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Abstract

This paper examines spatiotemporal dynamics in an enzyme-
catalyzed reaction-diffusion system on complex networks. A gen-
eralized model with specific nonlinear reaction terms is developed.
Analysis of the homogeneous system determines multiple equilib-
rium existence and stability, identifies bistability regions, and proves
subcritical Hopf bifurcation occurrence. For network systems, condi-
tions for Turing instability, Hopf bifurcation, and Turing-Hopf bifur-
cation are established using a theoretical framework incorporating
network Laplacian eigenvalues. Numerical simulations demonstrate
network average degree regulates pattern formation, with intermedi-
ate connectivity promoting spatiotemporal patterns while sparse or
dense connectivity suppresses them. Identification of Turing-Hopf
bifurcation points reveals interactions between temporal oscillations
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and spatial patterning. This work provides theoretical and numer-
ical foundations for understanding network topology effects on bio-
chemical pattern formation.

1 Introduction

Enzyme-catalyzed reaction systems serve as a fundamental paradigm for
understanding nonlinear dynamics and pattern formation in biochemical
processes. The pioneering work of [1] revealed that the interplay between
reaction kinetics and diffusion can lead to spontaneous spatial pattern
formation, a phenomenon now ubiquitously known as Turing patterns.
Since then, reaction-diffusion systems have been extensively employed to
model a wide array of spatiotemporal behaviors in chemical, biological,
and ecological contexts [2-7].

In particular, enzyme-catalyzed systems exhibit a rich spectrum of dy-
namic phenomena, including multistability, periodic oscillations, and var-
ious spatial patterns. A generalized dimensionless form of such a system

is often described by:

;:a—ﬂ(%v)_FS(u)’ (1)
d%} = B (Fi(u,v) — Fa(v)),

where u and v represent the concentrations of the substrate and product,
respectively. The nonlinear function Fj(u,v) denotes the rate law, whose
specific form critically influences the system’s dynamics. System (1) ki-
netics are governed by the positive parameters o and S. Recent studies
have explored various forms of Fj(u,v). For instance, Su and Xu con-
ducted a comprehensive bifurcation analysis of an enzyme-catalyzed reac-
tion system with cubic rate law F;(u,v) = uv?, identifying saddle-node,
Bogdanov-Takens, and Hopf bifurcations, and proving that the weak fo-
cus has order at most two [8]. Similarly, Wu and Yang performed a de-
tailed bifurcation analysis of an enzyme-catalyzed reaction model with
Langmuir-Hinshelwood mechanism, demonstrating the existence of saddle-

node, Hopf, and Bogdanov-Takens bifurcations in the corresponding tem-
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poral system [9].

Considering the concentration difference in different spatial locations,
researchers have introduced diffusion terms into homogeneous systems to
study the spatio-temporal dynamics. For example, Ko conducted a com-
prehensive study on the bifurcations and asymptotic behavior of positive
steady-states in an enzyme-catalyzed reaction-diffusion system, revealing
the global bifurcation structure and pattern formation mechanisms [10].
Atabaigi et al. performed a detailed bifurcation analysis of a reaction-
diffusion enzyme-catalyzed system arising from glycolysis, investigating
both spatially homogeneous and nonhomogeneous periodic solutions as
well as nonconstant steady states under homogeneous Neumann boundary
conditions [11]. Further extending this line of research, Chen and Li inves-
tigated a diffusive model with a cubic rate law Fy (u,v) = uv?, establishing
rigorous conditions for Turing instability and demonstrating the emergence
of spot, stripe, and mixed patterns [12]. In a subsequent study, Zhao et
al. examined a system with Fj(u,v) = wv, revealing the coexistence of
temporal, spatial, and spatiotemporal oscillations induced by Hopf bifur-
cation, Turing instability, and Turing-Hopf bifurcation, respectively [13].
Furthermore, they also considered the case of Fy(u,v) = uv® [14].

Despite these advances, two significant aspects remain less explored.
First, most existing models are confined to low-order polynomial kinetics,
such as quadratic or cubic forms. The introduction of more complex non-
linearities may unveil novel bifurcation scenarios and pattern formation
mechanisms due to stronger feedback effects. Second, the spatial domain
in classical studies is typically assumed to be a continuous medium or a
regular lattice. However, many real-world biochemical systems, includ-
ing intracellular metabolic networks, biofilm communities, and distributed
enzymatic reactors, are inherently structured as complex networks. The
topology of such networks, for instance small-world or scale-free proper-
ties, can profoundly influence the propagation of chemical signals and the
stability of dynamic states [15-18].

Motivated by the aforementioned insights and gaps in the literature, we
propose a generalized enzyme-catalyzed reaction-diffusion model defined

on a complex network. The model incorporates specific, mathematically
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tractable nonlinear forms to serve as a minimal yet paradigmatic frame-
work. In particular, the reaction terms are specified as Fj(u,v) = wuwv,
F3(u) = yu?, and Fy(v) = ++7- The latter follows the classic Michaelis-
Menten form, describing a non-cooperative, saturable reaction rate. This

represents a deliberate and simplified choice compared to more complex
cooperative kinetics. Its purpose is to provide a well-established, ana-
lytically manageable foundation that allows us to isolate and systemati-
cally investigate the fundamental coupling between network topology and
reaction-diffusion dynamics, without the additional algebraic complexity

introduced by cooperative effects. The governing equations are thus:

8ui

ot = d1 E ;Vzl Lij’uj‘ + o — uv; — ’}/’u,?7

61)1‘ N V; (2)
e da D 25—y Lijvj + B | wivi — i)

where u;(t) and v;(t) denote the concentrations of the substrate and prod-
uct at the i-th node of the network, respectively. The matrix L = (L;;) is
the discrete Laplacian operator encoding the network’s topology, defined
as L;; = Aj; — k045, with A being the adjacency matrix, k; the degree of
node 7, and d;; the Kronecker delta.

