)).

uwveE(G)

While these are indeed equivalent for finite graphs, their direct analogues
in the graphon setting exhibit a specific relationship.

In our paper, the first Zagreb index for graphons M; (W) is defined as
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the integral of the squared degree function:

My (W) = /0 (dw (2))2 d

This corresponds to the vertex-based definition (3 dg(v)?).
The graphon analogue of the edge-based definition (3, p(q)(da (u) +
de(v))) would be:

1 1
/0 / W (e, y) (dw (2) + dw () dady

Through direct calculation, utilizing the definition of the degree function
dw () = fol W (z,y)dy and the symmetry of W(x,y), this integral evalu-

ates to:

/ / W (e, y)(dw (2) + dw () dedy = 2 / (dw (2))? dx = 20, (V).
0 0 0

Therefore, in the graphon setting, the edge-based formulation of the first
Zagreb index is twice the value of the vertex-based formulation. This
highlights that while both expressions are meaningful and relate to the
classical index, their direct integral translations are distinct by a factor of

two, unlike their perfect equality in finite graphs.

4 Continuity and convergence properties of

Zagreb indices

A crucial aspect of graphon theory is the behavior of graph parameters
under limits of graph sequences. In this section, we establish the continuity
of the Zagreb indices M; and M, with respect to the cut metric, which
directly implies their convergence for sequences of finite graphs. These
results are specific applications of the more general theorems proven in
section 3.

We first prove that the Zagreb indices are continuous functionals on

the space of graphons equipped with the cut metric.
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Theorem 6. Let (W,),>1 be a sequence of graphons converging to a

graphon W in the cut metric, i.e., s\g(Wy, W) = 0 as n — oo. Then
My (Wy) = My(W)  and  Ma(W,) — Ma(W).

Proof. The continuity of M; (W) directly follows from theorem 3 by choos-
ing the function ¢(t) = ¢?, which is continuous on [0, 1].
Similarly, the continuity of Ms(W) directly follows from theorem 5 by

choosing the function ¢(u,v) = uv, which is continuous on [0, 1]%. |

Corollary. Let (Gy)n>1 be a sequence of finite graphs with n = |V (G,,)|,
and let Wq,, be the associated step-function graphons. Suppose Wg, — W

in the cut metric. Then

Mi(Gr) M5 (G) 1
T — Ml(W), and T — §M2(W)

Proof. This follows immediately from the relations M;(Wg, ) = %
and Ma(Wg,) = Wii(f“) (as shown in proposition 1), along with the
continuity of M; and M, with respect to the cut metric established in

theorem 6. [ |

A significant application of graphon theory is in the study of random
graphs. For instance, it is well-known that the sequence of Erdds-Rényi
random graphs G(n,p) (with n vertices and edge probability p) converges
in probability to the constant graphon We(x,y) = p in the cut metric [13].
By Corollary 4, our results directly imply that for G(n, p):

M, (G(n,p))

5 — My (W,) = p? in probability as n — oo,
n

and

Ms(G(n, 1 1 . -
M — §M2(WC) = §p3 in probability as n — oco.
n
This demonstrates how our continuous definitions and continuity theorems
provide direct asymptotic formulas for classical graph invariants in large

random graph settings.
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4.1 Illustrative example: Convergence of complete bi-

partite graphs

To demonstrate the relationship between the classical Zagreb indices of
finite graphs and their graphon counterparts, as established in proposi-
tion 1 and section 4, we consider a sequence of balanced complete bipartite
graphs.

Let Gy, = K, /2,n/2 be a complete bipartite graph with n vertices, where
n is an even integer. The vertices are divided into two equal parts of size
n/2. Every vertex in one part is connected to every vertex in the other
part.

For this graph:

e Every vertex v € V(G,,) has degree dg, (v) = n/2.
e The number of edges is |E(G,)| = (n/2) - (n/2) = n?/4.

Now we compute the classical Zagreb indices for G,,:

n\ 2 n? n3
M(Gn)= Y da,(v)>=n- (5) =nr =
veV(Gn)
My(G)= 3 da, (w)dg, (v).
weEE(Gy)

Since all vertices have degree n/2, for every edge uv € E(G,,), the product
dg, (u)dg, (v) = (n/2)(n/2) = n?/4. Therefore,

Next, we consider the normalized Zagreb indices, which are expected

to converge to the graphon indices according to our theory:

M(Gp) n*/4 1
nd  n3 4

MQ(Gn) _ n4/16 _ 1

n4 nt 16

As n — oo, the sequence of balanced complete bipartite graphs K, 2 /2
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converges in the cut metric to the balanced complete bipartite graphon

WK1/2,1/2'
This graphon is defined as:

1, if(z<1/2andy>1/2)
WK, p10(T,y) = or (y <1/2 and z > 1/2),
0, otherwise.

