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Abstract

This paper examines spatiotemporal dynamics in an enzyme-
catalyzed reaction-diffusion system on complex networks. A gen-
eralized model with specific nonlinear reaction terms is developed.
Analysis of the homogeneous system determines multiple equilib-
rium existence and stability, identifies bistability regions, and proves
subcritical Hopf bifurcation occurrence. For network systems, condi-
tions for Turing instability, Hopf bifurcation, and Turing-Hopf bifur-
cation are established using a theoretical framework incorporating
network Laplacian eigenvalues. Numerical simulations demonstrate
network average degree regulates pattern formation, with intermedi-
ate connectivity promoting spatiotemporal patterns while sparse or
dense connectivity suppresses them. Identification of Turing-Hopf
bifurcation points reveals interactions between temporal oscillations
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and spatial patterning. This work provides theoretical and numer-
ical foundations for understanding network topology effects on bio-
chemical pattern formation.

1 Introduction

Enzyme-catalyzed reaction systems serve as a fundamental paradigm for

understanding nonlinear dynamics and pattern formation in biochemical

processes. The pioneering work of [1] revealed that the interplay between

reaction kinetics and diffusion can lead to spontaneous spatial pattern

formation, a phenomenon now ubiquitously known as Turing patterns.

Since then, reaction-diffusion systems have been extensively employed to

model a wide array of spatiotemporal behaviors in chemical, biological,

and ecological contexts [2–7].

In particular, enzyme-catalyzed systems exhibit a rich spectrum of dy-

namic phenomena, including multistability, periodic oscillations, and var-

ious spatial patterns. A generalized dimensionless form of such a system

is often described by:
du

dt
= α− F1(u, v)− F3(u),

dv

dt
= β (F1(u, v)− F2(v)) ,

(1)

where u and v represent the concentrations of the substrate and product,

respectively. The nonlinear function F1(u, v) denotes the rate law, whose

specific form critically influences the system’s dynamics. System (1) ki-

netics are governed by the positive parameters α and β. Recent studies

have explored various forms of F1(u, v). For instance, Su and Xu con-

ducted a comprehensive bifurcation analysis of an enzyme-catalyzed reac-

tion system with cubic rate law F1(u, v) = uv2, identifying saddle-node,

Bogdanov-Takens, and Hopf bifurcations, and proving that the weak fo-

cus has order at most two [8]. Similarly, Wu and Yang performed a de-

tailed bifurcation analysis of an enzyme-catalyzed reaction model with

Langmuir-Hinshelwood mechanism, demonstrating the existence of saddle-

node, Hopf, and Bogdanov-Takens bifurcations in the corresponding tem-
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poral system [9].

Considering the concentration difference in different spatial locations,

researchers have introduced diffusion terms into homogeneous systems to

study the spatio-temporal dynamics. For example, Ko conducted a com-

prehensive study on the bifurcations and asymptotic behavior of positive

steady-states in an enzyme-catalyzed reaction-diffusion system, revealing

the global bifurcation structure and pattern formation mechanisms [10].

Atabaigi et al. performed a detailed bifurcation analysis of a reaction-

diffusion enzyme-catalyzed system arising from glycolysis, investigating

both spatially homogeneous and nonhomogeneous periodic solutions as

well as nonconstant steady states under homogeneous Neumann boundary

conditions [11]. Further extending this line of research, Chen and Li inves-

tigated a diffusive model with a cubic rate law F1(u, v) = uv2, establishing

rigorous conditions for Turing instability and demonstrating the emergence

of spot, stripe, and mixed patterns [12]. In a subsequent study, Zhao et

al. examined a system with F1(u, v) = uv, revealing the coexistence of

temporal, spatial, and spatiotemporal oscillations induced by Hopf bifur-

cation, Turing instability, and Turing–Hopf bifurcation, respectively [13].

Furthermore, they also considered the case of F1(u, v) = uv3 [14].

Despite these advances, two significant aspects remain less explored.

First, most existing models are confined to low-order polynomial kinetics,

such as quadratic or cubic forms. The introduction of more complex non-

linearities may unveil novel bifurcation scenarios and pattern formation

mechanisms due to stronger feedback effects. Second, the spatial domain

in classical studies is typically assumed to be a continuous medium or a

regular lattice. However, many real-world biochemical systems, includ-

ing intracellular metabolic networks, biofilm communities, and distributed

enzymatic reactors, are inherently structured as complex networks. The

topology of such networks, for instance small-world or scale-free proper-

ties, can profoundly influence the propagation of chemical signals and the

stability of dynamic states [15–18].

Motivated by the aforementioned insights and gaps in the literature, we

propose a generalized enzyme-catalyzed reaction-diffusion model defined

on a complex network. The model incorporates specific, mathematically
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tractable nonlinear forms to serve as a minimal yet paradigmatic frame-

work. In particular, the reaction terms are specified as F1(u, v) = uv,

F3(u) = γu2, and F2(v) = v
v+1 . The latter follows the classic Michaelis-

Menten form, describing a non-cooperative, saturable reaction rate. This

represents a deliberate and simplified choice compared to more complex

cooperative kinetics. Its purpose is to provide a well-established, ana-

lytically manageable foundation that allows us to isolate and systemati-

cally investigate the fundamental coupling between network topology and

reaction-diffusion dynamics, without the additional algebraic complexity

introduced by cooperative effects. The governing equations are thus:
∂ui

∂t
= d1

∑N
j=1 Lijuj + α− uivi − γu2

i ,

∂vi
∂t

= d2
∑N

j=1 Lijvj + β

(
uivi −

vi
vi + 1

)
,

(2)

where ui(t) and vi(t) denote the concentrations of the substrate and prod-

uct at the i-th node of the network, respectively. The matrix L = (Lij) is

the discrete Laplacian operator encoding the network’s topology, defined

as Lij = Aij − kiδij , with A being the adjacency matrix, ki the degree of

node i, and δij the Kronecker delta.

