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Abstract

How to determine the number and folding pathway of ssDNA
strands assembling DNA polyhedrons are the fundamental prob-
lems in DNA nanoassembly. In this paper, the related mathemati-
cal problems are presented by introducing antiparallel oriented links
(AO links) to describe the topological structures of DNA polyhe-
drons, that is, how to give all AO link diagrams based on any 2-
connected plane graph and their link components. We demonstrate
that each AO link diagram must be isotopy equivalent to a special
AO link diagram with even tangle edges by defining “Node Move”
operations on vertex nodes. By further giving the relationship be-
tween AO link diagrams and edge-weighted plane graphs, two algo-
rithms are established to calculate all AO link diagrams and their
link components. Based on these two algorithms, a software “AO
link” has been developed in Fortran language, giving all AO link di-
agrams and their link components only by inputting a planar graph.
Also, the other three versions of the software are established to elim-
inate isotopy classes of AO link diagrams. This work not only reveals
some important properties of AO link diagrams but also provides
an important tool for related chemical and mathematical problems.
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1 Introduction

In knot theory, a knot is a closed simple curve embedded in the 3D space
and a link is a finite disjoint collection of knots [1]. With the rapid de-
velopment of DNA nanotechnology, many mathematical knots and links
have been realized in the nanostructures of DNA polyhedra [2,3]. For
example, some polyhedral knots were formed by folding a long DNA sin-
gle strand, such as DNA tetrahedron [4], DNA triangular prism [5], DNA
pyramid [6], DNA Pentagonal pyramid [7] and so on. Also, some cova-
lently closed polyhedral catenanes were assembled from more than one
single DNA strand, such as DNA tetrahedra [8,9], DNA cube [10], DNA
Triangular bipyramid [11], DNA Octahedra [12,13] and so on. Obviously,
the number and entanglement of ssDNA strands plays an important role
in the formation of the structure of DNA polyhedra. Therefore, how to
determine the number and folding pathway of ssDNA strands assembling
DNA polyhedrons become the fundamental problems in DNA nanoassem-
bly. To address it, some mathematical methods have been employed to
characterize the topological structures of DNA polyhedron.

A DNA polyhedron can be represented as a compact orientable surface
(called a thickened graph) by treating each double helix edge as a band
having oriented boundary curves. Jonoska and Saito investigate the maxi-
mum and minimum numbers of ssDNA strands forming DNA polyhedrons
with double helical edges by using the boundary curves of the thickened
graph [14]. Also, Jonoska, Seeman and Wu prove that every connected
multigraph permits a thickened graph with one boundary curve [15]. In
fact, one boundary curve can be defined as an antiparallel strong trace of
the graph such that no edge is traversed more than once in each direction.
Fijavz, Pisanski and Rus characterize the graphs which admit parallel and
antiparallel strong traces [16]. Then, Cheng, Deng and Diao further show
that the strong traces of certain 2-connected plane graphs can be obtained
by using thickened graphs constructed with only two types of vertex junc-
tions [17]. These works provide some possible approaches to describing
some DNA polyhedrons folded by one ssDNA strand.

Polyhedral links, the interlinked and interlocked architectures in poly-
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hedral shape, have also served as the important mathematical models for
describing the structural properties of DNA polyhedra [18-26]. In these
works, some polyhedral knots based on platonic polyhedra and truncated
polyhedra have been constructed by minimizing the number of link com-
ponents [25,26]. In fact, each polyhedral knot determines an antiparallel
strong trace of the polyhedron. Meanwhile, all polyhedral links based on
tetrahedra [27], trigonal prism [28,29], trigonal bipyramid [30,31] and octa-
hedra [32] have been calculated by considering the antiparallel orientation
of each tangle edge. These results provide all topological structures based
on these four polyhedrons when they are assembled from one or more ss-
DNA strands. However, these works need all antiparallel orientations of
polyhedral links determined in advance. This is a very tricky job to avoid
the conflict orientation produced by any two adjacent tangle edges.

In this paper, antiparallel oriented links are defined to characterize
the topological structures of DNA polyhedrons. First, we show that each
AO link diagram can be continuously deformed into a special AO link
diagram having even tangle edges by introducing an isotopy transform
“Node Move” to a series of vertex nodes. Then, we establish the relation-
ship between AO link diagrams and edge-weighted plane graphs by further
exposing the properties of AO link diagrams. Based these results, two al-
gorithms have been established for calculating all AO link diagrams based
on a 2-connected plane graph and their link components. Also, a software
“AO link” has been developed in Fortran language based on these two al-
gorithms, which can give all AO link diagrams and their link components
only by inputting a planar graph. Meanwhile, the other three versions of
the software are established to eliminate some isomorphic weighted graphs
leading to the isotopy link diagrams. As examples, all AO link diagrams
based on some common polyhedrons including pyramids, prisms, bipyra-
mids, dodecahedra and icosahedra and their link components have been
calculated by our software. Our work not only reveals some important
properties of AO link diagrams but also provides a tool to give all topo-
logical structures for DNA polyhedrons as well as the antiparallel strong

trace and the upper embeddability for a plane graph.
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2 Defining AO link diagrams

Some basic concepts, terminology and notation are given in advance.

