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Abstract

How to determine the number and folding pathway of ssDNA
strands assembling DNA polyhedrons are the fundamental prob-
lems in DNA nanoassembly. In this paper, the related mathemati-
cal problems are presented by introducing antiparallel oriented links
(AO links) to describe the topological structures of DNA polyhe-
drons, that is, how to give all AO link diagrams based on any 2-
connected plane graph and their link components. We demonstrate
that each AO link diagram must be isotopy equivalent to a special
AO link diagram with even tangle edges by defining “Node Move”
operations on vertex nodes. By further giving the relationship be-
tween AO link diagrams and edge-weighted plane graphs, two algo-
rithms are established to calculate all AO link diagrams and their
link components. Based on these two algorithms, a software “AO
link” has been developed in Fortran language, giving all AO link di-
agrams and their link components only by inputting a planar graph.
Also, the other three versions of the software are established to elim-
inate isotopy classes of AO link diagrams. This work not only reveals
some important properties of AO link diagrams but also provides
an important tool for related chemical and mathematical problems.
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1 Introduction

In knot theory, a knot is a closed simple curve embedded in the 3D space

and a link is a finite disjoint collection of knots [1]. With the rapid de-

velopment of DNA nanotechnology, many mathematical knots and links

have been realized in the nanostructures of DNA polyhedra [2, 3]. For

example, some polyhedral knots were formed by folding a long DNA sin-

gle strand, such as DNA tetrahedron [4], DNA triangular prism [5], DNA

pyramid [6], DNA Pentagonal pyramid [7] and so on. Also, some cova-

lently closed polyhedral catenanes were assembled from more than one

single DNA strand, such as DNA tetrahedra [8, 9], DNA cube [10], DNA

Triangular bipyramid [11], DNA Octahedra [12,13] and so on. Obviously,

the number and entanglement of ssDNA strands plays an important role

in the formation of the structure of DNA polyhedra. Therefore, how to

determine the number and folding pathway of ssDNA strands assembling

DNA polyhedrons become the fundamental problems in DNA nanoassem-

bly. To address it, some mathematical methods have been employed to

characterize the topological structures of DNA polyhedron.

A DNA polyhedron can be represented as a compact orientable surface

(called a thickened graph) by treating each double helix edge as a band

having oriented boundary curves. Jonoska and Saito investigate the maxi-

mum and minimum numbers of ssDNA strands forming DNA polyhedrons

with double helical edges by using the boundary curves of the thickened

graph [14]. Also, Jonoska, Seeman and Wu prove that every connected

multigraph permits a thickened graph with one boundary curve [15]. In

fact, one boundary curve can be defined as an antiparallel strong trace of

the graph such that no edge is traversed more than once in each direction.

Fijavž, Pisanski and Rus characterize the graphs which admit parallel and

antiparallel strong traces [16]. Then, Cheng, Deng and Diao further show

that the strong traces of certain 2-connected plane graphs can be obtained

by using thickened graphs constructed with only two types of vertex junc-

tions [17]. These works provide some possible approaches to describing

some DNA polyhedrons folded by one ssDNA strand.

Polyhedral links, the interlinked and interlocked architectures in poly-
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hedral shape, have also served as the important mathematical models for

describing the structural properties of DNA polyhedra [18–26]. In these

works, some polyhedral knots based on platonic polyhedra and truncated

polyhedra have been constructed by minimizing the number of link com-

ponents [25, 26]. In fact, each polyhedral knot determines an antiparallel

strong trace of the polyhedron. Meanwhile, all polyhedral links based on

tetrahedra [27], trigonal prism [28,29], trigonal bipyramid [30,31] and octa-

hedra [32] have been calculated by considering the antiparallel orientation

of each tangle edge. These results provide all topological structures based

on these four polyhedrons when they are assembled from one or more ss-

DNA strands. However, these works need all antiparallel orientations of

polyhedral links determined in advance. This is a very tricky job to avoid

the conflict orientation produced by any two adjacent tangle edges.

In this paper, antiparallel oriented links are defined to characterize

the topological structures of DNA polyhedrons. First, we show that each

AO link diagram can be continuously deformed into a special AO link

diagram having even tangle edges by introducing an isotopy transform

“Node Move” to a series of vertex nodes. Then, we establish the relation-

ship between AO link diagrams and edge-weighted plane graphs by further

exposing the properties of AO link diagrams. Based these results, two al-

gorithms have been established for calculating all AO link diagrams based

on a 2-connected plane graph and their link components. Also, a software

“AO link” has been developed in Fortran language based on these two al-

gorithms, which can give all AO link diagrams and their link components

only by inputting a planar graph. Meanwhile, the other three versions of

the software are established to eliminate some isomorphic weighted graphs

leading to the isotopy link diagrams. As examples, all AO link diagrams

based on some common polyhedrons including pyramids, prisms, bipyra-

mids, dodecahedra and icosahedra and their link components have been

calculated by our software. Our work not only reveals some important

properties of AO link diagrams but also provides a tool to give all topo-

logical structures for DNA polyhedrons as well as the antiparallel strong

trace and the upper embeddability for a plane graph.
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2 Defining AO link diagrams

Some basic concepts, terminology and notation are given in advance.