Let’s compute the Zagreb indices for Wk, , , ,: The degree function for
this graphon is dw, (x) =1/2 for all x € [0, 1], as shown in example 2
with a = 1/2.

The first Zagreb index of Wk, , ,,, is:

' 2 L2 1
Ml(WK1/2.1/2):/0 dWK1/2Y1/2($) d$:/0 (2> dl’:z'

Let W = WKI/Q’I/Z, d:= dWKl/z,l/z'

1 1
My(W) = / / W (x,y) d(z) d(y) de dy.

Since dWK1/2 s (x) =1/2 for all z, the product equals

1
1

N
N

dWKl/Z.l/Q (IIZ) dWK1/2,1/2 (y)

1 bt
MQ(WKI/Q’”Z’):Z/O /0 WK1/2’1/2(x,y)dmdy.

The double integral j;)l fol WK, )1, (2, y) dedy is the edge density of the
graphon. For Wy, ,, thisispw = (1/2)(1/2)+(1/2)(1/2) = 1/4+1/4 =

1/2. Therefore,
L1

MQ(WK1/2,1/2) = 4 ' 2 - ]
Comparing the limits from the finite graphs with the values from the

graphon:
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e For M;i: lim, erg?n) = 4, which matches My (Wk, ,, ,) = 7.

IVIQ(GT,,) o L
nt - 167

e For My: lim, oo which matches %MQ(WKMYM) =

16 °

N[—=
oo|—=

5 Examples of specific graphons and their

Zagreb indices

To illustrate the concepts introduced, we compute the Zagreb indices for
some well-known classes of graphons. These examples build intuition and

demonstrate the applicability of our analytic framework.

Example 1 (Constant Graphon). The simplest nontrivial graphon is the
constant graphon W, : [0, 1] — [0, 1] defined by

We(z,y) =p, for some fixed p € [0,1].

This graphon serves as the limit object for the Erdés—Rényi random graph
model G(n,p) as n — oo.

Its degree function is constant:

1 1
dwc(x)=/ Wc(x,y)dy=/ pdy = p.
0 0

Therefore, the first Zagreb index is

1 1
My (W.) = / dw.(2)*dx = / p? de = p*.
0 0

The second Zagreb index is

M(W,) = / / Wo(z y)dw, (2)dw, () drdy

1 1
=/ /p-p-pdmdyZpB-
0 0
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Example 2 (Complete Bipartite Graphon). Fix a € (0,1) and define the

bipartite graphon Wi as:

a,l1—a

1, if(x<aandy>a)or (y<aandz>a),

WKa,l—a(:r7y) = .
0, otherwise.

This graphon corresponds to a complete bipartite graph with parts of
relative sizes @ and 1 — a.

The degree function is piecewise constant:

! f;ldy:l—a’ Z'SQ,
dWKa 1—a (:23) = / WKa,l—a(x7y) dy = o
’ 0 fo ldy = a, T > a.

Thus, the first Zagreb index is

M, (Wk, ,_ a)—/oa(l—a)Zda:+/ a*dx
=a(l—a)?*+ (1 —a)a*=a(l —a)(1—a+a)=a(l —a).

The second Zagreb index is

Mo(Wic, , ) / / Wicsroo (2 )i, . (2)dw, , . (y) dudy

:// (1-a) adyda:+//1 a-(1—a)dydx
([ o a:@l_m(/ dm/ )t -

a*(1—a)* +a*(1 —a)® = 2a*(1 — a)?

I
—
Ho

Example 3 (Rank-1 Graphons). Rank-1 graphons are of the form

Wi(x,y) = f(x)f(y),

where f:[0,1] — [0, 1] is a measurable function.
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The degree function is

du, (z /wfxydy—/ e f(x)/olf(y)dy=f(x)-uf

,where p 7 := fo y) dy.
The first Zagreb index becomes

1
0

W) = [ aw,@fde = [ (ngae =i [ j@Rar

The second Zagreb index is

Ma(Wy) = / W () dw, (2)dw, () dedy

/ / F@)F@) - (F@)ng) - (F@)ug) dady

- //f )2 ddy
i / f(x)zdx) ( / 1 swray) =i ( [ ' fay? dx)Q.

