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Abstract

We perform a detailed statistical study of the distribution of
topological and spectral indices on random graphs G = (V, E) in
a wide range of connectivity regimes. First, we consider degree-
based topological indices (TIs), and focus on two classes of them:
Xs(G) = Yovep f(dusds) and Xu(G) = [Tyuep 9(dusd), where
uv denotes the edge of G connecting the vertices u and v, d,, is the
degree of the vertex u, and f(z,y) and g(x,y) are functions of the
vertex degrees. Specifically, we apply X=(G) and X1 (G) on Erdds-
Rényi graphs and random geometric graphs along the full transition
from almost isolated vertices to mostly connected graphs. While
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we verify that P(Xs(G)) converges to a standard normal distribu-
tion, we show that P(Xm(G)) converges to a log-normal distribu-
tion. In addition we also analyze Revan-degree-based indices and
spectral indices (those defined from the eigenvalues and eigenvectors
of the graph adjacency matrix). Indeed, for Revan-degree indices,
we obtain results equivalent to those for standard degree-based TIs.
Instead, for spectral indices, we report two distinct patterns: the
distribution of indices defined only from eigenvalues approaches a
normal distribution, while the distribution of those indices involving
both eigenvalues and eigenvectors approaches a log-normal distribu-
tion.

1 Introduction

In chemical graph theory, graph invariants are widely used to characterize
the structural properties of graphs [6,27,30]. These invariants can be clas-
sified mainly into two types: Topological indices (TIs) and multiplicative
topological indices (MTIs). TIs are typically defined as sums over vertex

or edge functions, such as

Xor (G)= > Fu(d)

ueV(G)
or (1)

X5 1 (G) = Z Fr(dy,dy)
weE(G)

while MT1Is are defined as products over vertex or edge functions, such as

Xur (G) = [ Fv(du)
ueV(QG)

O

T
Xupp(G) = [ Feldud).
weE(G)

Here uv denotes the edge of the graph G = (V(G), E(G)) connecting the
vertices u and v, d,, is the degree of the vertex u, and Fx(z) and Fx (z,y)
are appropriate chosen functions, see e.g. [13]. While both X3 (G) and

X1 (G) are referred to as topological indices in the literature, to make a
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distinction between them, here we name Xy (G) as topological indices (TIs)
and X11(G) as multiplicative topological indices (MTIs). Some prominent
examples of TIs are the Randi¢ index [26], the Zagreb indices [15], and the
Sombor index [14], while among the MTIs we can mention the Narumi-
Katayama index [24] and the multiplicative versions of the Zagreb in-
dices [31]. All these indices (to be defined later), among others, will be
analyzed below.

More recently, a new class of TIs based on the Revan vertex degree has
been introduced, see e.g. [2,17-20]. The Revan vertex degree of the vertex
u is defined as

Ty = A+ —dy, (3)

where A and § are the maximum and minimum degrees among the vertices

of the graph G, respectively. Revan-degree indices, defined as

RX5(G)= > F(rum)
uwweE(G)

or (4)

RXu(G)= [[ Flra,m)
uwv€EE(G)

are the Revan analogs of standard TIs and MTIs, respectively. That is,
RX5(G) is the Revan version of X5 (G) and RX1(G) is the Revan version
of X11(G). In this work, we also explore the distributions of Revan-degree
indices.

Additionally, spectral indices, defined in terms of the eigenvalues and
eigenvectors of the graph adjacency matrix, have gained attention due to
their ability to capture global graph properties avoiding the problem of
degeneracy, present in standard TIs; see e.g. [28]. Specifically, we com-
pute the so-called Rodriguez-Veldzquez indices [4, 28] as well as the graph
energy [16,21] and the subgraph centrality [10] (to be defined later).