A 2-tangle is two strands twisting against each other in antiparallel
directions. A 2-tangle T have four endpoints in the plane, named as NW,
NE, SW and SE, as indicated in Fig. 1(a). The NW and SW ends are
defined as head of T, and the NE and SE ends are defined as tail of T.
The 2-tangle T is called positive or negative according to the SW end
entering or exiting 1. The reverse of T, denoted by —T, is obtained from
T by reversing the direction of each strand. In Fig. 1(b), the 2-tangles Ty,
Ty and T3 are all positive, and their reverses —Ty, —T7 and —T5 are all

negative.

03 04 '03 -04 V3 V4

Figure 1. (a) The sum for the 2-tangles T" and T’ surrounded respec-
tively by a circle; (b) The 2-tangles Ty, T1 and T», and their
reverses —Tp, —T1 and —T%; (¢) The 0-node Oy, its reverse
—0g, and the k-node Vi, for k = 3,4.

A k-tangle is composed of k (k € Zt > 2) strands such that each strand
is oriented counterclockwise. A k-tangle is called a k-node, denoted by Vj,
if each strand crosses the other two strands alternately. A k-tangle having
no crossing, denoted by 0y, is called 0-node, as illustrated in Fig. 1(c).
The reverse of a k-tangle Ok, denoted by —O, is obtained by reversing the
direction of each strand.The sum of two 2-tangles T and T, denoted by
T+T', is the 2-tangle obtained by gluing the NE and SE end of T together
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with the NW and SW end of T according to the orientation of their ends
(Fig. 1(a)). A 2-tangle having 2n (n € N) crossings, denoted by Tb,,, is

called even. Similarly, an odd 2-tangle Ts,11 is a 2-tangle having 2n + 1
crossings. Note that 75,1 is coincident with —T5,41 by a 180-degree
rotation, and they are distinguished by their head or tail.

Let L be any given oriented alternating link. Without loss of generality,
we can suppose that L be reduced and have no nugatory crossing. Given
any oriented alternating link diagram D of L, there must be a 2-connected
plane graph G’ corresponding to D according to the checkerboard coloring
of D (Fig. 2) [33]. For the graph G’, each maximum path with all interior
vertices having degree 2 is replaced with an edge, and the resulting graph G
is a 2-connected plane graph having no vertex of degree 2. If each edge e of
G is exactly corresponding to a 2-tangle T, the link diagram D is called an
antiparallel oriented link diagram or an AO link diagram (corresponding
to the plane graph G), and the link L is called an AO link. In particular,
the AO link L is called an AO polyhedral link if G is a 3-connected plane
graph.

Conversely, given any 2-connected plane graph G, each edge is replaced
by a 2-tangle, and connect two adjacent endpoints of two tangles along
each face of G, the resulting oriented link diagram is exactly an AO link
diagram D(G). If G has a vertex v of degree 2, the maximum path P
containing v is corresponding to a 2-tangle in D(G), which are the sum
of all 2-tangles corresponding to all edge of P. Evidently, D(G) also can
be constructed from the plane graph resulted by replacing the path with
an edge. Hence, we can suppose that the plane graphs involved in this
paper are all 2-connected and have no verter of degree 2. According to
our construction method, any AO link diagram can be obtained from a
2-connected plane graph G, as illustrated in Fig. 2. In addition, the k-
tangle of D(G) corresponding to each vertex of G is called the vertex node
of D(G). In Fig. 3, D(G) have two 03 and two —03 as vertex nodes.

If G is a plane graph of a polyhedron P, the diagram D(G) can be
transformed into an AO polyhedral link L(G) by recovering P from G
according to the plane projection from the inside out. In fact, a polyhedron

has identical faces in any plane drawing since any 3-connected planar graph
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can be uniquely embeddable on the sphere. Therefore, AO polyhedral link
diagrams don’t depend on any plane graph of the polyhedron P, which

can be constructed from any plane graph of P.

T, -T,
e, IO €7 (i=1,3,4,5)

checkerboard
coloring

Figure 2. The link diagram D of the link L determines a plane graph G
according to the checkerboard coloring of D; Conversely, an
AO link diagram D(G) can be obtained from G by replacing
each edge e; with the 2-tangle Th, T» or —T>(1 < i < 6),
and the AO link L(G) can be recovered from D(G).

3 Some properties of AO link diagrams

In this section, some properties of AO link diagrams will be given. Firstly,
we can obtain the following lemma according to the construction of AO

link diagrams.

Lemma 1. Let D(G) be any AO link diagram corresponding to the plane
graph G. Any vertex node n, of D(G) must be a 0-node Oy or ils reverse
—0yx, where k is the degree of the corresponding verter v of G.

