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Abstract

The geometric quadratic (GQ) index is a recently introduced
degree-based topological descriptor, and Kumar et al. observed that
it is potentially a very good molecular descriptor. In this paper, we
characterize the extremal graphs (chemical) and trees concerning
the geometric quadratic index of a given order and size. Then, we
determine the n-vertex trees, unicyclic and bicyclic graphs with the
maximum, the second, the third, the fourth, the fifth, and the sixth
maximum geometric quadratic indices.

1 Introduction

Let G = (V(G), E(G)) be a simple graph with |V(G)| = n and |E(G)| =
m. By a ~ b, we mean that the vertices a and b are adjacent and d,
represents the degree of the vertex a in G. A vertex of degree one is said

to be a pendant vertex. A path xixo---x; is said to be pendent at xq if
d(xzy) > 3, d(zy) = 2 for i € {2,---,1 — 1} and d(z;) = 1. An edge is
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said to be a (a,b)-edge if the vertices incident to the edge are of degrees
a and b, respectively. By v; and E, ,;, we denote the number of vertices
of degree i and the number of (p, ¢)-edges in a graph G, respectively. A
connected graph G is said to be a tree, unicyclic and bicyclic graph if and
only if m =n —1, m =n and m = n + 1, respectively. By Gy m s, we
denote the set of all connected graphs of order n, size m with maximum
and minimum degrees are A and §, respectively. A graph G is said to be
chemical if A(G) < 4. By P, and C,,, we denote the path and cycle on
the n vertices, respectively.

Quantitative structure-property relationship (QSPR) investigations apply
correlation /regression models to ensure the correlation between the molec-
ular structure of a substance and its physicochemical, thermodynamic,
and quantum-theoretic properties in contemporary chemistry. Quanti-
tative structure-activity relationship (QSAR) and quantitative structure-
property relationship (QSPR) are regression models that utilize statistical
methods to analyze the relationship between the structure of a compound
and its activity or property. These models can be either linear or nonlin-
ear. This approach exhibits a substantial correlation with the thermody-
namic, physicochemical, and biological aspects of chemical structures [20].
Statistics is very important in decision-making if it is informed by data.
It assists in understanding patterns, exploring assumptions, and proving
credible and significant conclusions, thus ensuring the reliability and va-
lidity of research data. This process has to be encouraged in various fields
of scientific research as discussed in papers [18]. In recent times, numer-
ous authors have employed this methodology to ascertain the relationship
between the topological indices and physical characteristics of chemical
compounds. The topological index of a graph G is a numerical quantity
invariant under the automorphisms of the graph. Due to their application
in chemistry and pharmacology, especially in QSPR/QSAR as molecular
structure descriptors [7,9, 10,12, 22], topological indices have gained con-
siderable popularity. Among the groups of all topological indices, one of
the most investigated and widely used is the vertex degree-based topologi-
cal indices [12,17,19]. Among the vertex degree-based topological indices,

the oldest vertex degree-based topological indices, the first and the second
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Zagreb indices [9,10] were defined as
M(G) =) (da+dy) and Mp(G) = dads.
a~b an~b

The symmetric division degree index [7] and the Sombor index [8] were
defined as

do d
SDD(G) = <db + db) and  SO(G) = \/d2 + d2.
a~b @ a~b

The geometrical-arithmetic index (GA) index [22] and arithmetical geo-

metric (AG) index were defined as

_ 2v/d,dp
B b da + db ’

GA(G) AGG) =)
In [22], Vukicevié et al. observed the chemical applicability of the G A index
and characterized the extremal graphs, trees and chemical trees of given
size. Motivated by the advancement and success of the GA index, Kulli
proposed two new indices in 2022 based on the geometric and quadratic
means of degrees of end vertices of an edge and named them the Geomet-

ric-Quadratic and Quadratic-Geometric indices [14], defined as:

2d,d
GQG) =D\ oy 53, QGG ="
a~b a

a~b

d2 + df
2d,dp

Then, Kumar et al. [15] concentrate on this newly defined degree-based
G@Q and QG indices by exhibiting a comparative study with other standard
degree-based topological indices. They investigated the octane, nonane
and decane isomers by looking at the application of these isomers and
the availability of the data of these compounds to test the usability and
structural properties regarding some standard topological indices such as
My, My, SDD, SO, etc. By performing quantitative structure-property
relationship analysis, they observed that the acquired results of the G@Q
index are preferably stronger than those of the QG index for all the con-

sidered physicochemical properties, apart from the enthalpy of formation
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(HFORM). They also observed that the G@Q and QG indices report better
prediction power for the properties HVAP and DHVAP of octane isomers

in comparison to all the degree-based topological indices considered. The
performed linear regression models and obtained statistical outcomes for
the G@ index are better than those of the GA index. More specifically,
they are stronger than the results of the GA and AG indices. This suggests
that the GQ and QG indices display fine structural changes in comparison
to the GA and AG indices. Therefore, the G@Q index would be beneficial
to the researchers working in this area. For other related works on G@Q
and QG indices, we refer [4-6,16].

In chemical graph theory, one of the most famous and challenging prob-
lems is to characterize the extremal graphs with respect to different degree-
based topological indices. We refer to [1-3,13,17] for recent advances. All
these observations prompted me to consider the extremal problems with
respect to the G@ indices over the trees, unicyclic graphs and bicyclic
graphs.

In this paper, in Section 2, we characterize the extremal graphs (chem-
ical) and trees concerning the G index with a given number of vertices.
Then, we determine n-vertex trees with the second and the third for n > 7,
the fourth and the fifth for n > 10 and the sixth for n > 10 maximum GQ
indices. Then in Section 3, we determine the m-vertex unicyclic graphs
with the maximum, the second and the third for n > 5, the fourth for
n > 7, the fifth and the sixth for n > 9 maximum G@ indices. Finally, in
Section 4, we determine the bicyclic graphs with the maximum for n > 4,
the second and the third for n > 6 and the fourth, the fifth and the sixth

for n > 8 maximum GQ indices.

2 Extremal G(Q index of trees

Lemma 1. Let G be a graph with | pendant paths. Then

3 2
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Proof. Let e = xy be an edge of a graph G on n vertices. If d, is fixed,
then f(dy) =,/ sfjji% is a decreasing function for d, < dy, <n — 1. Then
the contribution to GQ(G) by a pendant path of length one is at most

VB = /2 r 07745 < 2,/3 + 2~ 1% 0.8551. The contribution to
GQ(G) by a pendant path of length ¢ > 2 is at most %—i—(t—Q) %—f—

\/E 24 / 5 + f + t — 2. Therefore, the contribution to GQ(G) b
the edges of a pendent path of length ¢ > 1 is at most 2 ﬁ + \75 +t—2.

Since the graph G has [ pendent paths, we have

3 2
GG <[22/ —=+—4—-2]1 . |
Q( )_( 13+\/5 ) +m
Lemma 2. Letf(a?,y):,/m2+y2 and 0 < a < x <y < b for some real

2+b2 < flz,y) < 1, with left equality if and
only if x = a and y = b, right equality if and only if x = y.

numbers a and b. Then

Proof. Since0<a<x<y§b,wehave1S%gé. Let t = £ and

a

g(t) = 1+t2 Then ¢/(t) = VQ%Q (?J—r?j; <0, since t > 1. Therefore, g(t)

is monotonically decreasing for ¢ > 1. Hence

% =9 <Z> < flwy)=9() <9(1) =1,

with left equality if and only if x = a and y = b and right equality if and
only if z = y. |

Remark. Since (x—y)? > 0 for all real numbers x and y, we have , / zftTyyz <

2d,dy
d2 +d2

uv of G. So, the maximum contribution to the G@Q index by an edge is at

1 with equality if and only if x = y. Therefore, < 1 for any edge

most one. Consequently, GQ(G) < m with equality if and only if G is a
regular graph.

Theorem 1. Let G € G, py5,A. Then

200
— < <m.
xo g SCQG) <m



388

Equality on the left holds if and only if G is regular or biregular, and on
the right, equality is held if and only if G is regular.

