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Abstract

We introduce semi-double trace and semi-strong trace inspired
by newly synthesized coiled-coil protein cages, a graph-theoretic
generalization of double trace, to model polypeptide nanostructure
self-assembly. Through multi-component double covers built from
semi-strong traces, we establish a topological assembly framework.
Crucially, we prove that double covers attain strong stability when
all components are semi-strong. This model resolves a fundamental
design challenge: determining oligomeric states via component counts
while establishing stability criteria through cyclic vertex figures.
These insights provide rigorous principles for engineering biomimetic
nanomaterials with programmable topological stability.
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1 Introduction

The self-assembly of biopolymers into nanostructures represents a frontier

in biomolecular engineering. While DNA nanotechnology has established

programmable geometric designs [1, 2, 6, 8, 11, 17, 18], seminal work by

Gradǐsar et al. demonstrated this potential through a tetrahedral cage [7],

where twelve helical-binding segments traverse triangular face edges twice.

Klavžar employed stable trace to develop a mathematical model that mimics

this self-assembly approach for nanostructure design [9]. This model has

been refined to better represent these structures [3–5,13,14].

Subsequent advances by Lapenta et al. [10] extended this paradigm with

a triangular bipyramid assembled from preorganized coiled-coil modules

(See Figure 1). Their decomposition into asymmetric or pseudosymmetric

subunits revealed the critical role of conformational flexibility: interfacial

positioning at N/C-termini preserved structural integrity, whereas rigid

topologies led to assembly failure.

Figure 1. (a) SBP19.a and SBP29.a use a rigid closed-loop design: N/C-
termini anchored at non-interface vertices restrict interfacial
edges with short peptide linkers. This setup limits structural
flexibility, causing assembly failure; (b) SBP19.b and SBP29.b
feature a flexible open-ended design: N/C-termini moved
to interface vertices, placing interfacial edges at path ends.
Central triangular edges are traversed once (low constraint),
while pyramidal edges are traversed twice (high stability).
This improves interfacial flexibility, allowing accurate cage
assembly [10].

Further innovation emerged through covalent cyclization strategies [12]

(See Figures 2 and 3). Subunit preorganization via split intein splicing
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enabled precise folding of tetrahedral designs, reducing maximum particle

diameter Dmax from 17.1 nm to 10.5 nm. This culminated in the trimeric

SB24 octahedron, a 109-kDa architecture comprising 24 segments, where

cyclization of the SB6 linker subunit induced significant conformational

compaction (Dmax from 25 nm to 9.4 nm), yielding the largest coiled-coil

protein origami (CCPO) assembly to date.

These nanostructures such as bipyramidal nanocages, tetrahedral coils,

and the SB24 octahedral complex exhibit a universal topological signature:

interfacial edges (e.g., attachment faces) are traversed exactly once, while

non-interfacial edges are traversed twice across their polyhedral frameworks.

This pattern manifests in bipyramidal systems through dual closed walks

(Figure 1), tetrahedral assemblies via paired trajectories (Figure 2), and

culminates in the SB24 complex’s three-walk configuration on an irregular

octahedron (Figure 3).

Figure 2. The bitrigon module structure of a two-chain coiled-coil
protein is formed by two single-chain coiled-coil dimers. [12].

Figure 3. (A) The SB24 protein complex forms when two nine-segment
subunits (SB9b and SB9c) and a six-segment peptide (SB6)
interlock, depicted by geometric shapes; (B) The viewing
angles of SB24 from left to right are side view, front view
and top view.
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In this paper, we employ a mathematical model to examine and define

intricate cage-like formations formed by attaching faces of given polyhedra

with the same degree, resulting in irregular polypeptide nanostructures. We

investigate the oligomeric state of these self-assembled structures, specifi-

cally the number of their components, and analyze whether the constructed

structures are stable or strongly stable. To support this, we extend the

concept of double trace by introducing the semi-double trace, defined as

a closed walk that traverses edges of Eulerian subgraphs exactly once

and other edges twice, to explore the relationship between mathematics

and polypeptide self-assembly. We further define the semi-strong trace to

represent more stable configurations and provide conditions under which a

semi-double trace is semi-strong. Additionally, we introduce double covers

with multiple components that are strong if each component is semi-strong.

Our model aims to elucidate the fundamental principles underlying these

nanoscale structures and provide a theoretical foundation for the future

design and synthesis of more complex biomimetic assemblies.

