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Abstract

We introduce semi-double trace and semi-strong trace inspired
by newly synthesized coiled-coil protein cages, a graph-theoretic
generalization of double trace, to model polypeptide nanostructure
self-assembly. Through multi-component double covers built from
semi-strong traces, we establish a topological assembly framework.
Crucially, we prove that double covers attain strong stability when
all components are semi-strong. This model resolves a fundamental
design challenge: determining oligomeric states via component counts
while establishing stability criteria through cyclic vertex figures.
These insights provide rigorous principles for engineering biomimetic
nanomaterials with programmable topological stability.
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1 Introduction

The self-assembly of biopolymers into nanostructures represents a frontier
in biomolecular engineering. While DNA nanotechnology has established
programmable geometric designs [1,2,6,8, 11,17, 18], seminal work by
Gradisar et al. demonstrated this potential through a tetrahedral cage [7],
where twelve helical-binding segments traverse triangular face edges twice.
Klavzar employed stable trace to develop a mathematical model that mimics
this self-assembly approach for nanostructure design [9]. This model has
been refined to better represent these structures [3-5,13,14].

Subsequent advances by Lapenta et al. [10] extended this paradigm with
a triangular bipyramid assembled from preorganized coiled-coil modules
(See Figure 1). Their decomposition into asymmetric or pseudosymmetric
subunits revealed the critical role of conformational flexibility: interfacial
positioning at N/C-termini preserved structural integrity, whereas rigid

topologies led to assembly failure.

SBP19.b

(b)

Figure 1. (a) SBP1g , and SBP2g , use a rigid closed-loop design: N/C-
termini anchored at non-interface vertices restrict interfacial
edges with short peptide linkers. This setup limits structural
flexibility, causing assembly failure; (b) SBP1g 1, and SBP2g 1,
feature a flexible open-ended design: N/C-termini moved
to interface vertices, placing interfacial edges at path ends.
Central triangular edges are traversed once (low constraint),
while pyramidal edges are traversed twice (high stability).
This improves interfacial flexibility, allowing accurate cage
assembly [10].

Further innovation emerged through covalent cyclization strategies [12]

(See Figures 2 and 3). Subunit preorganization via split intein splicing
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enabled precise folding of tetrahedral designs, reducing maximum particle
diameter D ax from 17.1 nm to 10.5 nm. This culminated in the trimeric
SB24 octahedron, a 109-kDa architecture comprising 24 segments, where
cyclization of the SB6 linker subunit induced significant conformational
compaction (Dpax from 25 nm to 9.4 nm), yielding the largest coiled-coil
protein origami (CCPO) assembly to date.

These nanostructures such as bipyramidal nanocages, tetrahedral coils,
and the SB24 octahedral complex exhibit a universal topological signature:
interfacial edges (e.g., attachment faces) are traversed exactly once, while
non-interfacial edges are traversed twice across their polyhedral frameworks.
This pattern manifests in bipyramidal systems through dual closed walks
(Figure 1), tetrahedral assemblies via paired trajectories (Figure 2), and
culminates in the SB24 complex’s three-walk configuration on an irregular

octahedron (Figure 3).
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Figure 2. The bitrigon module structure of a two-chain coiled-coil
protein is formed by two single-chain coiled-coil dimers. [12].

Figure 3. (A) The SB24 protein complex forms when two nine-segment
subunits (SB9b and SB9c) and a six-segment peptide (SB6)
interlock, depicted by geometric shapes; (B) The viewing
angles of SB24 from left to right are side view, front view
and top view.
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In this paper, we employ a mathematical model to examine and define
intricate cage-like formations formed by attaching faces of given polyhedra
with the same degree, resulting in irregular polypeptide nanostructures. We
investigate the oligomeric state of these self-assembled structures, specifi-
cally the number of their components, and analyze whether the constructed
structures are stable or strongly stable. To support this, we extend the
concept of double trace by introducing the semi-double trace, defined as
a closed walk that traverses edges of Eulerian subgraphs exactly once
and other edges twice, to explore the relationship between mathematics
and polypeptide self-assembly. We further define the semi-strong trace to
represent more stable configurations and provide conditions under which a
semi-double trace is semi-strong. Additionally, we introduce double covers
with multiple components that are strong if each component is semi-strong.
Our model aims to elucidate the fundamental principles underlying these
nanoscale structures and provide a theoretical foundation for the future

design and synthesis of more complex biomimetic assemblies.

