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Abstract

Recent versions of large language models have become increas-
ingly reliable in providing mathematical arguments, especially in
classical topics such as Diophantine problems. We exemplify this
development here by using ChatGPT to solve an open Diophantine
problem from Majstorović Ergotić and Došlić [MATCH Commun.
Math. Comput. Chem. 95 (2026) 265–283].

1 Introduction

During the 1980s expert systems generated high expectations, as rule-

based programs were seen as a route to codified human expertise. Those

expectations generally failed to be realized in practice, because acquiring

and encoding domain knowledge at scale, handling uncertainty and excep-

tions, and keeping rule sets consistent and up to date all turned out to

be far harder than anticipated. Limited computational resources of the
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era and poor integration with statistical learning meant that such systems

could not generalize beyond narrow, well curated scenarios [1–5]. Nev-

ertheless, numerous methodological insights from that period (knowledge

representation, ontologies, rule engines) later informed more successful hy-

brid and learning-based approaches.

Current large language models (LLMs) have become ubiquitous in re-

search, industry and consumer applications, powering search, coding as-

sistants, chatbots and content generation. Their rapid emergence over the

last decade was enabled by a confluence of different factors: the trans-

former architecture and empirical scaling laws that made model perfor-

mance improve predictably with size, the availability of vast, web-scale

text corpora and better data curation practices, dramatic increases in

computing power (GPUs/TPUs and cloud infrastructure) and distributed

training techniques, as well as numerous algorithmic advances. Open re-

search, shared toolchains, and large public datasets further accelerated

their deployment and adoption.

While there are certainly limitations to what LLMs can achieve, they

can still be quite effective as math-capable assistants, especially in well

developed mathematical theories, such as Diophantine problems, and Pell

equations in particular. This effectiveness mainly stems from their broad

training on well established methods combined with rapid pattern recog-

nition and robust symbolic manipulation.

Our goal here is to exemplify this effectiveness on a recent open Dio-

phantine problem from this journal. Majstorović Ergotić and Došlić [6]

recently showed that complete split graphs maximize generalized comple-

mentary second Zagreb index among connected graphs of order n. Recall

that a complete split graph CSk,n−k consists of a complete subgraph on k

vertices and an empty subgraph on n−k vertices, such that each vertex of

the complete subgraph is adjacent to each vertex of the empty subgraph.

Majstorović Ergotić and Došlić [6, Theorem 2] proved that the extremal

complete split graph is unique, unless 17n2 − 28n + 4 is a perfect square

such that
√
17n2 − 28n+ 4 is congruent to n− 6 modulo 8, in which case

there are two extremal complete split graphs. After presenting a few con-

crete examples of small such orders n ∈ {2, 12, 117, 450}, and observing
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their rarity among natural numbers less than 109, they left as an open

problem to show that there are infinitely many such orders.

Here we solve this open problem through a short discussion with a par-

ticular LLM—free version of ChatGPT’s GPT-5 Thinking model—using

a few natural prompts:

• Can you characterize when is 17n2 − 28n+ 4 a perfect square?

• Can you now characterize when is, for the values of n from your

previous answer, the square root of 17n2−28n+4 congruent to n−6

modulo 8?

• How do we know that these are all such values of n?

Following sections represent mostly unabridged replies to these prompts,

which have been—nevertheless—thoroughly checked for correctness. The

affirmative answer to the open problem of Majstorović Ergotić and Došlić

is evident from these replies.

2 Reply to the first prompt

Start with

17n2 − 28n+ 4 = m2.

Multiply both sides by 68 and set

k := 34n− 28.

A direct computation gives

k2 − 68m2 = 512.

Conversely, any integer solution (k,m) of k2 − 68m2 = 512 with k ≡ −28

(mod 34) yields an integer

n =
k + 28

34
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solving the original equation. Thus integer solutions (n,m) are equivalent

to integer solutions (k,m) of the Pell-type equation

k2 − 68m2 = 512, k = 34n− 28. (1)

The homogeneous Pell equation

x2 − 68y2 = 1

has fundamental unit

ε = 33 + 4
√
68,

because 332−68·42 = 1. Every solution of the inhomogeneous equation (1)

is obtained from a finite set of primitive solutions (k0,m0) by multiplying

by arbitrary integer powers of ε:

kt +mt

√
68 = (k0 +m0

√
68) εt, t ∈ Z, (2)

which is equivalent to the recurrence

kt+1 = 33kt + 272mt,

mt+1 = 4kt + 33mt.

