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Abstract

Let G be a graph with order n(G), size m(G), first Zagreb index
M1(G), and second Zagreb index M2(G). More than twenty years

ago, it was conjectured that M1(G)
n(G)

≤ M2(G)
m(G)

. Later, Hansen and
Vukičević demonstrated that this conjecture does not hold for gen-
eral graphs but is valid for chemical graphs. In this paper, as an
extension of the study of chemical graphs, we investigate graphs in
which the difference between the minimum and maximum degrees
is at most 3. We prove that any graph in this class that serves as
a counterexample to the stated conjecture must have a minimum
degree of 2 and a maximum degree of 5. Furthermore, we present
infinitely many connected graphs that serve as counterexamples to
this conjecture, all of which have a minimum degree of 2, a maxi-
mum degree of 5, and an order of at least 218.

1 Introduction

In this paper, we define the graph category to exclude non-simple graphs,

graphs with isolated vertices, and the null graphs. For our purposes, let G

represent a graph with a vertex set V (G) and an edge set E(G). The sizes

of V (G) and E(G) are referred to as the order and size of G, respectively.
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We denote the order of G as n(G) and its size as m(G). Let u be a vertex

in G. The open neighborhood of u, which comprises the vertices adjacent

to u, is denoted by NG(u). The cardinality of NG(u) is called the degree

of u and is denoted by dG(u). We denote the maximum degree of a graph

G as ∆(G) and its minimum degree as δ(G). A graph with a maximum

degree four or less is called a chemical graph. For two positive integers i

and j, the notation ni(G) denotes the number of vertices in the graph G

that have a degree of i. Additionally, mi,j(G) represents the number of

edges in G that connect a vertex with degree i to a vertex with degree j.

Now, consider another graph G′. The disjoint union of G and G′ forms a

new graph with a vertex set V (G)∪V (G′) and an edge set E(G)∪E(G′).

We denote the disjoint union of G and G′ as G∪G′. For a natural number

l, let Kl represent the complete graph on l vertices. For a natural number

r, the disjoint union of r complete graphs, each of the same order l, is

denoted as rKl. The notations Sl, Pl, and Cl represent star, path, and

cycle graphs on l vertices, respectively.

Over fifty years ago, Gutman and Trinajstić explored the relationship

between total π-electron energy and molecular structure. They identified

two key terms that frequently appear in approximate expressions for total

π-electron energy:

M1(G) =
∑

v∈V (G)

dG(v)
2 and M2(G) =

∑
uv∈E(G)

dG(u)dG(v).

These terms, known as the first and second Zagreb indices, are among

the oldest and most widely utilized descriptors of molecular structure based

on vertex degree. For detailed theoretical insights into these indices, one

can refer to a recent review [3], as well as studies such as [1, 8–10, 12, 14]

and the references cited therein. More than twenty years ago, the following

conjecture regarding the comparison of the first and second Zagreb indices

was proposed.
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Conjecture 1. [2, 4, 5] If G is a connected graph, then

M1(G)

n(G)
≤ M2(G)

m(G)
.

In 2007, Hansen and Vukičević [7] demonstrated that Conjecture 1

does not hold for general graphs, but is valid for chemical graphs. They

presented the graph S6 ∪ C3 as a non-connected counterexample, as well

as a connected counterexample with 46 vertices and 110 edges. Although

this conjecture is disproven for both general connected and disconnected

graphs, Vukičević and Graovac [13] showed that it is true for trees. In fact,

they proved that if G is a tree, then M1(G)
n(G) ≤ M2(G)

m(G) holds, with equality

if and only if G ∼= Sn(G). In [11], Liu confirmed that this conjecture is

true for unicyclic graphs. Specifically, he showed that if G is a unicyclic

graph, then M1(G)
n(G) ≤ M2(G)

m(G) holds, with equality if and only if G ∼= Cn(G).

Utilizing AutoGraphiX [2,4,5], Caporossi, Hansen, and Vukičević [6] found

an infinite family of counterexamples with a cyclomatic number ν(≥ 2).

The cyclomatic number of a graph G is defined as m(G)− n(G) + 1.

In this paper, we examine graphs where the difference between the

minimum and maximum degrees is no greater than 3. Our findings in-

dicate that any graph in this category that acts as a counterexample to

Conjecture 1 must have a minimum degree of 2 and a maximum degree of

5. Furthermore, we present infinitely many connected graphs that serve as

counterexamples to this conjecture, all of which have a minimum degree

of 2, a maximum degree of 5, and an order of at least 218.