The structure of this paper is organized as follows. In Sec. 2, we deter-
mine the types, stability, and Hopf bifurcation of the homogeneous system.
In Sec. 3, we explore the Turing instability, Hopf bifurcation, and Turing-
Hopf bifurcation of the system on complex networks. Numerical results
are presented throughout the theoretical analysis to verify the conclusions.

Finally, we end this paper with a discussion in Sec. 4.
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2 Dynamics analysis of homogeneous system

2.1 Homogeneous equilibria

For the homogeneous system without diffusion, we set dy = do = 0 in
equation (2), yielding the ordinary differential equations:

du 9
— = — uv — yu®,
at 7

dv:ﬁ(uv_ v ) (3)

dt v+1

The equilibria (u.,v,) satisfy:

ozfu*v*—'yuf =0, (4)
Vx

wUs — =0. 5

UsVs = 7 (5)

From equation (5), we obtain:

. (u*—v*:_1>= | (6)

For the boundary equilibrium case, when v, = 0 is substituted into equa-

tion (4), we obtain a — yu2 = 0, which yields u, = \/g, thus establishing

the boundary equilibrium point Ey = (ug, vg) = (\/g, O).

For the interior equilibria case where u, — = 0 implies u, =

Ve + 1

T substituting into equation (4):

Uy +
2
1 1
a_(v*+1>v*_7(v*+l> =0. (7)

Multiplying through by (v, + 1)%:

a(ve +1)% — v, (v, +1) =y =0. (8)
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Expanding yields the quadratic equation:
(@ —1)v? 4+ (20 — Do, + (a — ) = 0. (9)

A comprehensive analysis of this quadratic equation reveals that two dis-
tinct positive interior equilibrium points exist if and only if the following

parameter conditions are satisfied:

1
§<oz<1 and v > a. (10)

Under these conditions, the two interior equilibria are given by:

—(2a—1) —/4y(a—1) + 1

v = (Oé—l) ) U1:’U1+1’ (11)
; _ —QCa—1)+ Ay (a—-1)+ v L (12)
> 2(a—1) T 1

with v; > v9 > 0 and u; < ug. The corresponding equilibrium points
are denoted as Fy = (u1,v1) and Ey = (ug,v3). The coexistence of three
equilibrium points (Fy, E1, Es) indicates the potential for bistability and
complex switching phenomena in the system, which are fundamental for
understanding pattern formation mechanisms in enzyme-catalyzed reac-
tion systems.

Based on the theoretical analysis above, we validate the complex dy-
namical behaviors in the enzyme-catalyzed reaction system through nu-
merical bifurcation diagrams. As shown in Figure 1, when the parameter
« varies within specific ranges, the system exhibits rich nonlinear phenom-
ena: the coexistence of three equilibrium points (the boundary equilibrium
Ey and two interior equilibria E; and F5) confirms the equilibrium struc-
ture predicted theoretically; two saddle-node bifurcation points (SN; and
SN5) demarcate the existence region of bistability; and the emergence of
a Hopf bifurcation point (H) indicates the potential for periodic oscilla-
tory behavior in the system. These numerical results not only verify the
correctness of the theoretical analysis but also reveal the complex stability

transition mechanisms within the parameter space. To deeply understand
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the mathematical essence of these dynamical phenomena, we proceed to
conduct a detailed analysis of the system’s local stability in the following

subsection.

Bifurcation Diagram
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Figure 1. Bifurcation diagram showing the product concentration v
as a function of the parameter a. The solid lines represent
stable equilibria, dashed lines unstable equilibria, and dash-
dotted lines saddle points. Saddle-node (SN) and Hopf (H)
bifurcation points are marked. The bistable region is shaded.
Parameters: v =0.9, 8 =9.

2.2 Linear stability analysis

The local stability characteristics of each equilibrium point are determined
by linearizing the system around the equilibrium. The Jacobian matrix

evaluated at (u.,vy) is:

of of
— U v
J % % , (13)
ou  O0v/ (u,w)
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where f(u,v) = a—uv—~u? and g(u,v) = (uv - ULH) Computing the

partial derivatives:

Of _ 000y 0y (1
ou T e T T aw P T (v+1)2)°
The characteristic equation is given by:
A2 —tr(J)A +det(J) = 0, (14)
where the trace and determinant are:
1
tr(J) = Jll + J22 = —VUx — 2’}/11,* + 5 Uy — m s (15)
det(J) = Ji1Jaz — JizJo1- (16)

The stability criteria are:
e Stable node/focus: tr(J) < 0 and det(J) > 0;
e Unstable node/focus: tr(J) > 0 and det(J) > 0;
e Saddle point: det(J) < 0.

