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Abstract

The geometric quadratic (GQ) index is a recently introduced
degree-based topological descriptor, and Kumar et al. observed that
it is potentially a very good molecular descriptor. In this paper, we
characterize the extremal graphs (chemical) and trees concerning
the geometric quadratic index of a given order and size. Then, we
determine the n-vertex trees, unicyclic and bicyclic graphs with the
maximum, the second, the third, the fourth, the fifth, and the sixth
maximum geometric quadratic indices.

1 Introduction

Let G = (V (G), E(G)) be a simple graph with |V (G)| = n and |E(G)| =
m. By a ∼ b, we mean that the vertices a and b are adjacent and da

represents the degree of the vertex a in G. A vertex of degree one is said

to be a pendant vertex. A path x1x2 · · ·xl is said to be pendent at x1 if

d(x1) ≥ 3, d(xt) = 2 for i ∈ {2, · · · , l − 1} and d(xl) = 1. An edge is
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said to be a (a, b)-edge if the vertices incident to the edge are of degrees

a and b, respectively. By vi and Ep,q, we denote the number of vertices

of degree i and the number of (p, q)-edges in a graph G, respectively. A

connected graph G is said to be a tree, unicyclic and bicyclic graph if and

only if m = n − 1, m = n and m = n + 1, respectively. By Gn,m,δ,∆, we

denote the set of all connected graphs of order n, size m with maximum

and minimum degrees are ∆ and δ, respectively. A graph G is said to be

chemical if ∆(G) ≤ 4. By Pn and Cn, we denote the path and cycle on

the n vertices, respectively.

Quantitative structure-property relationship (QSPR) investigations apply

correlation/regression models to ensure the correlation between the molec-

ular structure of a substance and its physicochemical, thermodynamic,

and quantum-theoretic properties in contemporary chemistry. Quanti-

tative structure-activity relationship (QSAR) and quantitative structure-

property relationship (QSPR) are regression models that utilize statistical

methods to analyze the relationship between the structure of a compound

and its activity or property. These models can be either linear or nonlin-

ear. This approach exhibits a substantial correlation with the thermody-

namic, physicochemical, and biological aspects of chemical structures [20].

Statistics is very important in decision-making if it is informed by data.

It assists in understanding patterns, exploring assumptions, and proving

credible and significant conclusions, thus ensuring the reliability and va-

lidity of research data. This process has to be encouraged in various fields

of scientific research as discussed in papers [18]. In recent times, numer-

ous authors have employed this methodology to ascertain the relationship

between the topological indices and physical characteristics of chemical

compounds. The topological index of a graph G is a numerical quantity

invariant under the automorphisms of the graph. Due to their application

in chemistry and pharmacology, especially in QSPR/QSAR as molecular

structure descriptors [7, 9, 10, 12, 22], topological indices have gained con-

siderable popularity. Among the groups of all topological indices, one of

the most investigated and widely used is the vertex degree-based topologi-

cal indices [12,17,19]. Among the vertex degree-based topological indices,

the oldest vertex degree-based topological indices, the first and the second
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Zagreb indices [9, 10] were defined as

M1(G) =
∑
a∼b

(da + db) and M2(G) =
∑
a∼b

dadb.

The symmetric division degree index [7] and the Sombor index [8] were

defined as

SDD(G) =
∑
a∼b

(
da
db

+
db
da

)
and SO(G) =

∑
a∼b

√
d2a + d2b .

The geometrical-arithmetic index (GA) index [22] and arithmetical geo-

metric (AG) index were defined as

GA(G) =
∑
a∼b

2
√
dadb

da + db
, AG(G) =

∑
a∼b

da + db

2
√
dadb

.

In [22], Vukičević et al. observed the chemical applicability of the GA index

and characterized the extremal graphs, trees and chemical trees of given

size. Motivated by the advancement and success of the GA index, Kulli

proposed two new indices in 2022 based on the geometric and quadratic

means of degrees of end vertices of an edge and named them the Geomet-

ric–Quadratic and Quadratic–Geometric indices [14], defined as:

GQ(G) =
∑
a∼b

√
2dadb
d2a + d2b

, QG(G) =
∑
a∼b

√
d2a + d2b
2dadb

.