The structure of this paper is organized as follows. In Sec. 2, we deter-

mine the types, stability, and Hopf bifurcation of the homogeneous system.

In Sec. 3, we explore the Turing instability, Hopf bifurcation, and Turing-

Hopf bifurcation of the system on complex networks. Numerical results

are presented throughout the theoretical analysis to verify the conclusions.

Finally, we end this paper with a discussion in Sec. 4.
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2 Dynamics analysis of homogeneous system

2.1 Homogeneous equilibria

For the homogeneous system without diffusion, we set d1 = d2 = 0 in

equation (2), yielding the ordinary differential equations:
du

dt
= α− uv − γu2,

dv

dt
= β

(
uv − v

v + 1

)
,

(3)

The equilibria (u∗, v∗) satisfy:

α− u∗v∗ − γu2
∗ = 0, (4)

u∗v∗ −
v∗

v∗ + 1
= 0. (5)

From equation (5), we obtain:

v∗

(
u∗ −

1

v∗ + 1

)
= 0. (6)

For the boundary equilibrium case, when v∗ = 0 is substituted into equa-

tion (4), we obtain α− γu2
∗ = 0, which yields u∗ =

√
α
γ , thus establishing

the boundary equilibrium point E0 = (u0, v0) =
(√

α
γ , 0
)
.

For the interior equilibria case where u∗ − 1

v∗ + 1
= 0 implies u∗ =

1

v∗ + 1
, substituting into equation (4):

α−
(

1

v∗ + 1

)
v∗ − γ

(
1

v∗ + 1

)2

= 0. (7)

Multiplying through by (v∗ + 1)2:

α(v∗ + 1)2 − v∗(v∗ + 1)− γ = 0. (8)
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Expanding yields the quadratic equation:

(α− 1)v2∗ + (2α− 1)v∗ + (α− γ) = 0. (9)

A comprehensive analysis of this quadratic equation reveals that two dis-

tinct positive interior equilibrium points exist if and only if the following

parameter conditions are satisfied:

1

2
< α < 1 and γ > α. (10)

Under these conditions, the two interior equilibria are given by:

v1 =
−(2α− 1)−

√
4γ(α− 1) + 1

2(α− 1)
, u1 =

1

v1 + 1
, (11)

v2 =
−(2α− 1) +

√
4γ(α− 1) + 1

2(α− 1)
, u2 =

1

v2 + 1
, (12)

with v1 > v2 > 0 and u1 < u2. The corresponding equilibrium points

are denoted as E1 = (u1, v1) and E2 = (u2, v2). The coexistence of three

equilibrium points (E0, E1, E2) indicates the potential for bistability and

complex switching phenomena in the system, which are fundamental for

understanding pattern formation mechanisms in enzyme-catalyzed reac-

tion systems.

Based on the theoretical analysis above, we validate the complex dy-

namical behaviors in the enzyme-catalyzed reaction system through nu-

merical bifurcation diagrams. As shown in Figure 1, when the parameter

α varies within specific ranges, the system exhibits rich nonlinear phenom-

ena: the coexistence of three equilibrium points (the boundary equilibrium

E0 and two interior equilibria E1 and E2) confirms the equilibrium struc-

ture predicted theoretically; two saddle-node bifurcation points (SN1 and

SN2) demarcate the existence region of bistability; and the emergence of

a Hopf bifurcation point (H) indicates the potential for periodic oscilla-

tory behavior in the system. These numerical results not only verify the

correctness of the theoretical analysis but also reveal the complex stability

transition mechanisms within the parameter space. To deeply understand
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the mathematical essence of these dynamical phenomena, we proceed to

conduct a detailed analysis of the system’s local stability in the following

subsection.

Figure 1. Bifurcation diagram showing the product concentration v
as a function of the parameter α. The solid lines represent
stable equilibria, dashed lines unstable equilibria, and dash-
dotted lines saddle points. Saddle-node (SN) and Hopf (H)
bifurcation points are marked. The bistable region is shaded.
Parameters: γ = 0.9, β = 9.

2.2 Linear stability analysis

The local stability characteristics of each equilibrium point are determined

by linearizing the system around the equilibrium. The Jacobian matrix

evaluated at (u∗, v∗) is:

J =

∂f

∂u

∂f

∂v
∂g

∂u

∂g

∂v


(u∗,v∗)

, (13)
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where f(u, v) = α−uv−γu2 and g(u, v) = β
(
uv − v

v+1

)
. Computing the

partial derivatives:

∂f

∂u
= −v − 2γu,

∂f

∂v
= −u,

∂g

∂u
= βv,

∂g

∂v
= β

(
u− 1

(v + 1)2

)
.

The characteristic equation is given by:

λ2 − tr(J)λ+ det(J) = 0, (14)

where the trace and determinant are:

tr(J) = J11 + J22 = −v∗ − 2γu∗ + β

(
u∗ −

1

(v∗ + 1)2

)
, (15)

det(J) = J11J22 − J12J21. (16)

The stability criteria are:

• Stable node/focus: tr(J) < 0 and det(J) > 0;

• Unstable node/focus: tr(J) > 0 and det(J) > 0;

• Saddle point: det(J) < 0.