2 Preliminaries

2.1 Basic knowledge in graph theory

We will outline some basic terminology and results in graph theory that

will be adopted for this paper. The graphs discussed in this paper are finite,

connected, and simple except for a special case mentioned later. Some

basic knowledge in graph theory can be found in [15]. Let G be a graph

with vertex set V (G) and edge set E(G) respectively. Then the numbers

of vertices and edges in G are denoted by |V (G)| and |E(G)|, respectively.
Suppose uv is an edge of G. Let G− uv denote the graph obtained from

G by deleting the edge uv.

Denote a walk in G by W = v0e0v1e1 · · · vmemvm+1, whose terms are

alternatively vertices and edges and for every i = 0, 1, · · · ,m, where ei

denotes an edge connecting the vertices vi and vi+1. If v0 = vm+1, then

the walk is called closed. The walk W is called a trace (or path) if it

traverses each edge (or vertex) once, and the trace (or path) is called closed
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if W is closed. If W is a path, it can also be denoted by v0v1 · · · vm+1. A

closed trace of G is called an Euler tour if it traverses each edge of G

only once. If G contains an Euler tour, then we call G an Euler graph

or Eulerian. It is known that G is Eulerian if and only if it contains no

odd-degree vertices.

A graph G is cellularly embedded in a closed surface Σ if G is embedded

in Σ and any connected component of Σ−G is a 2-cell, referred to as a

face. Such an embedding is also known as a 2-cell embedding and can be

realized through a combinatorial embedding with a rotation system. The

maximum genus of G is known as the largest genus g(Σ) for orientable

surfaces Σ whereG has a 2-cell embedding, denoted by gM (G). Then Euler’s

formula yields that gM (G) ≤ ⌊β(G)
2 ⌋, where β(G) (= |E(G)| − |V (G)|+ 1)

represents the Betti number of G. Further, we call G upper-embeddable

if the equality holds. The upper-embeddability implies the graph achieves

maximum surface embedding genus, corresponding to minimal number of

faces. Then we have the following theorem.

Theorem 1. [16] Let G be a graph with even (or odd) Betti number. Then

G is upper-embeddable if and only if it contains a spanning tree such that

G− E(T ) contains no (or only one) odd component.

If G is upper-embeddable and β(G) is even, then this embedding is also

called a 1-face embedding and G is called strictly upper-embeddable.

2.2 Double traces and stable traces

Double trace has been a mathematical model for designing polypeptide

structures [3, 10]. A closed walk of a graph G that traverses every edge

of G twice is called a double trace. Let W = w0e1w1 · · · elw0 be a

double trace of G, with a length l. For any vertex v of G, let M ⊆ N(v),

where N(v) represents the set of vertices adjacent to v. We say that W

has an M-repetition at v if for all integers i such that vi = v and the

pair {vi−1, vi+1} is either contained in M or disjoint from M . Intuitively,

whenever we enter v from a vertex in M , we also exit to a vertex in M from

v. If an M -repetition at the vertex v satisfies |M | = d, then we call this

repetition a d-repetition (or a repetition of order d), as shown in Figure
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4. The M -repetition is called trivial if it satisfies M = N(v) or M = ∅. A
double trace is called antiparallel (or parallel) if any edge is traversed in

opposite (or the same) directions. A double trace that has no nontrivial

repetitions with order ≤ d is referred to as a d-stable trace. A strong

trace is a double trace that has no nontrivial repetitions. For example,

let P = v0e0v1 be a path and W0 = v0e0v1e0v0 be a walk of P . Then W0

is an antiparallel double trace of P and has a {v0} (or {v1})-repetition
at the vertex v1 (or v0) which is also a trivial repetition. Thus W0 is an

antiparallel strong trace of P .

We consider a double trace of a graph to be stable as long as each vertex

has no non-trivial repetitions without considering the directions of edge

traversal, although this stability can be reinforced by parallel traversals

that enhance edge rigidity and antiparallel traversals that promote vertex

flexibility, mitigating steric hindrance.

Figure 4. A {v1, v2, v3}-repetition of order 3 (marked in red) and
a {v4, v5, v6, v7}-repetition (marked in green) of order 4 at
vertex v with degree 7.

By replacing each edge of G with a pair of antiparallel directed edges,

we can apply Euler’s theorem to derive the following result:

Proposition 2. Any connected graph G admits an antiparallel double

trace.