The use of topological and spectral indices on random graphs is rela-
tively recent. Moreover, since a given parameter set represents an infinite-
size ensemble of random graphs, the computation of a graph invariant on

a single graph may be irrelevant. In contrast, the computation of the av-
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erage value of a graph invariant over a large ensemble of random graphs,
all characterized by the same parameter set, may provide useful average
information about the full ensemble. This statistical approach, well known
in random matrix theory (RMT) studies, has been recently applied to ran-
dom graphs and networks by means of topological and spectral indices, see
e.g. [1-5,22,23]. In fact, the average value of some topological indices have
been shown to be equivalent to standard RMT measures [3,4].

While most studies of topological and spectral indices on random gra-
phs have been focused on the average values of the indices, just a few have
considered their probability distribution functions numerically [22,23] and
analytically [33,34]. Specifically, on the one hand, in Refs. [22,23] the
probability distribution functions of the Randi¢ index, the harmonic index,
the sum-connectivity index, the modified Zagreb index, and the inverse
degree index on Erdos-Rényi graphs were reported. On the other hand,
in Refs. [33,34] the the probability distribution functions of TIs on Erdds-
Rényi graphs and of the Randié¢ index on random geometric graphs were
studied; see also the related Refs. [32,35].

Therefore, in this work to go a step forward in the direction addressed
by Refs. [22,23,33,34], we conduct a comprehensive statistical (numeirical)
analysis of the probability distribution functions (from now on we will call
them just distributions) of TIs, MTIs, Revan-degree indices, and spectral
indices on two types of random graphs: Erdés-Rényi graphs (ERGs) and
random geometric graphs (RGGs).

This paper is organized as follows. In Sec. 2 we introduce the graph
models and the parameter settings to be used in the numerical analysis.
In Sec. 3 we report the distributions of TIs, MTIs, Revan-degree indices,
and spectral indices on ERGs. To avoid text saturation, the results corre-
sponding to RGGs are reported in the Appendix. Finally, our findings are

summarized in Sec. 4.

2 Graph models and parameter settings

ERGs [8,9,29], Ggre(n,p), are formed by n vertices connected indepen-
dently with probability p € [0, 1]. While RGGs [7,25], Gree(n, 1), consist
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of n vertices uniformly and independently distributed on the unit square,
where an edge connects two vertices if their Euclidean distance is less or
equal than the connection radius r € [0, v/2].

Our study spans the full transition from almost isolated nodes (p — 0
or r — 0) to almost complete graphs (p — 1 or  — v/2), providing insights
into the behavior of the indices across different connectivity regimes. In
order to clearly set the connectivity regime on both random graph models
we will use the average number of non isolated vertices (V(G)), which can
also be regarded as a T1I, see e.g. [3].

Since (V(G)) = 0 for graphs with only isolated nodes and (V(G)) =n
when all nodes are connected, (V(G)) shows a smooth transition from 0
to n by increasing p from 0 to 1 for ERGs or by increasing r from 0 to /2
for RGGs. This is indeed shown in Figs. 1(a) and 1(b) where we present
(V(@)), normalized to the graph size n, for ERGs as a function of p and for
RGGs as a function of r, respectively. There, different symbols correspond
to different graph sizes.

As well as for other TIs (see e.g. [1,5,22,23]) the average degree (k)
serves as the scaling parameter of (V(G)) /n [3]; meaning that the curve
(V(@)) /n vs. (k) is a universal curve. This is verified in Figs. 1(c) and 1(d)
where we plot, respectively, (V(G)) /n for ERGs and RGGs as a function
of (k): ILe., curves for different graph sizes fall one on top of the other.
Note that the functional dependence of (k) on the graph parameters is
significantly different for both graph models; while for ERGs

(k) =p(n—1), (5)
for RGGs it takes the form

(k) = g(r)(n—1) (6)
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Figure 1. Average number of non isolated vertices (V(G)), normalized
to the graph size n, for Erdés-Rényi graphs as a function of
(a) the probability p and (c) the average degree (k) = p(n —
1). (V(G)) /n for random geometric graphs as a function of
(b) the connection radius r and (d) the average degree (k) =
g(r)(n — 1), see Eq. (7). The blue horizontal dashed lines in
(c,d) indicate the values of (V(G)) /n used to construct the
histograms in Figs. 2-12: (V(G)) /n = 0.1, 0.3, 0.5, 0.7 and
0.9. Each data value was computed by averaging over 10°
random graphs G.