2 Main results

In this section, we present our main results. The following theorem states

that Conjecture 1 holds for any graph G with ∆(G) − δ(G) ≤ 3 that

satisfies either δ(G) ̸= 2 or ∆(G) ̸= 5. To start, we define the set F(G) =

{{dG(u), dG(v)} : uv ∈ E(G)}.

Theorem 1. Let G be a graph with ∆(G)− δ(G) ≤ 3. If either δ(G) ̸= 2



444

or ∆(G) ̸= 5 holds, then

M1(G)

n(G)
≤ M2(G)

m(G)
.

The equality holds if and only if F(G) is either {{∆(G), δ(G)}}, {{1, 4},
{2, 2}}, or {{3, 6}, {4, 4}}.

Proof. Consider a graph G such that ∆(G)−δ(G) ≤ 3, and either δ(G) ̸= 2

or ∆(G) ̸= 5. Additionally, let Θ(G) = M2(G)−m(G)
n(G) M1(G). To prove the

theorem, it is sufficient to show that Θ(G) ≥ 0, with equality holding if and

only if F(G) is one of the following: {{∆(G), δ(G)}}, {{1, 4}, {2, 2}}, or
{{3, 6}, {4, 4}}. To establish this, assume that

∑
δ(G)≤i≤j≤δ(G)+3 =

∑
∗.

Since we are considering graphs with no isolated vertices, we have

∑
∗

mi,j(G)

(
1

i
+

1

j

)
=

∑
uv∈E(G)

(
1

dG(u)
+

1

dG(v)

)
=

∑
u∈V (G)

∑
v∈NG(u)

1

dG(u)

=
∑

u∈V (G)

dG(u)

dG(u)
=

∑
u∈V (G)

1 = n(G).

So, based on the definitions of the first and second Zagreb indices, it is

evident that,

Θ(G) =
∑
∗

mi,j(G)ij −
∑

∗ mi,j(G)∑
∗ mi,j(G)( 1i +

1
j )

∑
∗

mi,j(G)(i+ j).

Therefore,

Θ(G) =

∑
∗ mi,j(G)ij

∑
∗ mi,j(G)

(
1
i +

1
j

)
∑

∗ mi,j(G)
(

1
i +

1
j

)
−
∑

∗ mi,j(G)
∑

∗ mi,j(G)(i+ j)∑
∗ mi,j(G)

(
1
i +

1
j

) .
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Let’s consider the function Θ′(G) defined as follows:

Θ′(G) =

(∑
∗

mi,j(G)

(
1

i
+

1

j

))
Θ(G).

It follows that Θ(G) ≥ 0 if and only if Θ′(G) ≥ 0, with equality holding

under the same conditions. For the remainder of this proof, let i, j, k,

and l be four integers in the range from δ(G) to δ(G) + 3. We define the

function:

Ψ(i, j, k, l) = ij

(
1

k
+

1

l

)
+ kl

(
1

i
+

1

j

)
− (i+ j + k + l).

By utilizing the definition of Θ′(G), we can establish that proving the

inequality Θ(G) ≥ 0 is equivalent to demonstrating that Ψ(i, j, k, l) ≥
0. Notably, the function Ψ(i, j, k, l) possesses certain symmetric proper-

ties: specifically, it holds that Ψ(i, j, k, l) = Ψ(j, i, k, l) = Ψ(i, j, l, k) =

Ψ(k, l, i, j). Let δ = δ(G). By employing the calculations for the function

Ψ, as given in Table 1, we can deduce the following: Ψ(i, j, k, l) = 0 when

{i, j} = {k, l}; Ψ(i, j, k, l) = (δ−1)(δ−3)
δ(δ+1)(δ+3) when {{i, j}, {k, l}} = {{δ, δ +

3}, {δ+1, δ+1}}; and Ψ(i, j, k, l) > 0 in all other cases. Thus, since either

δ(G) ̸= 2 or ∆(G) ̸= 5 holds, we can conclude that Ψ(i, j, k, l) ≥ 0. The

equality holds if and only if one of the following conditions is met: {i, j} =

{k, l}, {{i, j}, {k, l}} = {{1, 4}, {2, 2}}, or {{i, j}, {k, l}} = {{3, 6}, {4, 4}}.
By combining the above arguments, we conclude that M1(G)

n(G) ≤ M2(G)
m(G) .