A 2-tangle is two strands twisting against each other in antiparallel

directions. A 2-tangle T have four endpoints in the plane, named as NW,

NE, SW and SE, as indicated in Fig. 1(a). The NW and SW ends are

defined as head of T , and the NE and SE ends are defined as tail of T .

The 2-tangle T is called positive or negative according to the SW end

entering or exiting T . The reverse of T , denoted by −T , is obtained from

T by reversing the direction of each strand. In Fig. 1(b), the 2-tangles T0,

T1 and T2 are all positive, and their reverses −T0, −T1 and −T2 are all

negative.
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Figure 1. (a) The sum for the 2-tangles T and T ′ surrounded respec-
tively by a circle; (b) The 2-tangles T0, T1 and T2, and their
reverses −T0, −T1 and −T2; (c) The 0-node 0k, its reverse
−0k, and the k-node Vk for k = 3, 4.

A k-tangle is composed of k (k ∈ Z+ > 2) strands such that each strand

is oriented counterclockwise. A k-tangle is called a k-node, denoted by Vk,

if each strand crosses the other two strands alternately. A k-tangle having

no crossing, denoted by 0k, is called 0-node, as illustrated in Fig. 1(c).

The reverse of a k-tangle 0k, denoted by −0k, is obtained by reversing the

direction of each strand.The sum of two 2-tangles T and T ′, denoted by

T+T ′, is the 2-tangle obtained by gluing the NE and SE end of T together
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with the NW and SW end of T ′ according to the orientation of their ends

(Fig. 1(a)). A 2-tangle having 2n (n ∈ N) crossings, denoted by T2n, is

called even. Similarly, an odd 2-tangle T2n+1 is a 2-tangle having 2n + 1

crossings. Note that T2n+1 is coincident with −T2n+1 by a 180-degree

rotation, and they are distinguished by their head or tail.

Let L be any given oriented alternating link. Without loss of generality,

we can suppose that L be reduced and have no nugatory crossing. Given

any oriented alternating link diagram D of L, there must be a 2-connected

plane graph G′ corresponding to D according to the checkerboard coloring

of D (Fig. 2) [33]. For the graph G′, each maximum path with all interior

vertices having degree 2 is replaced with an edge, and the resulting graph G

is a 2-connected plane graph having no vertex of degree 2. If each edge e of

G is exactly corresponding to a 2-tangle Te, the link diagram D is called an

antiparallel oriented link diagram or an AO link diagram (corresponding

to the plane graph G), and the link L is called an AO link. In particular,

the AO link L is called an AO polyhedral link if G is a 3-connected plane

graph.

Conversely, given any 2-connected plane graph G, each edge is replaced

by a 2-tangle, and connect two adjacent endpoints of two tangles along

each face of G, the resulting oriented link diagram is exactly an AO link

diagram D(G). If G has a vertex v of degree 2, the maximum path P

containing v is corresponding to a 2-tangle in D(G), which are the sum

of all 2-tangles corresponding to all edge of P . Evidently, D(G) also can

be constructed from the plane graph resulted by replacing the path with

an edge. Hence, we can suppose that the plane graphs involved in this

paper are all 2-connected and have no vertex of degree 2. According to

our construction method, any AO link diagram can be obtained from a

2-connected plane graph G, as illustrated in Fig. 2. In addition, the k-

tangle of D(G) corresponding to each vertex of G is called the vertex node

of D(G). In Fig. 3, D(G) have two 03 and two −03 as vertex nodes.

If G is a plane graph of a polyhedron P , the diagram D(G) can be

transformed into an AO polyhedral link L(G) by recovering P from G

according to the plane projection from the inside out. In fact, a polyhedron

has identical faces in any plane drawing since any 3-connected planar graph
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can be uniquely embeddable on the sphere. Therefore, AO polyhedral link

diagrams don’t depend on any plane graph of the polyhedron P , which

can be constructed from any plane graph of P .
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Figure 2. The link diagramD of the link L determines a plane graphG
according to the checkerboard coloring of D; Conversely, an
AO link diagram D(G) can be obtained from G by replacing
each edge ei with the 2-tangle T1, T2 or −T2(1 ≤ i ≤ 6),
and the AO link L(G) can be recovered from D(G).

3 Some properties of AO link diagrams

In this section, some properties of AO link diagrams will be given. Firstly,

we can obtain the following lemma according to the construction of AO

link diagrams.

Lemma 1. Let D(G) be any AO link diagram corresponding to the plane

graph G. Any vertex node nv of D(G) must be a 0-node 0k or its reverse

−0k, where k is the degree of the corresponding vertex v of G.