If we take f(x) = /p for a constant p € [0,1], then Wy(x,y) = p. This
matches the definition of a constant graphon W,(z,y) = p. In this case:
:“f*fo\fdx*\[ fo deifo deffopdxfp Sub-
stituting these into the formulas for M;(W;) and Mo(Wy): My (Wy) =
(VP)?p=p p=0p% Mx(Wy) = (yp)* ()* = p-p* = p°. These
results are consistent with those derived directly for the constant graphon

in example 1.

6 Extremal problems for Zagreb indices on

graphons

The study of extremal problems for degree-based indices on finite graphs
is a classic area of graph theory [2,3]. Extending these problems to the

graphon setting allows us to analyze the asymptotic behavior and identify
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extremal structures in the continuous limit [6]. This section formalizes

several natural extremal problems for M7 (W) and My (W).

Theorem 7 (Minimum of M; for fixed edge density). Let W € W be a
graphon with fixed edge density pw. Then the first Zagreb index My(W)
is minimized when its degree function dw (z) is constant almost every-
where, specifically dw (x) = pw for a.e. x € [0,1]. The minimum value is

My (W) = p¥,, attained by the constant graphon W (z,y) = pw.

Proof. By definition, M;(W) = fol dw (z)?dz. We know that the edge
density pw = fol dw (x)dz. We want to minimize fol dw (z)? dx subject
tofo dw (z) de = pw and 0 < dy (z) < 1. This is a standard application of
Jensen’s 1nequahty for convex functions. The function f(t) = ¢? is convex

on [0,1]. Therefore, by Jensen’s inequality:

</01dw(x) dx>2 < /Oldw(x)de.

Substituting the definition of py,, we get:
Py < My(W).

Equality holds if and only if dy (x) is constant almost everywhere.

Since fo dw (z) dx = pw, this constant must be py,. Thus, the minimum
value of M; (W) is p%,. This minimum is achieved by the constant graphon

W(z,y) = pw, because for this graphon, dy (x fo pw dy = pw for all

x € [0,1]. Therefore, M;(W, fo piy dv = ply. [ |

Theorem 8 (Maximum of M; for fixed edge density). Let W € W be a
graphon with fized edge density pw. Then the first Zagreb index My (W)
is maximized when the degree function dw (z) takes only two values: 0 and
1. Specifically, dw (x) = 1a(x) for some measurable set A C [0,1] with

measure py . The mazimum value is My(W) = py .
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Proof. We want to

maximize M (W) = fol dw (z)? dz
subject to fol dw (z) dx = pw

Since dy (z) € [0, 1], we have dy (z)? < dw () for all z. Integrating both
sides, [ dw(z)?dx < [} dw(x)dz. Thus, My(W) < pw. Equality holds
if and only if dy (x)? = dw(z) almost everywhere, which implies that
dw (z) € {0,1} for almost all z € [0,1]. Let A = {x € [0,1] : dw(z) = 1}.
Then for M; (W) to be pw, we must have ;(A) = pw. It is a known result
in graphon theory that for any measurable function f : [0,1] — [0,1]
with fo x) dx = pw, there exists a graphon W such that dw (z) = f(z)
for almost all x [13]. Thus, a graphon exists whose degree function is
dw (x) = 14(x) for any measurable set A with p(A) = py . Such a graphon
will achieve the maximum value M;(W) = fol(lA(a:))2 de = [,1dx =
n(A) = pw. |

Theorem 9 (Maximum of M for fixed edge density). Let W € W be a
graphon with fived edge density pw. Then the second Zagreb index Mao(W)
is mazimized when W (x,y) corresponds to a single clique. Specifically, the
mazximum value is Ma(W) = p%v, and this is achieved by the graphon

Wa(z,y) = 1axa(x,y) for some measurable set A C [0,1] with measure
1(A) = /pw.

Proof. We want to

maximize fo fo (z,y)dw (x)dw (y) dzdy
subject to fo fo (v,y) dedy = pw.

Let Wu(z,y) = 1axa(z,y), where A is a measurable set of measure a.
For this graphon, the edge density is pw, = fol fol Laxa(z,y)dedy =
w(A)? = o®. Thus, for a given py, we must choose a = /pw. Let A
be any measurable set with ;1(A) = \/pw. The degree function for W is

dw,(z) = [ Laxa(z,y)dy = 1a(e) [, 1dy = 1a(x)u(A) = /pwla(z).
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Now, compute My(Wa4):

11
W) = [ [ Wale,g)dw, (2)dw, () dady
o Jo
1 el
— [ [ Lol ) (VEwLa ) (VP La(w) dody
o Jo
1,1
—w [ [ Laale)La@)1a(0) dody
0o Jo
:pw/ / 1-1-1ldedy = pw - u(A)? = pw - pw = pPiy-
AJa
Now, we prove that Ma(W) < p%v for any graphon W with edge density

pw. Recall that for any graphon W, we have W(z,y) € [0,1] and its
degree function dy (y) € [0, 1]. We can express My(W) as:

1 1
wa9) = [awta) ([ Wamdw )y ) o
0 0
Since W(z,y) <1 and dw (y) < 1, we have
1 1
[ Wewivtydy < [ 1-dw)dy =
0 0
Therefore,
1 1
My(W) < / dw(x) - pw dx = pW/ dw (z) dz = p¥y.
0 0
The upper bound is p%,, and the clique graphon

WA(xay) = 1A><A(x7y)

with p(A) = \/pw achieves this bound. ]

7 Network assortativity of graphons

Having characterized the extremal graphons for the Zagreb indices, it is

natural to investigate other fundamental network properties of these opti-
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mal structures. A crucial property in network science is assortativity (or
assortative mixing), which quantifies the tendency of nodes to connect to
others with similar (assortative mixing) or dissimilar (disassortative mix-
ing) degrees. Networks displaying assortative mixing often feature nodes
predominantly connecting to other nodes of comparable degrees, while
disassortative networks exhibit connections between high-degree and low-
degree nodes. This property plays a significant role in the resilience, func-
tionality, and information flow within complex networks [14,15].

For a finite undirected graph G = (V, E), Newman’s assortativity coef-
ficient r is essentially a normalized covariance of the degrees of connected

nodes:

Swwer do(uda(v) ~ [Suen 3(da() +de@)]”/IE]
S wer (e (w)? +da(0)?) — [Cuep 2de(w) + da(v))]” /|E]

T =

where dg(u) and dg(v) are the degrees of vertices u and v connected by
an edge uv € E, and |F| is the total number of edges.

To extend this concept to the continuous setting of graphons, we con-
sider a graphon W (x,y) on the unit square [0, 1]?. The continuous analog
of the degree of a vertex z € [0,1] is the degree function dy (z), de-
fined as dw (z fo (z,y) dy. The total edge density of the graphon is
p=Jy Jo Wx.y) dzdy.

The Newman assortativity coefficient for a graphon W, denoted (W),
can be derived by considering the expectations of degree functions over
edges in the continuous limit. If we imagine picking an edge (z,y) with

W(I Y then dy (z) and dy (y) are the degrees of its

probability density
endpoints. The assortatwlty coefficient is then defined as the Pearson
correlation coefficient between these two degree values.

Let X and Y be random variables representing the degrees of the two
endpoints of a randomly chosen edge in the graphon. The expected product

of these degrees is:

E[dW(X)dW(Y)]Z% / / W (e, y)dw («)dw () dz dy.
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The expected value of a single endpoint’s degree (e.g., dw (X)) is:

1/ 1
= 7/ / W(x,y)dw (z) dedy = f/ dw (2)? da.
P Jo Jo bJo

The variance of a single endpoint’s degree is:

Var(dw (X)] = Eldw (X)%] — (E[dw (X)])?

/dW dx—( /dW dm)

Given that Var[dw (X)] = Var[dw (Y)] for symmetric graphons, the as-

sortativity coefficient for a graphon W is:

Eldw (X)dw (Y)] — Eldw (X)]Eldw (V)]

r(w) = Varldy ()

Substituting the integral forms, we obtain the Newman assortativity coef-

ficient for graphons:

Lo W G ) ) () ey — (3 [ do ()2 i)

lfo 3dm—( fo 2dx)2

r(W) =

This coefficient r(W) will range from —1 (perfectly disassortative) to 1
(perfectly assortative), with 0 indicating no assortative mixing.

7.1 Constant graphon

Consider the constant graphon W (z,y) = p, which represents the limit of
an Erdds-Rényi random graph. The degree function is dy (x fo pdy =
p for all z € [0,1]. Substituting this into the terms of the assortativity

formula:

1 1 1 1
//W(x,y)dw(x)dw(y)dxdy=/ / p-p-pdrdy=p°
0 0 0 0
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r(W) =

This results in an indeterminate form %. In such cases, where there is no
variation in degrees to correlate, the assortativity coefficient is typically
defined as 0. Thus, for the constant graphon W (z,y) = p, r(W) = 0. This
implies no assortative or disassortative mixing, as expected for a graph

where connections are formed uniformly at random regardless of degree.