For E0 =
(√

α
γ , 0
)
, the Jacobian matrix simplifies to:

J(E0) =

−2
√
αγ −

√
α

γ

0 β

(√
α

γ
− 1

)
 . (17)

The eigenvalues are λ1 = −2
√
αγ < 0 and λ2 = β

(√
α
γ − 1

)
. Thus, E0 is

stable when
√

α
γ < 1 (i.e., γ > α) and unstable otherwise.

For the interior equilibria E1 and E2, utilizing the relation u∗ = 1
v∗+1 ,

the Jacobian matrix simplifies to:

J =

(
J11 J12

J21 J22

)
=

−v∗ −
2γ

v∗ + 1
− 1

v∗ + 1

βv∗ β
v∗

(v∗ + 1)2

 .
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The determinant and trace are given by:

det(J) = J11J22 − J12J21 = βv∗
v∗ + 1− 2γ

(v∗ + 1)3
, (18)

tr(J) = J11 + J22 = −v∗ −
2γ

v∗ + 1
+ β

v∗
(v∗ + 1)2

. (19)

Theorem 1. Let E1 and E2 be the interior equilibria with v1 > v2, where

v1 and v2 are the roots of:

(α− 1)v2 + (2α− 1)v + α− γ = 0.

Then the stability properties are as follows:

• For equilibrium E2 (with smaller v2): Since v2+1−2γ < 0, we have

det(J) < 0. Therefore, E2 is always a saddle point (unstable).

• For equilibrium E1 (with larger v1): Since v2 + 1− 2γ > 0, we have

det(J) > 0. Therefore, the stability of E1 is determined by the trace,

it is stable for β < βH , undergoes a Hopf bifurcation at β = βH , and

unstable for β > βH with βH = (v1 + 1)2 + 2γ(v1+1)
v1

.

Proof. The stability properties of the interior equilibria E1 and E2 are

determined through analysis of the Jacobian matrix eigenvalues.

For equilibrium E2, the condition v2+1−2γ < 0 implies det(J(E2)) =

βv2
v2+1−2γ
(v2+1)3 < 0, establishing E2 as a saddle point with one positive and

one negative eigenvalue.

For equilibrium E1, the condition v1+1−2γ > 0 ensures det(J(E1)) >

0. The stability is governed by the trace tr(J(E1)) = −v1− 2γ
v1+1+β v1

(v1+1)2 .

Setting tr(J(E1)) = 0 yields the critical bifurcation parameter value:

βH = (v1 + 1)2 +
2γ(v1 + 1)

v1
,

where v1 =
−(2α−1)+

√
(2α−1)2−4(α−1)(α−γ)

2(α−1) . The transversality condition

is verified by computing d
dβ tr(J(E1)) =

v1
(v1+1)2 > 0, confirming that the

real parts of the complex conjugate eigenvalues cross the imaginary axis

with non-zero speed. Consequently, the stability regions are characterized
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as follows: E1 is asymptotically stable for 0 < β < βH ; A Hopf bifurcation

occurs at β = βH ; E1 is unstable for β > βH .

Based on the theoretical stability analysis presented above, we conduct

numerical simulations to validate the stability properties of the equilibrium

points in the enzyme-catalyzed reaction system. Time series plots (Fig-

ure 2) and phase portraits (Fig. 3) are generated to illustrate the dynamic

behavior of the system under different parameter regimes. The time se-

ries analysis clearly demonstrates the transition from stable convergence

to equilibrium for β = 8.5, to sustained oscillatory behavior at the Hopf

bifurcation point β = 9, and finally to unstable dynamics for β = 9.5.

Correspondingly, the phase portrait at the bifurcation point demonstrates

oscillatory behavior around equilibrium E1, indicating the formation of

limit cycles. These numerical observations are consistent with the theoret-

ical framework of stability. The experiments provide evidence of dynami-

cal transitions in the enzyme-catalyzed reaction system. To determine the

stability of the oscillatory solutions and establish the bifurcation type, we

proceed to analyze the Hopf bifurcation, which characterizes the conditions

for stability loss and oscillation emergence.

Figure 2. Time series of substrate (u) and product (v) concentrations
for different values of β, with fixed α = 0.7413. The system
exhibits stable convergence to equilibrium for β = 8.5, sus-
tained oscillations at the Hopf bifurcation point β = 9, and
unstable behavior for β = 9.5.
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Figure 3. Phase portrait analysis at the Hopf bifurcation point (α =
0.7413, β = 9.0, γ = 0.9). The plot illustrates the vec-
tor field (light gray arrows) and multiple trajectories (black
lines with varying styles) from different initial conditions.
Three equilibrium points are identified: the boundary equi-
librium E0 (stable node) and interior equilibria E1 (center
with unstable limit cycle) and E2 (saddle point).

2.3 Hopf bifurcation analysis

Based on the previous linear stability analysis, the system may undergo a

Hopf bifurcation at the interior equilibrium point E1 = (u1, v1), where v1

is the larger positive root, under the parameter conditions 1
2 < α < 1 and

γ > α. We now analyze the existence of Hopf bifurcation using β as the

bifurcation parameter.

Theorem 2. (i) System (3) undergoes a Hopf bifurcation at the equi-

librium point E1 when the following conditions are satisfied:

tr(J) = 0, det(J) > 0,
d

dβ
tr(J)

∣∣∣∣
β=βH

> 0,

where the critical value βH is given by:

βH = (v1 + 1)2 +
2γ(v1 + 1)

v1
,
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and v1 is determined by:

v1 =
−(2α− 1)−

√
4γ(α− 1) + 1

2(α− 1)
.