Then, Kumar et al. [15] concentrate on this newly defined degree-based

GQ and QG indices by exhibiting a comparative study with other standard

degree-based topological indices. They investigated the octane, nonane

and decane isomers by looking at the application of these isomers and

the availability of the data of these compounds to test the usability and

structural properties regarding some standard topological indices such as

M1, M2, SDD, SO, etc. By performing quantitative structure-property

relationship analysis, they observed that the acquired results of the GQ

index are preferably stronger than those of the QG index for all the con-

sidered physicochemical properties, apart from the enthalpy of formation



386

(HFORM). They also observed that the GQ and QG indices report better

prediction power for the properties HVAP and DHVAP of octane isomers

in comparison to all the degree-based topological indices considered. The

performed linear regression models and obtained statistical outcomes for

the GQ index are better than those of the GA index. More specifically,

they are stronger than the results of the GA and AG indices. This suggests

that the GQ and QG indices display fine structural changes in comparison

to the GA and AG indices. Therefore, the GQ index would be beneficial

to the researchers working in this area. For other related works on GQ

and QG indices, we refer [4–6,16].

In chemical graph theory, one of the most famous and challenging prob-

lems is to characterize the extremal graphs with respect to different degree-

based topological indices. We refer to [1–3,13,17] for recent advances. All

these observations prompted me to consider the extremal problems with

respect to the GQ indices over the trees, unicyclic graphs and bicyclic

graphs.

In this paper, in Section 2, we characterize the extremal graphs (chem-

ical) and trees concerning the GQ index with a given number of vertices.

Then, we determine n-vertex trees with the second and the third for n ≥ 7,

the fourth and the fifth for n ≥ 10 and the sixth for n ≥ 10 maximum GQ

indices. Then in Section 3, we determine the n-vertex unicyclic graphs

with the maximum, the second and the third for n ≥ 5, the fourth for

n ≥ 7, the fifth and the sixth for n ≥ 9 maximum GQ indices. Finally, in

Section 4, we determine the bicyclic graphs with the maximum for n ≥ 4,

the second and the third for n ≥ 6 and the fourth, the fifth and the sixth

for n ≥ 8 maximum GQ indices.

2 Extremal GQ index of trees

Lemma 1. Let G be a graph with l pendant paths. Then

GQ(G) ≤

(
2

√
3

13
+

2√
5
− 2

)
l +m.
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Proof. Let e = xy be an edge of a graph G on n vertices. If dx is fixed,

then f(dy) =
√

2dxdy

d2
x+d2

y
is a decreasing function for dx ≤ dy ≤ n− 1. Then

the contribution to GQ(G) by a pendant path of length one is at most√
2.3.1
9+1 =

√
3
5 ≈ 0.7745 < 2

√
3
13 + 2√

5
− 1 ≈ 0.8551. The contribution to

GQ(G) by a pendant path of length t ≥ 2 is at most
√

2.3.2
9+4 +(t−2)

√
2.2.2
4+4 +√

2.2.1
4+1 = 2

√
3
13 + 2√

5
+ t − 2. Therefore, the contribution to GQ(G) by

the edges of a pendent path of length t ≥ 1 is at most 2
√

3
13 +

2√
5
+ t− 2.

Since the graph G has l pendent paths, we have

GQ(G) ≤

(
2

√
3

13
+

2√
5
− 2

)
l +m.

Lemma 2. Let f(x, y) =
√

2xy
x2+y2 and 0 < a ≤ x ≤ y ≤ b for some real

numbers a and b. Then
√

2ab
a2+b2 ≤ f(x, y) ≤ 1, with left equality if and

only if x = a and y = b, right equality if and only if x = y.

Proof. Since 0 < a ≤ x ≤ y ≤ b, we have 1 ≤ y
x ≤ b

a . Let t = y
x and

g(t) =
√

2t
1+t2 . Then g′(t) =

√
1+t2

2
√
2t

2−2t2

(1+t2)2 ≤ 0, since t ≥ 1. Therefore, g(t)

is monotonically decreasing for t ≥ 1. Hence√
2ab

a2 + b2
= g

(
b

a

)
≤ f(x, y) = g(t) ≤ g(1) = 1,

with left equality if and only if x = a and y = b and right equality if and

only if x = y.

Remark. Since (x−y)2 ≥ 0 for all real numbers x and y, we have
√

2xy
x2+y2 ≤

1 with equality if and only if x = y. Therefore,
√

2dudv

d2
u+d2

v
≤ 1 for any edge

uv of G. So, the maximum contribution to the GQ index by an edge is at

most one. Consequently, GQ(G) ≤ m with equality if and only if G is a

regular graph.

Theorem 1. Let G ∈ Gn,m,δ,∆. Then

m

√
2∆δ

∆2 + δ2
≤ GQ(G) ≤ m.
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Equality on the left holds if and only if G is regular or biregular, and on

the right, equality is held if and only if G is regular.