Then, the curves (V(G)) /n vs. (k) in Figs. 1(c) and 1(d) allow us to
set both graph models in a given connectivity regime regardless of the
parameter combinations. Specifically, in order to span the full transition
from almost isolated nodes ({(k) — 0) to almost complete graphs ({k) > 1),
we choose five values of the ratio (V(G)) /n: 0.1, 0.3, 0.5, 0.7 and 0.9; as
indicated by the blue horizontal dashed lines in in Figs. 1(c) and 1(d).

As a first example, in Fig. 2 we present the probability distribution

function of the normalized number of non isolated vertices V(G)
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Figure 2. Probability distribution functions of the normalized num-
ber non isolated vertices V(G) for Erdés-Rényi graphs (up-
per panels) and for random geometric graphs (lower panels).
Each panel displays five histograms corresponding to graphs
of different sizes n. Each column corresponds to a fixed value
of the ratio (V(G)) /n. Each histogram is constructed with
108 values of V(G). The cyan full line in all panels is a nor-
mal distribution with zero mean and unit variance.

(V(@)) /n for both ERGs (upper panels) and RGGs (lower panels) for
five values of (V(G)) /n (0.1, 0.3, 0.5, 0.7 and 0.9); as indicated on top
of the figure. Data were standardized to a zero mean and unit variance.
Notice that each panel displays five histograms corresponding to graphs of
different sizes n. From this figure we can see, for both random graph mod-
els, that the distribution of this degree-based TI converges to a standard
normal distribution (represented by the cyan full lines) as the graphs be-
come larger regardless of the value of (V(G)) /n; see that black histograms

in all panels approach the normal distribution.

3 Distribution of topological and spectral in-
dices on Erdos-Rényi graphs

In this section, we analyze the distributions of TIs, MTIs, Revan-degree
indices, and spectral indices on ERGs across the full range of connectivity.

Results corresponding to RGGs are reported in the Appendix.
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3.1 Distribution of degree-based topological indices
on Erdds-Rényi graphs

To explore the distribution of TIs, we selected the following well-known

indices: The first and second Zagreb indices [15]
= > di= > dutd, (8)
ueV(G) wweE(G)

and

= Y dudy, (9)

uwveE(G)

respectively, the Sombor index [14]

> Va2t (10)

uveE(G)

the Randi¢ connectivity index [26]

RG) = Y — (11)

wweE(G) dudy

and the harmonic index [12]

(12)
weE(G) du + d

Based on the results from the previous section, regarding the number
of non-isolated vertices V(G), we explore the distribution of TIs in three
representative connectivity regimes:

(i) Sparse regime. When most vertices are isolated, (V(G)) /n = 0.1.

(ii) Intermediate regime. When the proportion of isolated and non-
isolated vertices is approximately equal, (V(G)) /n = 0.5.

(iii) Dense regime. When most vertices are connected, (V(QG)) /n = 0.9.
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Figure 3. Probability distribution functions of standardized degree-
based topological indices on Erdds-Rényi graphs: First Za-
greb index M1(G), second Zagreb index M2(G), Sombor in-
dex SO(G), Randi¢ index R(G), and harmonic index H(G).
Each panel displays five histograms corresponding to graphs
of different sizes n € [50,800]. Each column corresponds
to a fixed value of the ratio (V(G)) /n. Each histogram is
constructed with 10® values of X5(G). The cyan full line in
all panels is a normal distribution with zero mean and unit
variance.

