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Abstract

The paper presents a numerical algorithm for calculating the
control that converts a catalytic process from an initial state to a
given final state in minimum time. The formulation of the prob-
lem of optimal speed for the chemical process on the basis of its
mathematical model is performed. The temperature of the reaction
mixture is considered as a control. A numerical algorithm based on
the method of differential evolution for solving the problem is given.
The advantage of the proposed approach is that in its application
there is no need to set the initial approximation of the solution
based on the physical and chemical sense of the problem. The work
of the algorithm is tested on an industrially significant process of
synthesis of phthalic anhydride. The optimum temperature regime
and the shortest duration of the process at a given value of phthalic
anhydride concentration, at a fixed content of naphthoquinone in
the reaction mixture, under the condition of complete consumption
of naphthalene have been calculated. The efficiency of application
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of the developed algorithm is demonstrated by comparing the found
solutions of rapidity problems with the solutions calculated using
other methods.

1 Introduction

In the study of chemical technology processes, it is often necessary to

solve optimization problems. One of such problems is the optimal speed

problem. In this problem it is required to choose the values of control

parameters at each moment of time in order to move the process from

a given initial state to a given final state in minimum time. This class

of problems includes problems of search for optimal control of periodic

chemical-technological processes, problems of the fastest transfer of a pro-

cess from one operating mode to another, problems of choosing the optimal

temperature profile in an ideal displacement reactor, and others.

One of the difficulties arising in solving problems based on the math-

ematical description of chemical processes is the nonlinearity of their dy-

namics. Most often, a mathematical model of a chemical process is rep-

resented as a system of ordinary differential equations containing an ex-

ponential dependence of the reaction rate constant on temperature [1–3].

Nonlinearity of mathematical models of chemical processes complicates

their investigation and control and leads to the need for special approaches.

Therefore, the development of methods and algorithms for finding the op-

timal control of catalytic processes in terms of speed is an urgent task.

The Pontryagin maximum principle is widely used to solve nonlinear

optimal speed problems [4–6]. Using the maximum principle, the initial

problem is reduced to a boundary value problem for a system of ordinary

differential equations. The main difficulty in applying this method to

solve the problems of optimal control of catalytic processes is the need

to determine the initial conditions for the solution of the coupled system

taking into account the physical and chemical sense of the problem.

In [7], a method for determining the optimal control in terms of speed

for nonlinear controllable systems in which the linear occurrence of phase

variables and control can be distinguished is proposed. However, the
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method is inapplicable for systems with nonlinear control and nonlinear

input of state variables.

In most cases, it is sufficient to have an approximate solution of the op-

timization problem when controlling chemical processes. This is due to the

need for prompt response to rapidly changing process conditions. There-

fore, in the study of chemical processes it is possible to apply the method

of finite-dimensional approximation of the control problem, reducing the

original problem of infinite-dimensional optimization to the problem of

mathematical programming. When solving finite-dimensional problems,

most optimization methods effectively find the global optimum at a well-

chosen initial approximation, and are applied only for smooth and convex

problems (for example, gradient methods [8]). A nonlinear fast problem

may have a non-convex reachability region and, as a consequence, local ex-

trema. This creates additional difficulties in developing a search procedure

for determining the global extremum.

Therefore, evolutionary computational methods can be applied to solve

the optimal speed problem for catalytic processes. Evolutionary methods

have successfully proved themselves in solving practical problems when

traditional methods are ineffective [9–13]. One such method is the dif-

ferential evolution method [14–16]. This method is direct and does not

depend on the initial approximation of the problem solution. The lack of

sensitivity of the differential evolution method to the initial approximation

is achieved due to the fact that at each iteration the set of possible solu-

tions is simultaneously optimized. This allows increasing the search area.

The method of differential evolution has a smaller number of adjustable

parameters, unlike other evolutionary search methods, such as genetic al-

gorithms, the method of artificial immune systems and others. The aim

of this work is to develop a numerical algorithm for solving the optimal

speed problem for a catalytic process based on the differential evolution

method.
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2 Materials and methods

Let the mathematical description of the catalytic process be a system of

ordinary differential equations

dx

dt
= f(x(t), u(t), t) (1)

with initial conditions

x(0) = x0, (2)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T – vector of substance concentrations

(phase variables), u(t) – control parameter, t ∈ [0, T ] – time, f(x(t), u(t), t)

= (f1(x(t), u(t), t), f2(x(t), u(t), t), . . . , fn(x(t), u(t), t))
T – vector function

continuous together with its partial derivatives.