Proof. To prove the upper bound, it suffices to note that the contribution

of each edge to the GQ index is at most one (see Lemma 2). Therefore,

GQ(G) ≤ m. Moreover, equality holds if each edge contributes to GQ(G)

exactly one, i.e., each edge has end vertices of the same degree. This is

possible only if G is regular. Now, from the definition of the GQ index

and by applying Lemma 2, we have

GQ(G) =
∑

uv∈E(G)

√
2dudv
d2u + d2v

≥
∑

uv∈E(G)

√
2∆δ

∆2 + δ2
= m

√
2∆δ

∆2 + δ2
,

with equality if and only if du = ∆ and dv = δ for all xy ∈ E(G) i.e., G is

regular or biregular.

Theorem 2. For a simple connected graph G with n ≥ 3 vertices, we have√
2(n− 1)3

n2 − 2n+ 2
≤ GQ(G) ≤ n(n− 1)

2
.

Equality on the left holds if and only if G is a star graph, and on the right,

the equality is held if and only if G is a complete graph.

Proof. To prove the upper bound, it is enough to note that for a simple

connected graph of order n and sizem, we havem ≤ n(n−1)
2 with equality if

and only if G is (n−1)-regular. Therefore, GQ(G) ≤ n(n−1)
2 with equality

if and only if G is a complete graph.

To prove the lower bound, let du ≤ dv and t = du

dv
. Note that 1

n−1 ≤ t ≤ 1.

Hence
√

2dudv

d2
u+d2

v
=
√

2t
1+t2 . Let f(t) =

√
2t

1+t2 . Clearly f(t) is ascending

in the interval [ 1
n−1 , 1) and therefore reaches its minimum at x = 1

n−1 .

Consequently,

√
2dudv
d2u + d2v

≥

√√√√ 2
n−1

1 + ( 1
n−1 )

2
=

√
2(n− 1)

n2 − 2n+ 2
.
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Since the graph is connected, |E(G)| ≥ n− 1 and hence

GQ(G) ≥ (n− 1)

√
2(n− 1)

n2 − 2n+ 2
=

√
2(n− 1)3

n2 − 2n+ 2
.

Moreover, the equality holds if and only if the number of (1, n− 1)-edges

is n− 1. This happens only if G is a star graph.

It is well known that in a chemical graph C with δ(C) ≥ 1, the following

relations are holds [2]:

v1 + v2 + v3 + v4 = n, (1)

and

2E1,1 + E1,2 + E1,3 + E1,4 = v1,

E1,2 + 2E2,2 + E2,3 + E2,4 = 2v2,

E1,3 + E2,3 + 2E3,3 + E3,4 = 3v3,

E1,4 + E2,4 + E3,4 + 2E4,4 = 4v4.

(2)

Let A = {(s, t) ∈ N × N : 1 ≤ s ≤ t ≤ 4}. Then from Equation 1 and 2,

we have

n =
∑

(a,b)∈A

a+ b

ab
Ea,b. (3)

Also we have

GQ(C) =
∑

(a,b)∈A

√
2ab

a2 + b2
Ea,b. (4)

Theorem 3. In a n-vertex chemical graph C, we have

GQ(C) ≤ 2n,

with equality if and only if G is 4-regular graph.



390

Proof. By applying Equation 4, we have

GQ(C) =
∑

(a,b)∈A

√
2ab

a2 + b2
Ea,b

= E4,4 +
∑

(a,b)∈A−{(4,4)}

√
2ab

a2 + b2
Ea,b

= 2n−
∑

(a,b)∈A−{(4,4)}

2a+ 2b

ab
Ea,b+

∑
(a,b)∈A−{(4,4)}

√
2ab

a2 + b2
Ea,b

= 2n+
∑

(a,b)∈A−{(4,4)}

(√
2ab

a2 + b2
− 2a+ 2b

ab

)
Ea,b,

It is easy to check that 2ab
a2+b2 − 2a+2b

ab < 0 for all (a, b) ∈ A − {(4, 4)}.
Therefore, GQ(C) ≤ 2n. Moreover, if equality holds, then Ea,b = 0 for all

(a, b) ∈ A− {(4, 4)}. Consequently, G is a regular graph.

Conversely, if G is a 4-regular graph, then GQ(C) = E4,4 = 4n
2 = 2n.

Theorem 4. For a n-vertex chemical graph C, we have

GQ(C) ≥

n
2 if n is even

n
2 + 8−3

√
5

2
√
5

if n is odd.

Equality in even case occurs if and only if G ∼= n
2P2, and in odd case if

and only if G ∼= n−3
2 P2

⊕
P3.

Proof. We complete the proof by considering the following two cases:
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Case (i) Let n be even. Then from Equation 4, we have

GQ(C) = E1,1 +
∑

(a,b)∈A−{(1,1)}

√
2ab

a2 + b2

=
1

2

n−
∑

(a,b)∈A−{(1,1)}

a+ b

ab
Ea,b

+
∑

(a,b)∈A−{(1,1)}

√
2ab

a2 + b2

=
n

2
+

∑
(a,b)∈A−{(1,1)}

(√
2ab

a2 + b2
− a+ b

2ab

)
Ea,b.