Proof: According to the construction of D(G), the vertex node n, is
composed of some disjointed arcs such that each arc connects two adjacent
endpoints of two tangle edges. The number of these arcs are exactly equal
to the number of these edges incident to the vertex v in G. Therefore, the
vertex node n, is composed of k arcs such that any two arcs have no any

crossing according to the construction of AO link diagrams.
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Also, for the vertex node n,, each arc connecting two adjacent end-
points of two tangle edges will inherit a clockwise or anticlockwise orien-
tation. If an arc [ of the vertex node n, is oriented clockwise, two arcs
adjacent to [ must be oriented clockwise due to the antiparallel orienta-
tions of two tangle edges connected to I. And so on, each arc of n, is
oriented clockwise. Similarly, we can show that each arc of n, is oriented
anticlockwise if an arc of n, is oriented anticlockwise. Hence the vertex
node n, must be 0-node 0y or its reverse —0. [

An AO link diagram D(G) only having positive and even 2-tangle
edges, denoted by DF(G), is called a positive EAO link diagram, as shown
in Fig.3(b). In fact, a positive EAO link diagram D¥(G) must exist for
any plane graph G such that each link component of D¥(G) walks clock-
wise along exactly a face of G. Hence each vertex node of D¥(G) must be
a 0-node 0 according to lemma 1.

In any given AO link diagram, a node —0y is transformed into a k-
node Vi when a crossing of each 2-tangle edge incident to the —0y is moved
continuously into it, as illustrated in Fig. 3(a). This transformation, called
Node Mowve, change the node —0y to a k-node Vj. Evidently, Node Move is
an isotopy transform, and the link type of D(G) is unchanged under Node
Moves. An oriented link diagram D*(G) is called a special AO link diagram
or SAO link diagram if there exists a plane graph G such that each edge
and each vertex are corresponding to a 2-tangle edge and a vertex node 0Oy
or Vi, of D*(G), respectively. Also, each such k-node Vj, is called a vertex
node of D*(G). A SAO link diagram D*(G) based on a tetrahedron G is
given in Fig.3(b), which is obtained from an AO link diagram D(G) by
applying Node Move to each vertex node —03. Then we have the theorem

below.

Theorem 1. FEach AO link diagram is isotopy equivalent to a SAO link di-

agram, and each SAO link diagram only have positive even 2-tangle edges.

Proof: Given any AO link diagram D(G), D(G) can be obtained from
a plane graph G by replacing each edge with a 2-tangle T. Hence each
vertex node of D(G) is a 0-node 0y, or its reverse —0j, according to lemma

1. For any vertex node —0j of D(G), —0x must be connected to the head
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(a) /1\/ Node Move y j% NodeMove_(_\ .
—
AT TR

0,

Node Move

Figure 3. (1) The Node Move is respectively applied to the vertex
nodes —03 and —04, and each pair of red arcs indicates a
part of a 2-tangle edge. (2) The AO link diagram D(G), the
SAO link diagram D®(G) obtained from D(G) by applying
the Node Move to each —03, and the positive EAO link
diagram DF(G) obtained from D3 (G) by replacing each V3
with a 3-tangle 03.

of a negative 2-tangle —75s,, 11, the tail of a positive 2-tangle T5,,1, or the
head or tail of a negative even 2-tangle —T5,, according to its orientation.
Also, we have

Toms1 = Tom+T1, —Tomsr = —T1 +Top, and —Toy, = =11+ 1o + 171,
where the“ 77 7 or “—T1 ” end in Toy41, —Tom+1 and —T5,, is connected
to the vertex node —0j. Hence applying Node Move to the vertex node
—0y, the vertex node —0f is changed into a k-node V). Meanwhile, each
odd tangle is changed into an even tangle, and each even tangle —75,,
is changed into the odd tangle —T%,,+1. Repeatedly apply Node Move to
each vertex node —0y, of D(G) until each vertex node is 0y or Vj,. Evidently,
the resulting link diagram D*(G) is a SAO link diagram, which is isotopy
equivalent to D(G).

Note that each edge of D*(G) must be a positive even 2-tangle. If an
odd or negative tangle appears in D*(G), the tangle may be the positive
tangle To,,+1 or the negative tangle —T5,,11 or —T5,,. According to the
orientation of the 2-tangle, there is at least one node —0j, that is connected
to the head of —T5;,41, the tail ofTs,, 41, or the head or tail of —T%,,. This
contradicts that D*(G) have no node —0;. The prove is finished. O
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The reverse of a link diagram D, denoted by —D, is also an AO link
diagram that are obtained by reversing the orientation of each component.
Hence the reverse of a SAO link diagram only contains vertex nodes —0y or
—Vi and negative even 2-tangle edges. Hence we can obtain the following

corollary by the theorem 1.

Corollary. (a) Fach AO link diagram is isotopy equivalent to the reverse
of a SAO link diagram; (b) Each DNA polyhedron can be designed as a
SAO link having DNA double helical edges of the same length.

Also, for any given AO link diagram D(G), we have the lemma below.

Lemma 2. Fach oriented link diagram obtained from D(G) by reversing
the orientations of some link components is not an AO link diagram except
for —=D(G).