The following theorem establishes a connection between the embedding

of a graph and its strong trace.

Theorem 3. [5] A graph G contains a strong antiparallel trace if and

only if it admits a 1-face embedding in some orientable closed surface.
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3 Semi-double trace

In this section, we introduce semi-double trace and provide some basic

properties. As a generalization of double trace, this concept reveals more

connections between mathematics and the self-assembly of polypeptide

nanostructures, as shown in Figure 1, 2, and 3.

Definition 1. For a graph G, a semi-double trace is a closed walk that

traverses each edge of a nonempty subgraph H ⊆ G exactly once and

all other edges of G twice, where H is an Eulerian graph or a union of

edge-disjoint cycles. When H consists of a single cycle, the semi-double

trace is called single.

Note that: A crucial observation through the self-assembly of polypep-

tide structures indicates that the subgraph H must contain no odd degree

vertices, ensuring the existence of a closed walk traversing each edge of H ex-

actly once. Since if we replace any edge of G with a pair of undirected

parallel edges, except for those edges that are traversed once, we can not

obtain an Euler graph. If we suppose H is an empty graph, then the trace

corresponds to the trivial case, making this definition a generalization of

double traces.

Proposition 4. Suppose G is a connected graph. Then G contains a

semi-double trace if and only if it is not a tree.

As illustrated in Figure 1, the component attached to each triangular

bipyramid can be treated as a semi-double trace, where a triangular cycle

is traversed once. As a more complex example, the semi-double traces

(marked by solid lines) shown in Figure 5 traverse the edges marked in red

(dashed lines) once. The subgraph induced by the red dashed lines can be

viewed as consisting of edge-disjoint cycles.

Let WH denote a semi-double trace of G where H = ∪m
i=1Ci and Ci

(i = 1, · · · ,m) are the edge-disjoint cycles of G such that WH traverses the

edges of each Ci once and other edges of G twice. Based on the stability

and some significant effects on biology, we add a closed trace around each

cycle Ci and let WH̃ denote this family of multi-component traces, such

that any edge of G is traversed exactly twice. This construction maximizes
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Figure 5. (a) A semi-double trace (marked by solid lines) traverses the
edges on some Euler graph (marked by red dashed lines) once;
(b) A semi-double trace (marked by solid lines) traverses the
edges on two edge-disjoint cycles (marked by red dashed
lines) once; (c) A single semi-double trace (marked by solid
lines).

the number of trace components, as shown in Figure 6. Then any edge in

G is traversed twice by WH̃ , which is also called the induced traces of

WH . The number of components of WH̃ is m+ 1. An examples is shown

in Figure 7.

Figure 6. A semi-double trace of G is formed by traversing edges in the
cycles C1, C2 once, and the other edges twice. We can add
one or two closed traces around the edges that are traversed
once and form the multi-component traces such that any
edge of G is traversed twice.

As a special case of semi-double trace, let W∅ represent a double trace.

Since the definition of repetition is determined by the local behavior of a

double trace, we can also extend the definition of repetition to the induced

traces WH̃ of a semi-double trace WH , which also traverses every edge

twice . We define the repetition of WH̃ in the same way as that of a double

trace W∅ (See Section 2.2), so we omit the description of the definition.
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Figure 7. WH is a semi-double trace; each side of the leftmost and
rightmost triangles (edge-disjoint cycles) of G is covered only
once. Then W

H̃
can be obtained by adding red and blue

traces.

Furthermore, we can also define a vertex figure of WH̃ , denoted by

Fv,W
H̃

(See Definition 3). The definition of “semi-strong” is as follows.

Definition 2. A semi-double trace WH of a graph G is called semi-d-

stable if its induced traces WH̃ is d-stable. In particular, WH is called

semi-strong if WH̃ is strong.

Definition 3. Let WH be a semi-double trace of a graph G and v be a

vertex of G. Let WH̃ be the induced traces of WH . We use E(v) as the

vertex set to construct the vertex figure of WH (or WH̃) at v, where the

edges e and e′ in E(v) are considered adjacent if they are consecutive along

WH (or WH̃). This vertex figure is denoted as Fv,WH
(or Fv,W

H̃
).

For a double trace W∅, any vertex figure Fv,W∅ of W∅ is 2-regular. Note

that the vertex figure of the induced traces, Fv,W
H̃
, of a semi-double trace

WH is also 2-regular. For example, the vertex figure of the vertex v shown

in Figure 8 is a cycle and is denoted by e1e2 · · · ene1.