In Fig. 3 we present the probability distribution functions of the TIs
of Eqgs. (8)-(12) on ERGs. In this and all the following figures, each
panel displays five histograms corresponding to graphs of different sizes
n € [50,800]. Each histogram is constructed from an ensemble of 10°
random graphs. Also, each column corresponds to a fixed value of the
ratio (V(G)) /n; so, graph connectivity increases from left to right. More-

over, to ease the comparison across regimes and graph sizes, the data is
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standardized to have zero mean and unit variance:

Xs(G) = M’ (13)
O Xy,
where 11 x,, and ox,, denote, respectively, the mean and standard deviation
of the TT X5 (G).

From this figure, we can clearly observe that the distribution of all the
TIs analyzed here tends to a normal distribution (indicated with the cyan
line in all panels). It is interesting to note that the normal distribution is
approached even in the sparse regime for all TIs (except for the Randié¢
index) when the graph size is large enough; see the black histograms in left
panels corresponding to (V(G)) /n = 0.1. Evidently, for (V(G)) /n = 0.5
and 0.9 all histograms, even those corresponding to n = 50, for all TIs fall
on top of the normal distribution. Note that with Fig. 3 we numerically
validate the analytical results of Ref. [32] were the distribution of TIs was
predicted to converge to a normal distribution.

We now proceed to compute the distributions of MTTs. To this end we

consider the following well-known MTIs: The Narumi-Katayama index [24]

NE@G)= ][] du (14)

ueV(QG)

multiplicative versions of the Zagreb indices [31]:

m@) = I 4, (15)

ueV(G)
G = [[ dud, (16)
weE(G)

and

(G = [ dutd, (17)
weE(G)

the multiplicative Randié connectivity index [5]

1
dyd,

Ra(@) = ]I , (18)

weE(G)
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and the multiplicative harmonic index [5]

2

(@) = |1 dy+dy

weE(G)

(19)

Since the values of MTIs grow exponentially for increasing average
degree, see e.g. [5], we compute their logarithms instead. Then, in Fig. 4
we present the probability distribution function of the logarithm of the
standardized MTIs of Eqgs. (14)-(19) on ERGs. From this figure, we can
clearly observe that the distribution of the logarithm all the MTIs analyzed
here tends to a normal distribution (indicated with the cyan line in all
panels). Remarkably, the normal distribution is approached even in the
sparse regime for all MTTs (not shown here) when the graph size is large
enough; in fact, n = 800 (the larger graph size we used in this work) is
not enough to observe the normal distribution in the sparse regime (see
the black histograms in left panels corresponding to (V(G))/n = 0.1).
For (V(G)) /n = 0.5 and 0.9 all histograms, even those corresponding to
n = 50, for all MTTs fall on top of the normal distribution.

Therefore, since the distributions of the logarithm of the MTIs follow
a normal distribution, we can conclude that the distributions of the MTIs

follow a log-normal distribution.

3.2 Distribution of Revan-degree indices on Erdsos-
Rényi graphs

The Revan-degree indices we choose for our study are: The first and second

Revan Zagreb indices [17]
Ri(G) = Z r2 = Z Ty + Ty (20)
ueV(Q) uwweE(G)

and

RQ (G) = Z TuTwv, (21)

uwweE(G)
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Probability distribution functions of the logarithm of stan-
dardized multiplicative topological indices on Erdds-Rényi
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greb indices II; (G), TI2(G) and II; (G), multiplicative Randié
index Rp(G), and multiplicative harmonic index Hp(G).
Each panel displays five histograms corresponding to graphs
of different sizes n € [50,800]. Each column corresponds to
a fixed value of the ratio (V(G)) /n. Each histogram is con-
structed with 106 values of X1(G). The cyan full line in
all panels is a normal distribution with zero mean and unit
variance.
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respectively, the Revan Sombor index [19]

RSOG)= Y ViEtrE

wweE(G)

the Revan Randi¢ index

and the Revan harmonic index

RH(G)= Y 2

Ty + Ty
wv€EE(G) ut Ty

(22)

(23)

(24)

We note that, as far as we know, RR(G) and RH(G) are being introduced

here.