Proof: Let D?(G) be an AO link diagram obtained from D(G) by revers-
ing the orientations of some link components. By the theorem 1, D(G) is
isotopy equivalent to a SAO link diagram D*'(G). Then D?(G) is isotopy
equivalent to the oriented link diagram D*2(G) obtained from D*!(G) by
reversing the orientations of the corresponding link components. If D*2(Q)
have a non 2-tangle edge, D*(G) must not be an AO link diagram. Other-
wise, D*2(G) must have a negative 2-tangle edge —Tb,,. For D*2(G), each
vertex node connected to —75, must be —0; or —Vj, and each 2-tangle
edge connected to the —0; or —Vj; must be negative due to their even
crossing number. And so on, any vertex node can reach to the vertex node
—0p or =V, in D*2(G) by a serial of negative 2-tangle edges and vertex
nodes —0; or —V; when G is connected. Therefore, each vertex node in
D*?(G) must be the node —0j, or —V},, and each 2-tangle edge is negative.
Then D*2(G) is the reverse of D*}(G) and D?(G) is isotopy equivalent to
the reverse of D*2(G). O

According to theorem 1, any AO link diagram D(G) can be transformed
into a SAO link diagram D?(G) by changing each vertex node —0j to a
k-node Vj. Collecting each vertex of G corresponding to each node —0y
gives a subset S of V(G). Conversely, given any subset S, a SAO link
diagram D?*(G) can be obtained from a positive EAO link diagram D (Q)



84

by replacing each corresponding 0-node 0j with a k-node Vj. Also, an AO
link diagram D(G) can be obtained from D*(G) by applying the inverse
transformation of Node Move to each vertex node V) according to the
theorem 1. Hence the set S can give the diagram D(G), and we have the

lemma 3.

Lemma 3. All AO link diagrams obtained from any given plane graph
G and all subsets of the vertex set V(G) can determine each other if only
considering the parity of each 2-tangle edge.

Proof: Let D;(G) and D2(G) be two AO link diagrams given by any
subset S of V(G). We only need to show that Di(G) and D(G) have
the same parity for any two corresponding 2-tangle edges. By theorem
1, the AO link diagrams D;(G) and Dy(G) are isotopy equivalent to two
SAQ link diagrams D1o(G) and D2o(G), respectively. Then Dy(G) and
Dy (G) have the same vertex nodes and have the positive even 2-tangle
edges. Through applying the inverse transformation of Node Move to one
same vertex node Vi in D1o(G) and Doy(G), all 2-tangle edges connected
to Vi are changed into odd 2-tangles, and the parity of the remain 2-
tangle edges is unchanged in Dio(G) and Dyo(G). Repeatedly applying
this operation to the remaining k-nodes, D;(G) and D3(G) can recovers
respectively from D1 (G) and Dag(G). Accordingly, any two corresponding
2-tangles in D;(G) and D2(G) have the same parity. O

According to the lemma 3, all AO link diagrams only having one or
two crossings for each 2-tangle edge can be given by considering all subsets
of the vertex set V(G). These AO link diagrams can generate all AO link
diagrams by changing the crossing number according to the parity of each
2-tangle. Hereafter, for convenience, we suppose that all AO link diagrams
only having one or two crossings on each 2-tangle edge.

Let P be a 2-connected simple planar graph without 2-degree vertices
that is a triple consisting of a vertex set V(P), an edge set E(P), and an
incident relation R(P) that associates with each edge two vertices called
its endpoints. Let G be a plane graph of P, which have the same vertex
set, the edge set and the incident relation as P.

For any subset S of V(G), an edge e of the plane graph G will be
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weighted with 2 if the edge e is incident with exactly one vertex of S.
Otherwise, the edge e will be weighted with 1. The resulting weighted
graph, denoted by W,(G), depend only on the subset S and the incident
relation R(G), not on the plane graph G. Hence the weighted graph can
be naturally extended to the planar graph P from G.

For the link diagram D(G) determined by the set S, each vertex in S is
corresponding to a vertex node —0; of D(G). In D(G), each 2-tangle edge
connected exactly to one vertex node —0j must have the odd-crossing
number and the remaining 2-tangles all have the even-crossing number.
Hence, in W,(G), each edge corresponding to an odd 2-tangle edge must
have weight 1 and each edge corresponding to an even 2-tangle edge must

have weight 2. Hence, we have the theorem 2.

Theorem 2. Any AO link diagram D(G) and its reverse —D(G) deter-
mine an identical weighted graph Ws(G). Conversely, any weighted graph
W, (G) also determine two AO link diagrams D(G) and —D(G) for a sub-
set S of the vertex set V(G).

