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Abstract

Predicting drug-drug interactions (DDIs) is a critical challenge
in medication safety and drug development. Existing methods, how-
ever, often fail to effectively capture the full spectrum of structural
information, from local functional groups to global molecular topol-
ogy, and typically lack principled mechanisms to quantify prediction
confidence. To address these limitations, we propose the Multi-scale
Graph Neural Process for DDI (MPNP-DDI), a novel framework
that employs an iterative message-passing scheme to build a hier-
archy of graph representations. These multi-scale features are then
dynamically fused by a cross-drug co-attention mechanism to gener-
ate context-aware embeddings for interacting drug pairs. By provid-
ing accurate, generalizable, and uncertainty-aware predictions built
upon multi-scale structural features, MPNP-DDI represents a reli-
able computational tool for pharmacovigilance, polypharmacy risk
assessment, and precision medicine.
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1 Introduction

The concurrent use of multiple medications, known as polypharmacy, is
increasingly common, elevating the risk of adverse drug events stemming
from unforeseen drug-drug interactions [1]. To mitigate these risks, pre-
dicting these interactions serves as a cornerstone of pharmacovigilance and
clinical decision support. However, the challenge is immense, as the num-
ber of potential DDIs grows combinatorially with the number of available
drugs, making exhaustive experimental screening infeasible [2]. This real-
ity underscores the critical importance of developing accurate and scalable
computational models to forecast DDI risks preemptively.

Initial computational approaches for DDI prediction relied heavily on
literature mining to extract known interactions from biomedical texts [3],
or similarity-based methods that assume drugs with similar properties
(e.g., chemical structure, target proteins) are likely to share similar in-
teraction profiles [4]. In recent years, Graph Neural Networks (GNNs)
have emerged as the state-of-the-art for learning from molecular data [5].
When applying GNNs to the DDI problem, which inherently involves a pair
of drugs, the dual-GNN architecture has become a common paradigm [6].
In this setup, two separate GNNs process the paired drugs independently,
and their final embeddings are concatenated for prediction [7,8].

Beyond these foundational models, emerging strategies are tackling the
DDI prediction problem with greater complexity. Knowledge graph-based
methods embed drugs within a larger biomedical network, incorporating
heterogeneous information such as proteins, diseases, and side effects to
enrich drug representations [9,10]. In parallel, multi-modal approaches
aim to fuse diverse data sources, such as molecular structures and tex-
tual descriptions, to create more comprehensive drug profiles [11]. Other
advanced models have begun to incorporate co-attention mechanisms to
model substructure-level interactions [12].

Despite these advancements, a fundamental limitation persists, as ma-
ny models are built upon standard GNNs that operate at a single, fixed
analytical scale. This prevents them from simultaneously capturing fine-

grained local substructures and global molecular topology, often seeing the
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trees but not the forest [13], while also lacking a mechanism to dynamically
focus on the most salient chemical motifs [14]. This architectural scale-
insensitivity leads to a more profound conceptual flaw: the generation
of static, context-agnostic drug representations. In prevalent dual-GNN
pipelines, the representation of Drug A is computed in an ”information
silo,” entirely independent of its partner, Drug B [7,8]. This approach is
fundamentally misaligned with chemical reality, where a drug’s interactive
potential is dynamic and context-dependent. A truly effective model must
therefore first perceive features across multiple scales to then generate a
dynamic, context-aware representation that reflects how these features are
expressed in the presence of a specific partner [12].

Motivation: This raises the following question: Can we design a DDI
prediction model that learns dynamic, context-aware representations from
a rich hierarchy of multi-scale structural features, while also quantifying its
reliability for high-stakes clinical predictions? To address this challenge,
we introduce the Multi-scale Graph Neural Process for DDI (MPNP-DDI),
as illustrated in Figure 1. We select the Graph Neural Process framework
for its unique ability to learn a distribution over functions, enabling robust
generalization to entirely new molecules not seen during training. This in-
teractive process yields a context-aware representation for predicting both
the DDI event and the model’s uncertainty.

Primary contributions. Our primary contributions are threefold:

1. Multi-Scale Representation Learning: We use stacked Graph Neural
Process blocks, operating on both the original molecular graph and
its line graph (to model bond-level interactions), to build a hierarchy

of stochastic representations from local motifs to global topology.

2. Context-Aware Feature Fusion: A cross-drug co-attention mecha-
nism dynamically fuses these multi-scale features, breaking the in-
formation silo by generating a unique, context-dependent embedding

for each interacting drug pair.

3. Principled Uncertainty & Generalization: By learning a distribution
over functions, the GNP framework not only provides principled un-

certainty estimates but also exhibits strong generalization to unseen
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Figure 1. The architecture of MPNP-DDI. Stacked GNP blocks gen-
erate multi-scale representations for each drug, which are
then fused by a cross-drug co-attention mechanism to en-
able context-aware, probabilistic DDI prediction.
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molecules, which is a critical feature for real-world drug discovery

that distinguishes it from many standard GNNs.

2 Literature review

This section reviews the evolution of computational DDI prediction, struc-
tured to mirror the methodological categories outlined in the introduction.

Foundational and Similarity-Based Methods. Initial computa-
tional strategies were built on two pillars. Literature mining employed
Natural Language Processing (NLP) to extract known DDIs from biomed-
ical texts [3,15], a method inherently unable to predict novel interactions.
In parallel, similarity-based methods operated on the principle that similar
drugs exhibit similar behaviors [4]. These models used feature vectors like
chemical fingerprints or target profiles [16,17] to infer interactions. Their
main limitation is a reliance on hand-crafted features and the ”similarity
assumption,” which may not always hold true.

Graph Neural Network-Based Prediction. The advent of Graph
Neural Networks (GNNs) marked a paradigm shift, enabling models to
learn representations directly from the molecular graph [5]. This led to

the prevalence of the dual-GNN architecture, where two GNNs (or a



9

single shared-weight GNN) independently process the paired drugs to gen-
erate fixed-size embeddings. These embeddings are then concatenated and
fed into a classifier to predict the interaction type [7,8]. This approach be-
came the new standard but established the ”information silo” problem, as
drug representations are computed without context from their interacting
partner.

Knowledge Integration and Architectural Enhancements. To
move beyond the standard dual-GNN, two advanced strategies emerged.
The first involves enriching drug representations with external data, using
Knowledge Graphs (KGs) [9, 10, 18] or multi-modal approaches [11, 19].
The second strategy focuses on improving the GNN itself by enhancing
its ability to capture salient structural information. For instance, some
works focus on enhancing structural feature extraction directly [20] or
identifying key chemical motifs, a concept also central to related tasks
like molecular design [21]. In the DDI context, models like SSI-DDI [22],
GMPNN-CS [23], and DGNN-DDI [12] incorporated attention or gated
mechanisms to focus on important substructures. However, even in these
models, co-attention is often applied as a late-stage fusion step on pre-
computed, static features, failing to fully model the dynamic nature of
drug interactions.