Proof. To prove the upper bound, it suffices to note that the contribution
of each edge to the GQ index is at most one (see Lemma 2). Therefore,
GQ(G) < m. Moreover, equality holds if each edge contributes to GQ(G)
exactly one, i.e., each edge has end vertices of the same degree. This is
possible only if G is regular. Now, from the definition of the G@ index
and by applying Lemma 2, we have

2A6 2A6
= 2 a2 + 2 > > \/A2+52:m\/A2+52’

weE(G) du+d weE(G)

with equality if and only if d, = A and d,, = ¢ for all zy € E(G) i.e., G is

regular or biregular. |

Theorem 2. For a simple connected graph G with n > 3 vertices, we have

n(n—l).

AU < ooy < ™

n2—2n+2 ~
Equality on the left holds if and only if G is a star graph, and on the right,
the equality is held if and only if G is a complete graph.

Proof. To prove the upper bound, it is enough to note that for a simple

n("2 D with equality if

connected graph of order n and size m, we have m <
and only if G is (n — 1)-regular. Therefore, GQ(G) < "(" D with equality
if and only if G is a complete graph.

To prove the lower bound, let d,, < d,, and t = %=. Note that — <t < 1.

dy
Hence 331‘23 = % Let f(t) = ﬁ—tﬁ Clearly f(t) is ascendlng
in the interval [n 7,1) and therefore reaches its minimum at x = ﬁ
Consequently,
2d,d, S B 2(n—1)
d2 +d2 ~ S Vn2—2n+2
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Since the graph is connected, |E(G)| > n — 1 and hence

2(n — 1) _\/2(n—1)3

n2—2n+2 Vn2—2n+2

GQ(G) = (n - 1)\/

Moreover, the equality holds if and only if the number of (1,n — 1)-edges
is n — 1. This happens only if G is a star graph. ]

It is well known that in a chemical graph C with §(C) > 1, the following
relations are holds [2]:

V1 + U2 +v3+ v =1, (1)

and
2E11 +FEi1 o+ Ei3+ B4 =01,
Ei12+2E35 + Eo 3+ Eo 4 = 20y,
Ey3+ Ey3+2E33+ E34 = 3us,
Eiy+ FEoy+ E3 4+ 2E4, = 4vy.

Let A = {(s,t) e NxN:1<s <t <4}. Then from Equation 1 and 2,

we have b
a
n = Z ?Ea,b- (3)
(a,b)eA
Also we have
2ab
GQ(C) = Z a2 + b2 Eap (4)
(a,b)eEA

Theorem 3. In a n-vertex chemical graph C, we have
GQ(C) < 2n,

with equality if and only if G is 4-regular graph.
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Proof. By applying Equation 4, we have

:E4’4+ ”a2+b2

(a,b) GA {(4,4)}

2 2b
- S 22 4
(a,b)eA—{(4,4)}

\( 2+b2

(a,b)EA— {(4 1)}

2ab 2a + 2b

=2 - Ea P

nt Z ( a? + b2 ab ) b
(a,b)eA—{(4,4)}

It is easy to check that a%f;ﬂ — 20420 < 0 for all (a,b) € A —{(4,4)}.
Therefore, GQ(C') < 2n. Moreover, if equality holds, then E, ;, = 0 for all
(a,b) € A —{(4,4)}. Consequently, G is a regular graph.

Conversely, if G is a 4-regular graph, then GQ(C) = Ey 4 = 47” =2n. N

Theorem 4. For a n-vertex chemical graph C, we have

if n is even

+ & \?}f if n is odd.

GQ(C) >

SIS

Equality in even case occurs if and only if G = 5P, and in odd case if

and only if G = "T%”PQ P Ps.