Proof: There are two subsets S and S¢ of V(G) determined respectively by
D(G) and —D(G) according to the lemma 3. Let W, (G) and WE(G) be the
weighted graphs given respectively by the subsets S and S¢, respectively.
Note that the subsets S and S¢ are corresponding to all —0; nodes of
D(G) and —D(G), respectively. Then S and S¢ must be complementary,
that is S U S¢ = V(G). For each edge e of G, if S exactly contain one
endpoint of e, S¢ exactly contain the other endpoint of e. Hence the edge
e has the same weight 2 in W,(G) and WS(G). Otherwise, either S or
S¢ contain both endpoints of e. Also, the edge e has the same weight 1
in W5(G) and WE(G). Hence Wy (G) and WE(G) are the same weighted
graph. Also, from the point of view of link diagrams, each edge must
have the same weight in W(G) and WE(G) since each 2-tangle have the
same parity in D(G) and —D(G). Conversely, given the weighted graph
W,(G), by ignoring the orientation, an edge of G is replaced by an odd
2-tangle if its weight is 2 in Wy (G). Otherwise, this edge is replaced by an
even 2-tangle. According to the construction method in the section 2, an

unoriented link diagram can be obtained. By lemma 3, the link diagram
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must allow two AO link diagrams D(G) and —D(G) determined by the
subset S and S°¢. In fact, D(G) can be easily obtained from the unoriented

link diagram according to the subset S if each corresponding vertex node is
assigned to —0j and the remaining vertex nodes are assigned to 0. Also,
by lemma 2, the link diagram only allows an AO link diagram D(G) and
its reverse —D(G). Hence the AO link diagrams D(G) and —D(G) are
determined completely by the weighted graph W (G). |

4 Two Algorithms for AO link diagrams

In this section, the number of elements of a set * is denoted by |*|. Let P be
a simple 2-connected planar graph defined in the section 3. Let n = |V (P)]
and m = |E(P)| be the number of vertices and edges of P, respectively.
Let ny be the number of faces of P such that ny = m —n + 2. For any
subset S of V(P), an incidence matrix of the weighted graph W (P), called
a weighted incidence matriz, can be obtained from the incidence matrix of

P by replacing 1 with the weight w(e) for each edge e.

4.1 An algorithm for generating AO link diagrams

According to theorem 2, all AO link diagrams and their reverses based on
the plane graph G of P can be calculated from the incidence matrix M of

P by using the algorithm below.

Algorithm 1.

Input: A n x m incidence matriz M of P.

Idea: Generating the n-dimensional arrays of 2™ such that each com-
ponent is 0 or 1. These arrays are numbered as X1, Xo, -+ , Xon.

For each array X; (1 <i<2" ), each nonzero value w in the j-th row
of M is converted to 1 from 2 or to 2 from 1 if the j-th component of X;
is 1. Otherwise, the value w is unchanged in the j-th row. When j takes
all components of X;, a weighted incidence matriz M; of P is obtained.
Collecting all weighted incidence matriz M; forms the set M.

Then delete any isomorphic weighted graph. Firstly, all weighted inci-
dence matriz M; in M are divided into finitely many sets Gy, (k < m)
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according to the number k of the columns containing 2 in M;. Then delete
any equivalent matrices in Gy, and merge all sets Gy to replace the set
M.

Initialization: i=1, j=1, k=1, M = ¢

Iteration:

1) Fori < 2™, we have the following iteration. For j < n, each nonzero
value w in the j-th row of M is converted to 1 from 2 or to 2 from 1 if
the j-th component of X; is 1. Otherwise, the value w is unchanged in the
j-th row. Then the index j turns to j + 1 for the next loop, and iterating
until j = n+1. The resulting weighted incidence matrix M; is collected to
the set M. Then the indez i turns to i + 1 for the next loop, and iterating
until i = 2n+1. All weighted incidence matriz M; are collected to M, and
they are numbered from 1 to 2™.

2) Through calculating the number of the columns containing 2 in each
weighted incidence matrix in M, all matrizes of M are divided into the
sets Gy, (0 < k < s) such that any two matrizes have the same number of
the columns containing 2 in Gy,.

For k < s, we have the following iterate on the set Gy,.

For i < |G|, through the permutation of the row vectors of the i-th
matrix in Gy, the resulting matrices of n! are compared with each matriz
with marked numbers higher than i in Gi. If two matrices have exactly
the same column vectors, then delete the matriz with the marked number
higher than i from Gy. Subsequently, renumber those surviving matrices
in order. Then the index i turns to i + 1 for the next loop, and iterating
until i = |Ggl|. If i = |Gg| , this iteration stops and the index k advances.
The iteration on Gy continues until k = s + 1. All sets G, (0 < k < s)
are merged to replace all elements of the set M. Output the set M.

*2) Suppose that G is a polyhedron with the symmetry group K gen-
erated by some symmetry operations. Each weighted incidence matriz M;
can induce an ordered array Y; of edges such that the weight of the k-th
edge is taken as the k-th component for 1 < k < m. These ordered arrays
are collected to give the set Y, which inherit a marked number from each
weighted incidence matriz in M.