2 Preliminaries

2.1 Basic knowledge in graph theory

We will outline some basic terminology and results in graph theory that
will be adopted for this paper. The graphs discussed in this paper are finite,
connected, and simple except for a special case mentioned later. Some
basic knowledge in graph theory can be found in [15]. Let G be a graph
with vertex set V(G) and edge set E(G) respectively. Then the numbers
of vertices and edges in G are denoted by |V(G)| and |E(G)|, respectively.
Suppose uv is an edge of G. Let G — uv denote the graph obtained from
G by deleting the edge uwv.

Denote a walk in G by W = vgeguiey - - - Um€mUms1, whose terms are
alternatively vertices and edges and for every ¢ = 0,1,--- ,m, where e;
denotes an edge connecting the vertices v; and v; 1. If vg = V41, then
the walk is called closed. The walk W is called a trace (or path) if it
traverses each edge (or vertex) once, and the trace (or path) is called closed
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if W is closed. If W is a path, it can also be denoted by vguvy « - Vppt1. A
closed trace of G is called an Euler tour if it traverses each edge of G
only once. If G contains an FEuler tour, then we call G an Euler graph
or Eulerian. It is known that G is Eulerian if and only if it contains no
odd-degree vertices.

A graph G is cellularly embedded in a closed surface ¥ if G is embedded
in 3 and any connected component of ¥ — G is a 2-cell, referred to as a
face. Such an embedding is also known as a 2-cell embedding and can be
realized through a combinatorial embedding with a rotation system. The
maximum genus of G is known as the largest genus g(X) for orientable
surfaces ¥ where G has a 2-cell embedding, denoted by gas(G). Then Euler’s
formula yields that g (G) < |2E) |, where 8(G) (= |E(G)| — |[V(G)| + 1)
represents the Betti number of G. Further, we call G upper-embeddable
if the equality holds. The upper-embeddability implies the graph achieves
maximum surface embedding genus, corresponding to minimal number of

faces. Then we have the following theorem.

Theorem 1. [16] Let G be a graph with even (or odd) Betti number. Then
G is upper-embeddable if and only if it contains a spanning tree such that

G — E(T) contains no (or only one) odd component.

If G is upper-embeddable and B(G) is even, then this embedding is also
called a 1-face embedding and G is called strictly upper-embeddable.

2.2 Double traces and stable traces

Double trace has been a mathematical model for designing polypeptide
structures [3,10]. A closed walk of a graph G that traverses every edge
of G twice is called a double trace. Let W = wgejw; ---ewg be a
double trace of G, with a length I. For any vertex v of G, let M C N(v),
where N (v) represents the set of vertices adjacent to v. We say that W
has an M-repetition at v if for all integers ¢ such that v; = v and the
pair {v;_1,v;41} is either contained in M or disjoint from M. Intuitively,
whenever we enter v from a vertex in M, we also exit to a vertex in M from
v. If an M-repetition at the vertex v satisfies |M| = d, then we call this

repetition a d-repetition (or a repetition of order d), as shown in Figure
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4. The M-repetition is called trivial if it satisfies M = N(v) or M = (. A
double trace is called antiparallel (or parallel) if any edge is traversed in

opposite (or the same) directions. A double trace that has no nontrivial
repetitions with order < d is referred to as a d-stable trace. A strong
trace is a double trace that has no nontrivial repetitions. For example,
let P = vgeguy be a path and Wy = vpeguiegug be a walk of P. Then Wy
is an antiparallel double trace of P and has a {vg} (or {v;})-repetition
at the vertex vy (or vg) which is also a trivial repetition. Thus Wy is an
antiparallel strong trace of P.

We consider a double trace of a graph to be stable as long as each vertex
has no non-trivial repetitions without considering the directions of edge
traversal, although this stability can be reinforced by parallel traversals
that enhance edge rigidity and antiparallel traversals that promote vertex

flexibility, mitigating steric hindrance.