Proof. We complete the proof by considering the following two cases:
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Case (i) Let n be even. Then from Equation 4, we have

2ab
GQ(C) = By + e
+b
(a b)EA (1,1}
a+b 2ab
- ( ab Eay | + Z a? + b2
(a, b)EA {(1,1)} (a,b)eA—{(1,1)}
n 2ab a+b
=5t ( 22_>Eavb'
2 e {(1 1} a’+b 2ab
One can easily check that
2ab a+b
@ 2ab O (5)
for all (a,b) € A — {(1,1)}. Therefore
n
Q)= . (6)

v

If GQ(C) = 3, then § = 5 4>, peaqa.1)} (\/ iz — 55 ) Bap- By

applying relatlon 5, we have E,p =0 for all (a,b) € A — {1, 1)} Slnce n
is even clearly C'= £ P,. Conversely, if C' = § P, then GQ(C) =
Case (i) Let n be odd and T = A — {(1,1), (1, 2)}. Therefore

2
GQ(C) = E11+ﬁE12+ > ‘/a2+b2

(a,b)eT
2 [2n 4 2 a+b
=F — | =-= - = E,
1,1+ NAEEE L1 3 Z ab b

(a,b)eT

+ Z \(a2+b2

(a,b)eT

:34} (l_?M>E“+ 2

(a,b)eT

2ab 4a + 4b >
Vaz+02  36ap |V
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Since §(G) > 1, we have Eq 1 < ”T’S Also, one can easily check that

2ab _ 4da + 4b o
a?+ b2  3v/5ab

for all (a,b) € T. Hence, applying all these conditions, we have

4n 8
n  8—3V5

=4 —
2 25

If GQ(C) = 5+ 553/%, we have By 1 = 3% and E,y, = 0 for all (a,b) € T,

This implies C = 23 P, @ P;.
Conversely, if C = 22 P, P Py then GQ(C) = 252 + 2 + z

+
8-3v5
N [ |

Sk
B

Theorem 5. Let T be a tree on n > 3 vertices. Then we have

2(n — 1)

4
— 7 <GOIT) < — - 3.
n2—2n+2 — QT) = tn

NG
The equality on the left is attained if and only if T is a star graph, and on
the right equality if and only if T is a path.

Proof. Let T be a tree. Then T has at least two pendant paths. The

contribution to the G@ index of T by each edge incident with a pendent

221 — 2 and by each other edge is at most 1 (see

i1 5
remark 2). Therefore, GQ(G) < % + n — 3. Moreover, if equality holds,
then G has exactly two pendant vertices, which is possible only if T' = P,.

One can easily check that GQ(P,) = % +n — 3. The proof for the lower

vertex is at most

bound follows from Theorem 2. [ |

We have already determined that the path P, is the unique tree with
the maximum geometric quadratic index in the set of n-vertex trees (see
Theorem 5). Now, we are interested in determining the n-vertex trees with
the second and third for n > 7, the fourth and the fifth for n > 10, and

the sixth for n > 11 maximum geometric quadratic indices.
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Theorem 6. In the set of n-vertex trees,

(a)

(b)

(c)

(d)

(¢)

forn > 7, the unique trees with the second maximum GQ index are the

trees with exactly one vertexr of maximum degree three, which is adja-

cent to three vertices of degree two. The value of the second mazimum
: ; 3 6

GQ index is 6 ﬁ—&—ﬁ—i—n—?.

for n > 7, the unique trees with the third mazimum GQ index are
the trees with exactly one vertex of the maximum degree three, which

is adjacent to two vertices of degree two and one vertex of degree one.

The value of the third mazimum GQ index is 44/ 1% + \/g—i— \;15 +n—6.

for n > 10, the unique trees with the fourth mazximum GQ index are
the trees with exactly two adjacent vertices of mazximum degree three,
each adjacent to two wvertices of degree two. The value of the fourth

mazimum GQ indez is 8 % + % +n—-9.

for n > 10, the unique trees with the fifth maximum GQ index are
the trees with exactly one vertex of maximum degree three, which is
adjacent to one vertex of degree two and two vertices of degree one.

The value of the fifth maximum GQ index is 2\/§—|—2 %—i— %—l—n—&

forn > 11, the unique trees with the sixth mazrimum GQ index are the
trees with exactly two vertices of the maximum degree three, each ad-
jacent to three vertices of degree two. The value of the sixth maximum
GQ index is 12\/1—33 + % +n—11.

Proof. Let T # P, be a n-vertex tree, where n > 7. Then T has at least
three pendant paths.