Probabilistic and Context-Aware Modeling. The limitations of
static models motivate exploring more advanced frameworks. Graph Neu-
ral Processes (GNPs) represent a promising frontier [24]. Unlike deter-
ministic GNNs, GNPs learn a distribution over functions on graphs. This
probabilistic nature is inherently suited for few-shot generalization to new
drugs [25] and, most critically, provides a principled mechanism for uncer-
tainty quantification. The vast majority of DDI models lack this feature, a
significant shortcoming in clinical settings where reliability is paramount.
A model that can express its own uncertainty would be transformative,
guiding both clinical decisions and future research. Despite this potential,
applying GNPs to DDI prediction remains largely unexplored, highlighting

a critical gap this work aims to address.
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3 Preliminaries

This section introduces the fundamental graph-based representations for
drugs and formally defines the task of multi-label, probabilistic DDI pre-

diction.

3.1 Graph representation and task formulation

A drug molecule is represented as a graph G = (V| E), where V is the set
of atoms (nodes) and FE is the set of chemical bonds (edges). Each atom
v € V is associated with an initial feature vector x, € R%, and each bond
eus € F has a feature vector ey, € R%. These features are projected into
a unified hidden dimension dj, to yield initial states XE,O) and egg,).

To capture a richer structural context, we model molecules from two
complementary viewpoints: atom-level interactions, represented by the
standard graph G, and bond-level interactions. For the latter, we construct
the line graph G, = (V, FL). In G, each node corresponds to a bond
in G, and an edge exists between two nodes if their corresponding bonds
in G share a common atom. Operating on both G and G, provides the
structural foundation for our multi-scale feature extraction.

We formulate DDI prediction as a multi-label classification problem
over a set of R predefined DDI types. Given a dataset of drug pairs
D = {(Gi,Gj,yij)}, the label y;; € {0,1} is a binary vector where
Yijr = 1 if drug ¢ and drug j exhibit the r-th type of interaction, and 0

otherwise.

3.2 Probabilistic modeling objective

Our goal is to learn a probabilistic model fy that maps a new, potentially
unseen drug pair (G, G;) to a distribution over the R possible interaction
types. Specifically, the model outputs a tuple (/,Lij,sij), where p;; € RE

is a vector of logits and s;; € R% is a vector of log-variances:

fo : (Gi, Gj) = (Bijs8i5) (1)
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Table 1. Summary of key notations.

Notation Description

Derain Training set of labeled drug pairs.

G;,Gj Molecular graphs for a drug pair.

R Number of distinct DDI relation types.

vij € {0, 1} Multi-label interaction vector.

Xy, €uu Raw atom (node) and bond (edge) features.

dp, Hidden dimension for all embeddings.

xﬁo),eﬁﬂf Initial hidden states for atoms and bonds.

Gr; Line graph derived from G;.

Hi Set of multi-scale embeddings {hgk) K | for a drug.

fo(s, ") The DDI prediction model with parameters 6.

(,u,ij, Sij) Model output: interaction logits and log-variances
(vectors of size R). 0'i2]-’7, = exp(Sij,r)-

LMPNP The total loss function.

iilmd’ Lune, Prediction, uncertainty, and KL loss components.

Aunc, Akl Weights for the loss components.

For each interaction type r € {1,..., R}, the model provides an interaction

probability p;;, = sigmoid(pi;») and an estimated uncertainty, captured
by the variance U?jvr = exp(sij,r). This fine-grained, per-relation uncer-
tainty is critical for assessing prediction reliability before informing deci-
sions. The model is trained by optimizing a composite objective function,
which will be detailed in the Methodology section.

4 Methodology

We propose the Multi-scale Graph Neural Process for DDI (MPNP-DDI),
a framework designed for multi-label, probabilistic DDI prediction. The
architecture comprises four key stages: (1) a dual message-passing scheme
operating on both atom and bond graphs; (2) a hierarchical Graph Neural
Process encoder for multi-scale stochastic representation learning; (3) a
cross-drug co-attention mechanism for context-aware feature fusion; and

(4) a decoupled prediction head for multi-label probabilistic output.
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4.1 Hierarchical structure encoder

To capture both local atomic environments and higher-order bond inter-
actions, we employ a dual message-passing scheme that iterates between
the molecular graph G; and its line graph G, ;. First, raw atom and bond

features are projected into a unified hidden dimension dj,:
x{?) = PReLU(BatchNorm(¢,(x,))), €% = ¢c(eys) (2)

Within each of the K’ GNP blocks, representations are refined over T itera-
tions. The process for each iteration ¢ begins on the line graph G, ;, where
bond representations are updated by passing messages between adjacent
bonds. This bond-to-bond communication is defined as:

el = Update, (e(), Aggregate,({m{)_, ., | ews € Na, (eu)}))  (3)

uv?’ v

where Update, and Aggregate, are learnable functions (e.g., GRU and
summation). The key to our dual scheme is that these newly refined bond
representations immediately serve as messages for the second stage, which
occurs on the original graph G;. Here, each atom aggregates the updated

states from its incident bonds:
Ax{) = Aggregate, ({el,/!) | u € Na(v)}) (4)

Finally, a Gated Recurrent Unit (GRU) [27] integrates this aggregated
signal to update the atom’s hidden state, enabling stable long-range infor-

mation propagation:
x| = GRU(Ax(, x{!)) (5)

This two-stage iterative refinement allows the model to learn complex
structural motifs by explicitly modeling the flow of information from bonds

to adjacent bonds, and then from bonds back to atoms.
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4.2 Multi-scale stochastic representation learning

After T message-passing iterations within block k, we generate a stochastic
graph-level representation.

Stochastic Graph Readout. The final node representations
{xg,T)}vevi are pooled to parameterize a diagonal Gaussian posterior dis-

tribution q(zl(-k) |G;). We use global mean pooling followed by two separate

MLPs to produce the mean u;kl) and log-variance log(a;]’?)Q:
%; = Mean({x(1) | v € V;}) (6)
pyl = MLP((%,),  log(e,))” = MLP(Y (%)) (7)

A stochastic graph representation hgk) is then sampled using the reparam-

eterization trick:
h{*) = uikl) + agfi) ©€, where €~ N(0,I) (8)

By stacking K such blocks, we obtain a set of multi-scale representations
for drug d;, denoted as H; = {hgl)7 o ,hEK)}.