One can easily check that√
2ab

a2 + b2
− a+ b

2ab
> 0, (5)

for all (a, b) ∈ A− {(1, 1)}. Therefore

GQ(C) ≥ n

2
. (6)

If GQ(C) = n
2 , then

n
2 = n

2 +
∑

(a,b)∈A−{(1,1)}

(√
2ab

a2+b2 − a+b
2ab

)
Ea,b. By

applying relation 5, we have Ea,b = 0 for all (a, b) ∈ A − {1, 1)}. Since n

is even clearly C ∼= n
2P2. Conversely, if C ∼= n

2P2 then GQ(C) = n
2 .

Case (ii) Let n be odd and T = A− {(1, 1), (1, 2)}. Therefore

GQ(C) = E1,1 +
2√
5
E1,2 +

∑
(a,b)∈T

√
2ab

a2 + b2
Ea,b

= E1,1 +
2√
5

2n

3
− 4

3
E1,1 −

2

3

∑
(a,b)∈T

a+ b

ab
Ea,b


+

∑
(a,b)∈T

√
2ab

a2 + b2

=
4n

3
√
5
+

(
1− 8

3
√
5

)
E1,1 +

∑
(a,b)∈T

(√
2ab

a2 + b2
− 4a+ 4b

3
√
5ab

)
Ea,b.
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Since δ(G) ≥ 1, we have E1,1 ≤ n−3
2 . Also, one can easily check that√

2ab

a2 + b2
− 4a+ 4b

3
√
5ab

> 0 (7)

for all (a, b) ∈ T. Hence, applying all these conditions, we have

GQ(C) ≥ 4n

3
√
5
+

(
1− 8

3
√
5

)
=

n

2
+

8− 3
√
5

2
√
5

.

If GQ(C) = n
2 +

8−3
√
5

2
√
5

, we have E1,1 = n−3
2 and Ea,b = 0 for all (a, b) ∈ T.

This implies C ∼= n−3
2 P2

⊕
P3.

Conversely, if C ∼= n−3
2 P2

⊕
P3 then GQ(C) = n−3

2 + 2√
5
+ 2√

5
= n

2 +

8−3
√
5

2
√
5

.

Theorem 5. Let T be a tree on n ≥ 3 vertices. Then we have√
2(n− 1)3

n2 − 2n+ 2
≤ GQ(T ) ≤ 4√

5
+ n− 3.

The equality on the left is attained if and only if T is a star graph, and on

the right equality if and only if T is a path.

Proof. Let T be a tree. Then T has at least two pendant paths. The

contribution to the GQ index of T by each edge incident with a pendent

vertex is at most
√

2.2.1
4+1 = 2√

5
and by each other edge is at most 1 (see

remark 2). Therefore, GQ(G) ≤ 4√
5
+ n − 3. Moreover, if equality holds,

then G has exactly two pendant vertices, which is possible only if T ∼= Pn.

One can easily check that GQ(Pn) =
4√
5
+ n− 3. The proof for the lower

bound follows from Theorem 2.

We have already determined that the path Pn is the unique tree with

the maximum geometric quadratic index in the set of n-vertex trees (see

Theorem 5). Now, we are interested in determining the n-vertex trees with

the second and third for n ≥ 7, the fourth and the fifth for n ≥ 10, and

the sixth for n ≥ 11 maximum geometric quadratic indices.
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Theorem 6. In the set of n-vertex trees,

(a) for n ≥ 7, the unique trees with the second maximum GQ index are the

trees with exactly one vertex of maximum degree three, which is adja-

cent to three vertices of degree two. The value of the second maximum

GQ index is 6
√

3
13 + 6√

5
+ n− 7.

(b) for n ≥ 7, the unique trees with the third maximum GQ index are

the trees with exactly one vertex of the maximum degree three, which

is adjacent to two vertices of degree two and one vertex of degree one.

The value of the third maximum GQ index is 4
√

3
13 +

√
3
5 +

4√
5
+n−6.

(c) for n ≥ 10, the unique trees with the fourth maximum GQ index are

the trees with exactly two adjacent vertices of maximum degree three,

each adjacent to two vertices of degree two. The value of the fourth

maximum GQ index is 8
√

3
13 + 8√

5
+ n− 9.

(d) for n ≥ 10, the unique trees with the fifth maximum GQ index are

the trees with exactly one vertex of maximum degree three, which is

adjacent to one vertex of degree two and two vertices of degree one.

The value of the fifth maximum GQ index is 2
√

3
5+2

√
3
13+

2√
5
+n−5.