For i < ||, through applying each symmetry operation of K to the
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ordered array Y;, the resulting ordered arrays of |K| are compared with
each ordered array Y; with marked number j higher than i in Y. If the
ordered array Y; is the same as one of these arrays of |K|, Y; is removed
from Y and the corresponding matriz M; is deleted from the set M. At
last, renumber those surviving arrays and matrices in their original order.
Then the index i turns to i+ 1 for the next loop, and iterating until i = |Y).
Output the set M.

According to the Algorithm 1, the weighted incidence matrixes of all
weighted graphs for the planar graph P can be generated in the part 1)
of iteration process. Also, the part 2) of iteration process are devoted to
deleting the isomorphic weighted graphs through the equivalence of their
weighted incidence matrixes. If the graph P is a polyhedron with high
symmetry group K, we will use the algorithm of the part *2) to eliminate
the equivalent weighted incidence matrixes by using all symmetric opera-
tions from K. Without considering the isomorphism of weighted graphs,
Algorithm 1 primarily involves generating both n-dimensional arrays and
weighted incidence matrixes, resulting in a time complexity of O(n - 2™).
Consequently, we estimate that Algorithm 1 can be applied to a planar
graph with approximately n=26 vertices when the maximum running time
is set to one second.

Note that all weighted incidence matrixes can be computed by the
incidence matrix M of P according to the Algorithm 1. Hence any two
plane graphs of P have the same weighted incidence matrixes. Once a
plane graph G of P is given, then according to theorem 2, all weighted
graphs of G determined by all weighted incidence matrices can give all AO
link diagram based on G. When P is a polyhedron, the construction of
AO link diagrams only depends on P since all faces don’t change in any

plane graph of P.

4.2 An algorithm for calculating link components

For any 2-connected plane graph G, each cycle bounded by each face is
called a face cycle of G. Here each face of G is given by recording each edge

clockwise or anticlockwise along its face cycle. Evidently, a plane graph
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can be determined by giving all faces. For any 2-connected planar graph
P, the incidence matrix M can be used to generate all faces by simplifying
the planarity algorithm [34], that exactly give a plane graph of P.

For the plane graph G, each edge e is shared by two face cycles, hence
there are two adjacent edges of e on each face circle. These four adjacent
edges, denoted by eg, €4, €, and e4, are called “the starting edge”, “the
adjacent edge”, “the opposite edge” and “the diagonal edge” according
to the position relative to e (Fig. 4). The four adjacent edges together
with the edge e forms four pairs of edges [e, e4], [e, eq], [e, €0] and [e, eq],
respectively. In fact, each pair of edges describes one arc connecting two
adjacent endpoints of two 2-tangle edges for an AO link diagram. Hence
each pair of edges is also called an arc. Evidently, each link component can

be recorded by some pairs of edges when walking along this component.

Sidee, e i

T ) e, T

Figure 4. The edge e and its four adjacent edge es, eq, €, and e4 in
the plane graph G (left graph); Four pairs of edges e, es],
le, ea], [e;e0] and [e, eq] respectively indicates four red arcs
of an AO link diagram D(G), where each arc connect two
2-tangles T surrounded respectively by a circle(right graph).

Note that the link components of any given AO link diagram D(G)
depend on the parity of the crossing number of each 2-tangle, not its
orientation. Hence each link component of D(G) can be calculated directly
according to the corresponding weighted plane graph W (G). For each
edge e, the related four pairs of edges are divided into two sets. If w(e) =1,
two pairs of edges indicating two arcs, that are [e, es] and [e, e,], form one
2-element set, and the other 2-element set are formed by the pairs of edges
[e,eq] and [e, eq]. Otherwise, the pairs of edges [e, es] and [e, e4] form one
2-element set, and the pairs of edges [e, e,] and [e, e,] form the other 2-

element set. Therefore, each such 2-element set can be given according
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to the weight of each edge of W(G), and any two 2-element sets will be
further merged into a set of edge pairs if exactly two edge-pairs from these
two 2-element sets contain an identical edge. At last, all pairs of edges are
partitioned into k (k € Z ) classes, and each link component of any AO
link diagram is given as a class of edge pairs. Hence the link component
of all AO link diagrams based on some plane graph of P can be calculated

by using each weighted incidence matrix of P as follows.

Algorithm 2.

Input: The incidence matriz M(P) of a planar graph P, and the set
M. Collecting each weighted incidence matric My of P (1 < k <|M]|).

Idea: The edge set E(P) and the vertex set V(P) obtained from M (P)
are collected for giving the face set F.

Firstly, find a face f of P. Starting from any vertex v of P, search all
edges incident to v, and according to the other endpoint of each incident
edge, search all edges incident to these endpoints. And so on, the search
will stop until the vertex v appears again. This cycle starting and ending
with v is a minimum cycle containing v, that must be a face f of P. Here
the face f is represented as an ordered set of edges by recording each edge
along the boundary. Add the face f and its unbound face to the set F.