For Ey = (\/% , O), the Jacobian matrix simplifies to:

e
o oG5

The eigenvalues are \y = —2,/a7 < 0 and Ay = (3 (\/g — 1). Thus, Ej is
stable when \/% <1 (i.e., 7 > «) and unstable otherwise.
1

For the interior equilibria £y and Es, utilizing the relation u, = 57,

=212

J(Eo) = (17)

the Jacobian matrix simplifies to:

2y 1

J = Jll J12 — 71}*77]*4'1 7U*+1
= = v
Ja1 Jao B, b——es
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The determinant and trace are given by:

v +1— 2y
det(J) = Ji1Jo2 — Jiodo1 = fro——m—, 18
et(J) = JirJaz — JiaJo1 = Bu (0, £ 179 (18)
2y Vs
tr(J) =J Joo = —vy — . 19
r(J) 11+ J2o v v*+1+6(v*+1)2 (19)

Theorem 1. Let Ey and E5 be the interior equilibria with vi > vs, where

vy and vy are the roots of:
(@ —1)v* 4+ (2a—1)v+a—v=0.

Then the stability properties are as follows:

o For equilibrium Eo (with smaller vy): Since va+1—2v < 0, we have
det(J) < 0. Therefore, Es is always a saddle point (unstable).

o For equilibrium Ey (with larger v1): Since va + 1 — 2y > 0, we have
det(J) > 0. Therefore, the stability of Ey is determined by the trace,
it is stable for B < By, undergoes a Hopf bifurcation at 8 = By, and
unstable for B > By with By = (v1 + 1) + %11“)

Proof. The stability properties of the interior equilibria F; and FEs are
determined through analysis of the Jacobian matrix eigenvalues.

For equilibrium FEs, the condition vy +1—2v < 0 implies det(J(E2)) =
Bv 2“(if}rl)2?7 < 0, establishing E5 as a saddle point with one positive and
one negative eigenvalue.

For equilibrium Fj, the condition v; +1—2v > 0 ensures det(J(E7)) >
0. The stability is governed by the trace tr(J(E;)) = —v1— %—&-ﬁ(m”ﬁ
Setting tr(J(E1)) = 0 yields the critical bifurcation parameter value:

2 1
By = (v1+1)2+w7
1

—(2a=1)+4/(2a—1)2—4(a—1)(a—7)
2(a—1)

is verified by computing %tr(J(El))

where v; = . The transversality condition

[OTES K +1)2 > 0, confirming that the
real parts of the complex conjugate eigenvalues cross the imaginary axis

with non-zero speed. Consequently, the stability regions are characterized
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as follows: Fj is asymptotically stable for 0 < 8 < Bg; A Hopf bifurcation
occurs at 8 = By; E1 is unstable for 5 > Sg. |

Based on the theoretical stability analysis presented above, we conduct
numerical simulations to validate the stability properties of the equilibrium
points in the enzyme-catalyzed reaction system. Time series plots (Fig-
ure 2) and phase portraits (Fig. 3) are generated to illustrate the dynamic
behavior of the system under different parameter regimes. The time se-
ries analysis clearly demonstrates the transition from stable convergence
to equilibrium for § = 8.5, to sustained oscillatory behavior at the Hopf
bifurcation point § = 9, and finally to unstable dynamics for § = 9.5.
Correspondingly, the phase portrait at the bifurcation point demonstrates
oscillatory behavior around equilibrium Fj, indicating the formation of
limit cycles. These numerical observations are consistent with the theoret-
ical framework of stability. The experiments provide evidence of dynami-
cal transitions in the enzyme-catalyzed reaction system. To determine the
stability of the oscillatory solutions and establish the bifurcation type, we
proceed to analyze the Hopf bifurcation, which characterizes the conditions

for stability loss and oscillation emergence.

Time Series Analysis: Fixed a = 0.7413, Varying B (25 Initial Conditions)
ult) - Before Hopf (8 = 8.5) ) () - At Hopf (B =9.0) ult) - Afer Hopt (8= 9.5)

Figure 2. Time series of substrate (u) and product (v) concentrations
for different values of 3, with fixed o = 0.7413. The system
exhibits stable convergence to equilibrium for 8 = 8.5, sus-
tained oscillations at the Hopf bifurcation point 5 =9, and
unstable behavior for 5 = 9.5.
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Figure 3. Phase portrait analysis at the Hopf bifurcation point (o =
0.7413, B = 9.0, v = 0.9). The plot illustrates the vec-
tor field (light gray arrows) and multiple trajectories (black
lines with varying styles) from different initial conditions.
Three equilibrium points are identified: the boundary equi-
librium Ey (stable node) and interior equilibria F; (center
with unstable limit cycle) and E> (saddle point).

2.3 Hopf bifurcation analysis

Based on the previous linear stability analysis, the system may undergo a
Hopf bifurcation at the interior equilibrium point Fy = (uq,v1), where vy
is the larger positive root, under the parameter conditions % <a<1and
v > a. We now analyze the existence of Hopf bifurcation using 5 as the

bifurcation parameter.
Theorem 2. (i) System (3) undergoes a Hopf bifurcation at the equi-

librium point Ey when the following conditions are satisfied:

d
tr(J) =0, det(J) >0, —tr(J) > 0,
s B=BHu

where the critical value By is given by:

2 1
Bu = (U1+1)2+$7
1
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and vy is determined by:

 —(Ra—1) = Ay(a—1)+1
"= 2(a—1)

(i) If the Lyapunov coefficient l; < 0, then the Hopf bifurcation is su-
percritical and the bifurcating periodic solution is stable; if Iy > 0,
then the Hopf bifurcation is subcritical and the bifurcating periodic

solution is unstable.