4.3 Dynamic Interaction Modeling with Co-Attention

To break the ”information silo” of independent drug encoding, a co-atte-
ntion mechanism dynamically fuses the multi-scale representations H; and
H; from an interacting pair. First, a cross-scale affinity matrix A;; €

REXK is computed:

(A = (b") "W 9)

where W is a learnable parameter matrix. Aggregated importance scores
for each scale are obtained by summing over the rows and columns of A;;,
which are then normalized via softmax to yield attention weights c; and

a;. The final context-aware embeddings are computed as a weighted sum:

K K
h?nal _ Z O‘ik:hz('k)a h?nal _ Z Oéjlhg-l) (10)
k=1 =1
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4.4 Multi-label probabilistic prediction head

The final stage uses a decoupled architecture to predict interaction prob-
abilities and their associated uncertainties for all R DDI types.
Prediction Head. To model the rich, multi-relational nature of DDIs,
we compute a logit p;; , for each relation type r using the RESCAL model
[26]. This allows the model to learn a unique interaction pattern for each
DDI type:
pijr = (R TV, B! (11)

where M, € R% *dn ig a learnable, relation-specific scoring matrix. The
final output is a logit vector p;; € RE.

Uncertainty Head. A separate MLP operates on the concatenated
final embeddings to predict a log-variance s;;, for each relation type, yield-

ing an uncertainty vector s;; € RE:

Sij = MLPHHC([h§n31§ h?nal]) (12)

4.5 Training objective

The model is trained end-to-end by minimizing a composite loss function
Lyipnp, which balances predictive accuracy, uncertainty calibration, and

latent space regularization:
EMPNP = Epred + )\uncﬁunc + >\kl£k1 (13)

where Ayne and Ay are hyperparameters that control the weight of each
component.

The first component is the Prediction Loss (Lpreq), which is the stan-
dard binary cross-entropy with logits loss. It is applied independently to
each of the R interaction types and averaged over the batch:

R
1
Lored =B | Y (= Yijorttizr +1og(1 + exp(pijr))) (14)
r=1

The second component, the Uncertainty Loss (Lunc), acts as a regular-

ization term. It encourages the model to assign higher variance (i.e., lower
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confidence) to incorrect predictions for each relation type:

R
1 N
Line =E = > ((sigmoid(pij ) = yijr)® exp(—sij.r) + ij.r) (15)
r=1

Finally, the KL Regularization (Ly;) term is the Kullback-Leibler diver-
gence between the learned posterior distribution q(zz(-k) |G;) and a standard
normal prior A'(0,I). This divergence is summed over all scales and both

drugs in a given pair:

K
La=E| Y S KL |Ga)|IN(0, 1)) (16)

de{igy k=1

5 Theoretical analysis

For DDI prediction models intended for clinical use, formal guarantees
on training stability and on generalization to novel drugs are essential.
We analyze MPNP-DDI along three axes: (i) optimization stability via
smoothness and SGD convergence, (ii) generalization via a PAC-Bayesian
bound for our stochastic predictor, and (iii) a variational inference (VI)
interpretation that explains the role of each loss component as regular-
ization. For completeness, we summarize the working assumptions in the

main text; detailed proofs remain in Appendix A.
Assumption 1. We make the following standard assumptions:

1. The inputs (node and edge features) and model parameters are bound-
ed.

2. The activation functions (e.g., Tanh, PReLU) are L-Lipschitz con-

tinuous.

3. The stochastic gradient is an unbiased estimator of the true gradient

and has bounded variance.
4. The learning rate lies in a standard stability range.

5. The loss function is scaled to satisfy the boundedness requirement for

the PAC-Bayesian mapping from the 0-1 risk to a surrogate loss.
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5.1 Convergence and generalization guarantees

Theorem 1 (L-Smoothness of the MPNP-DDI Loss). Under the assump-
tions above, the composite training objective Lypnp(0) is L-smooth with

respect to parameters 6.

L-smoothness yields standard SGD convergence to a stationary neigh-
borhood:

Theorem 2 (Convergence of SGD for MPNP-DDI). Let Lypnp be L-

smooth and the stochastic gradient be unbiased with bounded variance o>.

For sufficiently small n > 0, SGD produces {Qk}fgol such that

2(Lypne(00) — Lypyp)
nK

in E|VL 0)|* < Lo*. (17
o Doin IVLupnp(Ok)]® < +nlo (17)
DDI relevance. This ensures stable, reproducible optimization—critical
for clinical decision support—rather than brittle training that depends on

random seeds or hyperparameters.

Theorem 3 (PAC-Bayesian Generalization for MPNP-DDI). Let P be a
prior and @ a posterior over stochastic predictors. For any ¢ € (0,1), with

probability at least 1 — § over a sample S of size m,

Eno[Rirue(h)] < Bneo[Reyme (s S)] + \/KL(QHP)—O—ln@m/é).

2m
(18)

DDI relevance. Minimizing the empirical surrogate risk together with the
KL term directly tightens an upper bound on true error, offering a princi-

pled way to control overfitting when generalizing to unseen drugs.

5.2 A variational inference view on regularization

Our architecture can be viewed as amortized VI for latent drug-pair rep-
resentations. Minimizing Lypnp corresponds to maximizing an ELBO:
the combination of prediction loss Lpreq and uncertainty-aware loss Lunc
implements a heteroscedastic negative log-likelihood —Eg,q)logp(y|z),

encouraging accurate reconstruction while modeling confidence; the KL



17

regularizer Ly shrinks ¢(z|G) towards a prior p(z). Unlike determinis-
tic GNNs whose complexity is fixed by architecture, MPNP-DDI’s effec-
tive complexity is dynamically reqularized through the learned posterior
variance, realizing an information bottleneck that supports better out-of-

distribution generalization for novel drugs.

6 Experiments and analysis

6.1 Experimental setup

Datasets, Baselines, and Metrics. We evaluate our model on the
widely-used DrugBank dataset [28], following the setup from [12]. The
task is to predict interactions across 86 distinct types, formulated as a
binary classification problem. We compare MPNP-DDI against a suite of
state-of-the-art models: GAT-DDI, GMPNN-CS, SA-DDI, SSI-DDI, and
the primary baseline DGNN-DDI [12]. Performance is evaluated using
standard metrics: AUROC, AUPR, F1-Score, and Accuracy. To assess
model calibration, we also measure the Uncertainty-Error Correlation.
Implementation Details. Our model is implemented in PyTorch.
The core architecture consists of 3 GNP Blocks with a hidden dimension
of 32. We trained the model for 20 epochs using the AdamW optimizer
with an effective batch size of 32 (achieved with a batch size of 8 and 4
gradient accumulation steps). All experiments were conducted on a single
NVIDIA A100 GPU. A comprehensive list of all hyperparameters and

further training details are provided in the Appendix.