Let the values of concentrations of substances at the final moment of

time t = T be given:

x(T ) = x1. (3)

The control parameter u(t) can be the temperature of the reaction

mixture, pressure, feed rate of reagents, etc. Let us consider as a control

u(t) the reaction temperature, the values of which are limited:

umin ≤ u(t) ≤ umax, t ∈ [0, T ]. (4)

We will look for the reaction temperature u(t) in the class of piecewise

constant functions. Let us divide the segment [0, T ] by points t1, t2, . . . , ts,

so that t0 < t1 < . . . < ts+1, t0 = 0, ts+1 = T . At each of the segments

t ∈ [tj , tj+1] temperature takes a constant value u(t) = uj .

It is required to determine the temperature regime u(t) (t ∈ [0, T ]),

which transfers the catalytic process from the initial state (2) to the final

state (3) for the minimum time T ∗. That is, it is necessary to minimize

the target functional:

G(u) = T → min . (5)

Let us formulate an algorithm for finding a solution to problem (1)–(5)

based on the method of differential evolution. The operation of the method
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is based on the simulation of evolutionary processes to which vectors-

indivisibles are subjected [17, 18]. The target functional (5) is the fitness

function that determines the suitability of the individuated vector as a so-

lution to the problem. Usually, the condition of computation termination

is the achievement of the maximum number of iterations specified by the

user.

Let us introduce individuated vectors pi (i = 1,m), which form a popu-

lation and are potential solutions to the speed problem. As components of

each vector-indivisible, we set the control uj = u(tj), tj ∈ [0, T ], j = 0, s,

t0 = 0, ts+1 = T , and the duration of the chemical reaction:

pij =

uij , j = 0, s,

T, j = s+ 1,
(6)

where i = 1,m.

Let the fitness function be not the objective functional (5), but a func-

tion of the form

Q(pk) =

√√√√ n∑
i=1

(xk
i − x1

i )
2, (7)

where xk
1 , x

k
2 , . . . , x

k
n are the values of substance concentrations calculated

by solving the system of differential equations (1) with initial conditions

(2) for the vector-individual pk at the final time t = pk s+1 and piecewise

constant control with nodes (pk0, pk1, . . . , pks). The smaller the value of

Q(pk), is, the more accurately the terminal conditions (3) are satisfied, so

the vector-individual pk is more adaptable and more suitable as a solution

to the speed problem than others.

Let us set as a stopping criterion the fulfillment of the inequality for

some vector-individual pk of the current population:

Q(pk) < ε, (8)

where ε – user defined parameter.

Condition (8) can be fulfilled at several possible temperature regimes.

Therefore, we will enter possible solutions to the speed problem into a sep-
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arate array of individual vectors solutions. At the end of the algorithm,

from the solutions array we select the vector pk, whose last component

pk s+1 corresponding to the duration of the chemical reaction, takes the

smallest value. The selected vector-individual will be an approximate so-

lution to the optimal speed problem (1)–(5).

The differential evolution algorithm for solving problem (1)–(5) consists

of the following steps.

Step 1. Set the parameters of the algorithm: m – number of vectors-

individuals in the population, T – maximum duration of the chemical

reaction, s – number of points of division of the segment [0, T ], kross ∈
[0, 1] – crossover parameter, mut ∈ [0, 5; 1] – mutation parameter [14], ε –

parameter for ending the calculations.

Step 2. Generate a population of individual vectors pi = (pi0, . . . ,

pi s+1), where

pij =

umin + γij(umax − umin), j = 0, s,

γijT , j = s+ 1.
(9)

Here γij ∈ [0, 1] is a random number, i = 1,m.

Step 3. Calculate the fitness of each individual vector pi (i = 1,m). To

do this, find a numerical solution to the system of differential equations

(1) with a time interval division step [0, pi s+1], equal to pi s+1/s.