Let | = 3. Then T has exactly one vertex of maximum degree 3 in T,

which is adjacent to exactly one, two, or three vertices of degree two. Let

u be the vertex of maximum degree three in 7. Now, if
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(7) u is adjacent to three vertices of degree two, then

GQ(G):3\/2'3'2 +3\/2.2.1 T

9+4 441
/3 6
~n—1.434.

(i) u is adjacent to two vertices of degree two and one vertex of degree

23.2 231 2921
GQG) 2\/9+4 +\/9+1 +2\/4+1 tn—6

—41/3+\/§+4+n—6
IEE 5 V5

~n — 1.515.

one, then

(#i7) u is adjacent to two vertices of degree one and one vertex of degree

231  [232 [221
T) =2 -
cRm \/9+1+\/9+4+\/4+1+” °

3 /3 2
=%/ 4o/ 4+ = _
\/;Jr 13+\/S+n )

~n—1.595.

two, then

Let I = 4. Then we have two possibilities:

(7) T has exactly one vertex of maximum degree four, and all other vertices
are of degree at most two. Then note that \/2‘4—'1 < \/M + \/M and

16+1 1+4 4+16
hence

212 224
< _
Ge) < 4(\/4+1 + \/4+ TR
16

=—=+n-9
Vb

~n — 1.844.
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e

The tree in Theorem 6(a) with n=7

T

The tree in Theorem 6(b) with n=7

e D

The tree in Theorem 6(c) with n=10

The tree in Theorem 6(d) with n=10

o

The tree in Theorem 6(e) with n=11

Figure 1. The trees in Theorem 6.

(i) T has exactly two vertices of maximum degree three. Now, if T' has

at least one pendant path of length one, then

2.1.3 2.1.2 2.2.3
< - [ - —
GQajM9+1+3<w1+4+w4+9>+n 8

_6+Vv3 6V3 o

+
V5 V13
~n — 1.659.

Now, if each pendant path in T is of length at least two, we denote the two

vertices of degree three by u and v, respectively. If u and v are adjacent,
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then n > 10 and

2.2.3 2.2.1
Ty =4[/ 222 4 /22 -
GQ(T) ( 119 4+1>+” 9
/3 8
=38 1734—%4'77/—9

~n—1.579.

If u and v are not adjacent, then n > 11 and

GQ(T):G\/Q.ZS +4\/2.2.1 11

449 441
/3 8
=124/ =+ — —-11
13+\@+n
~n — 1.657.

If T has [ > 5 pendant path, then

12 4
GQ(T)S(\/134—\/;—2>5+n—1zn—1.724. |

3 GQ index of unicyclic graphs

In this Section, we are interested in computing the n-vertex unicyclic
graphs with the maximum and the second, third, fourth, fifth, and sixth

maximum G@ indices.
Theorem 7. In the set of n-vertex unicyclic graphs,

(a) The unique graph with the mazimum GQ index is the cycle C,, and

the mazimum value is n.

(b) for n > 5, the unique graphs with the second maximum GQ index
are the unicyclic graphs with a single vertex of mazximum degree three,

adjacent to three vertices of degree two. The value of the second maz-
imum GQ index is 6\/% + % +n—4.

(¢) forn > 5, the unique graphs with the third mazimum GQ index are the
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unicyclic graphs with a single vertex of mazimum degree three, adjacent

to one verter of degree one and two vertices of degree two. The value

of the third mazimum GQ index is 4,/ 13—3 + \/g—&— n—3.

(d) forn > 17, the unique graphs with the fourth mazimum GQ index are
the unicyclic graphs with exactly two vertices of the maximum degree
three, each adjacent to two wvertices of degree two. The value of the

fourth mazimum GQ index is 84/ 1% + % +n —6.

(e) for n > 9, the unique graphs with the fifth mazimum GQ index are
the unicyclic graphs obtained by attaching a path P, (t > 2) to every
vertex of a triangle. The value of the fifth mazimum GQ index is

3 6
64/ 15 + 75 +n—6.

(f) for n > 9, the unique graphs with the sizth mazimum GQ index are
the unicyclic graphs with exactly two vertices of maximum degree three,
each adjacent to three vertices of degree two. The value of the sixth

mazimum GQ index is 124/ 13—3 + % +n—8.