V2

Figure 4. A {v1,v2,v3}-repetition of order 3 (marked in red) and
a {v4, vs, ve, v7 }-repetition (marked in green) of order 4 at
vertex v with degree 7.

By replacing each edge of G with a pair of antiparallel directed edges,
we can apply Euler’s theorem to derive the following result:

Proposition 2. Any connected graph G admits an antiparallel double

trace.

The following theorem establishes a connection between the embedding

of a graph and its strong trace.

Theorem 3. [5] A graph G contains a strong antiparallel trace if and

only if it admits a 1-face embedding in some orientable closed surface.
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3 Semi-double trace

In this section, we introduce semi-double trace and provide some basic
properties. As a generalization of double trace, this concept reveals more
connections between mathematics and the self-assembly of polypeptide

nanostructures, as shown in Figure 1, 2, and 3.

Definition 1. For a graph G, a semi-double trace is a closed walk that
traverses each edge of a nonempty subgraph H C G exactly once and
all other edges of G twice, where H is an Eulerian graph or a union of
edge-disjoint cycles. When H consists of a single cycle, the semi-double

trace is called single.

Note that: A crucial observation through the self-assembly of polypep-
tide structures indicates that the subgraph H must contain no odd degree
vertices, ensuring the existence of a closed walk traversing each edge of H ex-
actly once. Since if we replace any edge of G with a pair of undirected
parallel edges, except for those edges that are traversed once, we can not
obtain an Euler graph. If we suppose H is an empty graph, then the trace
corresponds to the trivial case, making this definition a generalization of

double traces.

Proposition 4. Suppose G is a connected graph. Then G contains a

semi-double trace if and only if it is not a tree.

As illustrated in Figure 1, the component attached to each triangular
bipyramid can be treated as a semi-double trace, where a triangular cycle
is traversed once. As a more complex example, the semi-double traces
(marked by solid lines) shown in Figure 5 traverse the edges marked in red
(dashed lines) once. The subgraph induced by the red dashed lines can be
viewed as consisting of edge-disjoint cycles.

Let Wy denote a semi-double trace of G where H = U*,C; and C;
(i=1,---,m) are the edge-disjoint cycles of G such that Wy traverses the
edges of each C; once and other edges of G twice. Based on the stability
and some significant effects on biology, we add a closed trace around each
cycle C; and let W5 denote this family of multi-component traces, such

that any edge of G is traversed exactly twice. This construction maximizes
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Figure 5. (a) A semi-double trace (marked by solid lines) traverses the
edges on some Euler graph (marked by red dashed lines) once;
(b) A semi-double trace (marked by solid lines) traverses the
edges on two edge-disjoint cycles (marked by red dashed
lines) once; (¢) A single semi-double trace (marked by solid
lines).

the number of trace components, as shown in Figure 6. Then any edge in
G is traversed twice by Wy, which is also called the induced traces of
Wpg. The number of components of W is m + 1. An examples is shown

in Figure 7.

Figure 6. A semi-double trace of G is formed by traversing edges in the
cycles C1, C2 once, and the other edges twice. We can add
one or two closed traces around the edges that are traversed
once and form the multi-component traces such that any
edge of G is traversed twice.

As a special case of semi-double trace, let Wy represent a double trace.
Since the definition of repetition is determined by the local behavior of a
double trace, we can also extend the definition of repetition to the induced
traces W of a semi-double trace Wy, which also traverses every edge
twice . We define the repetition of W in the same way as that of a double

trace Wy (See Section 2.2), so we omit the description of the definition.
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WH Wﬁ

Figure 7. Wjp is a semi-double trace; each side of the leftmost and
rightmost triangles (edge-disjoint cycles) of G is covered only
once. Then Wy can be obtained by adding red and blue
traces.

Furthermore, we can also define a vertex figure of W5, denoted by

Fyw (See Definition 3). The definition of “semi-strong” is as follows.

Definition 2. A semi-double trace Wy of a graph G is called semi-d-
stable if its induced traces Wg is d-stable. In particular, Wy is called

semi-strong if W is strong.