(e) for n ≥ 11, the unique trees with the sixth maximum GQ index are the

trees with exactly two vertices of the maximum degree three, each ad-

jacent to three vertices of degree two. The value of the sixth maximum

GQ index is 12
√

3
13 + 8√

5
+ n− 11.

Proof. Let T ̸= Pn be a n-vertex tree, where n ≥ 7. Then T has at least

three pendant paths.

Let l = 3. Then T has exactly one vertex of maximum degree 3 in T ,

which is adjacent to exactly one, two, or three vertices of degree two. Let

u be the vertex of maximum degree three in T . Now, if



394

(i) u is adjacent to three vertices of degree two, then

GQ(G) = 3

√
2.3.2

9 + 4
+ 3

√
2.2.1

4 + 1
+ n− 7

= 6

√
3

13
+

6√
5
+ n− 7

≈ n− 1.434.

(ii) u is adjacent to two vertices of degree two and one vertex of degree

one, then

GQ(G) = 2

√
2.3.2

9 + 4
+

√
2.3.1

9 + 1
+ 2

√
2.2.1

4 + 1
+ n− 6

= 4

√
3

13
+

√
3

5
+

4√
5
+ n− 6

≈ n− 1.515.

(iii) u is adjacent to two vertices of degree one and one vertex of degree

two, then

GQ(T ) = 2

√
2.3.1

9 + 1
+

√
2.3.2

9 + 4
+

√
2.2.1

4 + 1
+ n− 5

= 2

√
3

5
+ 2

√
3

13
+

2√
5
+ n− 5

≈ n− 1.595.

Let l = 4. Then we have two possibilities:

(i) T has exactly one vertex of maximum degree four, and all other vertices

are of degree at most two. Then note that
√

2.4.1
16+1 <

√
2.1.2
1+4 +

√
2.2.4
4+16 and

hence

GQ(T ) ≤ 4(

√
2.1.2

4 + 1
+

√
2.2.4

4 + 16
+ n− 9

=
16√
5
+ n− 9

≈ n− 1.844.
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Figure 1. The trees in Theorem 6.

(ii) T has exactly two vertices of maximum degree three. Now, if T has

at least one pendant path of length one, then

GQ(T ) ≤
√

2.1.3

9 + 1
+ 3

(√
2.1.2

1 + 4
+

√
2.2.3

4 + 9

)
+ n− 8

=
6 +

√
3√

5
+

6
√
3√
13

+ n− 8

≈ n− 1.659.

Now, if each pendant path in T is of length at least two, we denote the two

vertices of degree three by u and v, respectively. If u and v are adjacent,
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then n ≥ 10 and

GQ(T ) = 4

(√
2.2.3

4 + 9
+

√
2.2.1

4 + 1

)
+ n− 9

= 8

√
3

13
+

8√
5
+ n− 9

≈ n− 1.579.

If u and v are not adjacent, then n ≥ 11 and

GQ(T ) = 6

√
2.2.3

4 + 9
+ 4

√
2.2.1

4 + 1
+ n− 11

= 12

√
3

13
+

8√
5
+ n− 11

≈ n− 1.657.

If T has l ≥ 5 pendant path, then

GQ(T ) ≤

(√
12

13
+

√
4

5
− 2

)
5 + n− 1 ≈ n− 1.724.

3 GQ index of unicyclic graphs

In this Section, we are interested in computing the n-vertex unicyclic

graphs with the maximum and the second, third, fourth, fifth, and sixth

maximum GQ indices.

Theorem 7. In the set of n-vertex unicyclic graphs,

(a) The unique graph with the maximum GQ index is the cycle Cn, and

the maximum value is n.

(b) for n ≥ 5, the unique graphs with the second maximum GQ index

are the unicyclic graphs with a single vertex of maximum degree three,

adjacent to three vertices of degree two. The value of the second max-

imum GQ index is 6
√

3
13 + 2√

5
+ n− 4.

(c) for n ≥ 5, the unique graphs with the third maximum GQ index are the
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unicyclic graphs with a single vertex of maximum degree three, adjacent

to one vertex of degree one and two vertices of degree two. The value

of the third maximum GQ index is 4
√

3
13 +

√
3
5 + n− 3.

(d) for n ≥ 7, the unique graphs with the fourth maximum GQ index are

the unicyclic graphs with exactly two vertices of the maximum degree

three, each adjacent to two vertices of degree two. The value of the

fourth maximum GQ index is 8
√

3
13 + 4√

5
+ n− 6.

(e) for n ≥ 9, the unique graphs with the fifth maximum GQ index are

the unicyclic graphs obtained by attaching a path Pt (t ≥ 2) to every

vertex of a triangle. The value of the fifth maximum GQ index is

6
√

3
13 + 6√

5
+ n− 6.