Figure 8. A trivial repetition at the vertex v where e1, · · · , en are the
edges incident with v.



64

Similarly as the version of double trace, we have the following Theorem

5. We omit the proof and recommend readers to refer to [5].

Theorem 5. Let G be a graph and WH be a semi-double trace of G. Let

WH̃ be the induced traces of WH . Then WH̃ is strong if and only if any

vertex figure Fv,W
H̃

is a cycle.

In the following, we characterize semi-strong traces.

Lemma 1. Let G be a graph, and let WH denote a semi-double trace of

G. Let C be a cycle of G where WH traverses every edge once. Suppose

v ∈ V (C) and ev, e
′
v are the two edges incident with v in C. Then the

vertex figure Fv,WH
is a subgraph of Fv,W

H̃
− eve

′
v.

Proof. According to the construction, Fv,W
H̃

must contain an edge of

eve
′
v, and Fv,WH

is a subgraph of Fv,W
H̃
. If eve

′
v /∈ E(Fv,WH

), then the

consequence holds. If eve
′
v ∈ E(Fv,WH

), since WH traverses the edges of C

once, then Fv,WH
contains no parallel edges of eve

′
v. Since eve

′
v ∈ E(Fv,WH

)

and Fv,WH
is a subgraph of Fv,W

H̃
, then according to the construction, we

have Fv,W
H̃
contains a 2-cycle with parallel edges of eve

′
v. Thus Fv,W

H̃
−eve

′
v

contains an edge of eve
′
v and then Fv,WH

is a subgraph of Fv,W
H̃
−eve

′
v.

Theorem 6. Let G be a graph and WH be a semi-double trace of G, where

H = ∪m
i=1Ci for any E(Ci) ∩ E(Cj) = ∅ (i ̸= j). If WH is semi-strong,

then we have,

(1) for v ∈ V (H), every vertex figure Fv,WH
is a path or disjoint union

of some paths;

(2) for v /∈ V (H), every vertex figure Fv,WH
is a single cycle.

Proof. The result of (2) in this theorem is obvious according to Theorem 5.

Then we only need to prove (1).

Suppose WH is semi-strong, then its induced traces WH̃ is strong.

For v ∈ V (H), then the vertex figure Fv,W
H̃

must be a cycle, denoted

by e1e2 · · · eke1, where ei (i = 1, 2, · · · , k) are the vertices of Fv,W
H̃

and

k = |V (Fv,W
H̃
)|. Since v ∈ V (H), then there exsits a Ci for some integer

1 ≤ i ≤ m such that v ∈ V (Ci). Let ev, e
′
v be the two edges incident

with v in Ci. Then eve
′
v is an edge of Fv,W

H̃
. Without loss of generality,
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suppose eve
′
v = e1e2. Then according to Lemma 1, Fv,WH

is a subgraph

of Fv,W
H̃
− e1e2 which is the path e2 · · · eke1. Thus Fv,WH

is a path or

disjoint union of some paths.

An example is shown in Figure 9. The left figure is the semi-strong trace

WH at v whose vertex figure (disjoint union of two paths) is represented in

the right figure.

Figure 9. The left figure is the semi-strong trace WH (marked by black
solid lines) at v and the part of closed traces (marked by
red solid lines) around cycles in H. Its vertex figure Fv,WH

(disjoint union of two paths) is represented in the right figure.

Note that: The converse stated in Theorem 6 is not true, but holds

when WH is a single semi-double trace. A counterexample is shown in

Figure 10 where every vertex figure as indicated in condition (1) is a disjoint

union of two paths, but the repetition at v of its induced traces is not

trivial.

For a single semi-double trace, we have the following theorem.

Theorem 7. Let G be a graph and WH be a single semi-double trace of G,

where H is a cycle of G. Then WH is semi-strong if and only if any vertex

figure of WH at a vertex of H is a path, and other vertex figures are single

cycles.

Proof. According to Theorem 5 and 6, we only consider the vertices of the

cycle H. Let v be a vertex of H and ev, e
′
v be the two edges incident with

v in C. If WH is semi-strong, then according to Theorem 6, Fv,WH
is a

path or disjoint union of some paths. The induced traces WH̃ is strong,

and the vertex figure Fv,W
H̃

is a cycle which contains the edge eve
′
v. Let
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E(v) be the edge set which contains all edges incident with v in G. Then

any edge in E(v)− {ev, e′v} is traversed twice when WH traverses. Thus

Fv,WH
= Fv,W

H̃
− eve

′
v, which is a path with ev, e

′
v as its endpoints.