We also explore the behavior of the distribution of the multiplica-

tive Revan-degree indices, RX1(G): The multiplicative Revan Narumi-

Katayama index
RNK@G)= ][] rw
ueV(G)

the multiplicative Revan Zagreb indices

Rin(@) = [ 2

ueV(Q)
RIH* (G) = H Ty + T,
wveE(G)

and

RQH(G) = H TuTv,

weE(G)

the multiplicative Revan Randi¢ connectivity index

1
RRn(G)= ][] :
uweE(G) Tul

(25)

(29)
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and the multiplicative Revan harmonic index

RIn@G) = [ — (30)

Ty + 1o
uwweE(G) w Ty

Tt is fair to mention that Ri11(G) and Ror(G) were introduced in [2]; while,
as far as we know, RNK(G), Rin+(G), RRn(G) and RHp(G) are being
introduced here.

In Figs. 5 and 6 we present, respectively, the probability distribution
functions of the standardized Revan-degree indices of Egs. (20)-(24) and
the probability distribution functions of the logarithm of the standardized
multiplicative Revan-degree indices of Egs. (25)-(30), both on ERGs. In
contrast with TIs and MTTs, see Figs. 3 and 4, we do not observe a clear
transition of the distributions of Revan-degree indices nor of the distribu-
tions of the logarithm of multiplicative Revan-degree indices to a normal
distribution; not even in the dense regime (see the panels in the third
columns of Figs. 5 and 6 corresponding to (V(G)) /n = 0.9). However, in
Ref. [2] it was shown that the statistical properties of both Revan-degree
indices and multiplicative Revan-degree indices are equivalent to those
of their standard-degree counterparts in the dense limit, specifically for
(k) > 10. Thus, we indeed expect to recover normal distributions of both
Revan-degree indices the logarithm of multiplicative Revan-degree indices
deep enough in the dense limit.

Therefore, we include an additional column in both Figs. 5 and 6 where
we set (k) to 100; i.e. the graphs are now deeper in the dense regime. So,
we can now conclude that, deep in the dense regime, the distributions of
Revan-degree indices follow normal distributions while the distributions of

multiplicative Revan-degree indices follow log-normal distributions.
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Probability distribution functions of standardized Revan-
degree indices on Erdés-Rényi graphs: First Revan Za-
greb index R;(G), second Revan Zagreb index Ra(G), Re-
van Sombor index RSO(G), Revan Randié¢ index RR(G),
and Revan harmonic index RH(G). Each panel displays
five histograms corresponding to graphs of different sizes
n € [50,800]. Each column corresponds to a fixed value
of the ratio (V(G)) /n, except for the right column where
(k) = 100 is set. Each histogram is constructed with 106
values of RXx(G). The cyan full line in all panels is a nor-
mal distribution with zero mean and unit variance.
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3.3 Distribution of spectral indices on Erdds-Rényi

graphs

Finally, we extend our analysis to spectral indices. To this end, we first

define a weighted adjacency matrix as follows:

V2e;  fori= Js
A = €ij if there is an edge between vertices ¢ and j, (31)

0 otherwise.

Here, €;; are statistically independent random variables drawn from a
normal distribution with zero mean and unit variance. Once the adjacency
matrix is weighted, we diagonalize it and compute the corresponding spec-
tral indices. The spectral indices we consider include Rodriguez-Velazquez
indices, the graph energy, and centrality-based indices, which are defined
as follows.

Given an orthonormal basis of eigenvectors {¥;}? , and the corre-
sponding eigenvalues {\;}_; of the adjacency matrix A of a graph G of
size m, the first and second Rodriguez-Veldzquez (RV) indices are defined
as [28]

n 1/2
RV,(G) = (; > Sf) (32)

and

RV(G) = Y x5, (33

respectively. Here,

Si=> (v3) exp(A)) (34)

j=1

represents the subgraph centrality while
1< L
j=1

denotes the eigenvector centrality of vertex i, where A; is the largest eigen-

value of A and \I/]1 is the jth component of the eigenvector corresponding
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to Aq.