(ii) If the Lyapunov coefficient l1 < 0, then the Hopf bifurcation is su-

percritical and the bifurcating periodic solution is stable; if l1 > 0,

then the Hopf bifurcation is subcritical and the bifurcating periodic

solution is unstable.

Proof. First, we prove that system (3) undergoes a Hopf bifurcation at

β = βH . The Jacobian matrix at the equilibrium point E1 is:

J =

(
fu fv

gu gv

)
(u1,v1)

,

where f(u, v) = α−uv−γu2 and g(u, v) = β
(
uv − v

v+1

)
. At E1, we have

u1 = 1
v1+1 , and v1 satisfies:

v1 =
−(2α− 1)−

√
4γ(α− 1) + 1

2(α− 1)
.

Computing the partial derivatives:

fu = −v − 2γu, fv = −u, gu = βv, gv = βu− β
1

(v + 1)2
.

At E1:

a10 = −v1 − 2γu1, a01 = − 1

v1 + 1
, b10 = βv1, b01 = β

v1
(v1 + 1)2

.

The trace and determinant are:

tr(J) = a10 + b01 = −v1 − 2γu1 + β
v1

(v1 + 1)2
,

det(J) = a10b01 − a01b10 = βv1
v1 + 1− 2γ

(v1 + 1)3
.

When β = βH , we have tr(J) = 0, and from stability analysis we know
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det(J) > 0. The eigenvalues are λ = ±i
√

det(J). Let λ = η(β)±ω(β)i be

the roots of the characteristic equation λ2 − tr(J)λ+ det(J) = 0, then:

η(β) =
tr(J)

2
, ω(β) =

√
4 det(J)− (tr(J))2

2
,

dη(β)

dβ

∣∣∣∣
β=βH

=
1

2

v1
(v1 + 1)2

.

The transversality condition is satisfied, therefore system (3) undergoes a

Hopf bifurcation at β = βH .

To determine the direction and stability of the bifurcation, we compute

the first Lyapunov coefficient l1. Let u = u1 + x and v = v1 + y, shifting

the equilibrium to the origin. The system becomes:

dx

dt
= a10x+ a01y + F (x, y),

dy

dt
= b10x+ b01y +G(x, y),

where F (x, y) and G(x, y) are the higher-order terms:

F (x, y) =a20x
2 + a11xy + a02y

2

+ a30x
3 + a21x

2y + a12xy
2 + a03y

3 + · · · ,

G(x, y) =b20x
2 + b11xy + b02y

2

+ b30x
3 + b21x

2y + b12xy
2 + b03y

3 + · · · .

Computing the coefficients:

a20 = −γ, a11 = −1, a02 = a30 = a21 = a12 = a03 = 0,

b11 = β, b02 =
β

(v1 + 1)3
, b20 = b30 = b21 = b12 = 0, b03 = − β

(v1 + 1)4
.
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At β = βH , we have b01 = −a10. The Lyapunov coefficient l1 is given by:

l1 =
−3π

2a01∆3/2

[
a10b01(a

2
11 + a11b02 + a02b11)

+ a10a01(b
2
11 + b11a02 + b02a11) + b210(a11a02 + 2a02b02)

− 2a10b10(b
2
02 − a20a02)− 2a10a01(a

2
20 − b20b02)

− a201(2a20b20 + b11b20) + (a01b10 − 2a210)(b11b02 − a11a20)

− (a210 + a01b10)
(
3(b10b03 − a01a30) + 2a10(a21 + b12)

+ (b10a12 − a01b21)
)]

,

(20)

where ∆ = βv1
v1+1−2γ
(v1+1)3 . Substituting the coefficients and simplifying (not-

ing that a02 = 0, a20 = −γ, a11 = −1, b11 = β, b02 = β/(v1 +1)3, b20 = 0,

a30 = 0, a21 = 0, b12 = 0, a12 = 0, b21 = 0, b03 = −β/(v1 + 1)4), we

obtain:

l1 =
−3π

2a01∆3/2

[
a10b01(1− b02) + a10a01(β

2 − βb02)− 2a10b10b
2
02

−2a10a01γ
2 + (a01b10 − 2a210)(βb02 − γ)− 3b10b03(a

2
10 + a01b10)

]
.

If l1 < 0, the Hopf bifurcation is supercritical and the bifurcating periodic

solution is stable; if l1 > 0, the Hopf bifurcation is subcritical and the

bifurcating periodic solution is unstable.

Based on the Hopf bifurcation analysis, we provide numerical veri-

fication to illustrate the subcritical Hopf bifurcation for the parameters

α = 0.7413, β = 9.0, and γ = 0.9. The interior equilibrium point is com-

puted as E1 = (u1, v1) = (0.4100, 1.4393), where v1 is determined by the

formula v1 =
−(2α−1)−

√
4γ(α−1)+1

2(α−1) . At this equilibrium, the trace of the Ja-

cobian matrix vanishes, tr(J) = 0, while the determinant remains positive,

det(J) > 0, satisfying the conditions for a Hopf bifurcation. The critical

bifurcation parameter is calculated as βH = (v1 + 1)2 + 2γ(v1+1)
v1

≈ 9.007,

which is close to the chosen β = 9.0, indicating the system is near the

bifurcation point. The first Lyapunov coefficient is computed as l1 =

408.590568 > 0. According to Theorem 2, since l1 > 0, the Hopf bifur-
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cation is subcritical. This implies that the bifurcating periodic solutions

are unstable and exist for parameter values β < βH , leading to potentially

abrupt transitions in system dynamics.