Suppose for any v ∈ V (H), Fv,WH
is a path, other vertex figures of WH

are single cycles. According to the construction, Fv,W
H̃
= Fv,WH

+ eve
′
v.

Further, Fv,W
H̃

must be 2-regular, then the endpoints of Fv,WH
must be

ev and e′v. Thus Fv,W
H̃

is a cycle. This implies every vertex figure of WH̃

is a cycle and then WH is semi-strong.

Figure 10. The right figure shows the vertex figure of a semi-double
trace (marked by black solid lines) at v as indicated in the
left figure. However, by considering its induced traces, the
repetition at v is not trivial because if we cap off the cycles
along e5, v, e6, · · · and e2, v, e3, · · · , the vertex figure on v
contains two cycles: e6e7e1e5e6 and e2e3e4e2.

4 A strong stable model of self-assembly

polypeptide structures

The intricate cage-like nanostructures observed in recent experiments—such

as the two-chain bipyramidal nanocage (Figure 1), the two-chain tetrahe-

dral coiled-coil (Figure 2), and the 24-segment SB24 octahedral complex

(Figure 3)—demonstrate that polypeptide self-assembly inherently relies

on multi-component closed walks traversing polyhedral edges with specific

frequencies (once for interfacial edges, twice otherwise). To mathematically

characterize such stability, we extend the concept of strong traces to multi-

component systems. Here, we define a generalized version of double trace

called double cover (Definition 4) and prove that its strong stability (Theo-

rem 8) directly mirrors the biological stability observed in these structures.
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The number of trace components in a double cover can be more than 3.

Crucially, by constructing a strong double cover from semi-strong traces

(Theorems 9-10), we establish a rigorous framework to design polypeptide

cages with programmable oligomeric states and guaranteed topological

stability.

Definition 4. Let W be a family of closed traces of a graph G such that

W traverses every edge of G twice. Then W is called a double cover of

G.

Note that: Any graph (including a disconnected graph) contains a

double cover according to Proposition 2. A double cover with one component

is also referred to as a double trace, thus also generalizing the concept of

double trace. The induced traces of a semi-double trace, as mentioned in

the previous section, is also a double cover.

For an edge e of G, if W traverses e in opposite (or the same) directions,

then e is called antiparallel (or parallel). A double cover W is called

antiparallel (or parallel) if any edge of G is traversed in an antiparallel

(or parallel) manner.

We can also extend the definition of repetition to double cover. Then a

double cover is called strong if it has no nontrivial repetitions. In [5], the

authors established a relation between the double trace W of a connected

graph G and a vertex figure at any vertex. Specifically, the necessary and

sufficient condition of W to be strong is that any vertex figure Fv,W forms

a cycle. Actually, the number of components in the definition of Fv,W does

not need to be restricted to one, it can have multi components. As a direct

consequence, we have Definition 5 and Theorem 8.

Definition 5. Let W be a double cover of a graph G and v be a vertex

of G. We use E(v) as the vertex set to construct the vertex figure at v of

W , where the edges e and e′ in E(v) are considered adjacent if they are

consecutive along W . This vertex figure is denoted as Fv,W .

Theorem 8. Let W be a double cover of a graph G and v be a vertex of

G. Then W is strong if and only if any vertex figure Fv,W forms a cycle.

Suppose WC1
and WC2

are two single semi-double trace of graphs G1

and G2 respectively. If |E(C1)| = |E(C2)| = k, let Ci = vi1v
i
2 · · · vikvi1 where
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vij (j = 1, 2, · · · , k) are the vertices around Ci (i = 1, 2). A new graph can

be obtained by identifying C1 and C2 such that v1j = v2j (j = 1, · · · , k),
forming a graph called cover graph of the ordered pair (G1, G2). Note

that there are different ways to attach the graphs based on the ordering

of the vertices in the presentation of Ci. In this new cover graph, WC1

and WC2
form a double cover. An example is shown in Figure 11 where

the graph on the right is obtained by identifying the two cycles marked in

yellow. Consequently, WC1
and WC2

form a double cover on the resulting

graph, marked in red and blue. Then we have the following theorem.