For each such pair (kt,mt) we recover

nt =
kt + 28

34
∈ Z.

3 Reply to the second prompt

Lemma 1. Let a, b ∈ Z. If a2 ≡ b2 (mod 16) then:

(i) If b ̸≡ 0, 4 (mod 8), then a ≡ ±b (mod 8).

(ii) If b ≡ 0, 4 (mod 8), then a ≡ 0, 4 (mod 8).

Proof. Reduce residues modulo 8. The squares of residues r ∈ {0, . . . , 7}
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modulo 16 are:

r 0 1 2 3 4 5 6 7

r2 (mod 16) 0 1 4 9 0 9 4 1

From the table the value 1 arises only from {±1}, 4 only from {±2}, and
9 only from {±3}; thus for those square classes equality of squares modulo

16 forces the residues to be negatives of each other modulo 8. The value 0

arises from {0, 4}, which are not negatives of each other modulo 8; hence

the exceptional behaviour in (ii).

From

m2 − (n− 6)2 = 16(n− 2)(n+ 1)

we deduce m2 ≡ (n− 6)2 (mod 16). Applying the lemma:

• If n− 6 ̸≡ 0, 4 (mod 8) (equivalently n ̸≡ 2, 6 (mod 8)), then

m ≡ ±(n− 6) (mod 8).

The choice of sign (+) or (−) is invariant on each Pell orbit (2), so

it suffices to test one primitive representative per orbit.

• If n ≡ 2 (mod 8) or n ≡ 6 (mod 8) (the exceptional classes), then

(n − 6)2 ≡ 0 (mod 16) and the congruence modulo 16 only gives

m ≡ 0 or 4 (mod 8). In these exceptional classes one must use

more information (for instance the primitive Pell representative) to

determine whether m ≡ n− 6 or m ≡ 6− n modulo 8.

Below we list a convenient choice of one primitive representative per

Pell orbit (2) that yields integer n0 = (k0 + 28)/34. For each seed we give

(k0,m0), the corresponding n0, and the value of m0 (mod 8) and n0 − 6

(mod 8) so the sign is immediate.
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orbit k0 m0 n0 n0 − 6 (mod 8) m0 (mod 8) sign

1 -28 2 0 2 2 +

2 40 4 2 4 4 +

3 142 17 5 7 1 -

4 380 46 12 6 6 +

5 1468 178 44 6 2 -

6 3950 479 117 7 7 +

There are six Pell orbits of solutions represented above by the six listed

seeds. Using (2) each seed produces infinitely many integers n with 17n2−
28n+4 a perfect square. For each infinite orbit the congruence m ≡ n− 6

(mod 8) (or the opposite sign) is constant; the explicit table above tells

which sign occurs for each orbit. In particular the infinite orbits with

representatives n0 ∈ {0, 2, 12, 117} satisfy m ≡ n − 6 (mod 8), while the

infinite orbits with representatives n0 ∈ {5, 44} satisfy m ≡ 6−n (mod 8).

4 Reply to the third prompt

We consider integer solutions of the inhomogeneous Pell equation

k2 − 68m2 = 512. (3)

Two solutions (k,m) and (k′,m′) are equivalent if

k′ +m′√68 = (k +m
√
68)εt (t ∈ Z),

where ε = 33 + 4
√
68 is the fundamental unit of Z[

√
68]. The equivalence

classes under this action are the Pell orbits. A solution (k0,m0) is called

primitive if its equivalence class is not obtained by multiplying a smaller

integer solution by a unit; equivalently, primitive solutions are representa-

tives of distinct Pell orbits.