7.2 Stochastic block model (SBM) graphon: Com-
plete bipartite limit

Let us consider a two-block SBM graphon that represents the limit of a
complete bipartite graph Ky, n,. We define W(z,y) such that nodes in
the first block, = € [0,«), connect only to nodes in the second block,

y € [a, 1), and vice versa. Specifically,

1 if (x €[0,a) and y € [a,1)) or (z € [o,1) and y € [0, )
W(z,y) =
0 otherwise

The edge density is p = 2a(1 —a). The degree function dy () is piecewise
constant:

l-a ifzxel0,a)
dw(.’L‘) =
a if x € [, 1)

Let’s compute the necessary integrals:
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/OI/OIW(x,y)dW(x)dW(y)dxdy:/a/l(l_a)adydx
// (1-a)dydz

=20%(1 —a)?
=pa(l —a)

1 « 1
dW(a:)dezf (1—a)2dz+/ o?dr =a(l —a)
0 «a

/Oldw(x)i?dx:/Oa(l—a)?,dm—k/al@dx:a(l—a)(a2+(1_a)2)

Now, substitute these into the assortativity formula:

% (pa(l —a)) — (%a(l - a))z
Ta(l—a)(@®+(1-a)?) - (%0‘(1 - O‘))2

B a(l—a)—1 —(2a —1)2 _
T a2+(1-w)? (20— 1)2 -
2

1
1
Thus, for the complete bipartite graphon, »(W) = —1, demonstrating

perfect disassortative mixing, where connections occur exclusively between

nodes of different degree classes.

7.3 Core-periphery graphon

A core-periphery structure features a densely connected core and a sparsely
connected periphery, with potentially fewer connections between the two.
Such structures are prevalent in many real-world networks (e.g., organi-
zational structures, metabolic networks). Let’s consider a simplified two-

block core-periphery graphon where:

o W(z,y) = A for z,y € [0,a) (core-core connections)
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e W(z,y) = B for z,y € [a, 1) (periphery-periphery connections)

e W(z,y) = C for (z € [0,«) and y € [a, 1)) or vice versa (core-

periphery connections)

Typically, A is large, B is small, and C' is intermediate or small. For
instance, consider v = 0.2 (20% core), A = 1 (dense core), B = 0.1
(sparse periphery), and C' = 0.5 (moderate core-periphery links).

The degree function dy (z) will take two values:

e For x € [0, ) (core node): dw(z) = Ao+ C(1 — «)
e For z € [, 1) (periphery node): dw (z) = Ca+ B(1 — «)

The edge density is p = Aa? + B(1 — a)? + 2Ca(l — ).

Calculating (W) for a general core-periphery graphon involves more
extensive algebraic manipulation of the integrals for dw (z), dw(x)?,
dw (7)3, and the edge-weighted product integral. While the exact value
depends on the chosen parameters (A, B, C, «), core-periphery structures
typically exhibit assortativity that is either mildly positive (if core-core
links dominate assortativity) or disassortative (if many high-degree core
nodes connect to low-degree periphery nodes). The precise assortativity
value provides a quantitative measure of how degrees are correlated across
connections in such a network organization. This computation, while
lengthy for arbitrary parameters, can be performed for specific choices

to illustrate the behavior.

8 Future work and open problems

This work establishes a foundational analytical framework for degree-based
graph indices on graphons. While we have provided continuity theorems
and explored extremal properties for the first Zagreb index M; (W) and
the maximum of My (W), several challenging and intriguing open problems
remain, particularly concerning the minimum of My(W) and other more

complex degree-based functionals.
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Open Problem 1 (Minimum of M3 (W) for Fixed Edge Density). Charac-
terize the graphons W € W that minimize the second Zagreb index Mo(W)

for a fized edge density py .

W:;glvir}%zedMQ(W)'
Discussion for Open Problem 1: For the minimum, this problem is notably
intricate. The constant graphon W.(z,y) = pw yields Ma(W.) = p.
However, for py € (0, 1), the constant graphon is generally not the min-
imizer for My(W). Initial observations suggest that graphons exhibiting
extreme heterogeneity in degree distributions might lead to a minimum
for Mo(W). This could involve structures akin to sparse configurations,
even if the overall density py is non-zero, or graphons where connections
are concentrated on a small measure of points. For instance, considering
graphons that approach a star-like structure in the continuum, or struc-
tures with many isolated vertices but a few very highly connected ones.
This is in contrast to M; (W), which is minimized by a constant degree
function. Identifying such a graphon structure and rigorously proving its

minimality for My (W) presents a significant challenge.

Open Problem 2. Extend the extremal analysis to the general class of
degree-based functionals I&l)(W) and Ig)(W) for various continuous func-
tions @. Specifically, investigate how the convexity or concavity properties

of @ influence the structure of the extremal graphons.
Discussion for Open Problem 2: For I fo dx:

e If ¢ is convex, Jensen’s inequality suggests that the minimum is
achieved when dyy (z) is constant (as seen for My (W) with (t) = t2).
The maximum would likely involve dy (z) taking extreme values (0
and 1).

e If ¢ is concave, the situation is reversed: the maximum might be
achieved when dy (z) is constant, and the minimum when dy ()

takes extreme values.