Figure 4 shows the bifurcation diagrams with respect to parameters

α and β. The diagrams clearly demonstrate the onset of oscillations

as the parameters cross critical values. Figure 5 provides direct evi-

Figure 4. Bifurcation diagrams showing the dependence on parameters
α and β. The black dots represent maxima and white circles
represent minima of the oscillations.

dence of the subcritical nature through the phase portrait analysis. Two

trajectories with closely spaced initial conditions (0.503485, 1.32198) and

(0.503485, 1.31198) exhibit dramatically different behaviors: the trajectory

starting inside the unstable limit cycle (black) converges to the equilib-

rium E1, while the trajectory starting outside (gray) diverges away from

the equilibrium. This behavior characterizes the unstable nature of the

limit cycle generated by the subcritical Hopf bifurcation.The positive Lya-

punov coefficient confirms the destabilizing effect of the nonlinear terms,

resulting in a subcritical bifurcation where small perturbations can cause

significant changes in system behavior near the equilibrium E1. This nu-

merical verification aligns perfectly with the theoretical analysis presented

in Theorem 2.
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Figure 5. Phase portrait near the Hopf bifurcation point. The black
trajectory starts inside the unstable limit cycle and con-
verges to E1, while the gray trajectory starts outside and
diverges, demonstrating the instability of the limit cycle.

3 Spatiotemporal dynamic analysis on net-

works

3.1 Turing instability analysis on networks

For the network-based system described by equation (2), we analyze Tur-

ing instability around the homogeneous equilibrium E1 = (u1, v1) [19].

Consider small perturbations δui and δvi around the equilibrium:

ui = u1 + δui, vi = v1 + δvi. (21)

The linearized dynamics are governed by:
∂δui

∂t
= d1

∑N
j=1 Lijδuj + a10δui + a01δvi,

∂δvi
∂t

= d2
∑N

j=1 Lijδvj + b10δui + b01δvi.
(22)

Expanding the perturbations in terms of the Laplacian eigenvectors {ϕ(α)}:

δui(t) =

N∑
α=1

W 1
αe

λαtϕ
(α)
i , δvi(t) =

N∑
α=1

W 2
αe

λαtϕ
(α)
i , (23)
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and utilizing the eigenvalue equation
∑N

j=1 Lijϕ
(α)
j = Λαϕ

(α)
i , we obtain

the characteristic equation for each mode α:

λα

(
W 1

α

W 2
α

)
=

(
a10 + d1Λα a01

b10 b01 + d2Λα

)(
W 1

α

W 2
α

)
. (24)

The characteristic polynomial becomes:

λ2
α − tr(Jα)λα + det(Jα) = 0, (25)

where

tr(Jα) = a10 + b01 + (d1 + d2)Λα,

det(Jα) = a10b01 − a01b10 + (a10d2 + b01d1)Λα + d1d2Λ
2
α.

Theorem 3. Turing instability occurs at equilibrium E1 when the follow-

ing conditions are satisfied:

• The homogeneous system is stable: a10+b01 < 0 and a10b01−a01b10 >

0;

• There exists at least one Laplacian eigenvalue Λα < 0 such that

det(Jα) < 0;

• The diffusion coefficients satisfy the instability condition:

a10d2 + b01d1 > 2
√
d1d2(a10b01 − a01b10). (26)

Proof. The first condition ensures stability of the homogeneous equilib-

rium E1 without diffusion. For Turing instability to occur, diffusion must

destabilize the system, which requires det(Jα) < 0 for some Λα < 0. The

minimum of det(Jα) as a function of Λα occurs at:

Λ̄α = −a10d2 + b01d1
2d1d2

, (27)
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with minimal value:

det(Jα)min = (a10b01 − a01b10)−
(a10d2 + b01d1)

2

4d1d2
. (28)

Turing instability requires det(Jα)min < 0, which yields condition (26).

The instability occurs for Laplacian eigenvalues in the interval Λ
(1)
α < Λα <

Λ
(2)
α , where:

Λ(1)
α =

−(a10d2 + b01d1)−
√
∆

2d1d2
,

Λ(2)
α =

−(a10d2 + b01d1) +
√
∆

2d1d2
,

with ∆ = (a10d2 + b01d1)
2 − 4d1d2(a10b01 − a01b10) > 0.

Remark. The critical value βT for Turing bifurcation can be determined

by setting det(Jα)min = 0:

(a10b01 − a01b10)−
(a10d2 + b01d1)

2

4d1d2
= 0. (29)

And obtain:

βv1
v1 + 1− 2γ

(v1 + 1)3
−

[
(−v1 − 2γ

v1+1 )d2 + β v1
(v1+1)2 d1

]2
4d1d2

= 0. (30)

Solving for β, the critical Turing bifurcation parameter βT satisfies:

βT v1
v1 + 1− 2γ

(v1 + 1)3
=

[
βT

v1d1

(v1+1)2 − d2(v1 +
2γ

v1+1 )
]2

4d1d2
. (31)

This yields a quadratic equation in βT :(
v21d

2
1

4d1d2(v1 + 1)4

)
β2
T −

[
v1d1d2(v1 +

2γ
v1+1 )

2d1d2(v1 + 1)2
+

v1(v1 + 1− 2γ)

(v1 + 1)3

]
βT

+
d22(v1 +

2γ
v1+1 )

2

4d1d2
= 0.