Secondly, find all faces for determining a plane graph of P. For the
subgraph Pr induced by E(P)— E(F) (called the fragments of P about F ),
take any connected component g (i.e. a fragment) from Px, and find a
path p from the component g such that only both endpoints of p belong to
V(F). Then the path p is added to a face f, of F such that both endpoints
of p belong to V(f,). The face f, is split into two faces fq1 and fuo by p.
Delete f, from F and add the faces f,1 and fu,o to F. And so on, each
face as an ordered set of edges is collected into F, determining a plane
graph G of P.

At last, give all link components of each link diagram based on G ac-
cording to each weighted incidence matriz My in M. For each edge e; of
E(G), find two faces f;1 and fio containing e; from F. Two edges e;s and
eio adjacent to e; on the face f;1, and two edges e;, and e;q adjacent to
e; on the face fio give an ordered four-bit array (eis, €ia, €id, €io) Such

that the edges e;s, €;q share a common vertex. The edge e; and its four
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adjacent edges induces four pairs of edges, which are divided into two sets
O;1 and O;a according to the weight w(e;) in My, and the obtained four-bit
array. These two sets O;1 and O are compared with each element O (i.e.
a set collecting some pairs of edges) in the set O. If the set O; or O
and O have a common edge, the set will be merged into the set O as a new
set collecting some pairs of edges. Otherwise, this set is collected as a new
element into O. When each edge in E(G) is taken, each link component
of the link diagram determined by My will be given as an element in O.

Initialization: F = ¢, O = ¢ and S = ¢.

Iteration: For |F| < ny = m —n+ 2, the subgraph Pr induced by
E(P)— E(F) is given. Take any connected component g of Pr, and find a
path p from g such that only both endpoints of p belong to V(F). The path
p is added to a face f, of F such that both endpoints of p belong to V(f,).
The face f, is split into two faces fq1 and fuo by p. Delete f, from F and
add the faces fo1 and fqo to F. This iteration continues until |F| = ny.
If |F| = ny, each face as an ordered set of edges has been collected into F,
which determine a plane graph G of P.

For k < | M|, we have the following iteration on the weighted incidence
matriz M.

For i < m, we have the following iteration on E(P). For each edge ¢;
of E(P), find two faces fi1 and fia containing e; from F. Two edges e;s
and e;, adjacent to e; on the face fi1, and two edges e;, and e;q adjacent
to e; on the face fio give an ordered four-bit array (e;s,€ia, €io,€id) Such
that the edges e;s,e;q share a common vertex. If w(e;) =1 in My, [e;, €;s)
and [e;, e;o] are both collected into the set O;1, and [e;, e;q] and [e;, e;q] are
collected into the set O;q.Otherwise, [e;, e;q] and [e;, e;s] are collected into
the set O;1, and [e;, e;q] and [e;, e;] are collected into the set O;. Then
the sets O;1 and O;o are compared with each element O in the set O. If the
set O;1 or Oz and O have a common edge, it will be merged into the set
O. Otherwise, the set will be collected into the set O. The index i turns to
t+ 1 for the next loop, and iterating until i = m + 1. Each component of
the link diagram determined by the matriz My, can be given as an element
in O. The set O is copied as a new element into the set S. Deleted all
element of O.
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The indez k advances and the above iteration continues until k = | M|+
1. All link components of each link diagram determined by all weighted

incidence matrizes are collected into S.

In Algorithm 2, all faces determining a plane graph G are randomly
generated by the incidence matrix of P. Hence the plane graph G is also
randomly given unless P is a polyhedron. If we need to calculate all link
components of each AO link diagram based on a given plane graph H,
each face of H can be entered directly instead of randomly generating all
faces of some plane graph in Algorithm 2. Once a plane graph G is given,
the complexity of Algorithm 2 depends primarily on the number of edges
m and the number of faces ny, and the length of the longest face cycle

my,... in G, yielding a worst-case complexity of O(m? - my, ).

5 Software for calculating AO link diagrams

According to Algorithms 1 and 2, a computer software “AO link” has
been developed in Fortran language, which can give all AO link diagrams
based on any plane graph and their link components only by inputting an
incidence matrix of the graph. The executable and input file of the soft-
ware “AO link” are both given in Supplementary material. Note that the
AO link diagrams obtained by the software “AO link” may contain many
isotopic link diagrams resulted by the isomorphism of weighted graphs.
The software “AO link” can be modified to another version “AO1 link”
by adding the part 2) of Algorithm 1, which can eliminate all isomorphic
weighted graphs based on any plane graph with less than 12 vertices. Take
tetrahedra for example, the edges and vertices of tetrahedra G are notated
in Fig.2. By inputting an incident matrix of G according to the subscripts
of edges and vertices, there are three different weighted incident matrixes
can be obtained by using the software “AO1 link” as follows.
“result_label= 1

matrix =

— O
S = =
= = O
[ e
o = O
= o O
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0 001 11
result_label= 2
matrix =