Proof: According to the construction of D(G), the vertex node nv is

composed of some disjointed arcs such that each arc connects two adjacent

endpoints of two tangle edges. The number of these arcs are exactly equal

to the number of these edges incident to the vertex v in G. Therefore, the

vertex node nv is composed of k arcs such that any two arcs have no any

crossing according to the construction of AO link diagrams.
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Also, for the vertex node nv, each arc connecting two adjacent end-

points of two tangle edges will inherit a clockwise or anticlockwise orien-

tation. If an arc l of the vertex node nv is oriented clockwise, two arcs

adjacent to l must be oriented clockwise due to the antiparallel orienta-

tions of two tangle edges connected to l. And so on, each arc of nv is

oriented clockwise. Similarly, we can show that each arc of nv is oriented

anticlockwise if an arc of nv is oriented anticlockwise. Hence the vertex

node nv must be 0-node 0k or its reverse −0k. □

An AO link diagram D(G) only having positive and even 2-tangle

edges, denoted by DE(G), is called a positive EAO link diagram, as shown

in Fig.3(b). In fact, a positive EAO link diagram DE(G) must exist for

any plane graph G such that each link component of DE(G) walks clock-

wise along exactly a face of G. Hence each vertex node of DE(G) must be

a 0-node 0k according to lemma 1.

In any given AO link diagram, a node −0k is transformed into a k-

node Vk when a crossing of each 2-tangle edge incident to the −0k is moved

continuously into it, as illustrated in Fig. 3(a). This transformation, called

Node Move, change the node −0k to a k-node Vk. Evidently, Node Move is

an isotopy transform, and the link type of D(G) is unchanged under Node

Moves. An oriented link diagramDs(G) is called a special AO link diagram

or SAO link diagram if there exists a plane graph G such that each edge

and each vertex are corresponding to a 2-tangle edge and a vertex node 0k

or Vk of Ds(G), respectively. Also, each such k-node Vk is called a vertex

node of Ds(G). A SAO link diagram Ds(G) based on a tetrahedron G is

given in Fig.3(b), which is obtained from an AO link diagram D(G) by

applying Node Move to each vertex node −03. Then we have the theorem

below.

Theorem 1. Each AO link diagram is isotopy equivalent to a SAO link di-

agram, and each SAO link diagram only have positive even 2-tangle edges.

Proof: Given any AO link diagram D(G), D(G) can be obtained from

a plane graph G by replacing each edge with a 2-tangle T . Hence each

vertex node of D(G) is a 0-node 0k or its reverse −0k according to lemma

1. For any vertex node −0k of D(G), −0k must be connected to the head
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Figure 3. (1) The Node Move is respectively applied to the vertex
nodes −03 and −04, and each pair of red arcs indicates a
part of a 2-tangle edge. (2) The AO link diagram D(G), the
SAO link diagram DS(G) obtained from D(G) by applying
the Node Move to each −03, and the positive EAO link
diagram DE(G) obtained from DS(G) by replacing each V3

with a 3-tangle 03.

of a negative 2-tangle −T2m+1, the tail of a positive 2-tangle T2m+1, or the

head or tail of a negative even 2-tangle −T2m according to its orientation.

Also, we have

T2m+1 = T2m+T1, −T2m+1 = −T1+T2m and −T2m = −T1+T2m+T1,

where the“ T1 ” or “−T1 ” end in T2m+1, −T2m+1 and −T2m is connected

to the vertex node −0k. Hence applying Node Move to the vertex node

−0k, the vertex node −0k is changed into a k-node Vk. Meanwhile, each

odd tangle is changed into an even tangle, and each even tangle −T2m

is changed into the odd tangle −T2m+1. Repeatedly apply Node Move to

each vertex node−0k ofD(G) until each vertex node is 0k or Vk. Evidently,

the resulting link diagram Ds(G) is a SAO link diagram, which is isotopy

equivalent to D(G).

Note that each edge of Ds(G) must be a positive even 2-tangle. If an

odd or negative tangle appears in Ds(G), the tangle may be the positive

tangle T2m+1 or the negative tangle −T2m+1 or −T2m. According to the

orientation of the 2-tangle, there is at least one node −0k that is connected

to the head of −T2m+1, the tail ofT2m+1, or the head or tail of −T2m. This

contradicts that Ds(G) have no node −0k. The prove is finished. □
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The reverse of a link diagram D, denoted by −D, is also an AO link

diagram that are obtained by reversing the orientation of each component.

Hence the reverse of a SAO link diagram only contains vertex nodes −0k or

−Vk and negative even 2-tangle edges. Hence we can obtain the following

corollary by the theorem 1.

Corollary. (a) Each AO link diagram is isotopy equivalent to the reverse

of a SAO link diagram; (b) Each DNA polyhedron can be designed as a

SAO link having DNA double helical edges of the same length.

Also, for any given AO link diagram D(G), we have the lemma below.

Lemma 2. Each oriented link diagram obtained from D(G) by reversing

the orientations of some link components is not an AO link diagram except

for −D(G).