Proof. First, we prove that system (3) undergoes a Hopf bifurcation at

B8 = By. The Jacobian matrix at the equilibrium point Fj is:

J_<fu fv> |
Gu Gv (u1,01)

where f(u,v) = a —uv —~u? and g(u,v) = (uv - Uj_l). At Fy, we have
1

v1+17

up = and v; satisfies:

—(2a—1)—/4y(a—1)+1
2(a—1)

V1 =

Computing the partial derivatives:

1
Ju=—v—=2vu, fu=—u, gu=Pv, guiﬁufﬁm-
AtEll
2 L b= Bur, by = p—2
a1p = —v1 — 2yu1, apy = ———, = By, =f——
10 1 yu1i, Qo1 o1+ 1 10 1, Y01 (0 + 1)

The trace and determinant are:

V1
tr(J) = ayo + bor = —v1 — 2yuy + f——,
(J) 10 01 1 Yu1 5(v1+1)2
vi+1—2v
det(J) = a10bo1 — ao1b10 = fv1——5—-
(J) = a1obor — ag1bio = Pus CEE

When g = Sy, we have tr(J) = 0, and from stability analysis we know
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det(J) > 0. The eigenvalues are A = +i/det(J). Let A = n(B) w(B)i be
the roots of the characteristic equation A% — tr(J)\ + det(J) = 0, then:

_ _ VAdet(J) = (tx(J))*  dn(B) 1w
M= e = 2 TR s, §m'

The transversality condition is satisfied, therefore system (3) undergoes a
Hopf bifurcation at 8 = By.

To determine the direction and stability of the bifurcation, we compute
the first Lyapunov coefficient I1. Let u = u; + x and v = vy + y, shifting

the equilibrium to the origin. The system becomes:

dx d
= G +any + F(z,y), di; = bior + bory + G(z,v),

where F(z,y) and G(x,y) are the higher-order terms:

F(z,y) =a2” + anzy + apy’

+ azox® + a0 2%y + araxy® + aosy® + - -,
G(x,y) =baox? + by1xy + boay?

+ bsox® + bor %y + broxy® + bosy® + - - - .

Computing the coefficients:

azy = —7, a11 = —1, ap2 = azp = az1 = a2 = agz3 =0,

B B
by = B, bys = ———— bao = bso = b1 — o = 0, byg = ———_
11 =0, boz 1+ 1)° 00 = b3p = ba1 = b1 03 CESIL
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At 8 = By, we have by; = —ayg. The Lyapunov coefficient [y is given by:

-3

i = ——
! 2&01A3/2

lalob01(a%1 + a11bo2 + ao2b11)

+ 010001(5%1 + bi1agz + bozai1) + b%o(anaoz + 2ap2b02)

— 2a10b10(b35 — azoa02) — 2a10a01(a3y — baobo2) (20)
— ady (2a20ba0 + b11bao) + (ao1bio — 2a3y) (br1boz — a11a20)

— (a%y + ao1b10) (3(b1obos — ao1aso) + 2a10(az1 + bi2)

+ (broa12 — 001521))] )

where A = v ”@T_E)QQ . Substituting the coefficients and simplifying (not-
ing that agy = 0, azo = —v, a11 = =1, bix = B, boz = B/(v1 +1)?, b = 0,
azo = 0, ag1 = 0, bz = 0, a1z = 0, by = 0, bog = —3/(v1 + 1)*), we

obtain:

=37
N 2a01A3/2

—2a10a017> + (ao1bro — 2a3,)(Bboz — ) — 3biobos(aiy + ao1bio)] -

L [a10bo1 (1 — bo2) + a10a01 (B> — Bboz) — 2a10b10b5,

If [; < 0, the Hopf bifurcation is supercritical and the bifurcating periodic
solution is stable; if [y > 0, the Hopf bifurcation is subcritical and the

bifurcating periodic solution is unstable. |

Based on the Hopf bifurcation analysis, we provide numerical veri-
fication to illustrate the subcritical Hopf bifurcation for the parameters
a = 0.7413, 8 = 9.0, and v = 0.9. The interior equilibrium point is com-
puted as By = (u1,v1) = (0.4100,1.4393), where v; is determined by the
formula v; = _(20_1)2_(;_43)(0(_1)“ . At this equilibrium, the trace of the Ja-

cobian matrix vanishes, tr(J) = 0, while the determinant remains positive,

det(J) > 0, satisfying the conditions for a Hopf bifurcation. The critical
bifurcation parameter is calculated as By = (vy + 1)% + %ﬁl) ~ 9.007,
which is close to the chosen f = 9.0, indicating the system is near the
bifurcation point. The first Lyapunov coefficient is computed as [; =
408.590568 > 0. According to Theorem 2, since I; > 0, the Hopf bifur-
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cation is subcritical. This implies that the bifurcating periodic solutions
are unstable and exist for parameter values 8 < Sy, leading to potentially
abrupt transitions in system dynamics.