(32)
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Simplifying the coefficients:

Aβ2
T +BβT + C = 0, (33)

where

A =
v21d1

4d2(v1 + 1)4
, B = −v1(v

2
1 + 3v1 + 2− 2γ)

2(v1 + 1)3
, C =

d2(v
2
1 + v1 + 2γ)2

4d1(v1 + 1)2
.

The physically relevant solution is:

βT =
−B ±

√
B2 − 4AC

2A
, (34)

where we take the negative branch to ensure βT > 0 and βT < βH for

typical parameter values.

To validate the theoretical analysis and investigate the influence of

network average degree on Turing pattern formation, we conducted sys-

tematic numerical experiments. The parameter settings were chosen as:

d1 = 2, d2 = 0.5, α = 0.7413, β = 8.5, γ = 0.9, which satisfy the

Turing instability conditions. The calculated equilibrium point is E1 =

(u1, v1) = (0.4100, 1.4393), with the Turing instability interval spanning

from Λ
(1)
α = −2.8334 to Λ

(2)
α = −0.1902.

Figure 6 illustrates the dispersion relations and spatiotemporal evolu-

tion of Turing patterns in both ER random networks [20] and BA scale-free

networks [21]. These two network types were chosen as classical proto-

types: ER networks, characterized by random and homogeneous connec-

tivity with a Poisson-like degree distribution, allow us to study dynamics

in structurally unbiased settings; BA networks, featuring a power-law de-

gree distribution with influential hubs, enable the investigation of how

topological heterogeneity, specifically the pronounced disparity in node

connectivity, affects pattern formation. A comparative analysis of these

distinct topologies helps reveal the coupling mechanism between network

architecture (randomness versus heterogeneity) and dynamical behaviors.

The dispersion relations (first column) demonstrate how the average

degree ⟨k⟩, a fundamental parameter quantifying network connection den-
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Figure 6. Influence of network average degree on Turing pattern. The
first column shows dispersion relations, displaying growth
rates corresponding to network eigenvalues under different
average degrees; the right three columns show Turing pat-
terns under corresponding average degrees, illustrating the
spatiotemporal evolution of product concentration v. The
top row represents ER random networks, while the bottom
row represents BA scale-free networks.

sity, shapes the system’s dynamics by altering the spectrum of Laplacian

eigenvalues Λα. As ⟨k⟩ increases, the distribution of Λα changes signifi-

cantly, leading to a non-monotonic trend in the growth rates Re(λα) of

Turing unstable modes: initially rising, then falling, and eventually exit-

ing the Turing instability region. Specifically, when ⟨k⟩ increases from 3 to

13, the eigenvalue distribution becomes more concentrated and gradually

shifts outside the Turing instability interval (Λ(1),Λ(2)), thereby suppress-

ing the formation of distinct Turing patterns. This result underscores how

enhanced connectivity, modulated by ⟨k⟩, can stabilize the system and

inhibit pattern-forming instabilities.

Turing patterns (right three columns) visually demonstrate this evolu-

tionary process. Under low average degree conditions (⟨k⟩ = 3), both net-

work types exhibit spatiotemporal oscillatory patterns while still maintain-

ing homogeneous distributions in some local nodes. As the average degree

increases to ⟨k⟩ = 5, the network eigenvalues become uniformly distributed

within the required range for Turing instability, meaning spatial hetero-

geneity is enhanced, and both network types display clear spatiotemporal



119

oscillatory patterns. However, when the average degree further increases

to ⟨k⟩ = 13, Turing patterns almost completely disappear, and the sys-

tem approaches a homogeneous steady state. The theoretical mechanism

behind this phenomenon lies in the enhanced diffusion coupling strength

with increasing network average degree, allowing local perturbations to

propagate and dissipate more rapidly throughout the network.

3.2 Hopf bifurcation analysis on networks

For the network-based system described by equation (2), Hopf bifurcation

occurs at the homogeneous equilibrium E1 = (u1, v1) when eigenvalues

cross the imaginary axis for some network mode.

Theorem 4. The network system undergoes a Hopf bifurcation at equi-

librium E1 when there exists a Laplacian eigenvalue Λα satisfying the fol-

lowing conditions:

• tr(Jα) = a10 + b01 + (d1 + d2)Λα = 0;

• det(Jα) > 0;

• Transversality condition:
d

dβ
tr(Jα)

∣∣∣∣
β=βH(Λα)

̸= 0,

where the critical parameter βH(Λα) is given by:

βH(Λα) =
v1 + 2γu1 − (d1 + d2)Λα

u1 − 1
(v1+1)2

. (35)

Proof. For each mode α, the characteristic equation λ2
α − tr(Jα)λα +

det(Jα) = 0 has roots:

λα =
tr(Jα)±

√
tr(Jα)2 − 4 det(Jα)

2
. (36)

When tr(Jα) = 0 and det(Jα) > 0, the eigenvalues are purely imaginary:

λα = ±i
√
det(Jα). (37)
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Setting tr(Jα) = 0 and substituting the Jacobian matrix elements:

−v1 − 2γu1 + β

(
u1 −

1

(v1 + 1)2

)
+ (d1 + d2)Λα = 0. (38)

Solving for β yields the critical value:

βH(Λα) =
v1 + 2γu1 − (d1 + d2)Λα

u1 − 1
(v1+1)2

. (39)

Verifying the transversality condition:

d

dβ
tr(Jα) = u1 −

1

(v1 + 1)2
> 0. (40)

Since u1 = 1
v1+1 , this derivative is always positive, satisfying the transver-

sality condition.