(f) for n ≥ 9, the unique graphs with the sixth maximum GQ index are

the unicyclic graphs with exactly two vertices of maximum degree three,

each adjacent to three vertices of degree two. The value of the sixth

maximum GQ index is 12
√

3
13 + 4√

5
+ n− 8.

Proof. Let U be a n-vertex unicyclic graphs, where n ≥ 3. Therefore

GQ(U) ≤ m = n (see Theorem 1). Moreover, equality holds if and only if

U is a regular unicyclic graph i.e., U ∼= Cn.

Let the number of pendant paths in U be one. Then we have two possi-

bilities:

(i) U has exactly one vertex of maximum degree three, adjacent to three

vertices of degree two. Then n ≥ 5, and

GQ(G) = 3

√
2.3.2

9 + 4
+

√
2.2.1

4 + 1
+ n− 4

= 6

√
3

13
+

2√
5
+ n− 4 ∼= n− 0.2232.

(ii) U has exactly one vertex of maximum degree three, adjacent to one
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vertex of degree one and two vertices of degree two. Then n ≥ 4, and

GQ(U) = 2

√
2.3.2

9 + 4
+

√
2.3.1

9 + 1
+ n− 3

= 4

√
3

13
+

√
3

5
+ n− 3 ≈ n− 0.3038.

Now, let the number of pendant paths in U be two. Then, two cases arise:

Figure 2. The unicyclic graphs in Theorem 7 with least number of
vertices.

(i) U has exactly one vertex on the cycle of maximum degree four, and all

other vertices of U are of degree at most two. Then note that
√

2.1.4
16+1 =

2
√

2
17 <

√
2.1.2
1+4 +

√
2.2.4
4+16 = 4√

5
and hence

GQ(U) ≤ 4

√
2.4.2

16 + 4
+ 2

√
2.2.1

4 + 1
+ n− 6

=
12√
5
− 6 + n ≈ n− 0.6334.

(ii) U has exactly two vertices of maximum degree three. Now, if both the
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two pendant paths are of length one in U , then

GQ(U) ≤ 2

√
2.1.3

9 + 1
+ n− 2

= 2

√
3

5
+ n− 2 ≈ n− 0.4508.

If U has exactly one pendant path of length one, then

GQ(U) ≤ 3

√
2.3.2

9 + 4
+

√
2.3.1

9 + 1
+

√
2.2.1

4 + 1
+ n− 5

= 6

√
3

13
+

√
3

5
+

2√
5
+ n− 5 ≈ n− 0.4486.

If the length of both pendent paths in U is greater equal to two, denote

the two vertices of degree three by x and y. If x and y are adjacent, then

n ≥ 7 and

GQ(U) = 4

√
2.3.2

9 + 4
+ 2

√
2.1.2

4 + 1
+ n− 6

= 8

√
3

13
+

4√
5
+ n− 6 ≈ n− 0.3680.

If x and y are not adjacent, then n ≥ 8 and hence

GQ(G) = 6

√
2.3.2

9 + 4
+ 2

√
2.2.1

4 + 1
+ n− 8

= 12

√
3

13
+

4√
5
+ n− 8 ≈ n− 0.4465.

Let us consider that U has exactly three pendant paths. If U has at least

one pendant path of length one, then

GQ(U) ≤
√

2.1.3

9 + 1
+ 2

(√
2.1.2

1 + 4
+

√
2.2.3

4 + 9

)
+ n− 5

=
4√
5
+

√
3

5
+ 4

√
3

13
+ n− 5 ≈ n− 0.5150.

Let all three pendant paths be of length greater than or equal to two. Now,
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if U has a pendent path at the vertex , say x, such that d(x) ≥ 4, then

GQ(U) ≤
√

2.1.2

1 + 4
+

√
2.2.4

4 + 16
+ 2

(√
2.1.2

4 + 1
+

√
2.2.3

4 + 9

)
+ n− 6

=
8√
5
+ 4

√
3

13
+ n− 6 ≈ n− 0.5007.

Suppose that the three pendant paths in U are all at the vertices u, v, w,

of degree three. If at most two pairs of vertices are adjacent, then

GQ(U) ≤ 5

√
2.2.3

4 + 9
+ 3

√
2.1.2

1 + 4
+ n− 8

= 10

√
3

13
+

6√
5
+ n− 8 ≈ n− 0.5128.

If u, v, w are pairwise adjacent, then U ∼= C3(1)(2) and hence

GQ(U) ≤ 3

√
2.2.3

4 + 9
+ 1 + 1 + 1 + 3

√
2.1.2

1 + 4
+ n− 9

= 6

√
3

13
+

6√
5
+ n− 6 ≈ n− 0.4344.