Figure 4 shows the bifurcation diagrams with respect to parameters
«a and 3. The diagrams clearly demonstrate the onset of oscillations

as the parameters cross critical values. Figure 5 provides direct evi-

Diagrams for Substrate (u) and Produ
Bitur

Figure 4. Bifurcation diagrams showing the dependence on parameters
« and B. The black dots represent maxima and white circles
represent minima of the oscillations.

dence of the subcritical nature through the phase portrait analysis. Two
trajectories with closely spaced initial conditions (0.503485,1.32198) and
(0.503485, 1.31198) exhibit dramatically different behaviors: the trajectory
starting inside the unstable limit cycle (black) converges to the equilib-
rium FEy, while the trajectory starting outside (gray) diverges away from
the equilibrium. This behavior characterizes the unstable nature of the
limit cycle generated by the subcritical Hopf bifurcation.The positive Lya-
punov coefficient confirms the destabilizing effect of the nonlinear terms,
resulting in a subcritical bifurcation where small perturbations can cause
significant changes in system behavior near the equilibrium F;. This nu-
merical verification aligns perfectly with the theoretical analysis presented

in Theorem 2.
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Phase Portrait at Hopf Bifurcation: a = 0.7413, 3 =9, v = 0.9

25

0.5

Figure 5. Phase portrait near the Hopf bifurcation point. The black
trajectory starts inside the unstable limit cycle and con-
verges to E7p, while the gray trajectory starts outside and
diverges, demonstrating the instability of the limit cycle.

3 Spatiotemporal dynamic analysis on net-

works

3.1 Turing instability analysis on networks

For the network-based system described by equation (2), we analyze Tur-
ing instability around the homogeneous equilibrium E; = (up,v1) [19].

Consider small perturbations du; and dv; around the equilibrium:
u; = uy + ou;,  v; = vy + 0. (21)

The linearized dynamics are governed by:

Odu;

g?z =d; Zjvzl Lijéuj + a1pdu; + ag1dv;, (22)
0dv;

8;) =ds Zjvzl Lij(Svj + b1odu; + bo1dv;.

Expanding the perturbations in terms of the Laplacian eigenvectors {gb(a) }:

N N
Sui(t) =3 Wheratpl®  gui(t) = Y W2eratel®), (23)
a=1 a=1
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and utilizing the eigenvalue equation Zjvzl Lijgbg,“) = Aaqﬁga), we obtain

the characteristic equation for each mode a:

1 d Aa 1
A W(; _ [aw + adx ap1 W(; ' (24)
Wg bio bor + daAo ) \ W5

The characteristic polynomial becomes:
A2 — tr(Ja)Aa + det(J,) =0, (25)
where

tr(Jo) = a1o + bo1 + (d1 + da2)Aq,
det(Ja) = a10b01 — ao1b10 + (a10d2 + bOldl)Aa + dld?Ai

Theorem 3. Turing instability occurs at equilibrium Ey when the follow-

ing conditions are satisfied:

e The homogeneous system is stable: a190+bg1 < 0 and a19bp1 —ag1b1g >
0;

e There exists at least one Laplacian eigenvalue A, < 0 such that
det(J,) < 0;

o The diffusion coefficients satisfy the instability condition:

aodz + bordy > 2+/dyda(aiobor — apibio). (26)

Proof. The first condition ensures stability of the homogeneous equilib-
rium F; without diffusion. For Turing instability to occur, diffusion must
destabilize the system, which requires det(J,) < 0 for some A, < 0. The
minimum of det(J,) as a function of A, occurs at:

= _a1odz + bordy

A, = 0% T o0t 2
o 2ydy 27)
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with minimal value:

(a10ds + bo1d1)?

2
4dydo (28)

det(Jo)min = (a10b01 — @o1b10) —

Turing instability requires det(Jy )min < 0, which yields condition (26).
The instability occurs for Laplacian eigenvalues in the interval AS) <A, <

Ag), where:

A — —(a10d2 +boids) — VA

“ 2d1d> ’
A — —(a10d2 + b01d1) + \/Z
« 2dyds ’
with A = (alodg + b01d1)2 - 4d1d2(a10b01 - a01b10) > 0. |

Remark. The critical value fp for Turing bifurcation can be determined
by setting det(Jy)min = 0:

(a10d2 + bo1dr)?

Fh = 0. (29)

(@10bo1 — ao1bio) —
And obtain:

2
2 v
vi+1-2y [(_Ul — oitp)da + Brorin? dl}

51}1 (1)1 + 1)3 4d1d2

=0. (30)
Solving for B, the critical Turing bifurcation parameter S satisfies:

2
vid 2
vp+1—-2y {ﬁTW —da(v1 + Tj-l)}

31
Prov=r =y Adyds (31)
This yields a quadratic equation in Br:
< vidt ) 82— vidida(v1 + 55) | wi(v +1-2y) 3
4d1d2(’l)1 + 1)4 T 2d1d2(’t}1 —+ 1)2 (’Ul —+ 1)3 T (32)
d3(v1 + vfll)% =0

4didsy
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Simplifying the coefficients:

ABF + Bfr+C =0, (33)
where
vl B (v +301+2-2) O da(v? + vy + 27)?
B 4d2(’01 + 1)4’ o 2(1}1 + 1)3 ’ o 4d1(’01 + 1)2 '

The physically relevant solution is:

_ —B+VB? 1AC

Br oA

(34)

where we take the negative branch to ensure S > 0 and By < By for

typical parameter values.