Proof. Let U be a n-vertex unicyclic graphs, where n > 3. Therefore
GQ(U) <m =n (see Theorem 1). Moreover, equality holds if and only if
U is a regular unicyclic graph i.e., U = C),.

Let the number of pendant paths in U be one. Then we have two possi-
bilities:

(1) U has exactly one vertex of maximum degree three, adjacent to three

vertices of degree two. Then n > 5, and

5 /232 221,
Vora "Var1 ™"
3 9
—6y/ >+ fn—42n—0.2232.
13 + 5 +n n

(i) U has exactly one vertex of maximum degree three, adjacent to one

GQ(G)
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vertex of degree one and two vertices of degree two. Then n > 4, and

2.3.2 2.3.1
U) =24/ —— — -
) \/;+\/9+1+"
/3 3
=14 13—}—\/?—1—71— ~n —0.3038.

Now, let the number of pendant paths in U be two. Then, two cases arise:

A P

The graphs in Theorem 7(a) with n=3 ~ The graphs in Theorem 7(b) with n=5

—> A

The graphs in Theorem 7(c) with n=5  The graphs in Theorem 7(d) with n=7

The graphs in Theorem 7(e) with n=9 The graphs in Theorem 7(f) with n=9

Figure 2. The unicyclic graphs in Theorem 7 with least number of
vertices.

(1) U has exactly one vertex on the cycle of maximum degree four, and all

other vertices of U are of degree at most two. Then note that % =

/2 /2.1.2 /224 _ 4
2 T7< m‘i’ m—%and hence

2.4.2 2.2.1
< _
GQ(U)4\/16+4+2\/4+1+H 6

12
=——06+n~n-—0.6334.

V5

(#4) U has exactly two vertices of maximum degree three. Now, if both the
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two pendant paths are of length one in U, then

2.1.3

</ 4p—2

GQU) < 911 +n

3

:2\/;—#71—2%71—0.4508.

If U has exactly one pendant path of length one, then
2.3.2 2.3.1 2.2.1
GQU) <3 )
) < \/9+4+\/9+1 +\/4+1 o

/3 3 2
= — - = — o — 0.4486.
6 13+\/;+\/5+n 5~ mn — 0.4486

If the length of both pendent paths in U is greater equal to two, denote

the two vertices of degree three by z and y. If  and y are adjacent, then
n > 7 and

2.3.2 2.1.2
_y 9 _
GQw) \/9+4+ \/4+1+” 6

/3 4
=38 1*3+%+n76~n70.3680.

If x and y are not adjacent, then n > 8 and hence

23.2 221
= 2 —
Go(E) 6\/9+4+ \/4+1+” 8

/3 4
=12/ =+ — — 8 ~ n — 0.4465.
13+\/5+n 8~ n —0.4465

Let us consider that U has exactly three pendant paths. If U has at least

one pendant path of length one, then

913 912 923
GQUU) < /222 w222 222 -5
QU)<\/g 71+ ( 144" 4+9>+”
4 3 3
= /242 - 5~n—05150.
\/BjL\ﬁ+ 3" "

Let all three pendant paths be of length greater than or equal to two. Now,
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if U has a pendent path at the vertex , say x, such that d(x) > 4, then

510 924 212 [223
< DY Y = s
GQ(U)_\/1+4+\/4+16+ ( ir1 4+9>+

8
\[

Suppose that the three pendant paths in U are all at the vertices u, v, w,

3 + n — 6 ~n — 0.5007.

of degree three. If at most two pairs of vertices are adjacent, then

GO §5\/2.2.3 +3\/2.1.2 n_s

449 1+4
3 6

=104/ — + — —8~n—0.5128.
13—5-\/54—71 n

If u, v, w are pairwise adjacent, then U = C3(1)(2) and hence

/22 /
U)<3 +1+1+1+3 +n—9

=64/ — —6~n—0.4344.
13+\/5+n n

If U has [ > 4 pendant paths, then by Lemma 1, we have
12 4
<|[y/=+4/=-2
(U) < ( 3 —&-\/g )l—l—m
< 1/12+\/Z 2144 n~= 0.5792
< 13 3 na~n-—0. .