6.2 Performance in transductive setting: comparison

with baselines

To establish a direct and fair comparison with existing state-of-the-art
methods [12], we evaluate MPNP-DDI in the standard transductive set-
ting. In this setup, all known drug-drug interactions (edges) are parti-
tioned into training, validation, and test sets, so the model has access to
the complete set of drugs (nodes) during training and must predict un-

seen interactions among them. This primarily assesses graph completion
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Table 2. Transductive comparison (mean =+ std, %) on DrugBank
and Twosides. Best per dataset in bold.

Model AUROC AUPR Precision Recall
MR-GNN 98.87 98.57 94.48 97.78
~ MHCADDI 91.16 89.26 78.90 92.26
5 SSI-DDI 98.95 98.57 95.09 97.70
@) GAT-DDI 95.21 93.56 87.04 93.56
5 GMPNN-U* 98.32 97.77 93.19 97.07
GMPNN-CS 98.46 97.94 93.60 97.22
MPNP-DDI 99.35 99.02 97.00 97.82
MR-GNN 85.00 84.32 72.82 83.70
» MHCADDI - - - -
ﬁ SSI-DDI 85.85 82.71 74.33 86.15
g GAT-DDI? 50.00 50.00 50.00 100.00
i GMPNN-U* 82.08 78.67 71.77 81.69
GMPNN-CS 90.07 87.24 78.42 90.61

MPNP-DDI 98.94 98.68 95.57 95.85

T GMPNN-U denotes the uncertainty-aware GMPNN variant re-
ported alongside GMPNN-CS.
¥ The near-random Twosides numbers for GAT-DDI reflect insta-
bility on highly imbalanced multi-relation settings; we verified the
metric pipeline. * Baselines adapted from Nyamabo et al. [20]
under matched splits/metrics.

ability, in contrast to the more challenging inductive setting in §6.3, where
generalization to entirely new drugs is required.

Detailed ROC/PR curves and significance tests (vs. GMPNN-CS) are
provided in Appendix Fig. 6; here we retain a single tabular view to avoid

redundancy.

6.3 Generalization ability in inductive setting

To characterize the data efficiency and learning behavior of our proposed
model, we assess its performance in a challenging inductive setting. In
this setup, drugs are strictly partitioned into disjoint training, validation,
and test sets. We scale the proportion of training drugs from 10% to 100%
and repeat each setting with ten random seeds to report the mean and
standard deviation. The primary goal here is to understand our model’s

intrinsic learning curve, rather than to perform a direct comparison with



19

all baselines, which would be computationally prohibitive.

As shown in Fig. 2, the test AUROC for MPNP-DDI rises steadily
from 51.20% (at 10% data) to 75.12% (at 100% data). The variance also
increases at higher data ratios, suggesting that the model navigates a richer
but more sensitive optimization landscape as more data becomes available.
Comprehensive numeric results are deferred to Appendix Table 4 to avoid

duplication in the main text.

Inductive Scalability Analysis: Performance and Stability

A
Primary Performance Metrics vs. Data Size
075
0.70
£ 065
]
S
@
0.60
055
—e— AUROC
050 —e— AUPR
20 40 60 80 100
B (o} D
F1 Score PRECISION Score RECALL Score
0.70 0.7
0.65
0.60 0.65 0.6
055 0.60
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050 055
0.4
045 050
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Training Data Ratio (%) Training Data Ratio (%) Training Data Ratio (%)

Figure 2. Inductive scalability. Solid lines and shaded areas repre-
sent the mean and standard deviation, respectively, over 10
runs. Panels show: (A) AUROC and AUPR; (B-D) F1,
Precision, and Recall.

6.4 Ablation studies

We dissect the contributions of the multi-scale fusion, the stochastic en-
coder, and the relation-aware scorer while keeping the line-graph message
passing as the base architecture. Each ablation is evaluated under the
inductive DrugBank setting (multi-label).

The results in Table 3 reveal a clear hierarchy of component contribu-

tions. Co-attention is pivotal, as its removal causes the most significant
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Table 3. Ablations (inductive DrugBank). A shows drop vs. Full. Best
per column in bold.

Variant AUROC AUPR F1-Score
MPNP-DDI 0.7440 0.6459 0.6306
(Full)

Ablation of Multi-Scale Fusion:

Single-Scale 0.6780 (-0.0660) 0.5328 (-0.1131) 0.6085 (-0.0221)
Model

w/o 0.4943 (-0.2497)  0.2796 (-0.3664)  0.4865 (-0.1441)
Co-Attention

(Avg. Pool)

Ablation of Other Components:

Deterministic ~ 0.6607 (-0.0833)  0.5003 (-0.1456)  0.5627 (-0.0679)
Encoder

MLP Scorer 0.6182 (-0.1258)  0.3342 (-0.3118)  0.4206 (-0.2100)
(vs. RESCAL)

performance drop (AUROC —0.25), confirming the necessity of context-
aware, pair-specific fusion. The multi-scale architecture also proves ben-
eficial, since collapsing to a single scale harms all metrics and evidences
information loss. Furthermore, the stochastic encoder aids generalization,
with its deterministic counterpart underperforming, which supports the
role of uncertainty as a regularizer. Finally, relation-aware scoring is crit-
ical; replacing the RESCAL tensor model with a simple MLP severely
damages multi-relation discrimination.

To further analyze our model’s performance, we examined its effective-
ness across different DDI types. The per-relation radar charts in Figure 3
provide a fine-grained view, revealing that the model’s strong performance
is broadly distributed across various interaction types rather than being
concentrated in only a few. This suggests that the learned representations

are versatile and not biased towards a small subset of DDI mechanisms.

6.5 Case studies

To validate the interpretability of our model, we conducted case studies on

four clinically significant DDI pairs, selected to represent diverse chemi-



(a) DrugBank per-relation radar. (b) Twosides per-relation radar.

Figure 3. Fine-grained performance by relation type. The charts show
that the model achieves consistent performance across a wide
range of DDI types on both datasets, indicating robust and
well-distributed learning.

cal structures and interaction mechanisms. We employed a gradient-based
attribution method to identify atoms contributing most to the DDI pre-
diction. The resulting substructures, defined by the most critical atoms
and their local receptive fields, were then visualized to reveal the model’s
learned chemical patterns.