Lemma 2. There are only finitely many primitive solutions to (3). More-
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over, every primitive representative (k0,m0) has

|k0| ≤
⌊
ε+ 512

2

⌋
and |m0| ≤


√(

⌊(ε+ 512)/2⌋
)2 − 512

68

 ,

so the set of primitive representatives can be found by a finite (and quite

small) search.

Proof. Let α = k + m
√
68 ∈ Z[

√
68] satisfy N(α) = k2 − 68m2 = 512.

Write the two real embeddings

φ1(α) = k +m
√
68, φ2(α) = k −m

√
68,

so that φ1(α)φ2(α) = 512. The unit ε > 1 acts by φ1(α) 7→ εφ1(α),

φ2(α) 7→ ε−1φ2(α), hence for every orbit there exists a unique representa-

tive α with

1 ≤ φ1(α) < ε.

(Choose the unique integer t so that φ1(α)ε
−t ∈ [1, ε).)

For such a representative we have

φ2(α) =
512

φ1(α)
≤ 512

1
= 512,

and therefore

|k| =
∣∣∣∣φ1(α) + φ2(α)

2

∣∣∣∣ ≤ ε+ 512

2
.

Setting

K :=

⌊
ε+ 512

2

⌋
,

we obtain the uniform bound |k| ≤ K for any representative chosen in the

fundamental interval. From (3) we then have

68m2 = k2 − 512 ≤ K2 − 512,

hence

|m| ≤
√

K2 − 512

68
.
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Since k,m are integers, there are only finitely many pairs (k,m) satisfying

these bounds; each such pair can be tested in the Diophantine equation (3)

to decide whether it is a representative. This proves finiteness and reduces

the classification of primitive orbits to a finite search.

Numerically
√
68 ≈ 8.2462112512 and

ε = 33 + 4
√
68 ≈ 65.9848450049,

so

K =

⌊
ε+ 512

2

⌋
=

⌊
577.9848450049

2

⌋
= 288.

Hence any primitive representative with 1 ≤ φ1(α) < ε obeys

|k| ≤ 288, |m| ≤

⌊√
2882 − 512

68

⌋
= 34.

Thus the exhaustive search can be performed over the small finite box

k ∈ {−288, . . . , 288}, m ∈ {−34, . . . , 34},

which is readily checked by a short computation.

Carrying out the finite search described above (or, equivalently, per-

forming elementary congruence sieving followed by a bounded search)

yields exactly six distinct primitive Pell–orbits for (3). One convenient

choice of primitive seeds (one representative per orbit) is

(k0,m0)∈{(−28, 2), (40, 4), (142, 17), (380, 46), (1468, 178), (3950, 479)}.

Each of these pairs satisfies k20 − 68m2
0 = 512. The corresponding values

n0 =
k0 + 28

34

are integers and give the small nonnegative orbit representatives

n0 ∈ {0, 2, 5, 12, 44, 117},
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which are the representatives used in Section 3 to separate the orbits ac-

cording to the congruence of the square root modulo 8.

Remark. The occurrence of exactly six primitive orbits is a concrete

instance of the general phenomenon that, for a fixed nonzero norm N

in a real quadratic order, the set of algebraic integers of norm N splits

into finitely many orbits under the multiplicative action of the unit group

(which is infinite cyclic). The elementary numeric bounds above make this

finiteness effective and allow one to determine the orbits by a trivial finite

computation.

5 Concluding remarks

The affirmative solution to the open Diophantine problem from [6] is evi-

dent already from the replies to the first two prompts. We have added the

third prompt only to make sure that the reply to the second prompt did

not miss any of the primitive representatives.

Despite the fact that it provided a concrete solution to a concrete open

problem, the main purpose of this note is to inform the readers of MATCH

of the usefulness of modern LLMs. Anyway, this is not to say that this

usefulness should be blindly trusted. While repeating the same prompts

from different accounts, we noticed that GPT-5 Thinking model produces

different, but equivalent replies. Our observations suggest that the model

actually tends to shape its replies to the history of exchanges with the re-

searcher: the model may reply with sloppier or partially incorrect replies

to less careful researchers who do not point out discrepancies in its replies.

Hence the readers should always be cautious and properly check the va-

lidity of all replies.
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