The equality holds if and only if F(G) is either {{∆(G), δ(G)}}, {{1, 4},
{2, 2}}, or {{3, 6}, {4, 4}}, as desired.

From the proof of the last theorem, we can conclude that if graph G

satisfies ∆(G) − δ(G) ≤ 3 and serves as a counterexample for Conjecture

1, then δ(G) = 2, ∆(G) = 5, m2,5(G) ̸= 0, and m3,3(G) ̸= 0. Therefore,

we can propose the following corollary.

Corollary 1. Let G be a graph with ∆(G)− δ(G) ≤ 3. If M1(G)
n(G) > M2(G)

m(G) ,

then δ(G) = 2, ∆(G) = 5, m2,5(G) ̸= 0, and m3,3(G) ̸= 0.

In the following, we present infinitely many connected graphs that serve

as counterexamples to Conjecture 1, all of which have a minimum degree
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Table 1. The calculations of the function Ψ in the proof of Theorem 1.
To make the table smaller, we use the notation ◦x instead of
δ + x, where x ∈ {i, j, k, l}.

(i, j, k, l) Ψ(◦i, ◦j, ◦k, ◦l) (i, j, k, l) Ψ(◦i, ◦j, ◦k, ◦l)
(0, 0, 0, 0) 0 (0, 0, 0, 1) 1

δ+1

(0, 0, 0, 2) 4
δ+2 (0, 0, 0, 3) 9

δ+3

(0, 0, 1, 1) 2(2δ+1)
δ(δ+1) (0, 0, 1, 2) (3δ+2)(3δ+4)

δ(δ+1)(δ+2)

(0, 0, 1, 3) 2(4δ+3)(2δ+3)
δ(δ+1)(δ+3) (0, 0, 2, 2) 16(δ+1)

δ(δ+2)

(0, 0, 2, 3) (5δ+6)(5δ+12)
δ(δ+2)(δ+3) (0, 0, 3, 3) 18(2δ+3)

δ(δ+3)

(0, 1, 0, 1) 0 (0, 1, 0, 2) δ
(δ+1)(δ+2)

(0, 1, 0, 3) 4δ
(δ+1)(δ+3) (0, 1, 1, 1) 1

δ

(0, 1, 1, 2) 4(δ+1)
δ(δ+2) (0, 1, 1, 3) 9(δ+1)

δ(δ+3)

(0, 1, 2, 2) (3δ+2)(3δ+4)
δ(δ+1)(δ+2) (0, 1, 2, 3) 4(2δ+3)(2δ2+6δ+3)

δ(δ+1)(δ+2)(δ+3)

(0, 1, 3, 3) (5δ+3)(5δ+9)
δ(δ+1)(δ+3) (0, 2, 0, 2) 0

(0, 2, 0, 3) δ
(δ+2)(δ+3) (0, 2, 1, 1) 2

δ(δ+1)(δ+2)

(0, 2, 1, 2) δ+2
δ(δ+1) (0, 2, 1, 3) 2(2δ+3)(δ2+3δ+3)

δ(δ+1)(δ+2)(δ+3)

(0, 2, 2, 2) 4
δ (0, 2, 2, 3) 9(δ+2)

δ(δ+3)

(0, 2, 3, 3) 2(2δ+3)(4δ+9)
δ(δ+2)(δ+3) (0, 3, 0, 3) 0

(0, 3, 1, 1) (δ−1)(δ−3)
δ(δ+1)(δ+3) (0, 3, 1, 2) 4(2δ+3)

δ(δ+1)(δ+2)(δ+3)

(0, 3, 1, 3) δ+3
δ(δ+1) (0, 3, 2, 2) (δ+4)(δ+6)

δ(δ+2)(δ+3)

(0, 3, 2, 3) 4(δ+3)
δ(δ+2) (0, 3, 3, 3) 9

δ

(1, 1, 1, 1) 0 (1, 1, 1, 2) 1
δ+2

(1, 1, 1, 3) 4
δ+3 (1, 1, 2, 2) 2(2δ+3)

(δ+1)(δ+2)

(1, 1, 2, 3) (3δ+5)(3δ+7)
(δ+1)(δ+2)(δ+3) (1, 1, 3, 3) 16(δ+2)

(δ+1)(δ+3)