If U has l ≥ 4 pendant paths, then by Lemma 1, we have

GQ(U) ≤

(√
12

13
+

√
4

5
− 2

)
l +m

≤

(√
12

13
+

√
4

5
− 2

)
4 + n ≈ n− 0.5792.

Therefore, combining all the above cases, we have the desired results.

4 GQ index of bicyclic graphs

In this section, we determine the family of n-vertex bicyclic graphs with

the maximum, second, third, fourth, fifth, and sixth maximum GQ index.

By β1
1(n), we denote the family of bicyclic graphs obtained from Cn by

adding an edge, where n ≥ 4. Let β2
1(n) be the family of bicyclic graphs
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obtained by joining two vertex-disjoint cycles Cs and Ct with s+ t = n by

an edge, where n ≥ 6. Let β2(n) be the family of bicyclic graphs obtained

from Cs = v0v1 · · · vs−1 with 4 ≤ s ≤ n − 2 by joining v0 and v2 by an

edge and attaching a path on the n− a vertices to v1. Also, by β1
3(n), we

denote the family of bicyclic graphs obtained by joining two non-adjacent

vertices of Cs with 4 ≤ s ≤ n − 1 by a path of length n − s + 1, where

n ≥ 5. Let β2
3(n) be the family of bicyclic graphs obtained by joining

two vertex-disjoint cycles Cs and Ct with s + t < n by a path of length

n−s−t+1, where n ≥ 7. By β4(n), we denote the family of bicyclic graphs

obtained by attaching a path on at least two vertices to the two vertices of

degree two of the unique 4-vertex bicyclic graph, where n ≥ 8. Let β1
5(n)

be the bicyclic graphs obtained from a graph β1
1(t) with t ≥ 5 or β2

1(t)

with t ≥ 6 by attaching a path of length n − t ≥ 2 to a vertex of degree

two, whose two neighbors are of degree two and three, where n ≥ 7. Let

β2
5(n) denotes the bicyclic graphs obtained from a graph β1

3(t) with t ≥ 5

or β2
3(t) with t ≥ 7 by attaching a path on n − t ≥ 2 vertices to a vertex

of degree two, whose two neighbors are both of degree three, where n ≥ 7.

Let β6(n) denote the bicyclic graph obtained from Cn−1 = v0v1 · · · vn−2

by joining v0 and v2 by an edge and attaching a vertex of degree one to v1,

where n ≥ 5. By βI(n), we denote the n vertex bicyclic graph obtained

by identifying one vertex of two cycles.

Theorem 8. In the set of n-vertex bicyclic graphs

(a) The unique graphs with the maximum GQ index are the graphs in

β1
1(n) for n ≥ 4 and the graphs in β2

1(n) for n ≥ 6. The maximum

value of the GQ index is 8
√

3
13 + n− 3.

(b) The unique graphs with the second maximum GQ index are the graphs

in β2(n) for n ≥ 6. The value of the second maximum GQ index is

6
√

3
13 + 2√

5
+ n− 3.

(c) The unique graphs with the third maximum GQ index are the graphs in

β1
3(n) for n ≥ 5 and β2

3(n) for n ≥ 7. The value of the third maximum

GQ index is 12
√

3
13 + n− 5.

(d) The unique graphs with the fourth maximum GQ index are the graphs



402

Figure 3. The bicyclic graphs in Theorem 8 with least number of ver-
tices.

in β4(n) for n ≥ 8. The value of the fourth maximum GQ index is

4
√

3
13 + 4√

5
+ n− 3.

(e) The unique graphs with the fifth maximum GQ index are the graphs in

β1
5(n) or β2

5(n) for n ≥ 8. The value of the fifth maximum GQ index

is 10
√

3
13 + 2√

5
+ n− 5.

(f) The unique graphs with the sixth maximum GQ index are the graphs

in β6(n) for n ≥ 8. The value of the sixth maximum GQ index is

4
√

3
13 +

√
3
5 + n− 2.

Proof. Let B be a n-vertex bicyclic graph, where n ≥ 4. If B has no

pendant path, then either (i) B ∈ β1
1(n) or B ∈ β2

1(n) with n ≥ 6 or

(ii) B ∈ β1
3(n) with n ≥ 5 or B ∈ β2

3(n) with n ≥ 7 or (iii) B ∈ βI(n).

If (i) holds, then GQ(B) = 8
√

3
13 + (n + 1 − 4) ≈ n + 0.8430. If (ii)

holds, then GQ(B) = 6
√

2.2.3
4+9 + n − 5 ≈ n + 0.7646. If (iii) holds, then

GQ(B) = 4
√

2.1.2
5 + n− 3 ≈ n+ 0.5777.