Step 4. Check condition (8) for each individual vector pi (i = 1,m). If

it is satisfied, then place vector pi into array solutions.

Step 5. Set the first individual vector as the target vector: pmishen =

p1.

Step 6. Find the most adapted vector-individual in the population

pprisp.

Step 7. Perform the mutation operation. Randomly select two different

individual vectors pa, pb, where pa ̸= pmishen, pb ̸= pmishen, pa ̸= pprisp,

pb ̸= pprisp. Create a mutant vector pmutant:

pmutant = pprisp +mut(pa − pb).
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Step 8. Perform the crossover operation on the mutant vector and the

target vector. Create a trial vector pprob:

pprob j =

pmutant j , αj ≤ kross,

pmishen j , αj > kross,

where αj ∈ [0, 1] – random number, j = 0, s.

Step 9. Calculate the fitness function value for the trial vector Q(pprob).

Step 10. Check condition (8) for the trial vector pprob. If it is satisfied,

then place the trial vector into the array solutions.

Step 11. Update the population. If Q(pprob) < Q(pmishen), then

place the trial vector into the population instead of the target vector,

i.e. pmishen = pprob. Otherwise, leave the target vector pmishen in the

population.

Step 12. If all individual vectors of the current population are consid-

ered as the target vector, i.e. pmishen = pm, then go to step 13. Otherwise,

go to the next target vector pmishen = pmishen+1 in the population and go

to step 6.

Step 13. Check condition (8) for the individual vectors of the current

population. If condition (8) is satisfied for the vector pi (i = 1,m), then

place it in the solutions array and go to step 14. Otherwise, go to step 5.

Step 14. Find in the array solutions the individual vector pk, whose

last component takes the smallest value. Take T ∗ = pk s+1 as the shortest

duration of a chemical reaction. Assign the values of the elements pkj

(j = 0, s) to the values of the temperature u(t) at discrete moments of

time according to formula (6).

Thus, the authors have made the following modifications to the classical

differential evolution algorithm:

1) the structure of the individual vector includes discrete values of the

control parameter and time;

2) the fitness function of the individual vector is not the target func-

tional in the form (5), but the deviation between the given final state of

the process and the one calculated using the algorithm;

3) a special array solutions is introduced to store the most adapted
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vectors-individuals, from which the solution with the smallest time value

is selected at the end of the algorithm;

4) the condition for the end of the computational process is a deviation

from the terminal state of the controlled process.

3 Research results

Let’s apply the developed algorithm to solve the problems of speed on the

example of the process of phthalic anhydride production. Phthalic anhy-

dride is used to produce various dyes, medicines, insecticides, additives for

lubricating oils, additives for aviation fuel, and others.

Let us introduce the following designations: X1 – naphthalene, X2

– naphthoquinone, X3 – phthalic anhydride, X4 – carbon dioxide, X5 –

maleic anhydride. Taking into account the introduced designations, the

set of chemical transformations of the process of phthalic anhydride pro-

duction can be described by a sequence of stages [19]:

X1 → X2,

X2 → X4,

X1 → X3,

X1 → X4,

X2 → X3,

X3 → X5.

(10)

The kinetics of the process can be described by a system of ordinary

differential equations
dxi

dt
= f(x(t), u(t), t) (11)

with initial conditions

xi(0) = x0
i , i = 1, 5, (12)

where xi(t) – concentration of the i-th substance (i = 1, 5) (mole fraction),

u(t) – reaction temperature (K), t ∈ [0, T ] – reaction time (h).

According to the law of acting masses, the right parts of the system of
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differential equations (11) are the functions

f1(x, u, t) = −k1(u)x1 − k3(u)x1 − k4(u)x1,

f2(x, u, t) = k1(u)x1 − k2(u)x2 − k5(u)x2,

f3(x, u, t) = k3(u)x1 + k5(u)x2 − k6(u)x3,

f4(x, u, t) = k2(u)x2 + k4(u)x1,

f5(x, u, t) = k6(u)x3,

where kj(u) – rate constant of the j-th stage (1/h, j = 1, 6), depending on

the temperature u based on the Arrhenius equation

kj(u) = k0j exp

(
−Ej

Ru

)
,

where k0j – pre-exponential multiplier (l/h), Ej – activation energy of the

j-th stage (J/mol), R – universal gas constant (8,31 J/(mol·K)).