Remark. Specifically, for the homogeneous mode (Λα = 0), the Hopf bi-

furcation critical parameter is:

βH(0) =
v1 + 2γu1

u1 − 1
(v1+1)2

= (v1 + 1)2 +
2γ(v1 + 1)

v1
= βH . (41)

This coincides with the Hopf bifurcation critical value for the continuous

system.

To validate the theoretical analysis and investigate the influence of net-

work average degree on Hopf bifurcation-induced spatiotemporal pattern

formation, we conducted systematic numerical experiments. The param-

eter settings were chosen as: d1 = 0.02, d2 = 0.01, α = 0.7413, γ = 0.9,

which satisfy the Hopf bifurcation conditions. The calculated equilibrium

point is E1 = (u1, v1) = (0.4100, 1.4393).

Figure 7 illustrates the Hopf bifurcation critical parameter relation-

ships and corresponding spatiotemporal pattern evolution in both ER ran-

dom networks and BA scale-free networks. The Hopf bifurcation diagrams

(first column) reveal the variation of critical parameter βH(Λα) with re-

spect to network Laplacian eigenvalues Λα, where markers of different gray

shades represent critical parameters corresponding to network eigenvalues
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Figure 7. Influence of network average degree on Hopf bifurcation-
induced spatiotemporal pattern. The first column shows
Hopf bifurcation critical parameter βH as a function of net-
work eigenvalues Λα; the right three columns display spa-
tiotemporal patterns under corresponding average degrees,
illustrating the spatiotemporal evolution of product concen-
tration v. The top row represents ER random networks,
while the bottom row represents BA scale-free networks.

under different average degrees. The spatiotemporal patterns (right three

columns) visually demonstrate this evolutionary process. Under low aver-

age degree conditions (⟨k⟩ = 3), both network types exhibit pronounced

spatiotemporal oscillatory patterns with significant heterogeneity among

nodes. However, when the average degree increases to ⟨k⟩ = 5, the dis-

tribution of network eigenvalues makes it more difficult for the system to

satisfy the Hopf bifurcation conditions, resulting in weakened spatiotem-

poral oscillatory patterns. When the average degree further increases to

⟨k⟩ = 13, the spatiotemporal patterns almost completely disappear, and

the system approaches a homogeneous steady state.

The theoretical mechanism underlying this phenomenon lies in the fact

that as network average degree increases, the critical parameter βH(Λα)

for Hopf bifurcation occurrence requires higher thresholds. In our ex-

periments, we selected β = 9.0096 slightly above the critical value for

each network configuration. However, with increasing average degree, the

enhanced network connectivity density strengthens diffusion coupling ef-

fects, allowing local perturbations to propagate and dissipate more rapidly



122

throughout the network, consequently suppressing the formation of Hopf

bifurcation-induced spatiotemporal oscillatory patterns.

3.3 Turing-Hopf bifurcation analysis on networks

Turing-Hopf bifurcation occurs in parameter space where the Turing bifur-

cation curve and Hopf bifurcation curve intersect, indicating simultaneous

loss of temporal and spatial stability.

Theorem 5. The Turing-Hopf bifurcation point (βTH , d1,TH) satisfies the

following conditions:

• There exists at least one mode α satisfying Hopf bifurcation condi-

tion: tr(Jα) = 0 and det(Jα) > 0;

• There exists at least one mode κ ̸= α satisfying Turing bifurcation

condition: det(Jκ) = 0;

• Both bifurcations occur at the same parameter point.

The following system of equations determines the Turing-Hopf bifurcation

point:

βTH = βH(Λα) = βT (Λκ), a10 + b01 + (d1 + d2)Λα = 0,

(a10b01 − a01b10)−
(a10d2 + b01d1)

2

4d1d2
= 0,

where the Jacobian matrix elements are evaluated at (βTH , d1,TH).

Proof. At the Turing-Hopf bifurcation point, the system simultaneously

satisfies:

• For some mode α: tr(Jα) = 0, corresponding to Hopf bifurcation,

• For some mode κ: det(Jκ)min = 0, corresponding to Turing bifurca-

tion.

Expanding the Hopf bifurcation condition tr(Jα) = 0:

−v1 − 2γu1 + β

(
u1 −

1

(v1 + 1)2

)
+ (d1 + d2)Λα = 0. (42)
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Expanding the Turing bifurcation condition det(Jκ)min = 0:

βv1
v1 + 1− 2γ

(v1 + 1)3
−

[
β v1d1

(v1+1)2 − d2

(
v1 +

2γ
v1+1

)]2
4d1d2

= 0. (43)

These two equations together determine the position of the Turing-Hopf

bifurcation point in the parameter space (β, d1).

Figure 8. Turing-Hopf bifurcation diagram showing the interaction be-
tween Turing bifurcation curves (β−

T and β+
T ) and Hopf bi-

furcation line (βH = 9.0006). Two distinct Turing-Hopf
bifurcation points (TH1 and TH2) are identified at (β =
9.0096, d1 = 0.9876) and (β = 9.0096, d1 = 0.2532), respec-
tively. The diagram partitions the parameter space into dis-
tinct stability regions: pure Turing instability, pure Hopf
instability, Turing-Hopf instability, and stable regions.