(1, 2, 1, 2) 0 (1, 2, 1, 3) δ+1
(δ+2)(δ+3)

(1, 2, 2, 2) 1
δ+1 (1, 2, 2, 3) 4(δ+2)

(δ+1)(δ+3)

(1, 2, 3, 3) (3δ+5)(3δ+7)
(δ+1)(δ+2)(δ+3) (1, 3, 1, 3) 0

(1, 3, 2, 2) 2
(δ+1)(δ+2)(δ+3) (1, 3, 2, 3) δ+3

(δ+1)(δ+2)

(1, 3, 3, 3) 4
δ+1 (2, 2, 2, 2) 0

(2, 2, 2, 3) 1
δ+3 (2, 2, 3, 3) 2(2δ+5)

(δ+2)(δ+3)

(2, 3, 2, 3) 0 (2, 3, 3, 3) 1
δ+2

(3, 3, 3, 3) 0
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of 2 and a maximum degree of 5. First, we begin with a lemma that will

be useful for achieving our goal.

Lemma 1. Let G1 be a graph with a minimum degree of δ(G1) = 2 and

a maximum degree of ∆(G1) = 5, such that m(G1) = m2,5(G1). Addi-

tionally, let G2 be a 3-regular graph. Consider a new graph G obtained by

adding an edge between a vertex of degree 2 in G1 and a vertex of degree

3 in G2. If m(G1)m(G2) + 360 > 81m(G1) + 80m(G2), then

M1(G)

n(G)
>

M2(G)

m(G)
.

Proof. Suppose we define Ψ(G) = m(G)M1(G) − n(G)M2(G). By exam-

ining the relationship between the structure of G and the structures of G1

and G2, we can observe that

n(G) = n(G1) + n(G2),

m(G) = m(G1) +m(G2) + 1,

M1(G) = (m(G1)− 2) · 7 + (m(G2)− 3) · 6 + 44,

M2(G) = (m(G1)− 2) · 10 + (m(G2)− 3) · 9 + 78.

From this, we conclude that

Ψ(G) = (7m(G1) + 6m(G2) + 12)(m(G1) +m(G2) + 1)

− (10m(G1) + 9m(G2) + 31)(n(G1) + n(G2)).

On the other hand, we have the equations n(G1) = n2(G1) + n5(G1),

2m(G1) = 2n2(G1) + 5n5(G1), and 2m(G2) = 3n(G2). From these, we

find that

n(G1) = m(G1)−
3

2
n5(G), n(G2) =

2

3
m(G2).

Additionally, using the structure of G1, we determine that m(G1) =

5n5(G), which allows us to conclude that

n(G1) =
7

10
m(G1).



448

Therefore, we also conclude that

Ψ(G) = (7m(G1) + 6m(G2) + 12)(m(G1) +m(G2) + 1)

− (10m(G1) + 9m(G2) + 31)

(
7

10
m(G1) +

2

3
m(G2)

)
=

1

30
m(G1)m(G2) + 12− 27

10
m(G1)−

8

3
m(G2).

Now, given the inequality m(G1)m(G2) + 360 ≥ 81m(G1) + 80m(G2), it

follows that Ψ(G) > 0, as desired.

For an integer k ≥ 1, let P2k+1 and Q2k+1 be two disjoint paths of the

same order 2k + 1, defined as follows:

P2k+1 := v1v2 . . . v2k+1, Q2k+1 := u1u2 . . . u2k+1.

Additionally, for i ∈ {3, 5, . . . , 2k − 1}, let Hi be a graph with vertex set

V (Hi) = {i1, i2, i3} and no edges. Moreover, we define H1 and H2k+1 such

that:

V (H1) = {11, 12, 13, 14}, V (H2k+1) = {x1, x2, x3, x4},

where x = 2k + 1, and both edge sets are empty:

E(H1) = E(H2k+1) = ∅.

Now, consider a new graph Ξ2k+1 obtained from P2k+1, Q2k+1, and Hi for

i ∈ {1, 3, . . . , 2k + 1} such that:

V (Ξ2k+1) = V (P2k+1) ∪ V (Q2k+1) ∪ V (H1) ∪ V (H3) ∪ . . . ∪ V (H2k+1),

E(Ξ2k+1) = E(P2k+1) ∪ E(Q2k+1) ∪
⋃
l∈L

{vllj , ullj : j ∈ {1, . . . , 3}}

∪ {viij , uiij : i ∈ {1, 2k + 1}, j ∈ {1, . . . , 4}},

where L = {3, 5, . . . , 2k−1}. It is easy to see that δ(Ξ2k+1) = 2, ∆(Ξ2k+1)

= 5, and m(Ξ2k+1) = m2,5(Ξ2k+1), see Figure 1 for more details. Addi-

tionally, there are infinitely many 3-regular graphs. Based on these ob-
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servations, and by employing Lemma 1, we can formulate the following

proposition.