Figure 4 illustrates the results. A consistent pattern is the model’s fo-
cus on aromatic rings in drugs like Aspirin and Warfarin. These moieties
are well-known pharmacophores, suggesting our model correctly identifies
fundamental chemical features as drivers of interaction. For instance, in
the Warfarin-Ibuprofen pair, the model highlights the coumarin ring of
Warfarin and the phenylpropionic acid scaffold of Ibuprofen, both central
to their respective activities. More notably, the model demonstrates a
nuanced understanding of large molecules. In the interaction between
Digoxin and Amiodarone, it correctly pinpoints the steroid nucleus of
Digoxin, the core structure responsible for its cardiac effects. This high-
lights the model’s ability to isolate a critical functional scaffold within a
complex glycoside structure.

To further illustrate *how™ the model learns to identify these key re-
gions, Figure 5 visualizes the evolution of atom-level attributions during

the message-passing process. For molecules like Phenindione and Aspirin,
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the plots show that the model’s attention progressively converges on salient
substructures, such as the aromatic systems. This dynamic focusing rein-
forces the conclusion that the model is learning chemically relevant pat-
terns rather than simply memorizing superficial correlations.

Collectively, these cases demonstrate that our model does not rely
on superficial correlations but learns to identify specific, pharmacologi-
cally meaningful substructures. This capability bolsters confidence in the
model’s predictions and showcases its potential as a tool for hypothesis

generation in drug safety assessment.

Case Study: Key Substructure Contributions in DDIs

Aspirin (r=2) Warfarin (r=3) Digoxin (r=4) Fluoxetine (r=3)

Amiodarone (r=3)

Figure 4. Visualization of key substructures for four representative
DDI pairs. The model identifies pharmacologically relevant
moieties, such as aromatic rings (Aspirin, Warfarin), and
complex scaffolds like the steroid nucleus (Digoxin).

7 Conclusions and limitations

7.1 Technical discussion

We presented MPNP-DDI, a multi-scale, uncertainty-aware graph model for
DDI prediction with cross-drug co-attention and a relation-aware RESCAL
scorer. Across the transductive setting, MPNP-DDI achieves the best AU-
ROC/AUPR /Precision/Recall on both DrugBank and Twosides (Table 2);

on Twosides the improvement over the next-strongest baseline (GMPNN-
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Atom Similarity Matrix Evolution for Phenindione (drugbank)

(A) Epoch 5 (B) Epoch 15 (C) Best Model (D) Phenindione

(a) Atom similarity evolution: Phenindione.

Atom Similarity Matrix Evolution for Aspirin (decagon)

/z
} g
o

Kpon

(A) Epoch 5 (B) Epoch 15 (C) Best Model (D) Aspirin

(b) Atom similarity evolution: Aspirin.

Figure 5. Atom-level representation learning visualizations. The plots
show the evolution of atom importance for (a) Phenindione
and (b) Aspirin, demonstrating how the model progressively
focuses on key substructures like aromatic rings.

CS) is statistically significant, as verified by our test in Appendix D. In
the inductive setting—where drugs are strictly partitioned—performance
scales favorably with data: the mean Test AUROC rises from 51.20%
(10%) to 75.12% (100%) under ten random seeds (Fig. 2), indicating that
the proposed stochastic, multi-scale representations transfer beyond graph
completion.

Ablations (Table 3) establish a clear evidence chain for each architec-
tural choice. Removing co-attention induces the largest drop, confirming
the necessity of context-aware, pair-specific fusion. Furthermore, collaps-
ing to a single scale consistently hurts performance, showing that comple-
mentary hierarchy levels matter. Replacing the stochastic encoder with a
deterministic one degrades inductive generalization, aligning with the view
that learned uncertainty acts as regularization, and a plain MLP scorer
fails to capture multi-relation structure compared to RESCAL. Repre-
sentative case studies further support face validity: attributions concen-
trate on pharmacologically meaningful substructures (e.g., aromatic rings;
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steroid nucleus), rather than spurious fragments (Appendix D). Taken to-
gether with standard assumptions, our training objective admits smooth-
ness and SGD convergence properties, and its stochastic formulation con-
nects to a PAC-Bayesian generalization view, offering additional theoreti-

cal reassurance for safety-critical DDI applications.

7.2 Limitations

Despite the strong results, several limitations remain. The current archi-
tecture consumes 2D molecular graphs derived from SMILES and does not
encode explicit 3D conformations or stereochemistry, factors that can be
decisive for binding and interaction. The predictor also focuses on pair-
wise drug—drug interactions and therefore does not capture higher-order
combinations (n > 2) that are common in clinical regimens. Performance
can vary for sparsely represented relation types; class imbalance and po-
tential label incompleteness may bias estimates and complicate threshold
selection. In terms of external validity, our results rely on specific dataset
curation and preprocessing choices, so shifts in drug distributions or clin-
ical settings may degrade generalization without re-calibration. Finally,
while the implementation is lightweight, we observe increased variance in
the inductive setting as data scale grows (Fig. 2), suggesting sensitivity to

initialization and training budget.

7.3 Future extensions

We see several avenues to address these limitations and better align with
clinical safety needs. A first direction is geometry-aware modeling: incor-
porating 3D conformers and stereochemical/electronic features via equiv-
ariant GNNs within the present multi-scale, co-attentive pipeline. Be-
yond pairwise prediction, we aim to model n-way interactions using hy-
pergraph or set-based formulations with tractable inference. To combat
data scarcity, we will explore calibrated selective prediction, few-shot and
meta-learning, and active learning to improve rare-relation performance
and quantify uncertainty on out-of-distribution drugs. We also plan to in-

tegrate pharmacokinetic/pharmacodynamic knowledge and curated inter-
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action ontologies to regularize learning under limited supervision. Finally,
for robust deployment, we will study resilience to dataset shift, develop
post-hoc calibration and early-warning abstention rules, and profile com-

plexity and runtime to meet clinical workflow constraints.

Reproducibility and use. We release code and preprocessing scripts upon
publication together with exact splits and seeds. MPNP-DDI is intended
as a research tool to assist hypothesis generation; it should not be used for
clinical decision-making without domain expert oversight and prospective

validation.
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A Training algorithm

The full training procedure for the MPNP-DDI framework is detailed in
Algorithm 1.