110 2 00

01 1 0 2 0

101 0 0 2

000 2 2 2
result_label = 3

matrix =

21 0 2 0 0

01 2 0 2 0

2 0 2 0 01

0 00 2 2 17
The above three weighted incident matrixes determine three AO link di-
agrams, and the link diagram D(G) in Fig.2 is determined by the matrix
labeled as 3. According to these three matrixes, the software “AO1 link”
can give each link component of three AO links as follows.
“ result_label = 1

one_branch=12 2 3 3 11 2 /Jone_branch=one link component
one_branch= 14 46 6 1 1 4

one_branch= 2 4 4 55 2 2 4

one_branch= 3 55 6 6 3 3 5

branches_num = 4 //branches _num=the number of link components
result_label = 2

one_branch = 1 2 112

one_branch = 1 4 533664422556¢611
branches_num = 2

result_label = 3

one_branch= 122336 655224466112
one_branch= 1445533114

branches_num = 2

branches_num = 2, results_num = 2

branches_num = 4, results_num = 1"

Each link component is given as a serial of the subscripts of edges of
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G in above results. The first AO link diagram have 4 link components
and the other two AO link diagrams have 2 link components. For all
pyramids, prisms, and bipyramids with less than 12 vertices, all AO link
diagrams based on these polyhedrons and their link components are given
in Supplementary material by using the software “AO1 link”. According to
these results, the numbers of these AO link diagrams are given according to
the number of their link components in table 1. Also, the total number of
these diagrams are compared with the total number of all AO link diagrams
obtained by using the software “AQ link”, as shown in table 1. Note that
a tetrahedral link of four components [9], a 4-pyramid knot [6], a 3-prism
knot [5], a 3-bipyramid link of six components [11], an octahedral link
of eight components [12], and so on, have been successfully synthesized as
DNA polyhedrons. In addition, the software “AQO link” is also applicable to
calculating the topological structures of the more complex DNA polyhedra
[35], which can be obtained from polyhedra (or truncated polyhedra) with
double or multiple edges according to our algorithm.

If the planar graph P is a polyhedron with high symmetry group K, the
software “AO1 link” can be revised by replacing the part 2) with the part
* 2) according to the Algorithm 1, in order to eliminate the isomorphic
weighted graphs by using all symmetric operations in K. For example,
two software "Dodecahedra” and ”Icosahedra” based on dodecahedra and
icosahedra are established by modifying the software “AO link”, and their
executable files and input files are included in Supplementary materials.
Both of dodecahedra and icosahedra belong to the point group I, which
have 60 symmetric operations generated by 1 C5 axis, 1 Cy axis and 3
Cj5 axes perpendicular to each other. Through respectively applying these
symmetric operations to the edge sets of these two polyhedrons, two sym-
metry groups Kp and K; base on their edge sets can be generated to
eliminate the isomorphic weighted graphs. As a result, the total number
of all AO link diagrams based on icosahedra are reduced to 9040 from
1048576 by using the symmetry groups Kp. Also, the total number for all
AO link diagrams based on dodecahedra are reduced to 56 from 4096 by
using the symmetry groups K7j.

In addition, the software “AO link” can also be used to check whether
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Table 1. The list of the number of AO polyhedral links of k link com-
ponents. N denotes the number of all AO link diagrams based
on a polyhedron, and M denotes the number of all AO link di-
agrams obtained by deleting any isomorphic weighted graph.

k
Polyhedron 1 2 3 4 5/ 6 7] 8 |10|12]|20| M/N
tetrahedra 2 1 3 /16
4-pyramid 2 3 1 6 /32
5-pyramid 5 2 1 8 /64
6-pyramid 3 7 2 1 13 /128
3-prism 2 5 1 8 /64
cube 8 5 1 14 /256
5-prism 10 28 5 1 44 /1024
3-bipyramid 3 2 1 6 /32
Octahedra 1 3 1 1 6 /64
5-bipyramid 3 4 3 1|1 12 /128
Dodecahedra 5036 3536 434 31 2|1 9040/1048576
Icosahedra 2 12 13 13| 8| 5| 1 [56/4096

a planar graph allows an AO link of k& components, further giving the
antiparallel strong trace and the upper embeddability of a planar graph. In
fact, an AO link of one component can naturally give the antiparallel strong
trace of a planar graph. For example, Table 1 indicates that 4-pyramid,
6-pyramid, 3-prism and 5-prism have more than one antiparallel strong
trace. For a 3-regular planar graph G, if the graph G allows the AO link
diagram D(G) of one or two components, G must be upper-embeddable
since the graph G can be cellularly embedded on the orientable surface
obtained by applying Seifert’s algorithm to D(G). Otherwise, G must not
be upper embeddable. For a non 3-regular planar graph H, if H allows
the AO link diagram of one or two components, the graph H must be
upper embeddable. Otherwise, the graph H will be splitted into some
3-regular planar graphs by dividing each non 3-degree vertex into some 3-
degree vertices [15]. The upper embeddability of H can be finally given by
further checking whether the resulting 3-regular planar graphs allow the
AO link diagram of one or two components using the software“AQO Link”.
Hence the software“AO link” can be used to check whether a planar graph
G is a upper-embeddable graph. As a result, all polyhedrons involved in
Table 1 are upper-embeddable graphs.
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