Figure 8 validates the existence conditions and characteristics of Tur-

ing-Hopf bifurcation in network systems. According to Theorem 5, Turing-

Hopf bifurcation occurs at the intersection points of Turing bifurcation

curves and Hopf bifurcation curves, indicating simultaneous loss of tem-

poral and spatial stability in the system. The numerically computed

Hopf bifurcation critical value is βH = 9.0006, with the equilibrium point

at (u1, v1) = (0.4100, 1.4393), establishing parameter benchmarks for the-

oretical analysis. Two distinct Turing-Hopf bifurcation points are iden-

tified in the parameter space: TH1 located at (β = 9.0096, d1 = 0.9876)

and TH2 at (β = 9.0096, d1 = 0.2532). These bifurcation points satisfy
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the conditions specified in the theorem: under identical β parameters, the

system simultaneously meets both the Hopf bifurcation condition (zero

real part of eigenvalues) and the Turing bifurcation condition (zero char-

acteristic determinant). The existence of these bifurcation points confirms

the theoretical conclusion that Turing-Hopf bifurcation points are jointly

determined by the Hopf bifurcation condition tr(Jα) = 0 and the Turing

bifurcation condition det(Jκ)min = 0.

Figure 9. Dispersion relations and spatiotemporal patterns at Turing-
Hopf bifurcation point. The first column shows dispersion
relations, displaying growth rates corresponding to network
eigenvalues under different average degrees. The right three
columns illustrate spatiotemporal evolution of product con-
centration v under corresponding average degrees. The top
row represents ER random networks, while the bottom row
represents BA scale-free networks.

Guided by the parameter values determined from the Turing-Hopf bi-

furcation analysis, we conducted systematic numerical experiments to in-

vestigate pattern formation dynamics. The parameter configuration was

selected at the first Turing-Hopf bifurcation point: d1 = 0.9876, d2 = 0.5,

α = 0.7413, β = 9.0096, γ = 0.9, with the corresponding equilibrium

point (u1, v1) = (0.4100, 1.4393). The Turing instability interval was com-

puted as Λ(1) = −1.136431 to Λ(2) = −1.017771. Figure 9 presents the

comprehensive numerical results, displaying dispersion relations and cor-

responding spatiotemporal patterns for both ER random networks and BA

scale-free networks across different average degrees (⟨k⟩ = 3, 5, 13). The
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selected parameters situate the system within the Turing-Hopf instability

region, characterized by the simultaneous emergence of Turing patterns

and Hopf bifurcation-induced spatiotemporal oscillations, as evidenced in

the right subplots.

The dispersion relations (first column) demonstrate that under low

average degree conditions (⟨k⟩ = 3, 5), the network eigenvalues are dis-

tributed within the Turing instability interval (Λ(1),Λ(2)), enabling the

formation of both spatial patterns and temporal oscillations. However,

when the average degree increases to ⟨k⟩ = 13, the network eigenvalue

distribution shifts outside the Turing instability region, resulting in the

disappearance of Turing patterns while maintaining the temporal periodic

oscillations. These results indicate that network average degree serves as a

crucial control parameter for regulating the formation of Turing patterns

and spatiotemporal patterns, without fundamentally altering the inherent

temporal oscillatory behavior.

4 Conclusion

In this paper, we have conducted a comprehensive investigation of the

spatiotemporal dynamics in an enzyme-catalyzed reaction-diffusion system

defined on complex networks. Our study reveals several key findings that

advance the understanding of pattern formation mechanisms in networked

biochemical systems.

The main contributions of this work can be summarized as follows:

• We proposed a generalized enzyme-catalyzed reaction-diffusion mo-

del with specific nonlinear forms (F1(u, v) = uv, F2(v) =
v

v+1 , and

F3(u) = γu2) and systematically analyzed its dynamics on complex

network structures.

• Through detailed bifurcation analysis of the homogeneous system, we

established the existence conditions for multiple equilibria and iden-

tified parameter regions supporting bistability. We rigorously proved

the occurrence of subcritical Hopf bifurcation and characterized the

stability transitions using Lyapunov coefficient analysis.
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• By extending the analysis to network-structured systems, we derived

precise conditions for Turing instability, Hopf bifurcation,

and Turing-Hopf bifurcation on complex networks. Our theoretical

framework explicitly incorporates the network Laplacian eigenvalues,

providing a mathematical foundation for understanding topology-

dependent pattern formation.

• Numerical simulations on both ER random networks and BA scale-

free networks demonstrated that network average degree serves as a

crucial control parameter regulating pattern formation. We observed

that intermediate connectivity densities favor the emergence of spa-

tiotemporal patterns, while both sparse and dense connectivity tend

to suppress pattern formation due to different mechanisms.

• The identification of distinct Turing-Hopf bifurcation points in pa-

rameter space revealed the complex interplay between temporal oscil-

lations and spatial patterning, highlighting the rich dynamical reper-

toire of networked enzyme-catalyzed systems.

Looking forward, our current framework provides a solid foundation for

exploring more sophisticated network effects on spatiotemporal pattern

formation. Recent studies have begun to investigate the role of higher-

order network structures in controlling Turing patterns [18, 22, 23]. These

works demonstrate that simplicial complexes and high-order interactions

can significantly alter pattern selection and stability. In future research,

we plan to extend our enzyme-catalyzed reaction-diffusion model to incor-

porate such higher-order network topologies, investigating how multi-node

interactions and simplicial complexes influence the emergence and stabil-

ity of spatiotemporal patterns. This direction promises to uncover novel

pattern formation mechanisms that cannot be captured by conventional

pairwise network models, potentially leading to deeper insights into the

organizational principles of complex biochemical systems in structured en-

vironments.
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