Algorithm 1 MPNP-DDI Training Procedure

1:

10:

11:
12:
13:
14:
15:
16:
17:

18:
19:

20:
21:
22:

Input: Training dataloader Diyain, model with parameters 6, opti-
mizer O

Hyperparameters: Learning rate 7, uncertainty weight Aync, KL
Weight )\kl

Output: Optimized model parameters 6*

procedure COMPUTEFORWARDPASS(G;, G, 1, 0)
(Hismi,03), (Hj, p,0%) < GNP _Encoder(G;, G;)
hiinal hfinal « CoAttention(H,, M)
pij < PredictionHead (hf*®!, hfinal )
sij + UncertaintyHead (hfna!, hJﬁnal)
return (uij, sij, pj, 03, pj, 05)
end procedure
Initialize model parameters 6
for each training epoch do
for each batch (G, G, yij,7) in Diyain do
(Wijy Sijy iy T2, TN O'?) <+ ComputeForwardPass(G;, G;,1,0)
Lpred < BCEWithLogitsLoss(u;, ¥ij)
Lune = E[(sigmoid (i) — yij)? - exp(—sij) + 5]
Ly — KLDiv(N (p;, 02)[|N(0,1)) +
KLDiv(N (p,07)|IN(0,1))
£total — £pred + )\uncﬁunc + )\klﬁkl
Compute gradient VgLiota1 and update parameters 6 using op-
timizer O
end for
end for
return Optimized parameters 6*
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B Theoretical foundations

This section provides the detailed proofs, assumptions, and supporting
lemmas for the theoretical results presented in the main paper. We restate

each theorem before its proof for clarity and self-containment.

B.1 Proofs for convergence analysis

Assumptions. To formally prove the theoretical results, we rely on the
following specific technical assumptions. These assumptions represent the
sufficient conditions required to satisfy the high-level statements made in

Assumption 1 of the main text.

A1l Bounded Parameters: All learnable weight matrices W in the
model have a bounded spectral norm, |[W|2 < Cw < oo. (This

ensures Assumption 1.1).

A2 Bounded Inputs: Initial node and edge features are bounded, i.e.,
Ix|| < Cip, and |le]| < Cyy, for some constant Cj, < oo. (This ensures

Assumption 1.1).

A3 Lipschitz Activations: All activation functions (e.g., sigmoid,
tanh, PReLU) are L,q-Lipschitz continuous. (This is identical to
Assumption 1.2).

Assumptions 1.3, 1.4, and 1.5 from the main text are standard for SGD
convergence and PAC-Bayesian analysis and are directly used in the proofs

of Theorem 2 and Theorem 3.

Lemma 1 (Lipschitz Continuity of the Multi-Scale Encoder). Let fen. :
G — REX be the multi-scale GNP encoder. Under Assumptions A1-AS3,

Sfene 18 Lene-Lipschitz continuous with respect to its inputs.

Proof. The encoder is a composition of K GNP blocks. We analyze a single
block folock, which is itself a composition of functions. Let Zy = (X1, Eq)
and Zy = (X2,E2) be two sets of input node/edge features to a layer.
The message passing scheme described in the main paper’s methodology

section, consisting of message creation and aggregation, involves linear
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operations and is thus Lipschitz. The GRU update mechanism, a core
component of each GNP block, is Lipschitz under assumptions Al and A3.
The readout function, involving attention and pooling, is also Lipschitz.
Let f1,..., fr be the Lipschitz functions composing one block. The block
foloek = fr o---o fi is Lipschitz with constant Lyock = [[; L;- The full
encoder fene is a composition of K such blocks, so it is also Lipschitz
with constant Leye < (Lb1ock)K . Therefore, the output representations are

bounded for bounded inputs, i.e., |h®) || < C}, < co. [ |

Lemma 2 (Lipschitz Continuity of the Co-Attention Mechanism). Let
feo-atin : (REXdn REXdn) s (Rdn R be the co-attention module. Un-
der Assumption A1 and for bounded inputs, feo-attn S Lco-attn-Lipschitz

continuous.

Proof. Let (H;1,H, 1) and (H;2,H,2) be two pairs of input representa-
tions. The affinity matrix calculation (defined in the main paper) is a

bilinear form. We bound the change in one of its elements:

| A1 51 — A2 ki
= (b{Y)TWh{} — (h{5)TWh{}| (19)
=|(h{Y - h))"Wh{)
+ ) TWH) —n))] (20)
< [0 — )Wl [0 |
+ [0 W2 — n{Y) (21)
< CwC(Ihf — b | + 1) = h{h)), (22)

where C}, is the bound on representation norms from Lemma 1. This
shows the affinity calculation is Lipschitz. The subsequent softmax and
weighted sum operations are compositions of Lipschitz functions (softmax
is 1-Lipschitz). Thus, the entire module feo attn 18 Leo-attn-Lipschitz con-

tinuous. [ |

Theorem 4 (L-Smoothness of the MPNP-DDI Loss Function). Under
Assumptions A1-A8, the MPNP-DDI loss function Lypnp(0) is L-smooth

with respect to its parameters 6.
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Proof. A function is L-smooth if its gradient is L-Lipschitz continuous.
The loss is a composite function Lypne () = £(fmodel(G;0)), where £ is
the loss criterion and fiodel is the full forward pass. By the chain rule, the
gradient is Vo Lypne (0) = Jo(fumodel) | V2£(2), where 2 = fiiode1(G; 0) and
Jo(fmodel) 1s the Jacobian of the model’s output with respect to parameters
0. From Lemma 1 and Lemma 2, the model foqe1 is & composition of
Lipschitz functions, and is thus Lipschitz with respect to its parameters 6.
This implies its Jacobian Jy(fmodel) is bounded. The loss criteria (BCE,
MSE-like) are smooth, meaning their gradients V,£(z) are Lipschitz. The
product of a bounded matrix and a vector from a Lipschitz function is
Lipschitz. Therefore, Vg Lypnp(0) is L-Lipschitz continuous, which proves
that Lypnp is L-smooth. [ |

The L-smoothness property directly leads to the following convergence

guarantee for SGD.

Theorem 5 (Convergence of the MPNP-DDI Objective). Let the MPNP-
DDI loss function Lypnp(0) be L-smooth. Assume the stochastic gradient
estimator V estLypnp(0) is unbiased with variance bounded by 2. For
a sufficiently small learning rate n > 0, the sequence of parameters {0y}
generated by SGD satisfies:

. 2(L 0o) — L%
min_ B[V Laenp(6,)]?] < 2P0~ Lhupr) (o

k=0,...,K — nk
+nLo? (24)

where Ly pyp 15 the minimum value of the loss. This implies that the

expected gradient norm converges to a neighborhood of zero as K — .

Proof. The proof follows the standard analysis for SGD on L-smooth, non-
convex functions. We begin with the descent lemma, a direct consequence
of the L-smoothness of the loss function:

Lypnp (Or41) < Lapne (Or) + (VLupne (0), kg1 — Or)

L
+ 5 k41 = Ok |*. (25)
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The parameters are updated via SGD, ;11 = 0 — nVest Lvpnp (0 ). Sub-
stituting the update rule and taking the expectation Eg[] over the mini-
batch randomness, we leverage the unbiasedness of the stochastic gradient

and its bounded variance to obtain:

Ex[Lapne (Ok+1)] < Lavene (6k)
Ln?c?