Definition 3. Let Wy be a semi-double trace of a graph G and v be a
vertex of G. Let Wi be the induced traces of Wy. We use E(v) as the
vertex set to construct the vertex figure of Wy (or Wg) at v, where the
edges e and ¢ in F(v) are considered adjacent if they are consecutive along

Wy (or Wg). This vertex figure is denoted as Fy w,, (or F,w_).

For a double trace Wy, any vertex figure I, w, of Wy is 2-regular. Note
that the vertex figure of the induced traces, F, w_, of a semi-double trace
Wy is also 2-regular. For example, the vertex figure of the vertex v shown

in Figure 8 is a cycle and is denoted by ejes - --eneq.
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Figure 8. A trivial repetition at the vertex v where ey, --- e, are the
edges incident with v.
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Similarly as the version of double trace, we have the following Theorem

5. We omit the proof and recommend readers to refer to [5].

Theorem 5. Let G be a graph and Wy be a semi-double trace of G. Let
W be the induced traces of Wy. Then Wg is strong if and only if any

vertex figure Fy, w is a cycle.
In the following, we characterize semi-strong traces.

Lemma 1. Let G be a graph, and let Wy denote a semi-double trace of
G. Let C be a cycle of G where Wy traverses every edge once. Suppose
v € V(C) and ey, €, are the two edges incident with v in C. Then the

/
e

vertex figure Fy w,, is a subgraph of Fy w_ — eye

Proof According to the construction, F,w, must contain an edge of
evey, and F, wy, is a subgraph of I, w_. If eye;, ¢ E(F, w,), then the
consequence holds. If e,e), € E(F, w, ), since WH traverses the edges of C
once, then F, y,, contains no parallel edges of e,el. Since eyel, € E(F, w,, )
and F, w,, is a subgraph of F), W then according to the construction, we
have F, W contains a 2-cycle with parallel edges of e, e},. Thus F;, W — €€,

contains an edge of e, e/, and then F, w,, is a bubgraph of Fow. — eyel. I

Theorem 6. Let G be a graph and Wy be a semi-double trace of G, where
H = U™, C; for any E(C;) N E(C;) =0 (i # j). If Wy is semi-strong,
then we have,

(1) forv e V(H), every vertex figure Fy, w,, is a path or disjoint union
of some paths;

(2) for v ¢ V(H), every vertezx figure Fy, w, is a single cycle.

Proof. The result of (2) in this theorem is obvious according to Theorem 5.
Then we only need to prove (1).

Suppose Wy is semi-strong, then its induced traces Wy is strong.
For v € V(H), then the vertex figure F, 1 must be a cycle, denoted
by eies---erer, where e; (i = 1,2,--- k) are the vertices of Fyw, and
k= |V (Fy,w)|- Since v € V(H), then there exsits a C; for some integer
1 <4 < m such that v € V(C;). Let e,, €] be the two edges incident
with v in C;. Then e,el, is an edge of F, w.. Without loss of generality,
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suppose eye, = ejez. Then according to Lemma 1, F), y,, is a subgraph
of Fv)Wﬁ — e1ep which is the path ep---epe;. Thus F, w, is a path or

disjoint union of some paths. |

An example is shown in Figure 9. The left figure is the semi-strong trace

Wy at v whose vertex figure (disjoint union of two paths) is represented in

€1
€2
er : e
ey €7
— S €5

eg-——"_ =-e3 €3

the right figure.

eg o———o €4

es €4

Figure 9. The left figure is the semi-strong trace Wy (marked by black
solid lines) at v and the part of closed traces (marked by
red solid lines) around cycles in H. Its vertex figure F, w,
(disjoint union of two paths) is represented in the right figure.

Note that: The converse stated in Theorem 6 is not true, but holds
when Wy is a single semi-double trace. A counterexample is shown in
Figure 10 where every vertex figure as indicated in condition (1) is a disjoint
union of two paths, but the repetition at v of its induced traces is not
trivial.

For a single semi-double trace, we have the following theorem.

Theorem 7. Let G be a graph and Wy be a single semi-double trace of G,
where H is a cycle of G. Then Wy is semi-strong if and only if any vertex
figure of Wy at a vertex of H is a path, and other vertex figures are single

cycles.