Proof: Let DO(G) be an AO link diagram obtained from D(G) by revers-

ing the orientations of some link components. By the theorem 1, D(G) is

isotopy equivalent to a SAO link diagram Ds1(G). Then DO(G) is isotopy

equivalent to the oriented link diagram Ds2(G) obtained from Ds1(G) by

reversing the orientations of the corresponding link components. If Ds2(G)

have a non 2-tangle edge, Ds2(G) must not be an AO link diagram. Other-

wise, Ds2(G) must have a negative 2-tangle edge −T2n. For D
s2(G), each

vertex node connected to −T2n must be −0k or −Vk, and each 2-tangle

edge connected to the −0k or −Vk must be negative due to their even

crossing number. And so on, any vertex node can reach to the vertex node

−0k or −Vk in Ds2(G) by a serial of negative 2-tangle edges and vertex

nodes −0k or −Vk when G is connected. Therefore, each vertex node in

Ds2(G) must be the node −0k or −Vk, and each 2-tangle edge is negative.

Then Ds2(G) is the reverse of Ds1(G) and DO(G) is isotopy equivalent to

the reverse of Ds2(G). □

According to theorem 1, any AO link diagramD(G) can be transformed

into a SAO link diagram Ds(G) by changing each vertex node −0k to a

k-node Vk. Collecting each vertex of G corresponding to each node −0k

gives a subset S of V (G). Conversely, given any subset S, a SAO link

diagram Ds(G) can be obtained from a positive EAO link diagram DE(G)
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by replacing each corresponding 0-node 0k with a k-node Vk. Also, an AO

link diagram D(G) can be obtained from Ds(G) by applying the inverse

transformation of Node Move to each vertex node Vk according to the

theorem 1. Hence the set S can give the diagram D(G), and we have the

lemma 3.

Lemma 3. All AO link diagrams obtained from any given plane graph

G and all subsets of the vertex set V (G) can determine each other if only

considering the parity of each 2-tangle edge.

Proof: Let D1(G) and D2(G) be two AO link diagrams given by any

subset S of V (G). We only need to show that D1(G) and D2(G) have

the same parity for any two corresponding 2-tangle edges. By theorem

1, the AO link diagrams D1(G) and D2(G) are isotopy equivalent to two

SAO link diagrams D10(G) and D20(G), respectively. Then D10(G) and

D20(G) have the same vertex nodes and have the positive even 2-tangle

edges. Through applying the inverse transformation of Node Move to one

same vertex node Vk in D10(G) and D20(G), all 2-tangle edges connected

to Vk are changed into odd 2-tangles, and the parity of the remain 2-

tangle edges is unchanged in D10(G) and D20(G). Repeatedly applying

this operation to the remaining k-nodes, D1(G) and D2(G) can recovers

respectively fromD10(G) andD20(G). Accordingly, any two corresponding

2-tangles in D1(G) and D2(G) have the same parity. □

According to the lemma 3, all AO link diagrams only having one or

two crossings for each 2-tangle edge can be given by considering all subsets

of the vertex set V (G). These AO link diagrams can generate all AO link

diagrams by changing the crossing number according to the parity of each

2-tangle. Hereafter, for convenience, we suppose that all AO link diagrams

only having one or two crossings on each 2-tangle edge.

Let P be a 2-connected simple planar graph without 2-degree vertices

that is a triple consisting of a vertex set V (P ), an edge set E(P ), and an

incident relation R(P ) that associates with each edge two vertices called

its endpoints. Let G be a plane graph of P , which have the same vertex

set, the edge set and the incident relation as P .

For any subset S of V (G), an edge e of the plane graph G will be
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weighted with 2 if the edge e is incident with exactly one vertex of S.

Otherwise, the edge e will be weighted with 1. The resulting weighted

graph, denoted by Ws(G), depend only on the subset S and the incident

relation R(G), not on the plane graph G. Hence the weighted graph can

be naturally extended to the planar graph P from G.

For the link diagram D(G) determined by the set S, each vertex in S is

corresponding to a vertex node −0k of D(G). In D(G), each 2-tangle edge

connected exactly to one vertex node −0k must have the odd-crossing

number and the remaining 2-tangles all have the even-crossing number.

Hence, in Ws(G), each edge corresponding to an odd 2-tangle edge must

have weight 1 and each edge corresponding to an even 2-tangle edge must

have weight 2. Hence, we have the theorem 2.

Theorem 2. Any AO link diagram D(G) and its reverse −D(G) deter-

mine an identical weighted graph Ws(G). Conversely, any weighted graph

Ws(G) also determine two AO link diagrams D(G) and −D(G) for a sub-

set S of the vertex set V (G).

Proof: There are two subsets S and Sc of V (G) determined respectively by

D(G) and −D(G) according to the lemma 3. LetWs(G) andW c
s (G) be the

weighted graphs given respectively by the subsets S and Sc, respectively.