For I fo fo o(dw (z),dw (y)) dzdy, the interplay between
Wz, y) and dw (z), dW( ) makes the problem significantly more intricate.
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9 Applications in chemistry

This section provides a bridge between the abstract graphon framework
and its concrete applications in chemical research. We demonstrate the
utility of this approach through several examples, including molecular sim-
ilarity, the prediction of reaction pathways, and the analysis of metabolic
networks. To lay the necessary groundwork for our subsequent analysis,
we commence with a pivotal theorem whose proof is central to deriving

the numerical results presented hereafter.

Theorem 10. Let W : [0,1]?> — [0,1] be a bounded measurable graphon.
Sample latent positions x1,...,T, 3 Unif[0, 1] and form the random
graph G,, on vertex set {1,...,n} by placing an (undirected) edge between
i # j independently with probability W (z;,xz;). Then, as n — o,

TL4
E[M;(G,)] = n®* My (W) + o(n®), E[Ms(G,)] = 7MQ(W) + o(n?).

Consequently the normalized estimators

2M5(Gy)

M7 /6\2(Gn) =

n3 n

a(Gy) =

converge in probability to My(W) and My(W), respectively (under the

above sampling model).

Proof. We work conditionally on the latent positions = (z1,...,z,). For

1€ {1,...,n} the degree of vertex i is

di = ZAij, Aij ~ Bernoulli(W(:ci,:cj)), Aij = Aﬂ
J#i

Conditioned on z,

Eld; | z] = ZW (@3, 25).
J#i

By the law of large numbers for the empirical measure of the independent
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draws {xj }j;ﬁi,

R ) - W 1) dy — |
ZW(SEZ,{EJ) —] ZW(mz,xj) —=n [ W(x;,y)dy =ndw(x;)
J#i J#i 0

uniformly in probability (indeed the entries are bounded). Hence E[d; |
x] = ndw (x;) + O(1).
Since d; is a sum of independent Bernoulli variables,

Var(d; | z) ZW (@i, ;) (1 = W(z4,25)) = O(n),
J#i
E[d? | z] = (E[d; | x])? + Var(d; | ) = n?dw (z;)* + O(n).

Summing over i gives
E[M(Gy) | 2] = E[d} | 2] =n*) _ dw(x;)* + O(n?).
i=1 i=1

Now L 5% dw (z;)* — fol dw (2)? dz = M;(W) in probability, so
E[M,(Gy) | 2] = n* My (W) + 0,(n?).

Taking unconditional expectation yields E[M;(G},)] = n> M1 (W) + o(n?).
By definition

= Y didj =3 Aijdid;.

{i,j}eE i#]

Condition on z. For i # j, A;; is Bernoulli(W (z;,x;)) and d;, d; are sums
of O(n) independent Bernoulli variables; therefore by standard concen-
tration (Hoeffding/Bernstein) we may replace d;,d; by their conditional
means ndy (z;) and ndw (z;) up to errors that are negligible at the n?
scale. More precisely, with high probability d; = ndw (x;) + O(v/nlogn),
so fluctuations contribute only to lower-order terms after summation over
O(n?) pairs.
Using the leading-order approximation and E[A;; | ] = W (x;, z;),
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E[A;jdid; | 2] = W (2, 25) - (ndw (2;)) - (ndw (z;))
= nzW(zi, z;) dw (z;) dw (x;).

Thus, summing over unordered pairs,

E[M3(Gy) | x] = %ZnQW(xi,xj) dw (z;) dw ().
oy

Now

> Wias)) dw(ai) dw(ag) > [ [ Wiay) dw(o) dur () dady
i#£j
= My(W),

in probability. Therefore

n4
E[M2(Gy) | 2] = - M2(W) +0p(n?),

and taking unconditional expectation yields E[My(Gy)] = % Ma(W) +
o(n*).

Dividing the above identities by n® and n*/2 respectively and applying
Chebyshev/Markov arguments or concentration for the empirical averages
gives convergence in probability

My (Gr)

&(Gp) = — 2y My(W), &2(Gp) ;

_ 2My(G.)

T B My(W).

