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Abstract

Recent versions of large language models have become increas-
ingly reliable in providing mathematical arguments, especially in
classical topics such as Diophantine problems. We exemplify this
development here by using ChatGPT to solve an open Diophantine
problem from Majstorovié¢ Ergoti¢ and Doslié [MATCH Commun.
Math. Comput. Chem. 95 (2026) 265-283].

1 Introduction

During the 1980s expert systems generated high expectations, as rule-
based programs were seen as a route to codified human expertise. Those
expectations generally failed to be realized in practice, because acquiring
and encoding domain knowledge at scale, handling uncertainty and excep-
tions, and keeping rule sets consistent and up to date all turned out to

be far harder than anticipated. Limited computational resources of the
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era and poor integration with statistical learning meant that such systems
could not generalize beyond narrow, well curated scenarios [1-5]. Nev-
ertheless, numerous methodological insights from that period (knowledge
representation, ontologies, rule engines) later informed more successful hy-
brid and learning-based approaches.

Current large language models (LLMs) have become ubiquitous in re-
search, industry and consumer applications, powering search, coding as-
sistants, chatbots and content generation. Their rapid emergence over the
last decade was enabled by a confluence of different factors: the trans-
former architecture and empirical scaling laws that made model perfor-
mance improve predictably with size, the availability of vast, web-scale
text corpora and better data curation practices, dramatic increases in
computing power (GPUs/TPUs and cloud infrastructure) and distributed
training techniques, as well as numerous algorithmic advances. Open re-
search, shared toolchains, and large public datasets further accelerated
their deployment and adoption.

While there are certainly limitations to what LLMs can achieve, they
can still be quite effective as math-capable assistants, especially in well
developed mathematical theories, such as Diophantine problems, and Pell
equations in particular. This effectiveness mainly stems from their broad
training on well established methods combined with rapid pattern recog-
nition and robust symbolic manipulation.

Our goal here is to exemplify this effectiveness on a recent open Dio-
phantine problem from this journal. Majstorovi¢ Ergoti¢ and Dosli¢ [6]
recently showed that complete split graphs maximize generalized comple-
mentary second Zagreb index among connected graphs of order n. Recall
that a complete split graph C'Sj ,,— consists of a complete subgraph on k
vertices and an empty subgraph on n — k vertices, such that each vertex of
the complete subgraph is adjacent to each vertex of the empty subgraph.
Majstorovi¢ Ergoti¢ and Dosli¢ [6, Theorem 2] proved that the extremal
complete split graph is unique, unless 17n? — 28n + 4 is a perfect square
such that v/17n2 — 28n + 4 is congruent to n — 6 modulo 8, in which case
there are two extremal complete split graphs. After presenting a few con-

crete examples of small such orders n € {2,12,117,450}, and observing
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their rarity among natural numbers less than 10°, they left as an open
problem to show that there are infinitely many such orders.

Here we solve this open problem through a short discussion with a par-
ticular LLM—free version of ChatGPT’s GPT-5 Thinking model—using

a few natural prompts:
e Can you characterize when is 17Tn% — 28n + 4 o perfect square?

e Can you now characterize when is, for the values of n from your
previous answer, the square root of 17Tn? —28n+4 congruent to n—6
modulo 8¢

e How do we know that these are all such values of n?

Following sections represent mostly unabridged replies to these prompts,
which have been—nevertheless—thoroughly checked for correctness. The
affirmative answer to the open problem of Majstorovi¢ Ergoti¢ and Dosli¢

is evident from these replies.

2 Reply to the first prompt

Start with
17n% — 28n + 4 = m?.

Multiply both sides by 68 and set
k = 34n — 28.
A direct computation gives
k? — 68m? = 512.

Conversely, any integer solution (k,m) of k? — 68m? = 512 with k = —28
(mod 34) yields an integer

n_k+28
Y
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solving the original equation. Thus integer solutions (n,m) are equivalent

to integer solutions (k,m) of the Pell-type equation
k* — 68m? = 512, k= 34n — 28.

The homogeneous Pell equation

a? —68y° =1
has fundamental unit
€ =33+ 4V68,

(1)

because 332 —68-4% = 1. Every solution of the inhomogeneous equation (1)

is obtained from a finite set of primitive solutions (ko,mg) by multiplying

by arbitrary integer powers of ¢:
ki +myV68 = (ko +moV68) g, teZ,
which is equivalent to the recurrence

kt+1 = 33]675 + 272mt,
miy1 = 4kt + 33mt

For each such pair (k;, m;) we recover

ke + 28

Z
31 ©

ny =

3 Reply to the second prompt
Lemma 1. Let a,b € Z. If a®> = b? (mod 16) then:
(i) If b# 0,4 (mod 8), then a = +b (mod 8).

(i) If b=0,4 (mod 8), then a = 0,4 (mod 8).

Proof. Reduce residues modulo 8. The squares of residues r € {0, ...

(2)

T}
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modulo 16 are:

r 001 234567
r? (mod16)[0 1 4 9 0 9 4 1

From the table the value 1 arises only from {£1}, 4 only from {+2}, and
9 only from {£3}; thus for those square classes equality of squares modulo
16 forces the residues to be negatives of each other modulo 8. The value 0
arises from {0,4}, which are not negatives of each other modulo 8; hence

the exceptional behaviour in (ii). |

From
m? — (n—6)* =16(n — 2)(n + 1)

we deduce m? = (n — 6)? (mod 16). Applying the lemma:
e If n— 60,4 (mod 8) (equivalently n £ 2,6 (mod 8)), then
m==+(n—6) (mod8).