Figure 11. WC1 and WC2 are single semi-double traces (marked in red
and blue). They traverse the edges of C1 and C2 (marked
in yellow) respectively once, and the other edges twice.
These traces are fabricated to be a double cover with two
components; The cover graph is represented by the black
and yellow graph in the rightmost.

Theorem 9. Suppose WC1
and WC2

are two single semi-strong traces of

graphs G1 and G2 respectively, with |E(C1)| = |E(C2)| = k. Then the

double cover W on a cover graph of (G1, G2) is strong, analogous to viral

capsid stability from symmetric protein interactions.

Proof. Let Ci = vi1v
i
2 · · · vikvi1 (i = 1, 2) where vij (j = 1, 2, · · · , k) are the

vertices around Ci. It is sufficient to prove that any vertex figure of vij for

the double cover W is a cycle. Since WCi
(i = 1, 2) are semi-strong, then

according to Theorem 7, the vertex figure of vij in WCi
is a path, denoted

by Pi = ei1e
i
2 · · · eimi

, where mi = dGi
(vij) − 1. The endvertices of Pi, e

i
1

and eimi
, are the two edges incident with vij in Ci. Then according to the

construction of the cover graph, we have

e11 = e21, e1m1
= e2m2

,
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then the vertex figure Fvi
j ,W

can be denoted by

P1P2 = e11e
1
2 · · · e1m1

(= e2m2
)e2m2−1 · · · e21.

Since any edge e1j ∈ E(G1) and e2j ∈ E(G2), and e11 = e21, then P1P2 is a

cycle. Thus W is a strong double cover.

We then generalize the above Theorem 9. Let WCi
be a single semi-

double trace of Gi (i = 1, 2, · · · ) where Ci is a cycle in Gi. Suppose

|E(Ci)| = ki, and let Ci = vi1v
i
2 · · · viki

vi1 where vij (j = 1, · · · , ki) are the

vertices around Ci.

In the first step, we need to identify two cycles or paths of G1 and G2.

If k1 = k2 and we identify C1 and C2, we obtain a newly constructed graph

as described in the previous construction of the cover graph of the ordered

pair (G1, G2). We denote this new graph by G(1), which has a double

cover with 2-components, and the procedure terminates. Alternatively, we

may continue the procedure and identify two paths P1 and P2 with the

same length l ≤ min{k1, k2} in C1 and C2 respectively, and denote the

new constructed graph by G(1) as well. Suppose Pi = vi1v
i
2 · · · vil (i = 1, 2)

and let v1j = v2j (j = 1, 2, · · · , l). Then we obtain a cycle

C ′ = v1l v
1
l+1 · · · v1k1

v11(= v21)v
2
k2
v2k2−1 · · · v2l+1v

2
l (= v1l ),

and the edges of C ′ are traversed once by both WC1
and WC2

on G(1).

This implies the edges of G(1) which are traversed once form a cycle. Then

we continue the procedure.

In the second step, we construct G(2) in the same manner by identifying

two cycles or paths with the same length in C ′ of G(1) and C3 of G3

respectively. If |E(C ′)| = |E(C3)| and the two cycles are identified, each

edge of G(2) is traversed twice, and the procedure terminates. Otherwise,

if we identify two paths as described earlier, some edges forming a cycle in

G(2) will be traversed only once, and the procedure continues.

We repeat this procedure until we reach the step n− 1 for some integer

n. At this step, using the same method, we identify the cycle in G(n−2)

which are traversed once and the cycle Cn in Gn. Note that these two
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cycles must have the same length. This results in the construction of G(n−1)

which contains a double cover composed of (WC1 , WC2 ,· · · , WCn). The

graph G(n−1) is also called a cover graph of (G1, G2, · · · , Gn).

An example of a cover graph is shown in Figure 12 where the cover

graph is obtained by identifying C1, C2, and C3 (marked in yellow) to form

a new graph G(2). Simultaneously, the single semi-double traces WC1
, WC2

,

and WC3
form a double cover on G(2), marked in red, green, and purple

respectively. Then we have the following theorem.

Theorem 10. Suppose WCi
is a single semi-strong trace of a graph Gi

(i = 1, 2, · · · ,m) where Ci is a cycle in Gi, and G(m−1) is a cover graph of

(G1, · · · , Gm). Let W be the corresponding double cover of G(m−1). Then

W is strong.