Note that the subsets S and Sc are corresponding to all −0k nodes of

D(G) and −D(G), respectively. Then S and Sc must be complementary,

that is S ∪ Sc = V (G). For each edge e of G, if S exactly contain one

endpoint of e, Sc exactly contain the other endpoint of e. Hence the edge

e has the same weight 2 in Ws(G) and W c
s (G). Otherwise, either S or

Sc contain both endpoints of e. Also, the edge e has the same weight 1

in Ws(G) and W c
s (G). Hence Ws(G) and W c

s (G) are the same weighted

graph. Also, from the point of view of link diagrams, each edge must

have the same weight in Ws(G) and W c
s (G) since each 2-tangle have the

same parity in D(G) and −D(G). Conversely, given the weighted graph

Ws(G), by ignoring the orientation, an edge of G is replaced by an odd

2-tangle if its weight is 2 in Ws(G). Otherwise, this edge is replaced by an

even 2-tangle. According to the construction method in the section 2, an

unoriented link diagram can be obtained. By lemma 3, the link diagram
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must allow two AO link diagrams D(G) and −D(G) determined by the

subset S and Sc. In fact, D(G) can be easily obtained from the unoriented

link diagram according to the subset S if each corresponding vertex node is

assigned to −0k and the remaining vertex nodes are assigned to 0k. Also,

by lemma 2, the link diagram only allows an AO link diagram D(G) and

its reverse −D(G). Hence the AO link diagrams D(G) and −D(G) are

determined completely by the weighted graph Ws(G). □

4 Two Algorithms for AO link diagrams

In this section, the number of elements of a set ∗ is denoted by |∗|. Let P be

a simple 2-connected planar graph defined in the section 3. Let n = |V (P )|
and m = |E(P )| be the number of vertices and edges of P , respectively.

Let nf be the number of faces of P such that nf = m − n + 2. For any

subset S of V (P ), an incidence matrix of the weighted graph Ws(P ), called

a weighted incidence matrix, can be obtained from the incidence matrix of

P by replacing 1 with the weight w(e) for each edge e.

4.1 An algorithm for generating AO link diagrams

According to theorem 2, all AO link diagrams and their reverses based on

the plane graph G of P can be calculated from the incidence matrix M of

P by using the algorithm below.

Algorithm 1.

Input: A n×m incidence matrix M of P .

Idea: Generating the n-dimensional arrays of 2n such that each com-

ponent is 0 or 1. These arrays are numbered as X1, X2, · · · , X2n .

For each array Xi (1 ≤ i ≤ 2n ), each nonzero value w in the j-th row

of M is converted to 1 from 2 or to 2 from 1 if the j-th component of Xi

is 1. Otherwise, the value w is unchanged in the j-th row. When j takes

all components of Xi, a weighted incidence matrix Mi of P is obtained.

Collecting all weighted incidence matrix Mi forms the set M.

Then delete any isomorphic weighted graph. Firstly, all weighted inci-

dence matrix Mi in M are divided into finitely many sets Gk, (k ≤ m)
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according to the number k of the columns containing 2 in Mi. Then delete

any equivalent matrices in Gk, and merge all sets Gk to replace the set

M.

Initialization: i=1, j=1, k=1, M = ϕ

Iteration:

1) For i ≤ 2n, we have the following iteration. For j ≤ n, each nonzero

value w in the j-th row of M is converted to 1 from 2 or to 2 from 1 if

the j-th component of Xi is 1. Otherwise, the value w is unchanged in the

j-th row. Then the index j turns to j + 1 for the next loop, and iterating

until j = n+1. The resulting weighted incidence matrix Mi is collected to

the set M. Then the index i turns to i+1 for the next loop, and iterating

until i = 2n+1. All weighted incidence matrix Mi are collected to M, and

they are numbered from 1 to 2n.

2) Through calculating the number of the columns containing 2 in each

weighted incidence matrix in M, all matrixes of M are divided into the

sets Gk (0 ≤ k ≤ s) such that any two matrixes have the same number of

the columns containing 2 in Gk.

For k ≤ s, we have the following iterate on the set Gk.

For i < |Gk|, through the permutation of the row vectors of the i-th

matrix in Gk, the resulting matrices of n! are compared with each matrix

with marked numbers higher than i in Gk. If two matrices have exactly

the same column vectors, then delete the matrix with the marked number

higher than i from Gk. Subsequently, renumber those surviving matrices

in order. Then the index i turns to i + 1 for the next loop, and iterating

until i = |Gk|. If i = |Gk| , this iteration stops and the index k advances.

The iteration on Gk continues until k = s + 1. All sets Gk (0 ≤ k ≤ s)

are merged to replace all elements of the set M. Output the set M.

*2) Suppose that G is a polyhedron with the symmetry group K gen-

erated by some symmetry operations. Each weighted incidence matrix Mi

can induce an ordered array Yi of edges such that the weight of the k-th

edge is taken as the k-th component for 1 ≤ k ≤ m. These ordered arrays

are collected to give the set Y, which inherit a marked number from each

weighted incidence matrix in M.

For i < |Y|, through applying each symmetry operation of K to the
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ordered array Yi, the resulting ordered arrays of |K| are compared with

each ordered array Yj with marked number j higher than i in Y. If the

ordered array Yj is the same as one of these arrays of |K|, Yj is removed

from Y and the corresponding matrix Mj is deleted from the set M. At

last, renumber those surviving arrays and matrices in their original order.

Then the index i turns to i+1 for the next loop, and iterating until i = |Y|.
Output the set M.