The choice of sign (+) or (—) is invariant on each Pell orbit (2), so

it suffices to test one primitive representative per orbit.

e If n =2 (mod 8) or n = 6 (mod 8) (the exceptional classes), then
(n —6)2 = 0 (mod 16) and the congruence modulo 16 only gives
m = 0 or 4 (mod 8). In these exceptional classes one must use
more information (for instance the primitive Pell representative) to

determine whether m =n — 6 or m = 6 — n modulo 8.

Below we list a convenient choice of one primitive representative per
Pell orbit (2) that yields integer ng = (ko + 28)/34. For each seed we give
(ko,mo), the corresponding ng, and the value of my (mod 8) and ny — 6

(mod 8) so the sign is immediate.
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orbit kb mo mg mno—06 (mod8) mg (mod8) sign
1 -28 2 2 2 +
2 40 4 4 +
3 142 17 5 7 1 -
4 380 46 12 6 6 +
5} 1468 178 44 6 2 -
6 3950 479 117 7 7 +

There are six Pell orbits of solutions represented above by the six listed
seeds. Using (2) each seed produces infinitely many integers n with 17n% —
28n + 4 a perfect square. For each infinite orbit the congruence m =n—6
(mod 8) (or the opposite sign) is constant; the explicit table above tells
which sign occurs for each orbit. In particular the infinite orbits with
representatives ng € {0,2,12,117} satisfy m = n — 6 (mod 8), while the

infinite orbits with representatives ng € {5,44} satisfy m = 6—n (mod 8).
4 Reply to the third prompt
We consider integer solutions of the inhomogeneous Pell equation
k? — 68m? = 512. (3)
Two solutions (k,m) and (k',m’) are equivalent if
E 4+ m'V68 = (k+mV6’)et  (t€7),

where ¢ = 33 4 4/68 is the fundamental unit of Z[v/68]. The equivalence
classes under this action are the Pell orbits. A solution (ko,mo) is called
primitive if its equivalence class is not obtained by multiplying a smaller
integer solution by a unit; equivalently, primitive solutions are representa-

tives of distinct Pell orbits.

Lemma 2. There are only finitely many primitive solutions to (3). More-
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over, every primitive representative (ko, mg) has

€ +2512J and mo < \/(L(s + 512)/2J)2 — 512

<
kol < { 68 ’

so the set of primitive representatives can be found by a finite (and quite

small) search.

Proof. Let a = k + m\/68 € Z[V68] satisfy N(a) = k% — 68m? = 512.
Write the two real embeddings

pr(a) =k+mV68,  pa(a) =k —mV68,

so that p1(a)ps(a) = 512. The unit € > 1 acts by ¢1(a) — epi(a),
pa(a) = e Lpg(a), hence for every orbit there exists a unique representa-
tive o with

1< p(a) <e.

(Choose the unique integer ¢ so that ¢1(a)e™t € [1,¢).)

For such a representative we have

512 512

Q) = < 2% _ 519,
La02( ) 4)01(04) =
and therefore
i) + pa(a) e+ 512
|k| = < .
2 2
Setting
Ko €+ 512
= 5 ,

we obtain the uniform bound |k| < K for any representative chosen in the

fundamental interval. From (3) we then have
68m? = k? — 512 < K? — 512,

hence
K2 —512

<
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Since k, m are integers, there are only finitely many pairs (k, m) satisfying
these bounds; each such pair can be tested in the Diophantine equation (3)
to decide whether it is a representative. This proves finiteness and reduces

the classification of primitive orbits to a finite search. |

Numerically v/68 ~ 8.2462112512 and
€ =33+ 4v68 ~ 65.9848450049,

SO

K_ r + 512J - {577.9848450049

= 288.
5 . J 88

Hence any primitive representative with 1 < () < € obeys

2 _
H < 288, WS{ MJ%

68

Thus the exhaustive search can be performed over the small finite box
ke {—288,...,2838}, me{-34,...,34},

which is readily checked by a short computation.

Carrying out the finite search described above (or, equivalently, per-
forming elementary congruence sieving followed by a bounded search)
yields exactly six distinct primitive Pell-orbits for (3). One convenient

choice of primitive seeds (one representative per orbit) is
(ko, mo) €{(—28,2), (40,4), (142,17), (380,46), (1468,178), (3950,479)}.

Each of these pairs satisfies k3 — 68m2 = 512. The corresponding values

_k0+28
!

no
are integers and give the small nonnegative orbit representatives

no € {0, 2, 5, 12, 44, 117},
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which are the representatives used in Section 3 to separate the orbits ac-

cording to the congruence of the square root modulo 8.

Remark. The occurrence of exactly six primitive orbits is a concrete
instance of the general phenomenon that, for a fixed nonzero norm N
in a real quadratic order, the set of algebraic integers of norm N splits
into finitely many orbits under the multiplicative action of the unit group
(which is infinite cyclic). The elementary numeric bounds above make this
finiteness effective and allow one to determine the orbits by a trivial finite

computation.

5 Concluding remarks

The affirmative solution to the open Diophantine problem from [6] is evi-
dent already from the replies to the first two prompts. We have added the
third prompt only to make sure that the reply to the second prompt did
not miss any of the primitive representatives.

Despite the fact that it provided a concrete solution to a concrete open
problem, the main purpose of this note is to inform the readers of MATCH
of the usefulness of modern LLMs. Anyway, this is not to say that this
usefulness should be blindly trusted. While repeating the same prompts
from different accounts, we noticed that GPT-5 Thinking model produces
different, but equivalent replies. Our observations suggest that the model
actually tends to shape its replies to the history of exchanges with the re-
searcher: the model may reply with sloppier or partially incorrect replies
to less careful researchers who do not point out discrepancies in its replies.
Hence the readers should always be cautious and properly check the va-

lidity of all replies.
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