Therefore, combining all the above cases, we have the desired results. H

4 GQ index of bicyclic graphs

In this section, we determine the family of n-vertex bicyclic graphs with
the maximum, second, third, fourth, fifth, and sixth maximum G@ index.
By Bi(n), we denote the family of bicyclic graphs obtained from C,, by
adding an edge, where n > 4. Let 8?(n) be the family of bicyclic graphs
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obtained by joining two vertex-disjoint cycles Cs and C; with s +¢ = n by
an edge, where n > 6. Let 33(n) be the family of bicyclic graphs obtained
from Cs = vguy - -vs_1 with 4 < s < n — 2 by joining vy and vy by an
edge and attaching a path on the n — a vertices to v1. Also, by i(n), we
denote the family of bicyclic graphs obtained by joining two non-adjacent
vertices of Cs with 4 < s < n — 1 by a path of length n — s + 1, where
n > 5. Let B2(n) be the family of bicyclic graphs obtained by joining
two vertex-disjoint cycles Cy and Cy with s +t < n by a path of length
n—s—t+1, where n > 7. By 4(n), we denote the family of bicyclic graphs
obtained by attaching a path on at least two vertices to the two vertices of
degree two of the unique 4-vertex bicyclic graph, where n > 8. Let 3L(n)
be the bicyclic graphs obtained from a graph £} (t) with ¢ > 5 or 3%(t)
with ¢ > 6 by attaching a path of length n —t > 2 to a vertex of degree
two, whose two neighbors are of degree two and three, where n > 7. Let
32(n) denotes the bicyclic graphs obtained from a graph 3i(¢) with ¢ > 5
or 3%(t) with ¢t > 7 by attaching a path on n —t > 2 vertices to a vertex
of degree two, whose two neighbors are both of degree three, where n > 7.
Let Bg(n) denote the bicyclic graph obtained from Cj,_1 = vov1 -+ Vp_2
by joining vy and v, by an edge and attaching a vertex of degree one to vy,
where n > 5. By S7(n), we denote the n vertex bicyclic graph obtained

by identifying one vertex of two cycles.
Theorem 8. In the set of n-vertex bicyclic graphs

(a) The unique graphs with the mazimum GQ index are the graphs in
Bi(n) for n > 4 and the graphs in $3(n) for n > 6. The mazimum
value of the G@Q index is 84/ 1% +n—3.

(b) The unique graphs with the second maximum GQ index are the graphs
in Ba(n) for n > 6. The value of the second maximum GQ index is
3 2
6/ 15 + 2 +n—3.
(¢) The unique graphs with the third mazimum GQ index are the graphs in

Bi(n) forn >5 and B3(n) for n > 7. The value of the third mazimum
GQ indezx is 12«/% +n—5.

(d) The unique graphs with the fourth mazimum GQ index are the graphs
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Dr e

The graph in Theorem 8(a) with n=4  The graph in Theorem 8(b) with n=6

The graphs in Theorem 8(c) with n=6  The graphs in Theorem 8(d) with n=8

The graphs in Theorem 8(e) with n'=8\.—0

The graphs in Theorem 8(f) with n=8

Figure 3. The bicyclic graphs in Theorem 8 with least number of ver-
tices.

in Ba(n) for n > 8. The value of the fourth maximum GQ index is
435+ = +n-3.

(e) The unique graphs with the fifth mazimum GQ index are the graphs in
BE(n) or B2(n) for n > 8. The value of the fifth mazimum GQ index
is 10/ 15 + J= +n —5.

(f) The unique graphs with the sizth maximum GQ index are the graphs
in Bg(n) for n > 8. The value of the sizth mazimum GQ index is
44/ 3+ @ +n—2.

Proof. Let B be a n-vertex bicyclic graph, where n > 4. If B has no

pendant path, then either (i) B € f$i(n) or B € 2(n) with n > 6 or

(ii) B € BY(n) with n > 5 or B € 83(n) with n > 7 or (iii) B € B1(n).