This completes the (heuristic but standard) proof. All error terms
above can be made explicit under stronger regularity on W (boundedness
is enough) by using concentration inequalities for sums of independent
Bernoulli variables and standard approximation results for U-statistics and

empirical measures. |
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Air chemistry network analysis via graphon modeling

Urban and tropospheric air chemistry is governed by a complex network
of interacting reactive species. The most relevant chemical families are
oxidants (Ox: Og, OH, HO3), nitrogen oxides (Nx: NO, NO3, NO3), and
volatile organic compounds (VOCs: hydrocarbons, aldehydes, ketones).
Their mutual reactions drive cascades of radical propagation and termi-
nation steps that control ozone formation, secondary organic aerosol pro-
duction, and ultimately the phenomenon of photochemical smog [1,20].
From a network perspective, each molecular species is represented as
a vertex, and an edge encodes an effective chemical interaction (reaction,
catalytic cycle, or radical transfer). Such atmospheric chemical networks
are heterogeneous: oxidants typically act as hubs with many partners,
while VOCs provide a large but more weakly connected background. Nx
species serve as intermediates that mediate cross-family interactions. This
natural block-structured organization makes atmospheric chemistry an ex-

cellent candidate for graphon modeling.
We model the atmospheric chemical system by a three-block graphon
W(x7y):Plja xe[ia?JEij

where Iy, I3, I3 C [0,1] correspond to the Ox, Nx, and VOC families with
proportions @ = (0.3,0.3,0.4). The block probabilities are

0.5 0.8 0.7
P=108 06 09
0.7 09 0.4

Here W (z,y) encodes the probability of an effective interaction between
species x and y. The chosen proportions and probabilities reflect chem-
ically realistic conditions of polluted urban atmospheres: Ox and Nx
are highly reactive, justifying the high cross-family probabilities (e.g.,
P; = 0.8, P13 = 0.7), while VOCs are numerous but less internally re-
active, explaining their larger share (=~ 40%) and lower self-interaction
probability (P33 = 0.4).
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The degree function of the graphon represents the expected connec-
tivity of a species. The graphon Zagreb indices quantify global struc-
tural features of the chemical network: a large M; (W) reflects strong
degree heterogeneity dominated by oxidants, while a large Mo(W) cap-
tures cross-family interactions (Ox-Nx-VOC), the primary driving force
of photochemical smog formation. This model matches empirical obser-
vations that although VOCs are abundant, the fewer Ox and Nx species

play central, highly interconnected roles in atmospheric chemistry.

Remark. The block graphon model presented here provides a simplified
yet informative representation of atmospheric chemical networks. Several
approximations are made for tractability: (i) the Ox, Nx, and VOC families
are each treated as homogeneous blocks, although in reality they contain
diverse species with varying reactivities; (ii) the block probabilities P;; are
chosen to reflect general chemical trends rather than being directly fitted
to experimental rate constants; (iii) environmental factors such as sunlight
intensity, temperature, and humidity are not explicitly modeled, although
they significantly affect reaction kinetics. Despite these simplifications, the
graphon framework captures the essential structural features of the net-
work, including hub-mediated connectivity (Ox species) and cross-family
interactions driving photochemical smog formation. This approach pro-
vides a foundation for future extensions that incorporate species-specific

kinetics and environmental variability.

In view of Theorem 10, the Zagreb indices of sampled graphs are
asymptotically related to the graphon’s indices: for a sample of size n,
the expected values satisfy E[M;(G,)] ~ n3M;(W) and E[My(G,,)] ~
n*My(W)/2. This provides a direct method for validating the model
against empirical data.

The comparison between Figures 1 and 2 shows how block structure
manifests at different sample sizes. For n = 25, both the adjacency matrix
and the network layout clearly reveal family structure, while for n = 250
the network layout is too dense and only the adjacency matrix provides
an interpretable depiction. In both cases, the computed values of M;(G,,)

and Msy(G,,) agree with the theoretical predictions.



Figure 1. Atmospheric reaction network (n = 25) sampled from the
block graphon. Left: adjacency matrix sorted by families
(Ox, Nx, VOC), with black lines separating blocks. Right:
force-directed layout representation, with oxidants (circles),
nitrogen oxides (squares), and VOCs (triangles). For this
sample, we obtain M1(G2s5) = 7,132 and M2(G2s5) = 60,662.
According to Theorem 10, one expects E[M;(Gas)]
253 M1 (W) = 7,517 and E[Ma(Gas)] ~ 25°My(W)
65,297, in close agreement with the sampled values.