L
_q (1 - 2”) IV Latene (B0 + =5 — (26)

Taking the total expectation and rearranging terms gives:

U] (1 - L277> E[[|VLaene (0)[17] < E[Laene (61)]

Ln?c?
5

— E[Lypnp (Ok+1)] + (27)

Choosing n < 1/L ensures (1 — Ln/2) > 1/2. Summing from k = 0
to K — 1 yields a telescoping sum. Since E[Lypne(0k)] > Lipnp, and
dividing by Kn/2, we use the property that the minimum is no larger than

the average to arrive at the final result. |

B.2 PAC-Bayesian generalization bound

Theorem 6 (PAC-Bayesian Generalization Bound for MPNP-DDI). Let
H be the hypothesis space parameterized by 6. Let P be a prior distribution
over 0 and Q be a posterior distribution. For any d € (0, 1), with probability
at least 1 — § over the draw of a training set S of size m, the expected true

0-1 risk under the posterior Q is bounded as follows:

B [Rirue(h)] < EnvqlLampnp(h,S)] + /KLU RCmO) (o)

where Lypnp(h,S) is the total empirical loss for a hypothesis h on the

training set S.

Proof. Let Rirue(h) = E(gy)[I(M(G) # y)] denote the true 0-1 risk for
a deterministic hypothesis h € H, where I(-) is the indicator function.

Our objective is to bound the expected true risk under the posterior,
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Enq[Rirue(h)]-

We first establish a relationship between the 0-1 loss and our composite
loss function, Lypnp. The binary cross-entropy loss, Lpred, is a standard
convex surrogate for the 0-1 loss, satisfying I(§ # y) < Lprea(y,y). Since
the other components of our loss, Ly, and Ly, are defined to be non-
negative, this implies a direct inequality for any hypothesis h and data

point (G, y):
I(WMG) # y) < Lprea(h, (G,y)) < Lupne(h, (G,y)). (29)

This inequality holds for the true risks by taking the expectation over the
data distribution, and subsequently for the expected true risks by taking
the expectation over h ~ Q.

We now invoke a standard result from PAC-Bayesian theory [29], which
bounds the expected true loss by its empirical counterpart. For any loss
function bounded in [0, 1] (which can be ensured for Lypnp through clip-
ping or normalization), the following holds with probability at least 1 — ¢:

Eno[Lampnp, true(h)] < Epg[Lvpne(h, S)] (30)

In(2m/é
+\/KL(QHP%; (2m/s) (31)

Combining the inequality from Eq. (29) with the PAC-Bayesian bound
from Eq. (30) yields the main result. The left-hand side of Eq. (30) is an
upper bound on the expected true 0-1 risk, Epoq[Rirue(h)]. Substituting

this gives:

Eno[Rirue(P)] < EnwgLupne(h, S)] + \/KL(QHP)HH(?mM). (32)

2m

The theorem is proven by noting that the first term on the right-hand
side is precisely the expectation of our full training objective over the
posterior (). This demonstrates that minimizing our objective corresponds
to minimizing a direct, principled upper bound on the true generalization

€rTor. [ |



34

B.3 Framework analysis: a variational inference

perspective

This section provides the theoretical justification for interpreting our mo-
del’s architecture and loss function through the lens of variational inference
(VI) and the Evidence Lower Bound (ELBO), as mentioned in the main
paper.

We consider a generative process for the label y given a graph pair G,
mediated by a latent representation z. The marginal likelihood is given
by:

p(y|G.0) = / p(y|G. 2 B)p(2)dz

Directly optimizing this integral is generally intractable. Variational in-
ference addresses this by introducing an amortized recognition model (or
encoder), ¢(z|G, ¢), which is designed to approximate the true posterior
p(2|G,y,0). Instead of maximizing the marginal likelihood directly, VI
maximizes the ELBO, which is a lower bound on the log-likelihood:

Reconstruction Term KL Regularizer

(33)

Our composite loss function, Lypnp, can be interpreted as an objective
analogous to the negative ELBO. We can establish the following corre-

spondences:

¢ Reconstruction Term: The prediction loss, Lpreq, corresponds
to the negative of the reconstruction term. Maximizing this term
(i.e., minimizing Lpeq) enforces that the latent representation z,
sampled from the recognition model ¢, contains sufficient information

to accurately predict the label y.

e KL Regularizer: The regularization losses, Ly and Lyye, collec-
tively serve a role analogous to the KL regularizer. The KL term
measures the divergence between the approximate posterior ¢(z|G, ¢)
and the prior p(z). Minimizing this term acts as a regularizer, pre-
venting the posterior from becoming overly complex and deviating

too far from the prior distribution, thus combating overfitting. Our
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combined regularization losses achieve a similar goal of constraining

the complexity of the learned latent space.

This establishes a principled connection between our proposed loss function

and the well-established framework of variational inference.

C

This

Detailed experimental setup

section provides a comprehensive and detailed description of the

experimental protocol, including dataset preprocessing, baseline model

specifics, our model’s configuration, and the computing environment, to

ensure full reproducibility of our results.

C1

Dataset and preprocessing

Data Source: We use the DrugBank dataset (version 5.1.8) [28],
following the processing pipeline established in [12]. This version
contains 1,706 unique drugs and 191,808 known DDI pairs across 86

distinct relation types.

Graph Construction: For each drug, its SMILES (Simplified Mo-
lecular-Input Line-Entry System) string was converted into a molec-
ular graph object using the RDKit library (v2022.09.5).

Feature Extraction:

— Node (Atom) Features: A multi-dimensional vector for each
atom, encoding its type (e.g., C, N, O), degree, formal charge,
and hybridization (e.g., SP, SP2, SP3).

— Edge (Bond) Features: A vector for each bond, encoding its

type (e.g., single, double, aromatic) and a boolean flag indicat-

ing if the bond is part of a ring structure.

Data Splitting: The dataset of known DDI pairs was split into
training, validation, and test sets using an 80%/10%/10% ratio. The
split was performed using stratified sampling based on the relation

type to ensure that all 86 types were proportionally represented in
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each set, preventing rare relations from being absent in the validation

or test sets.

e Negative Sampling: For the binary classification task, all known
DDI pairs were treated as positive samples. An equal number of
negative samples were generated by randomly pairing drugs that are
not known to interact in the dataset. This 1:1 positive-to-negative
ratio was maintained in the training set to create a balanced learning

problem.

C.2 Baseline models

The following models were implemented and evaluated as baselines. Their
selection provides a comprehensive comparison across different graph rep-

resentation learning paradigms.

GAT-DDI [14] An adaptation of the Graph Attention Network, which
uses attention mechanisms to weigh the importance of neighboring

nodes during message passing.

GMPNN-CS A Graph Message Passing Neural Network featuring a
communicative scheme to enhance the exchange of information be-

tween drug graphs.