Proof. According to Theorem 5 and 6, we only consider the vertices of the
cycle H. Let v be a vertex of H and e,, €], be the two edges incident with
vin C. If Wy is semi-strong, then according to Theorem 6, F, v, is a
path or disjoint union of some paths. The induced traces W is strong,

and the vertex figure F, w_ is a cycle which contains the edge eysel. Let
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E(v) be the edge set which contains all edges incident with v in G. Then
any edge in E(v) — {ey, €} } is traversed twice when Wy traverses. Thus
Fywy = Fywy — eyel,, which is a path with e,, €] as its endpoints.
Suppose for any v € V(H), F, w,, is a path, other vertex figures of Wg
are single cycles. According to the construction, Fow. = Fowy + eyel.
Further, FU,WE must be 2-regular, then the endpoints of F;, y,, must be
e, and e]. Thus Fy,w is a cycle. This implies every vertex figure of Wy

is a cycle and then Wy is semi-strong. ]

€6

es €4

Figure 10. The right figure shows the vertex figure of a semi-double
trace (marked by black solid lines) at v as indicated in the
left figure. However, by considering its induced traces, the
repetition at v is not trivial because if we cap off the cycles
along es,v,e6, -+ and ez, v,e3,- -, the vertex figure on v
contains two cycles: egereieseg and ezeszeqes.

4 A strong stable model of self-assembly
polypeptide structures

The intricate cage-like nanostructures observed in recent experiments—such
as the two-chain bipyramidal nanocage (Figure 1), the two-chain tetrahe-
dral coiled-coil (Figure 2), and the 24-segment SB24 octahedral complex
(Figure 3)—demonstrate that polypeptide self-assembly inherently relies
on multi-component closed walks traversing polyhedral edges with specific
frequencies (once for interfacial edges, twice otherwise). To mathematically
characterize such stability, we extend the concept of strong traces to multi-
component systems. Here, we define a generalized version of double trace
called double cover (Definition 4) and prove that its strong stability (Theo-

rem 8) directly mirrors the biological stability observed in these structures.
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The number of trace components in a double cover can be more than 3.
Crucially, by constructing a strong double cover from semi-strong traces
(Theorems 9-10), we establish a rigorous framework to design polypeptide
cages with programmable oligomeric states and guaranteed topological
stability.

Definition 4. Let W be a family of closed traces of a graph G such that
W traverses every edge of G twice. Then W is called a double cover of
G.

Note that: Any graph (including a disconnected graph) contains a
double cover according to Proposition 2. A double cover with one component
is also referred to as a double trace, thus also generalizing the concept of
double trace. The induced traces of a semi-double trace, as mentioned in
the previous section, is also a double cover.

For an edge e of G, if W traverses e in opposite (or the same) directions,
then e is called antiparallel (or parallel). A double cover W is called
antiparallel (or parallel) if any edge of G is traversed in an antiparallel
(or parallel) manner.

We can also extend the definition of repetition to double cover. Then a
double cover is called strong if it has no nontrivial repetitions. In [5], the
authors established a relation between the double trace W of a connected
graph G and a vertex figure at any vertex. Specifically, the necessary and
sufficient condition of W to be strong is that any vertex figure F), y forms
a cycle. Actually, the number of components in the definition of F), yr does
not need to be restricted to one, it can have multi components. As a direct

consequence, we have Definition 5 and Theorem 8.

Definition 5. Let W be a double cover of a graph G and v be a vertex
of G. We use E(v) as the vertex set to construct the vertex figure at v of
W, where the edges e and ¢’ in E(v) are considered adjacent if they are

consecutive along W. This vertex figure is denoted as F,w.

Theorem 8. Let W be a double cover of a graph G and v be a vertex of
G. Then W is strong if and only if any vertex figure F, w forms a cycle.

Suppose W¢, and W, are two single semi-double trace of graphs G,
and Gy respectively. If |[E(Cy)| = |E(Cs)| = k, let C; = vivh - viv] where
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v} (j=1,2,--- k) are the vertices around C; (i = 1,2). A new graph can
be obtained by identifying C; and Cs such that v = v (j=1,---,k),
forming a graph called cover graph of the ordered pair (G, Gg). Note
that there are different ways to attach the graphs based on the ordering
of the vertices in the presentation of C;. In this new cover graph, We,
and Wg, form a double cover. An example is shown in Figure 11 where
the graph on the right is obtained by identifying the two cycles marked in
yellow. Consequently, W¢, and W, form a double cover on the resulting

graph, marked in red and blue. Then we have the following theorem.