To validate the theoretical analysis and investigate the influence of
network average degree on Turing pattern formation, we conducted sys-
tematic numerical experiments. The parameter settings were chosen as:
di = 2, dy = 0.5, a = 0.7413, g = 8.5, v = 0.9, which satisfy the
Turing instability conditions. The calculated equilibrium point is F; =
(u1,v1) = (0.4100,1.4393), with the Turing instability interval spanning
from A = —2.8334 to ALY = —0.1902.

Figure 6 illustrates the dispersion relations and spatiotemporal evolu-
tion of Turing patterns in both ER random networks [20] and BA scale-free
networks [21]. These two network types were chosen as classical proto-
types: ER networks, characterized by random and homogeneous connec-
tivity with a Poisson-like degree distribution, allow us to study dynamics
in structurally unbiased settings; BA networks, featuring a power-law de-
gree distribution with influential hubs, enable the investigation of how
topological heterogeneity, specifically the pronounced disparity in node
connectivity, affects pattern formation. A comparative analysis of these
distinct topologies helps reveal the coupling mechanism between network
architecture (randomness versus heterogeneity) and dynamical behaviors.

The dispersion relations (first column) demonstrate how the average

degree (k), a fundamental parameter quantifying network connection den-
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ER Network: Dispersion Reaton

Figure 6. Influence of network average degree on Turing pattern. The
first column shows dispersion relations, displaying growth
rates corresponding to network eigenvalues under different
average degrees; the right three columns show Turing pat-
terns under corresponding average degrees, illustrating the
spatiotemporal evolution of product concentration v. The
top row represents ER random networks, while the bottom
row represents BA scale-free networks.

sity, shapes the system’s dynamics by altering the spectrum of Laplacian
eigenvalues A,. As (k) increases, the distribution of A, changes signifi-
cantly, leading to a non-monotonic trend in the growth rates Re()\,) of
Turing unstable modes: initially rising, then falling, and eventually exit-
ing the Turing instability region. Specifically, when (k) increases from 3 to
13, the eigenvalue distribution becomes more concentrated and gradually
shifts outside the Turing instability interval (A1), A(?)), thereby suppress-
ing the formation of distinct Turing patterns. This result underscores how
enhanced connectivity, modulated by (k), can stabilize the system and
inhibit pattern-forming instabilities.

Turing patterns (right three columns) visually demonstrate this evolu-
tionary process. Under low average degree conditions ((k) = 3), both net-
work types exhibit spatiotemporal oscillatory patterns while still maintain-
ing homogeneous distributions in some local nodes. As the average degree
increases to (k) = 5, the network eigenvalues become uniformly distributed
within the required range for Turing instability, meaning spatial hetero-

geneity is enhanced, and both network types display clear spatiotemporal
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oscillatory patterns. However, when the average degree further increases
to (k) = 13, Turing patterns almost completely disappear, and the sys-
tem approaches a homogeneous steady state. The theoretical mechanism
behind this phenomenon lies in the enhanced diffusion coupling strength
with increasing network average degree, allowing local perturbations to

propagate and dissipate more rapidly throughout the network.

3.2 Hopf bifurcation analysis on networks

For the network-based system described by equation (2), Hopf bifurcation
occurs at the homogeneous equilibrium E; = (u1,v1) when eigenvalues

cross the imaginary axis for some network mode.

Theorem 4. The network system undergoes a Hopf bifurcation at equi-
librium E7 when there exists a Laplacian eigenvalue A, satisfying the fol-

lowing conditions:
° tI‘(Ja) =ayg + bo1 + (d1 =+ dg)Aa =0;

o det(J,) > 0;

e Transversality condition: —tr( o) # 0,
dg B=Bu(Aa)

where the critical parameter By (Ay) is given by:

- A
Bu(hg) = 22 B+ D)R

1
uy — (01 +1)2

Proof. For each mode «, the characteristic equation A2 — tr(J,)\q +
det(J,) = 0 has roots:

\ tr(Jo) £ /tr(Ja)2 — 4det(Jy)
o T 2 .

(36)
When tr(J,) = 0 and det(J,) > 0, the eigenvalues are purely imaginary:

Ao = ir/det(Ja). (37)
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Setting tr(J,) = 0 and substituting the Jacobian matrix elements:

—V1 — 2’YU1 + 5 (’Lbl - (1}1_]"-_1)2) + (dl + dg)Aa =0. (38)

Solving for § yields the critical value:

vy + 2yuy — (d1 + dz)A

Br(Aa) = (39)
ur = ('U1+1)2
Verifying the transversality condition:
d 1
—tr(Jy) =ug — ——= > 0. 40
Since uy = ﬁ, this derivative is always positive, satisfying the transver-
sality condition. |

Remark. Specifically, for the homogeneous mode (A, = 0), the Hopf bi-

furcation critical parameter is:

v1 + 2vu 2v(v1 +1
fu0) = Iy pap e DO )
Ul—m (%

This coincides with the Hopf bifurcation critical value for the continuous

system.