Numerical values of kinetic parameters of the reaction of phthalic an-

hydride synthesis are given in [19].

Let us consider as a control the reaction temperature u(t), the values

of which are subject to constraints:

620K ≤ u(t) ≤ 644K, t ∈ [0, T ]. (13)

Let the initial concentrations be given by the values (mole fraction)

x1(0) = 1, xi(0) = 0, i = 2, 5. (14)

The target product of reaction (10) is phthalic anhydride X3. Let it

be required that its concentration at the end of the reaction is 0,77 mole

fractions:

x3(T ) = 0, 77. (15)

It is necessary to find the control u(t), taking into account the con-

straints (13), which transfers the process described by the system (11)

from state (14) to state (15) in the minimum time T ∗.

To solve the problem (10)–(15), a software package has been developed

in the Delphi programming language that implements the algorithm of the
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differential evolution method. The algorithm is applied with the following

parameters: population size m = 50, maximum duration of chemical re-

action T = 5 h, number of time interval partition points s = 50, crossover

parameter kross = 0, 7, mutation parameter mut = 0, 8, calculation ter-

mination parameter ε = 0, 01.

As a result of calculations, it was found that the highest concentration

of phthalic anhydride, equal to 0,763 mole fractions (Fig. 1), can be ob-

tained in the shortest time T ∗ = 1, 45 h. At the same time, the minimum

allowable temperature u(t) = 620 K should be maintained throughout the

process. The relative error of fulfilling the terminal condition was 0,91 %.

Figure 1. Dynamics of substance concentrations in problem (10)–(15)

Table 1 presents the results of solving the system of differential equa-

tions (11) with initial conditions (14) at some permissible values of tem-

perature and reaction time. The table shows that the developed algorithm

was used to calculate the shortest process time for the synthesis of phthalic

anhydride at temperature u = 620 K, with x3(T ) = 0, 763 mole fractions.

The developed algorithm is compared with the algorithm of differential

evolution without modification. The algorithm parameters are set to the

same values that were used to solve the problem using a modified genetic

algorithm. Possible solutions were not recorded in a separate array, and
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the first individual satisfying condition (8) was accepted as an approximate

solution to the problem. The estimated performance indicators of the

algorithms and their obtained values are shown in Table 1. The values

of the indicators were evaluated based on the results of 20 runs of each

algorithm at different values of accuracy ε. Reliability was defined as the

ratio of the number of successful runs of the algorithm, in which the best

T ∗ value was achieved, to the total number of runs.

Table 1. Results of testing evolutionary algorithms

Differential evolution Best T ∗, Average T ∗ Reliability Number of
algorithm value value iterations

ε = 0, 1
Without modification 1,565 1,584 0,80 2231
With modification 1,458 1,460 0,85 2214

ε = 0, 01
Without modification 1,531 1,538 0,90 4397
With modification 1,450 1,452 0,95 3830

ε = 0, 001
Without modification 1,481 1,487 0,95 5783
With modification 1,450 1,451 0,95 4879

The table shows that at low computational accuracy (ε = 0, 1) the

number of iterations for which the solution is found by both algorithms

differs insignificantly with a small difference in the reliability level. At

the same time, the value of T ∗, calculated with the modified algorithm is

smaller compared to the algorithm without modification. As the value of

the parameter ε increases, the smallest time T ∗ found by both methods

is almost comparable. However, the time to compute the solution using

the algorithm without modification increases. Therefore, we can conclude

that at low computational accuracy the running time of the algorithms is

approximately the same, but the modified algorithm calculates the best

value of T ∗. The modified algorithm requires less time to obtain a more

accurate solution compared to the algorithm without modification.

Let us consider the speed problem for the synthesis of phthalic anhy-

dride, in which the concentration of intermediate X2 at the end of the
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reaction is set to 0,3 mole fractions:

x2(T ) = 0, 3. (16)

Using the developed algorithm, the optimal temperature regime and

the corresponding concentrations of substances were calculated at ε = 0, 1

(Fig. 2, 3). The process should begin at a temperature of 620 K. After

0,075 h, the temperature should be increased to the maximum permissible

value (644 K) and maintained at this level until the end of the process.