A Y-

WC1
Figure 11. W, and W, are single semi-double traces (marked in red
and blue). They traverse the edges of C1 and C2 (marked
in yellow) respectively once, and the other edges twice.
These traces are fabricated to be a double cover with two
components; The cover graph is represented by the black
and yellow graph in the rightmost.

Theorem 9. Suppose W, and We, are two single semi-strong traces of
graphs Gy and Gy respectively, with |E(C1)| = |E(C3)| = k. Then the
double cover W on a cover graph of (G1,Gz) is strong, analogous to viral

capsid stability from symmetric protein interactions.

Proof. Let C; = vivy---vivi (i = 1,2) where v (j=1,2,--- ,k) are the
vertices around C;. It is sufficient to prove that any vertex figure of vj— for
the double cover W is a cycle. Since W¢, (i = 1,2) are semi-strong, then
according to Theorem 7, the vertex figure of vi- in W¢, is a path, denoted
by P; = ejeb e}, , where m; = dg,(v}) — 1. The endvertices of P;, e}
and efm, are the two edges incident with vj in C;. Then according to the

construction of the cover graph, we have
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then the vertex figure F; 3 can be denoted by
3’

_ 11 1 2 \.2 2
PPy=ejey--ep, (=€, )em, 1 €1

Since any edge e} € E(G1) and €7 € E(Gz), and ef = €], then PP, is a
cycle. Thus W is a strong double cover. |

We then generalize the above Theorem 9. Let W¢, be a single semi-
double trace of G; (i = 1,2,---) where C; is a cycle in G;. Suppose
|E(C;)| = ki, and let C; = vjv---vj, v] where v} (j =1,--- ,k;) are the
vertices around C;.

In the first step, we need to identify two cycles or paths of G; and Gs.
If k1 = ko and we identify C7 and C5, we obtain a newly constructed graph
as described in the previous construction of the cover graph of the ordered
pair (G1,G2). We denote this new graph by GV, which has a double
cover with 2-components, and the procedure terminates. Alternatively, we
may continue the procedure and identify two paths P; and P, with the
same length | < min{ky, ke} in C; and Cy respectively, and denote the
new constructed graph by G(!) as well. Suppose P; = vivi---v} (i = 1,2)
and let vjl- = v]z (j=1,2,---,1). Then we obtain a cycle

C" = vl vy v, 01 (= 01)0R, VR, 1 - 0P (= 0)),
and the edges of C’ are traversed once by both W, and W, on GO,
This implies the edges of G which are traversed once form a cycle. Then
we continue the procedure.

In the second step, we construct G(®) in the same manner by identifying
two cycles or paths with the same length in ¢’ of G and C5 of G
respectively. If |[E(C")| = |E(C3)| and the two cycles are identified, each
edge of G@ is traversed twice, and the procedure terminates. Otherwise,
if we identify two paths as described earlier, some edges forming a cycle in
G® will be traversed only once, and the procedure continues.

We repeat this procedure until we reach the step n — 1 for some integer
n. At this step, using the same method, we identify the cycle in G(*~2)

which are traversed once and the cycle C,, in G,. Note that these two
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cycles must have the same length. This results in the construction of G(*~1)
which contains a double cover composed of (We,, We,, -+, We,). The
graph G("~1 is also called a cover graph of (G1,Ga,--- ,Gp).

An example of a cover graph is shown in Figure 12 where the cover
graph is obtained by identifying C;, Cs, and C3 (marked in yellow) to form
a new graph G(®). Simultaneously, the single semi-double traces We,, We,,
and W, form a double cover on G, marked in red, green, and purple

respectively. Then we have the following theorem.

Theorem 10. Suppose W¢, is a single semi-strong trace of a graph G;
(i=1,2,--- ,m) where C; is a cycle in Gy, and G~V is a cover graph of
(G1,--- ,Gwm). Let W be the corresponding double cover of G~V . Then
W s strong.