Q

Analysis of aromatic molecules using graphon theory

Aromatic molecules, including benzene (CgHg) and extended w-conjugated
systems such as graphene fragments or polycyclic aromatic hydrocarbons,
are characterized by delocalized m-electron networks. These systems con-
sist of cyclic arrangements of carbon atoms with resonance-stabilized al-
ternating single and double bonds, leading to bond-order equalization and
enhanced chemical stability [9,18]. From a network perspective, vertices
represent carbon atoms and edges correspond to covalent bonds, with ef-
fective weights capturing the delocalization of 7 electrons. These networks
are nearly regular and highly symmetric, reflecting the uniform connectiv-

ity of aromatic rings.

To capture this periodic symmetry in a continuous, large-network limit,

we introduce a periodic graphon:

W(x,y) = Pmax cos’ (W(‘T - y))’

where the cosine kernel encodes the cyclic topology of m-conjugated sys-
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Figure 2. Atmospheric reaction network (n = 250) sampled from the
block graphon. The adjacency matrix is sorted by families
(Ox, Nx, VOC), with thin black gridlines separating blocks.

tems (see Figure 3). The degree function dyy () is approximately constant,
consistent with the regularity of aromatic connectivity and bond-order
equalization. Accordingly, the first Zagreb index M;(W) is nearly uni-
form, while the second Zagreb index Ms(W) reflects correlated connectiv-
ity patterns across the ring. In this context, My(W) should be interpreted
as a quantitative measure of structural correlation in the network rather

than a direct measure of stabilization energy.

It is important to note that while the periodic graphon provides a
mathematically convenient representation of aromatic symmetry and con-
nectivity, it is an idealized, continuous approximation. For small molecules
such as benzene, the discrete network with six carbon atoms is sufficient,
and the graphon framework becomes most useful for analyzing extended

m-conjugated systems where larger-scale periodicity emerges.

Metabolic networks and heavy-tailed graphons

Metabolic reaction networks in living cells are characterized by pronounced
degree heterogeneity. A small set of highly connected compounds, com-
monly called currency metabolites (e.g., ATP, NADH, H,O, H™), partici-
pate in many reactions, whereas most metabolites are specialized molecules
involved in only a few specific transformations. This heterogeneity re-

sults in a heavy-tailed degree distribution, a feature widely documented
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Figure 3. Sampled aromatic network generated from the periodic
graphon W(z,y) = pmax cos?(m(z — y)) with n = 60 ver-
tices. Left: adjacency matrix sorted by latent positions,
showing the quasi-regular connectivity induced by the co-
sine kernel. Right: force-directed layout of the sampled
network (vertices unlabeled), where each vertex represents
a carbon atom and edges represent effective m-bonding in-
teractions. For this sample, the computed indices are
M1 (Geo) = 42,662, M2(Geo) = 575,675, with normalized
values ¢1(Gego) = 0.1975, ¢2(Geo) = 0.0888, and assortativ-
ity » = 0.089. These values illustrate the nearly uniform
degree distribution and the correlation structure character-
istic of aromatic networks.

in metabolic networks [12,24]. Such networks typically exhibit hub-like
currency metabolites that act as central connectors. Note that in certain
analyses, highly abundant metabolites like HoO or H* may be excluded
to better capture biologically meaningful interactions.

To capture this heterogeneity mathematically, we employ a power-law
graphon, which provides a flexible framework to model hierarchical struc-

ture and degree variability. We define
W(z,y) = min (1, 0(zy)~"), @y € (0,1],

where 3 € (0,1) controls the heaviness of the tail and 6 > 0 sets the overall
interaction scale. The min(1,-) cutoff ensures bounded edge probabilities,
reflecting saturation effects in highly connected hubs. In this formulation,

vertices with small latent positions (x < 1) attain very large expected de-
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Figure 4. Sample metabolic reaction network (n = 60) generated from
a power-law graphon. Left: adjacency matrix sorted by la-
tent positions, highlighting dense connections among hub-
like vertices in the top-left corner. Right: force-directed
layout of the same network, with vertex size proportional
to degree. Hub-like currency metabolites connect to many
smaller, specialized metabolites. For this sample, the Zagreb
indices are Mi(Gep) = 64,666 and M2(Geo) = 1,101,914,
in agreement with Theorem 10. The assortativity value
r = —0.200 confirms the network’s disassortative nature,
a pattern commonly observed in biological systems.

grees, corresponding to hub-like currency metabolites, while vertices with
latent positions near x =~ 1 have low expected degrees, corresponding to
specialized compounds (see Figure 4).

The resulting Zagreb indices, M;(W) and Ma(W), increase rapidly
with network size, reflecting the strong degree heterogeneity introduced by
hub metabolites. As shown in Theorem 10, these asymptotic values provide
predictions for sampled networks, enabling quantitative comparison with

empirical metabolic data.

Acknowledgment: 1 gratefully acknowledge the anonymous referee for
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