The shortest process time was 0,186 h. In this case, the concentration of

naphthoquinone was 0,286 mole fractions, which is 4,7% lower than the

specified value (16).

Figure 2. Optimal temperature regime in problem (10)–(14), (16)

Table 2 shows the values of naphthoquinone concentration calculated

by varying the process duration for different isothermal regimes. It fol-

lows from the data of the table that the closest value of naphthoquinone

concentration to the value of 0,3 mole fractions (0,272 mole fractions )

is provided at a constant temperature of 628 K and the process duration

equal to 0,2 h. However, the error of fulfillment of condition (16) (9,3 %)

is greater than its error for the solution of the problem obtained using the

differential evolution algorithm (4,7 %). At the same time, the process
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Figure 3. Dynamics of substance concentrations in problem (10)–(14),
(16)

time exceeds the calculated smallest value of the process duration equal

to 0,186 h.

Now let us determine the control u(t), at which the initial substance,

naphthalene, is completely consumed in the shortest time, that is

x1(T ) = 0. (17)

The calculations were carried out with an accuracy of ε = 10−3. The

calculations showed that the reaction should be carried out at the max-

imum permissible temperature u(t) = 644 K for 1 hour. In this case,

1, 61 · 10−4 mole fractions of the initial substance will remain in the reac-

tion system (Fig. 4).

The speed problem (10)–(14), (17) is also solved using the method of

variations in the control space [20]. The solution search was carried out

with a step for the control equal to 0,01 and the number of time interval

partition points equal to 50. At the initial approximation u0(t) = 632 K

and T 0 = 5 h, T ∗ = 1, 52 h was obtained. The structure of the temperature

curve is close to the temperature profile calculated using the evolutionary

algorithm. The relative error of the temperature vector is 4,11 %.

However, at the initial approximation u0(t) = 620 K, T 0 = 5 h, the
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Table 2. The value of the concentration of the intermediate substance
X2, calculated under different reaction conditions

u, K T, h x2(T )
mole fraction

0,1 0,210
0,2 0,268

620 0,3 0,258
0,5 0,179
0,1 0,043
0,1 0,225
0,2 0,272

628 0,3 0,247
0,5 0,155
1 0,030
0,1 0,239
0,2 0,271

636 0,3 0,233
0,5 0,130
1 0,020
0,1 0,252
0,2 0,266

644 0,3 0,214
0,5 0,107
1 0,013

local variation method reached a local optimum. The shortest process time

T ∗ = 1, 5 h, x1(T
∗) = 2, 24 · 10−4 mole fractions.

Hence, we can see that the method of local variations finds a solution to

the problem with well-chosen initial values of the desired parameters. The

operation of the evolutionary algorithm does not depend on the choice of

the initial approximation, since the initial values of the control parameters

are set randomly at step 2.

Based on the results of numerical experiments, we can conclude that

the algorithm for finding a solution to the optimal speed problem works

correctly. Therefore, it can be applied in the study of regularities of chem-

ical processes on the basis of their mathematical models.
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Figure 4. Dynamics of substance concentrations in problem (10)–(14),
(17)

4 Conclusion

The search for the solution of optimal speed problems for chemical pro-

cesses described by nonlinear systems of differential equations can be car-

ried out using the developed algorithm of differential evolution. The pecu-

liarity of the proposed approach is that it can be applied to obtain solutions

to optimal speed problems at an unknown initial approximation, which is

usually set by the researcher based on the meaning of the problem.

The algorithm has been tested in the process of obtaining phthalic an-

hydride. The optimal temperature regime and the shortest duration of the

process are calculated for a given concentration of the target reaction prod-

uct, phthalic anhydride, with a fixed content of the intermediate, naph-

thoquinone, in the reaction mixture, provided that the initial substance,

naphthalene, is completely consumed. A comparison of the obtained cal-

culation results with the results of solving problems using the method of

differential evolution without modification and the method of variations

in the control space showed the advantage of the proposed approach.

The algorithm can be applied to solve problems of speed in chemical

engineering with several control actions by modifying the structure of the

individual vector.
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