Proof. For any vertex v ∈ V (G(m−1)), If v /∈ V (Ci), i = 1, 2, · · · ,m, then

the vertex figure Fv,W = Fv,WCi
is a cycle. If v ∈ V (Ci) for some i, let∑m

k=1 1v∈V (Ck) denote the total number of occurrences of the element

v across all V (C1) to V (Cm), where 1v∈V (Ck) is an indicator function

that is 1 if the element v ∈ V (Ck), and 0 otherwise, i.e., the multiplicity

of v in the cover graph assembly. Then 2 ≤
∑m

k=1 1v∈V (Ck) ≤ m. We

assume
∑m

k=1 1v∈V (Ck) = q, then there exist q edge subsets incident with

v, which are traversed by q different single semi-strong traces respectively.

Without loss of generality, the traces are denoted by WC1
, · · · ,WCq

. A

similar discussion to that in Theorem 9 shows that the vertex figure Fv,W

is composed of the vertex figures Fv,WC1
, Fv,WC2

, · · · , Fv,WCq
, which are

paths that form a cycle in an end-to-end manner. Consequently, W is a

strong double cover.
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Figure 12. WC1
, WC2

and WC3
are single semi-double traces (marked

in red, green and purple). They pass through cycles C1, C2

and C3 (marked in yellow) respectively once, and the other
edges twice. These traces are created as a double cover with
three components.

Stability in polypeptide structures refers to the robust interlocking

configuration where each edge is traversed twice by a single chain, forming

coiled-coil dimers, and each vertex has no non-trivial repetitions. These

coiled-coil dimers are formed and interlocked to create a stable structure.

The double cover model directly reflects the stoichiometry of polypeptide

chains, such as the case like the SB24 complex (matching n = 3 components,

which requires three polypeptide chains in self-assembled cages, with each

component in the double cover corresponding to one chain). Building on

this, Theorem 10 implies the double cover as shown in Figure 12 is a strong

double cover, and based on that, we can construct a strong stable model

for the structure as shown in Figure 3.

5 Conclusion

This paper presents a graph-theoretic framework utilizing semi-double

traces and multi-component double covers to model the self-assembly of

coiled-coil protein origami (CCPO) cages, inspired by recent experimental

advancements such as the two-chain triangular bipyramids, tetrahedral
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coils, and the three-chain SB24 octahedral complex. CCPO cages provide

robust interlocking stability and enable potential applications such as drug

delivery and biosensing. These cage-like structures, formed by single-chain

coiled-coils on polyhedral graphs, feature interfacial edges that are traversed

once to support conformational adaptability and non-interfacial edges that

are traversed twice for structural reinforcement, serving as test cases for

our model.

The mathematical model focuses on utilizing semi-strong traces and

double covers. For graphs G1, G2, . . . , Gn, we construct the cover graph

Gn−1, representing an n-chain cage where each chain on Gi follows a

single semi-double trace WCi
. When this structure, typically a polyhedron,

is designed as a coiled-coil protein origami, the number of chains is n.

According to our model, the origami corresponds to a double cover with

n components, where each single-chain coiled-coil on Gi corresponds to

a single semi-double trace. If every semi-double trace is semi-strong,

the resulting double cover with n components is strong. Strong double

covers ensure the stability of these protein cages by preventing nontrivial

repetitions that could lead to assembly failures.

A key innovation is the integration of experimental insights from [10]

and [12] regarding N- and C-termini positioning into our model. Lapenta

et al. demonstrated that the successful assembly of the SBP19.b/SBP29.b

bipyramid requires N- and C-termini at interaction vertices, in contrast

to the failed SBP19.a/SBP29.a design where non-interface termini led to

rigidity. In our model, the vertices of Ci are interpreted as the positions of

the N- and C-termini of the respective polypeptide chains. A design with

termini at interface vertices yields a single-cycle vertex figure, ensuring a

semi-strong trace and enhanced stability. This is validated by SB24 complex,

where cyclization pre-organizes chains, aligning with our semi-strong trace

condition for the 109-kDa structure.

Compared to single-component models, our approach determines oligom-

eric states from component counts, extends to branched nanostructures via

semi-double traces, and provides a stability framework via cyclic vertex fig-

ures. This prescriptive tool guides the design of programmable biomimetic

nanomaterials, such as the SB24 octahedron, with predictable stability.
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Future work will quantify cyclization energy and linker effects to further

connect graph theory with synthetic biology.
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