To validate the theoretical analysis and investigate the influence of net-
work average degree on Hopf bifurcation-induced spatiotemporal pattern
formation, we conducted systematic numerical experiments. The param-
eter settings were chosen as: d; = 0.02, do = 0.01, a = 0.7413, v = 0.9,
which satisfy the Hopf bifurcation conditions. The calculated equilibrium
point is By = (uq,v1) = (0.4100, 1.4393).

Figure 7 illustrates the Hopf bifurcation critical parameter relation-
ships and corresponding spatiotemporal pattern evolution in both ER ran-
dom networks and BA scale-free networks. The Hopf bifurcation diagrams
(first column) reveal the variation of critical parameter Sp(Ay) with re-
spect to network Laplacian eigenvalues A, where markers of different gray

shades represent critical parameters corresponding to network eigenvalues
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Figure 7. Influence of network average degree on Hopf bifurcation-
induced spatiotemporal pattern. The first column shows
Hopf bifurcation critical parameter Sy as a function of net-
work eigenvalues Aq; the right three columns display spa-
tiotemporal patterns under corresponding average degrees,
illustrating the spatiotemporal evolution of product concen-
tration v. The top row represents ER random networks,
while the bottom row represents BA scale-free networks.

under different average degrees. The spatiotemporal patterns (right three
columns) visually demonstrate this evolutionary process. Under low aver-
age degree conditions ((k) = 3), both network types exhibit pronounced
spatiotemporal oscillatory patterns with significant heterogeneity among
nodes. However, when the average degree increases to (k) = 5, the dis-
tribution of network eigenvalues makes it more difficult for the system to
satisfy the Hopf bifurcation conditions, resulting in weakened spatiotem-
poral oscillatory patterns. When the average degree further increases to
(k) = 13, the spatiotemporal patterns almost completely disappear, and
the system approaches a homogeneous steady state.

The theoretical mechanism underlying this phenomenon lies in the fact
that as network average degree increases, the critical parameter Sy (Ay)
for Hopf bifurcation occurrence requires higher thresholds. In our ex-
periments, we selected § = 9.0096 slightly above the critical value for
each network configuration. However, with increasing average degree, the
enhanced network connectivity density strengthens diffusion coupling ef-

fects, allowing local perturbations to propagate and dissipate more rapidly
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throughout the network, consequently suppressing the formation of Hopf

bifurcation-induced spatiotemporal oscillatory patterns.

3.3 Turing-Hopf bifurcation analysis on networks

Turing-Hopf bifurcation occurs in parameter space where the Turing bifur-
cation curve and Hopf bifurcation curve intersect, indicating simultaneous

loss of temporal and spatial stability.

Theorem 5. The Turing-Hopf bifurcation point (Brm,d1 ) satisfies the

following conditions:

o There exists at least one mode « satisfying Hopf bifurcation condi-
tion: tr(Jy) = 0 and det(J,) > 0;

o There exists at least one mode k # « satisfying Turing bifurcation
condition: det(J,) = 0;

e Both bifurcations occur at the same parameter point.
The following system of equations determines the Turing-Hopf bifurcation

point:

Bra = Pur(Aa) = Br(Ag), a10+ bo1 + (di + d2)As =0,
(a10dz + bond1)”

=0
4dydo ’

(a10bo1 — ao1b10) —

where the Jacobian matriz elements are evaluated at (Brw,di rH).

Proof. At the Turing-Hopf bifurcation point, the system simultaneously

satisfies:
e For some mode a: tr(J,) = 0, corresponding to Hopf bifurcation,

e For some mode «: det(Jy)min = 0, corresponding to Turing bifurca-

tion.

Expanding the Hopf bifurcation condition tr(.J,) = 0:

-V — 2")/’LL1 + B (Ul - (111_]"-_1)2) + (d1 + dz)Aa =0. (42)
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Expanding the Turing bifurcation condition det(Jy)min = 0:

2
vid 2
wtl-2y  |Fei (vt o))
(Ul + 1)3 4d1ds

pui =0. (43)

These two equations together determine the position of the Turing-Hopf

bifurcation point in the parameter space (5, d). |

Turing-Hopf Bifurcation

Turing Bifurcatios

— =Turing Bifur
Hopf Bifureation 0

25 m Turing-Hopf Bifurcation Point 1

¢ Turing-Hopf Bifurcation Point 2

Turing-Hop!
instabilty region

2r Pure Turing instabilty region|

Figure 8. Turing-Hopf bifurcation diagram showing the interaction be-
tween Turing bifurcation curves (8. and B;) and Hopf bi-
furcation line (B = 9.0006). Two distinct Turing-Hopf
bifurcation points (TH1 and TH2) are identified at (8 =
9.0096,d; = 0.9876) and (8 = 9.0096,d; = 0.2532), respec-
tively. The diagram partitions the parameter space into dis-
tinct stability regions: pure Turing instability, pure Hopf
instability, Turing-Hopf instability, and stable regions.