According to the Algorithm 1, the weighted incidence matrixes of all

weighted graphs for the planar graph P can be generated in the part 1)

of iteration process. Also, the part 2) of iteration process are devoted to

deleting the isomorphic weighted graphs through the equivalence of their

weighted incidence matrixes. If the graph P is a polyhedron with high

symmetry group K, we will use the algorithm of the part *2) to eliminate

the equivalent weighted incidence matrixes by using all symmetric opera-

tions from K. Without considering the isomorphism of weighted graphs,

Algorithm 1 primarily involves generating both n-dimensional arrays and

weighted incidence matrixes, resulting in a time complexity of O(n · 2n).
Consequently, we estimate that Algorithm 1 can be applied to a planar

graph with approximately n=26 vertices when the maximum running time

is set to one second.

Note that all weighted incidence matrixes can be computed by the

incidence matrix M of P according to the Algorithm 1. Hence any two

plane graphs of P have the same weighted incidence matrixes. Once a

plane graph G of P is given, then according to theorem 2, all weighted

graphs of G determined by all weighted incidence matrices can give all AO

link diagram based on G. When P is a polyhedron, the construction of

AO link diagrams only depends on P since all faces don’t change in any

plane graph of P .

4.2 An algorithm for calculating link components

For any 2-connected plane graph G, each cycle bounded by each face is

called a face cycle of G. Here each face of G is given by recording each edge

clockwise or anticlockwise along its face cycle. Evidently, a plane graph
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can be determined by giving all faces. For any 2-connected planar graph

P , the incidence matrix M can be used to generate all faces by simplifying

the planarity algorithm [34], that exactly give a plane graph of P .

For the plane graph G, each edge e is shared by two face cycles, hence

there are two adjacent edges of e on each face circle. These four adjacent

edges, denoted by es, ea, eo and ed, are called “the starting edge”, “the

adjacent edge”, “the opposite edge” and “the diagonal edge” according

to the position relative to e (Fig. 4). The four adjacent edges together

with the edge e forms four pairs of edges [e, es], [e, ea], [e, eo] and [e, ed],

respectively. In fact, each pair of edges describes one arc connecting two

adjacent endpoints of two 2-tangle edges for an AO link diagram. Hence

each pair of edges is also called an arc. Evidently, each link component can

be recorded by some pairs of edges when walking along this component.
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ed
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[
]

e,e o

[
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e,e a
[
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Figure 4. The edge e and its four adjacent edge es, ea, eo and ed in
the plane graph G (left graph); Four pairs of edges [e, es],
[e, ea], [e, eo] and [e, ed] respectively indicates four red arcs
of an AO link diagram D(G), where each arc connect two
2-tangles T surrounded respectively by a circle(right graph).

Note that the link components of any given AO link diagram D(G)

depend on the parity of the crossing number of each 2-tangle, not its

orientation. Hence each link component of D(G) can be calculated directly

according to the corresponding weighted plane graph Ws(G). For each

edge e, the related four pairs of edges are divided into two sets. If w(e) = 1,

two pairs of edges indicating two arcs, that are [e, es] and [e, eo], form one

2-element set, and the other 2-element set are formed by the pairs of edges

[e, ea] and [e, ed]. Otherwise, the pairs of edges [e, es] and [e, ed] form one

2-element set, and the pairs of edges [e, eo] and [e, ea] form the other 2-

element set. Therefore, each such 2-element set can be given according
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to the weight of each edge of Ws(G), and any two 2-element sets will be

further merged into a set of edge pairs if exactly two edge-pairs from these

two 2-element sets contain an identical edge. At last, all pairs of edges are

partitioned into k (k ∈ Z ) classes, and each link component of any AO

link diagram is given as a class of edge pairs. Hence the link component

of all AO link diagrams based on some plane graph of P can be calculated

by using each weighted incidence matrix of P as follows.

Algorithm 2.

Input: The incidence matrix M(P ) of a planar graph P , and the set

M. Collecting each weighted incidence matrix Mk of P (1 ≤ k ≤ |M|).
Idea: The edge set E(P ) and the vertex set V (P ) obtained from M(P )

are collected for giving the face set F .

Firstly, find a face f of P . Starting from any vertex v of P , search all

edges incident to v, and according to the other endpoint of each incident

edge, search all edges incident to these endpoints. And so on, the search

will stop until the vertex v appears again. This cycle starting and ending

with v is a minimum cycle containing v, that must be a face f of P . Here

the face f is represented as an ordered set of edges by recording each edge

along the boundary. Add the face f and its unbound face to the set F .

Secondly, find all faces for determining a plane graph of P . For the

subgraph PF induced by E(P )−E(F) (called the fragments of P about F),

take any connected component g (i.e. a fragment) from PF , and find a

path p from the component g such that only both endpoints of p belong to

V (F). Then the path p is added to a face fa of F such that both endpoints

of p belong to V (fa). The face fa is split into two faces fa1 and fa2 by p.