Ξ5 Ξ3

Figure 1. The graphs Ξ5 and Ξ3.

Proposition 2. There are infinitely many connected graphs G for which

δ(G) = 2, ∆(G) = 5, and the inequality M1(G)
n(G) > M2(G)

m(G) holds true.

It is important to note that for any two positive integers k and l, and

any 3-regular graph H, if we define G = Ξ2k+1∪H or G = rK5,2∪ lK4, we

can use a method similar to the proof of Lemma 1 to show that M1(G)
n(G) >

M2(G)
m(G) . Consequently, there are infinitely many disconnected graphs G for

which δ(G) = 2, ∆(G) = 5, and the inequality M1(G)
n(G) > M2(G)

m(G) holds true.

In the next proposition, we demonstrate that the smallest connected

graph created using the strategy outlined in Lemma 1, which serves as a

counterexample for Conjecture 1, has an order of 218.

Proposition 3. Let k be a positive integer, and let H be a 3-regular graph.

Additionally, let G be the graph obtained from Ξ2k+1 and H by adding an

edge between a vertex of degree 2 in Ξ2k+1 and an arbitrary vertex in H. If

the inequality M1(G)
n(G) > M2(G)

m(G) holds true, then it follows that n(G) ≥ 218.

Proof. By utilizing the structures of H and Ξ2k+1, along with the state-

ments from the proof of Lemma 1, we can observe the following relation-

ships:

m(H) =
3

2
n(H), m(Ξ2k+1) =

10

7
n(Ξ2k+1) = 10(k + 1). (1)

Furthermore, by applying the conclusions from the proof of Lemma 1
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again, we can see that if the inequality

M1(G)

n(G)
>

M2(G)

m(G)

holds, it leads to the following inequality:

m(Ξ2k+1)m(H) + 360− 81m(Ξ2k+1)− 80m(H) > 0. (2)

By combining Equations (1) and (2), we derive k ≥ 8 and

15n(H) + 360− 810(k + 1)− 120n(H) > 0.

This simplifies to:

n(H) >
810k + 450

15k − 105
.

Since n(Ξ2k+1) = 7(k + 1) and n(G) = n(H) + n(Ξ2k+1), it follows that

n(G) >
(7k + 19)(k − 1)

k − 7
.

Next, for 8 ≤ k ≤ 15, by utilizing Equations (1) and (2), and noting that

n(H) is an even integer, we find that n(G) ≥ 218. For k ≥ 16, since

the function f(k) = (7k+19)(k−1)
k−7 is increasing on the interval (16,∞), we

conclude that n(G) > f(16) > 218. Additionally, if we assume that H

is a 3-regular graph of order 106, and let G be the graph obtained from

Ξ31 and H by adding an edge between a vertex of degree 2 in Ξ31 and an

arbitrary vertex in H, we can confirm that n(G) = 218 and that

M1(G)

n(G)
>

M2(G)

m(G)
,

as desired.

3 Concluding remarks

The main contribution of this paper is an extension of the study related to

Conjecture 1 concerning chemical graphs. We examine graphs where the
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difference between the minimum and maximum degrees is at most 3. Our

findings show that any graph in this category that acts as a counterexample

to Conjecture 1 must have a minimum degree of 2 and a maximum degree

of 5. Moreover, we present infinitely many connected graphs that serve as

counterexamples to this conjecture, all of which have a minimum degree

of 2, a maximum degree of 5, and an order of at least 218. To further

investigate these findings, we address two specific questions:

Question I: What is the maximum integer n such that for any connected

graph with a minimum degree of 2, a maximum degree of 5, and an order

less than or equal to n, Conjecture 1 holds?

Question II: How many distinct graphs with the same order exist that

have a minimum degree of 2 and a maximum degree of 5, and which serve

as counterexamples to Conjecture 1?

Acknowledgment : The author expresses gratitude to the reviewers and
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