Figure 8 validates the existence conditions and characteristics of Tur-
ing-Hopf bifurcation in network systems. According to Theorem 5, Turing-
Hopf bifurcation occurs at the intersection points of Turing bifurcation
curves and Hopf bifurcation curves, indicating simultaneous loss of tem-
poral and spatial stability in the system. The numerically computed
Hopf bifurcation critical value is g = 9.0006, with the equilibrium point
at (ug,v1) = (0.4100,1.4393), establishing parameter benchmarks for the-
oretical analysis. Two distinct Turing-Hopf bifurcation points are iden-
tified in the parameter space: THI1 located at (8 = 9.0096,d; = 0.9876)
and TH2 at (8 = 9.0096,d; = 0.2532). These bifurcation points satisfy
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the conditions specified in the theorem: under identical S parameters, the
system simultaneously meets both the Hopf bifurcation condition (zero
real part of eigenvalues) and the Turing bifurcation condition (zero char-
acteristic determinant). The existence of these bifurcation points confirms
the theoretical conclusion that Turing-Hopf bifurcation points are jointly
determined by the Hopf bifurcation condition tr(.J,) = 0 and the Turing
bifurcation condition det(Jy)min = 0.

o BA =1
0w w0 m

Figure 9. Dispersion relations and spatiotemporal patterns at Turing-
Hopf bifurcation point. The first column shows dispersion
relations, displaying growth rates corresponding to network
eigenvalues under different average degrees. The right three
columns illustrate spatiotemporal evolution of product con-
centration v under corresponding average degrees. The top
row represents ER random networks, while the bottom row
represents BA scale-free networks.

Re(h)

Guided by the parameter values determined from the Turing-Hopf bi-
furcation analysis, we conducted systematic numerical experiments to in-
vestigate pattern formation dynamics. The parameter configuration was
selected at the first Turing-Hopf bifurcation point: d; = 0.9876, do = 0.5,
a = 0.7413, 5 = 9.0096, v = 0.9, with the corresponding equilibrium
point (ug,v1) = (0.4100,1.4393). The Turing instability interval was com-
puted as A = —1.136431 to A® = —1.017771. Figure 9 presents the
comprehensive numerical results, displaying dispersion relations and cor-
responding spatiotemporal patterns for both ER random networks and BA

scale-free networks across different average degrees ((k) = 3,5,13). The
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selected parameters situate the system within the Turing-Hopf instability
region, characterized by the simultaneous emergence of Turing patterns
and Hopf bifurcation-induced spatiotemporal oscillations, as evidenced in
the right subplots.

The dispersion relations (first column) demonstrate that under low
average degree conditions ((k) = 3,5), the network eigenvalues are dis-
tributed within the Turing instability interval (A, A(®)), enabling the
formation of both spatial patterns and temporal oscillations. However,
when the average degree increases to (k) = 13, the network eigenvalue
distribution shifts outside the Turing instability region, resulting in the
disappearance of Turing patterns while maintaining the temporal periodic
oscillations. These results indicate that network average degree serves as a
crucial control parameter for regulating the formation of Turing patterns
and spatiotemporal patterns, without fundamentally altering the inherent

temporal oscillatory behavior.

4 Conclusion

In this paper, we have conducted a comprehensive investigation of the
spatiotemporal dynamics in an enzyme-catalyzed reaction-diffusion system
defined on complex networks. Our study reveals several key findings that
advance the understanding of pattern formation mechanisms in networked
biochemical systems.

The main contributions of this work can be summarized as follows:

e We proposed a generalized enzyme-catalyzed reaction-diffusion mo-

del with specific nonlinear forms (Fi(u,v) = wv, Fs(v) = and

v
PR
F3(u) = yu?) and systematically analyzed its dynamics on complex

network structures.

e Through detailed bifurcation analysis of the homogeneous system, we
established the existence conditions for multiple equilibria and iden-
tified parameter regions supporting bistability. We rigorously proved
the occurrence of subcritical Hopf bifurcation and characterized the

stability transitions using Lyapunov coefficient analysis.
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e By extending the analysis to network-structured systems, we derived
precise conditions for Turing instability, Hopf bifurcation,
and Turing-Hopf bifurcation on complex networks. Our theoretical
framework explicitly incorporates the network Laplacian eigenvalues,
providing a mathematical foundation for understanding topology-

dependent pattern formation.

e Numerical simulations on both ER random networks and BA scale-
free networks demonstrated that network average degree serves as a
crucial control parameter regulating pattern formation. We observed
that intermediate connectivity densities favor the emergence of spa-
tiotemporal patterns, while both sparse and dense connectivity tend

to suppress pattern formation due to different mechanisms.

e The identification of distinct Turing-Hopf bifurcation points in pa-
rameter space revealed the complex interplay between temporal oscil-
lations and spatial patterning, highlighting the rich dynamical reper-

toire of networked enzyme-catalyzed systems.

Looking forward, our current framework provides a solid foundation for
exploring more sophisticated network effects on spatiotemporal pattern
formation. Recent studies have begun to investigate the role of higher-
order network structures in controlling Turing patterns [18,22,23]. These
works demonstrate that simplicial complexes and high-order interactions
can significantly alter pattern selection and stability. In future research,
we plan to extend our enzyme-catalyzed reaction-diffusion model to incor-
porate such higher-order network topologies, investigating how multi-node
interactions and simplicial complexes influence the emergence and stabil-
ity of spatiotemporal patterns. This direction promises to uncover novel
pattern formation mechanisms that cannot be captured by conventional
pairwise network models, potentially leading to deeper insights into the
organizational principles of complex biochemical systems in structured en-

vironments.
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