Delete fa from F and add the faces fa1 and fa2 to F . And so on, each

face as an ordered set of edges is collected into F , determining a plane

graph G of P .

At last, give all link components of each link diagram based on G ac-

cording to each weighted incidence matrix Mk in M. For each edge ei of

E(G), find two faces fi1 and fi2 containing ei from F . Two edges eis and

eio adjacent to ei on the face fi1, and two edges eia and eid adjacent to

ei on the face fi2 give an ordered four-bit array (eis, eia, eid, eio) such

that the edges eis, eia share a common vertex. The edge ei and its four
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adjacent edges induces four pairs of edges, which are divided into two sets

Oi1 and Oi2 according to the weight w(ei) in Mk and the obtained four-bit

array. These two sets Oi1 and Oi2 are compared with each element O (i.e.

a set collecting some pairs of edges) in the set O. If the set Oi1 or Oi2

and O have a common edge, the set will be merged into the set O as a new

set collecting some pairs of edges. Otherwise, this set is collected as a new

element into O. When each edge in E(G) is taken, each link component

of the link diagram determined by Mk will be given as an element in O.

Initialization: F = ϕ, O = ϕ and S = ϕ.

Iteration: For |F| < nf = m − n + 2, the subgraph PF induced by

E(P )−E(F) is given. Take any connected component g of PF , and find a

path p from g such that only both endpoints of p belong to V (F). The path

p is added to a face fa of F such that both endpoints of p belong to V (fa).

The face fa is split into two faces fa1 and fa2 by p. Delete fa from F and

add the faces fa1 and fa2 to F . This iteration continues until |F| = nf .

If |F| = nf , each face as an ordered set of edges has been collected into F ,

which determine a plane graph G of P .

For k ≤ |M|, we have the following iteration on the weighted incidence

matrix Mk.

For i ≤ m, we have the following iteration on E(P ). For each edge ei

of E(P ), find two faces fi1 and fi2 containing ei from F . Two edges eis

and eio adjacent to ei on the face fi1, and two edges eia and eid adjacent

to ei on the face fi2 give an ordered four-bit array (eis,eia, eio,eid) such

that the edges eis,eia share a common vertex. If w(ei) = 1 in Mk, [ei, eis]

and [ei, eio] are both collected into the set Oi1, and [ei, eia] and [ei, eid] are

collected into the set Oi2.Otherwise, [ei, eid] and [ei, eis] are collected into

the set Oi1, and [ei, eia] and [ei, eio] are collected into the set Oi2. Then

the sets Oi1 and Oi2 are compared with each element O in the set O. If the

set Oi1 or Oi2 and O have a common edge, it will be merged into the set

O. Otherwise, the set will be collected into the set O. The index i turns to

i+ 1 for the next loop, and iterating until i = m+ 1. Each component of

the link diagram determined by the matrix Mk can be given as an element

in O. The set O is copied as a new element into the set S. Deleted all

element of O.
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The index k advances and the above iteration continues until k = |M|+
1. All link components of each link diagram determined by all weighted

incidence matrixes are collected into S.

In Algorithm 2, all faces determining a plane graph G are randomly

generated by the incidence matrix of P . Hence the plane graph G is also

randomly given unless P is a polyhedron. If we need to calculate all link

components of each AO link diagram based on a given plane graph H,

each face of H can be entered directly instead of randomly generating all

faces of some plane graph in Algorithm 2. Once a plane graph G is given,

the complexity of Algorithm 2 depends primarily on the number of edges

m and the number of faces nf , and the length of the longest face cycle

mfmax in G, yielding a worst-case complexity of O(m2 ·mfmax).

5 Software for calculating AO link diagrams

According to Algorithms 1 and 2, a computer software “AO link” has

been developed in Fortran language, which can give all AO link diagrams

based on any plane graph and their link components only by inputting an

incidence matrix of the graph. The executable and input file of the soft-

ware “AO link” are both given in Supplementary material. Note that the

AO link diagrams obtained by the software “AO link” may contain many

isotopic link diagrams resulted by the isomorphism of weighted graphs.

The software “AO link” can be modified to another version “AO1 link”

by adding the part 2) of Algorithm 1, which can eliminate all isomorphic

weighted graphs based on any plane graph with less than 12 vertices. Take

tetrahedra for example, the edges and vertices of tetrahedra G are notated

in Fig.2. By inputting an incident matrix of G according to the subscripts

of edges and vertices, there are three different weighted incident matrixes

can be obtained by using the software “AO1 link” as follows.

“result−label= 1

matrix =

1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1
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0 0 0 1 1 1

result−label= 2

matrix =

1 1 0 2 0 0

0 1 1 0 2 0

1 0 1 0 0 2

0 0 0 2 2 2

result−label = 3

matrix =

2 1 0 2 0 0

0 1 2 0 2 0

2 0 2 0 0 1

0 0 0 2 2 1 ”

The above three weighted incident matrixes determine three AO link di-

agrams, and the link diagram D(G) in Fig.2 is determined by the matrix

labeled as 3. According to these three matrixes, the software “AO1 link”

can give each link component of three AO links as follows.