If (i) holds, then GQ(B) = 8,/ + (n+ 1 —4) ~ n + 0.8430. If (ii)

holds, then GQ(B) = 6,/%23 + n — 5 ~ n 4 0.7646. If (iii) holds, then

GQ(B) =4y/2E2 +n—3~n+0.5777.
Now, suppose that B has exactly one pendant path. Clearly A(B) €
{3,4,5}. Now we have two possibilities: (¢) The pendant path is of length
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one. If A(B) € {4,5}, then we have

2.2.A 2.1.3
B) <2 P
GQB) < \/4+A2+\/1+9+”

904 21.3
<9 — 92~ + 0.5634.
= \/4+16+\/1+9+” ne

Let A(B) = 3. Then B has exactly three vertices, say x,y, z, of degree

three in B. If at most two pairs of vertices x, y, z are adjacent, then

2.2.3 2.1.3
<44/ —— —_— — 4=~ .6176.
GQ(G) < \/4+9+\/1+9+n n+ 0.6176

If x, y, z are pairwise adjacent, then B € 8g(n) with n > 5 and GQ(B) =
2\ /55 + /%34 +6+n+1-9~n+0.6961.
(#i) The length of the pendant path is at least two. If A(B) € {4,5}, then

GQ(B) < 3\/ 2.2.4 + \/2'1'2 +n+1-4

4+ A2 1+4

224 2.1.2
< — 4= . .
_3\/4+16+\/1+4+n+1 4 ~n+0.57770

If A(B) = 3, then B has exactly three vertices, say x1, z2 and z3. If at

most one pair of vertices x1, T2, T3 is adjacent, then

2.2.3 2.1.2
< —— 4+ /) ——+n+1—-8~n+0. .
GQ(B) <74/ 159 1/ 1 n+1-8~n+0.6198

If there are exactly two pairs of vertices z1, x2, =3 are adjacent, then
B € 8i(n) or B € 82(n) withn > 7, and GQ(B) = 5,/%—1—\/%4—7%1—
1—6~n+0.69827. If 1, x9, x3 are pairwise adjacent, then B € B2(n)
with n > 6, and GA(B) = 3/%%3 + | /221 £ n +1 -4 =n +0.7767.

Let the number of pendant paths in B be exactly two. Then A(B) €
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{3,4,5,6}. If A(B) € {4,5,6}, then

22.A 21.2 22.3
GQ(B) <2y =22 1ol J22 [ 222 1-6
QB =2/ st { 144" 4+9}+"Jr
2 2.2.4 +2 &-‘r 2.2.3 +n+1—6~n+0.4992
=\V1+16 Viga "Vagro( ™" =R AL,

Suppose A(B) = 3. The B has exactly four vertices , say x1, 2, T3, Z4,

A

of degree three. If there is at least one pendant path of length one, then

213 91.2 223
GQ(B) < 1 -3~ mn 4t 0.6297.
@ )—\/1+9+\/1+4+\/4+9+"Jr ne

Suppose both the pendant paths are at least two in length. Since B is
bicyclic, at most five pairs of vertices x1, x2, x3, r4 are adjacent. If at

most four pairs of z1, x2, x3, 4 are adjacent, then

2.2.3 2.1.2
GQ(B) <4 2 1-6~ 0.6319.
Q(B) < \/4+9+ \/1+4+n+ n+

If there are exactly five pairs of vertices x1, x2, x3, r4 are adjacent, then
B € By(n) withn > 8, and GQ(B) = 2,/323+2, /221 +n—3 ~ n+0.7103.
If there are [ > 3 pendant paths in B, then by Lemma 1, we have

3 2

3 2
< 245 +—=-2]3 1= 0.5655.
_< 13+\/5 ) +n+ n+

Combining all the above arguments, we have the desired result. |

Conclusion

In this paper, we have analyzed the G(@ index of a simple graph G defined

as GQ(G) =D ,up 4 /%. We have determined the extremal values and

extremal graphs with respect to the G@ indices over simple connected
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graphs, chemical graphs and trees with the given number of vertices. In
addition, we have studied the first six maximum values and the corre-
sponding n-vertex trees with respect to the G@Q index. In addition, we
have determined the n-vertex unicyclic and bicyclic graphs with the first

six maximum values with respect to the G@Q index.
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