Proof. For any vertex v € V(G V) If v ¢ V(C;), i = 1,2,--- ,m, then
the vertex figure F, 37 = Fyw,, is a cycle. If v € V(C;) for some 1, let
Z}T:l Tyev(c,) denote the total number of occurrences of the element
v across all V(C1) to V(C,,), where 1,cy (¢, is an indicator function
that is 1 if the element v € V(C}), and 0 otherwise, i.e., the multiplicity
of v in the cover graph assembly. Then 2 < 37" Lycy(c,) < m. We
assume » -, Tyev(c,) = g, then there exist g edge subsets incident with
v, which are traversed by ¢ different single semi-strong traces respectively.
Without loss of generality, the traces are denoted by W¢,, - ,W¢,. A
similar discussion to that in Theorem 9 shows that the vertex figure F,
is composed of the vertex figures Fy, we , Fowe,, s By, we, » which are
paths that form a cycle in an end-to-end manner. Consequently, W is a

strong double cover. |
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Figure 12. W¢,, W¢, and Wg, are single semi-double traces (marked
in red, green and purple). They pass through cycles C1, Ca
and C3 (marked in yellow) respectively once, and the other
edges twice. These traces are created as a double cover with
three components.

Stability in polypeptide structures refers to the robust interlocking
configuration where each edge is traversed twice by a single chain, forming
coiled-coil dimers, and each vertex has no non-trivial repetitions. These
coiled-coil dimers are formed and interlocked to create a stable structure.
The double cover model directly reflects the stoichiometry of polypeptide
chains, such as the case like the SB24 complex (matching n = 3 components,
which requires three polypeptide chains in self-assembled cages, with each
component in the double cover corresponding to one chain). Building on
this, Theorem 10 implies the double cover as shown in Figure 12 is a strong
double cover, and based on that, we can construct a strong stable model

for the structure as shown in Figure 3.

5 Conclusion

This paper presents a graph-theoretic framework utilizing semi-double
traces and multi-component double covers to model the self-assembly of
coiled-coil protein origami (CCPO) cages, inspired by recent experimental

advancements such as the two-chain triangular bipyramids, tetrahedral



72

coils, and the three-chain SB24 octahedral complex. CCPO cages provide
robust interlocking stability and enable potential applications such as drug
delivery and biosensing. These cage-like structures, formed by single-chain
coiled-coils on polyhedral graphs, feature interfacial edges that are traversed
once to support conformational adaptability and non-interfacial edges that
are traversed twice for structural reinforcement, serving as test cases for
our model.

The mathematical model focuses on utilizing semi-strong traces and
double covers. For graphs G1,Ga,...,G,, we construct the cover graph
G™~ !, representing an n-chain cage where each chain on G; follows a
single semi-double trace W¢,. When this structure, typically a polyhedron,
is designed as a coiled-coil protein origami, the number of chains is n.
According to our model, the origami corresponds to a double cover with
n components, where each single-chain coiled-coil on G; corresponds to
a single semi-double trace. If every semi-double trace is semi-strong,
the resulting double cover with n components is strong. Strong double
covers ensure the stability of these protein cages by preventing nontrivial
repetitions that could lead to assembly failures.

A key innovation is the integration of experimental insights from [10]
and [12] regarding N- and C-termini positioning into our model. Lapenta
et al. demonstrated that the successful assembly of the SBP1g1,/SBP2g 1,
bipyramid requires N- and C-termini at interaction vertices, in contrast
to the failed SBP1g ,/SBP2g , design where non-interface termini led to
rigidity. In our model, the vertices of C; are interpreted as the positions of
the N- and C-termini of the respective polypeptide chains. A design with
termini at interface vertices yields a single-cycle vertex figure, ensuring a
semi-strong trace and enhanced stability. This is validated by SB24 complex,
where cyclization pre-organizes chains, aligning with our semi-strong trace
condition for the 109-kDa structure.

Compared to single-component models, our approach determines oligom-
eric states from component counts, extends to branched nanostructures via
semi-double traces, and provides a stability framework via cyclic vertex fig-
ures. This prescriptive tool guides the design of programmable biomimetic

nanomaterials, such as the SB24 octahedron, with predictable stability.
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Future work will quantify cyclization energy and linker effects to further

connect graph theory with synthetic biology.
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