“ result−label = 1

one−branch = 1 2 2 3 3 1 1 2 //one−branch=one link component

one−branch = 1 4 4 6 6 1 1 4

one−branch = 2 4 4 5 5 2 2 4

one−branch = 3 5 5 6 6 3 3 5

branches−num = 4 //branches−num=the number of link components

result−label = 2

one−branch = 1 2 2 3 3 1 1 2

one−branch = 1 4 4 5 5 3 3 6 6 4 4 2 2 5 5 6 6 1 1

branches−num = 2

result−label = 3

one−branch = 1 2 2 3 3 6 6 5 5 2 2 4 4 6 6 1 1 2

one−branch = 1 4 4 5 5 3 3 1 1 4

branches−num = 2

branches−num = 2, results−num = 2

branches−num = 4, results−num = 1 ”

Each link component is given as a serial of the subscripts of edges of
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G in above results. The first AO link diagram have 4 link components

and the other two AO link diagrams have 2 link components. For all

pyramids, prisms, and bipyramids with less than 12 vertices, all AO link

diagrams based on these polyhedrons and their link components are given

in Supplementary material by using the software “AO1 link”. According to

these results, the numbers of these AO link diagrams are given according to

the number of their link components in table 1. Also, the total number of

these diagrams are compared with the total number of all AO link diagrams

obtained by using the software “AO link”, as shown in table 1. Note that

a tetrahedral link of four components [9], a 4-pyramid knot [6], a 3-prism

knot [5], a 3-bipyramid link of six components [11], an octahedral link

of eight components [12], and so on, have been successfully synthesized as

DNA polyhedrons. In addition, the software “AO link” is also applicable to

calculating the topological structures of the more complex DNA polyhedra

[35], which can be obtained from polyhedra (or truncated polyhedra) with

double or multiple edges according to our algorithm.

If the planar graph P is a polyhedron with high symmetry groupK, the

software “AO1 link” can be revised by replacing the part 2) with the part

∗ 2) according to the Algorithm 1, in order to eliminate the isomorphic

weighted graphs by using all symmetric operations in K. For example,

two software ”Dodecahedra” and ”Icosahedra” based on dodecahedra and

icosahedra are established by modifying the software “AO link”, and their

executable files and input files are included in Supplementary materials.

Both of dodecahedra and icosahedra belong to the point group I, which

have 60 symmetric operations generated by 1 C5 axis, 1 C2 axis and 3

C3 axes perpendicular to each other. Through respectively applying these

symmetric operations to the edge sets of these two polyhedrons, two sym-

metry groups KD and KI base on their edge sets can be generated to

eliminate the isomorphic weighted graphs. As a result, the total number

of all AO link diagrams based on icosahedra are reduced to 9040 from

1048576 by using the symmetry groups KD. Also, the total number for all

AO link diagrams based on dodecahedra are reduced to 56 from 4096 by

using the symmetry groups KI .

In addition, the software “AO link” can also be used to check whether
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Table 1. The list of the number of AO polyhedral links of k link com-
ponents. N denotes the number of all AO link diagrams based
on a polyhedron, and M denotes the number of all AO link di-
agrams obtained by deleting any isomorphic weighted graph.

Polyhedron
k

1 2 3 4 5 6 7 8 10 12 20 M/N

tetrahedra 2 1 3 /16
4-pyramid 2 3 1 6 /32
5-pyramid 5 2 1 8 /64
6-pyramid 3 7 2 1 13 /128
3-prism 2 5 1 8 /64
cube 8 5 1 14 /256
5-prism 10 28 5 1 44 /1024
3-bipyramid 3 2 1 6 /32
Octahedra 1 3 1 1 6 /64
5-bipyramid 3 4 3 1 1 12 /128
Dodecahedra 5036 3536 434 31 2 1 9040/1048576
Icosahedra 2 12 13 13 8 5 1 56/4096

a planar graph allows an AO link of k components, further giving the

antiparallel strong trace and the upper embeddability of a planar graph. In

fact, an AO link of one component can naturally give the antiparallel strong

trace of a planar graph. For example, Table 1 indicates that 4-pyramid,

6-pyramid, 3-prism and 5-prism have more than one antiparallel strong

trace. For a 3-regular planar graph G, if the graph G allows the AO link

diagram D(G) of one or two components, G must be upper-embeddable

since the graph G can be cellularly embedded on the orientable surface

obtained by applying Seifert’s algorithm to D(G). Otherwise, G must not

be upper embeddable. For a non 3-regular planar graph H, if H allows

the AO link diagram of one or two components, the graph H must be

upper embeddable. Otherwise, the graph H will be splitted into some

3-regular planar graphs by dividing each non 3-degree vertex into some 3-

degree vertices [15]. The upper embeddability of H can be finally given by

further checking whether the resulting 3-regular planar graphs allow the

AO link diagram of one or two components using the software“AO Link”.

Hence the software“AO link” can be used to check whether a planar graph

G is a upper-embeddable graph. As a result, all polyhedrons involved in

Table 1 are upper-embeddable graphs.
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