SA-DDI A model leveraging Self-Attention mechanisms, designed to cap-
ture global dependencies within a single drug’s structure for more

context-aware embeddings.

SSI-DDI A Substructure-based Interaction model that first identifies key
molecular substructures (functional groups) and then models the in-

teractions between them.

DGNN-DDI [12] The primary baseline from the source paper, which
employs a Dual Graph Neural Network architecture to capture com-

plementary information for DDI prediction.
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C.3 Model configuration

The model’s hyperparameters were determined through a systematic grid
search, with the final configuration chosen based on the highest AUPR
score on the validation set. The search space for each tuned parameter is

noted below.

C.3.1 Architectural hyperparameters

e GNP Blocks (K): The model stacks K = 3 GNP blocks to extract
features at multiple scales. (Search space: {2,3,4})

e Internal Iterations (7'): Within each GNP block, message passing

is performed for T' = 2 iterations. (This was fixed and not tuned.)

e Hidden Dimension: The hidden dimension for both node/edge
features (dj,) and knowledge graph embeddings (dj4.) was set to 32.
(Search space: {16,32,64})

e Prediction Head: A RESCAL tensor factorization model was used

for relation-aware interaction scoring.
e Uncertainty Head: A 2-layer MLP with dimensions (32 — 16 —
1) and PReLU activation functions.
C.3.2 Optimization and training hyperparameters

e Optimizer: AdamW [30] with the following parameters:

Learning Rate: 1x 10~ (Search space: {1 x1073,5x 1074, 1 x
1074,5 x 107°})

Betas: (81, 02) = (0.9,0.999)
— Epsilon: 1 x 1078

— Weight Decay: 5x 10~* (Search space: {1 x1073,5x 10741 x
1074})

e Learning Rate Scheduler: A Cosine Annealing scheduler was

used to smoothly decay the learning rate over the training period. It
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was configured with ‘Tp,.x equal to the total number of epochs (20)
and ‘“Nmin‘ of 1 x 1076,

e Training Duration: The model was trained for a total of 20 epochs.
e Batching Strategy:

— Batch Size: 8 (due to GPU memory constraints).

— Gradient Accumulation: 4 steps. (Search space for steps:
{2,4,8}) This effectively simulates a larger batch size of 8 x4 =
32.

e Mixed Precision Training: PyTorch’s Automatic Mixed Preci-
sion (AMP) was enabled to accelerate computation and reduce GPU

memory footprint by using FP16 for suitable operations.

e Random Seed for Reproducibility: To ensure deterministic re-
sults, we set the global random seed to 42 for PyTorch, NumPy, and
Python’s ‘random* library. For experiments requiring multiple runs,
a set of 10 distinct seeds (42 through 51) was used.

C.4 Evaluation protocol

AUROC The Area Under the Receiver Operating Characteristic Curve.
It measures the overall classification performance across all thresh-

olds and is insensitive to class imbalance.

AUPR The Area Under the Precision-Recall Curve. This metric is par-
ticularly informative for imbalanced datasets as it focuses on the

performance of the positive class (interacting pairs).

2. Precision-Recall )
)

F1-Score The harmonic mean of precision and recall (2. glEzs e,

providing a single score that balances both concerns.
Accuracy The proportion of correctly classified instances.

Uncertainty-Error Correlation The Pearson correlation coefficient
between the model’s predicted uncertainty score s;; and its squared

prediction error (g;; — yij)2. A strong positive correlation indicates
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that the model is well-calibrated (i.e., it is more uncertain when it is

more likely to be wrong).

C.5 Computing environment

All experiments were conducted on the following platform to ensure repro-
ducibility:

e Hardware: NVIDIA A100 GPU with 40GB VRAM
e Operating System: Ubuntu 20.04 LTS

e Software Stack:

Python: 3.9

PyTorch: 1.12.1
— CUDA: 11.6
— RDKit: 2022.09.5

D Extended experimental analyses

To keep the main text focused, this Appendix provides extended plots and
tables that complement our core findings. It also summarizes uncertainty
calibration (ECE, NLL, Brier) with reliability diagrams, computational
complexity and runtime, and sensitivity to the number of GNP blocks and
the co-attention temperature, together with exact splits, negative sam-

pling, and seeds for reproducibility.

D.1 Additional results for the transductive setting

Fig. 6 visualizes ranking quality (ROC/PR curves) alongside thresholded
Precision/Recall bars on DrugBank and Twosides. Across a wide recall
range, MPNP-DDI maintains stronger precision than baselines, indicating
more robust ranking of positive interactions. The bar plots provide a
thresholded view aligned with validation selection, illustrating consistent

gains in both precision and recall. Fig. 7 further contrasts MPNP-DDI and
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GMPNN-CS on Twosides across multiple random seeds; the plot reports
mean performance with uncertainty, and significance is assessed using a

two-sided paired comparison across identical splits.

Comprehensive Performance Evaluation on DrugBank Dataset Comprehensive Performance Evaluation on Twosides Dataset
RoC curve Precision-Recall Curve RoC curve Precision-Recall Curve
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Figure 6. Full curve visualizations complementing Table 2.
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Figure 7. Statistical significance (Twosides): MPNP-DDI  vs.
GMPNN-CS.
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D.2 Full inductive scalability table

Table 4 reports inductive performance as the training ratio increases. AU-

ROC and AUPR improve monotonically with more supervision, indicat-

ing that the learned multi-scale representations transfer to unseen drugs.

Thresholded metrics (F1/Precision/Recall) show mild non-monotonicity

at intermediate ratios, a common effect of class imbalance and thresh-
old selection; at full data (100%), all metrics reach their best levels with

reduced variance across seeds.

Table 4. Inductive scalability (mean =+ std, %). Ten independent seeds
per ratio.

Training Ratio Test Test Test Test Test

AU- AUPR F1 Preci- Recall

ROC sion

10% 51.20 = 50.25 + 50.95 + 50.92 + 50.99 +
0.21 0.30 0.13 0.22 0.14

20% 51.66 = 51.85 + 5296+ 52.76 + 53.15 %
0.23 0.22 0.18 0.38 0.28

40% 57.27 + 5780+ 4733+ 56.72+ 40.75 +
0.76 0.31 2.21 1.47 3.25

60% 62.89 £ 6040+ 5997+ 60.36 £ 60.80 £
2.03 2.12 4.54 2.16 12.44

80% 69.27 £ 65.90 £ 5853+ 65.39+ 58.06 £
1.74 2.44 6.13 2.83 11.41

100% 75.12 + 70.20 + 68.29 + 68.88 + 67.92 +
2.70 2.11 0.47 2.96 2.02
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