Now, suppose that B has exactly one pendant path. Clearly ∆(B) ∈
{3, 4, 5}. Now we have two possibilities: (i) The pendant path is of length
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one. If ∆(B) ∈ {4, 5}, then we have

GQ(B) ≤ 2

√
2.2.∆

4 +∆2
+

√
2.1.3

1 + 9
+ n− 2

≤ 2

√
2.2.4

4 + 16
+

√
2.1.3

1 + 9
+ n− 2 ≈ n+ 0.5634.

Let ∆(B) = 3. Then B has exactly three vertices, say x,y, z, of degree

three in B. If at most two pairs of vertices x, y, z are adjacent, then

GQ(G) ≤ 4

√
2.2.3

4 + 9
+

√
2.1.3

1 + 9
+ n− 4 ≈ n+ 0.6176.

If x, y, z are pairwise adjacent, then B ∈ β6(n) with n ≥ 5 and GQ(B) =

2
√

2.2.3
4+9 +

√
2.3.1
9+1 + 6 + n+ 1− 9 ≈ n+ 0.6961.

(ii) The length of the pendant path is at least two. If ∆(B) ∈ {4, 5}, then

GQ(B) ≤ 3

√
2.2.∆

4 +∆2
+

√
2.1.2

1 + 4
+ n+ 1− 4

≤ 3

√
2.2.4

4 + 16
+

√
2.1.2

1 + 4
+ n+ 1− 4 ≈ n+ 0.57770.

If ∆(B) = 3, then B has exactly three vertices, say x1, x2 and x3. If at

most one pair of vertices x1, x2, x3 is adjacent, then

GQ(B) ≤ 7

√
2.2.3

4 + 9
+

√
2.1.2

1 + 4
+ n+ 1− 8 ≈ n+ 0.6198.

If there are exactly two pairs of vertices x1, x2, x3 are adjacent, then

B ∈ β1
5(n) or B ∈ β2

5(n) with n ≥ 7, and GQ(B) = 5
√

2.2.3
4+9 +

√
2.2.1
1+4 +n+

1 − 6 ≈ n + 0.69827. If x1, x2, x3 are pairwise adjacent, then B ∈ β2(n)

with n ≥ 6, and GA(B) = 3
√

2.2.3
4+9 +

√
2.2.1
1+4 + n+ 1− 4 ∼= n+ 0.7767.

Let the number of pendant paths in B be exactly two. Then ∆(B) ∈



404

{3, 4, 5, 6}. If ∆(B) ∈ {4, 5, 6}, then

GQ(B) ≤ 2

√
2.2.∆

4 +∆2
+ 2

{√
2.1.2

1 + 4
+

√
2.2.3

4 + 9

}
+ n+ 1− 6

≤ 2

√
2.2.4

4 + 16
+ 2

{√
2.1.2

1 + 4
+

√
2.2.3

4 + 9

}
+ n+ 1− 6 ≈ n+ 0.4992.

Suppose ∆(B) = 3. The B has exactly four vertices , say x1, x2, x3, x4,

of degree three. If there is at least one pendant path of length one, then

GQ(B) ≤
√

2.1.3

1 + 9
+

√
2.1.2

1 + 4
+

√
2.2.3

4 + 9
+ n+ 1− 3 ≈ n+ 0.6297.

Suppose both the pendant paths are at least two in length. Since B is

bicyclic, at most five pairs of vertices x1, x2, x3, x4 are adjacent. If at

most four pairs of x1, x2, x3, x4 are adjacent, then

GQ(B) ≤ 4

√
2.2.3

4 + 9
+ 2

√
2.1.2

1 + 4
+ n+ 1− 6 ≈ n+ 0.6319.

If there are exactly five pairs of vertices x1, x2, x3, x4 are adjacent, then

B ∈ β4(n) with n ≥ 8, andGQ(B) = 2
√

2.2.3
4+9 +2

√
2.2.1
1+4 +n−3 ≈ n+0.7103.

If there are l ≥ 3 pendant paths in B, then by Lemma 1, we have

GQ(B) ≤

(
2

√
3

13
+

2√
5
− 2

)
l +m

≤

(
2

√
3

13
+

2√
5
− 2

)
3 + n+ 1 ≈ n+ 0.5655.

Combining all the above arguments, we have the desired result.

Conclusion

In this paper, we have analyzed the GQ index of a simple graph G defined

as GQ(G) =
∑

a∼b

√
2dadb

d2
a+d2

b
. We have determined the extremal values and

extremal graphs with respect to the GQ indices over simple connected
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graphs, chemical graphs and trees with the given number of vertices. In

addition, we have studied the first six maximum values and the corre-

sponding n-vertex trees with respect to the GQ index. In addition, we

have determined the n-vertex unicyclic and bicyclic graphs with the first

six maximum values with respect to the GQ index.
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