Additionally, the graph energy E(G) [16,21] and the exponential sub-
graph centrality FE(G) [10] are defined as

E@G) =Y |nl, (36)
=1

and
1 < 1 «
EE(G)=— E S; = — g exp (\;), (37)
n 4 n <
=1 =1
respectively.
(V(G)n=0.1 (V(G)n =05 (VG)n =09
3 [ s e S e
i 1 — 1~ — n=50 —
&) L | L —  n=100 n
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Figure 7. Probability distribution functions of standardized spectral
indices on Erdés-Rényi graphs: Rodriguez-Veldzquez indices
RV, (G) and RV4(G), graph energy E(G), and subgraph cen-
trality EE(G). Each panel displays six histograms corre-
sponding to graphs of different sizes n € [25,800]. Each
column corresponds to a fixed value of the ratio (V(G)) /n.
Each histogram is constructed with 108 values. Magenta
full lines are fittings of Eq. (38) to the distributions corre-
sponding to n = 800; the values of the fitting parameters
are reported in Table 1. The cyan full line in all panels is a
normal distribution with zero mean and unit variance.
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In Fig. 7 we present the probability distribution functions of standard-
ized spectral indices on ERGs. As well as for MTIs, since RV indices
and the exponential subgraph centrality grow exponentially with (k), see
e.g. [4], we work with the distribution of their logarithms.

From Fig. 7 we can clearly see that, remarkably, the shape of the dis-
tributions of spectral indices do not change with the graph connectivity
(except for the distribution of In RV;(G) which shows a slight dependence
with (V(G)) /n); this in contrast with the distributions of degree-based
indices whose shapes evolve with (V(G)) /n. We also observe a slight
dependence of the distribution shapes with the graph size.

Moreover, note that only the distribution of E(G) exhibits the shape
of a normal distribution. In contrast, the distributions of the Rodriguez-
Veldzquez indices as well as those of EE(G) display an asymmetric, right-

skewed, shape. We found that the log-normal distribution function

f(.%',o’, :u’) = ! €Xp (_(l()g(x)_ﬂ)Q) - 57 (38)

oV 2T 202

fits relatively well the distributions of the Rodriguez-Velazquez indices as
well as those of FF(G); see the magenta lines in Fig. 7 which are the
fittings of Eq. (38) to the distributions corresponding to n = 800. Here,
1 and o are the mean and standard deviation of the spectral indices, in
a logarithmic scale, and § is the distribution displacement on the z-axis.

The values of the fitting parameters are reported in Table 1.

Index | (V(G)) /n 4 i B
0.1 0.4477 | 0.3206 | 1.5821
RV, 0.5 0.4918 | 0.2336 | 1.4781
0.9 0.4307 | 0.4183 | 1.7211
0.1 0.1857 | 1.3362 | 3.9269
RV, 0.5 0.2174 | 1.2587 | 3.6506
0.9 0.2176 | 1.2814 | 3.7300
0.1 0.3252 | 1.1020 | 3.1740
EE 0.5 0.3146 | 1.1243 | 3.2365
0.9 0.3095 | 1.1486 | 3.3103

Table 1. Values of the parameters o, u, and 8 obtained from the fit-
tings of Eq. (38) to the probability distribution functions
(with n = 800) of the spectral indices in Fig. 7.
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4 Summary

In this work, we performed a thorough statistical (numerical) study of the
probability distribution functions of topological and spectral indices on
random graphs. Specifically, we computed degree-based topological indices
(TIs), degree-based multiplicative indices (MTIs) Revan-degree indices,
and spectral indices on two types of random graphs: Erdos-Rényi graphs
(ERGs) and random geometric graphs (RGGs).

We performed our study by the use of the following indices.

e TIs: Number of non-isolated vertices, first and second Zagreb indices,

Sombor index, Randi¢ index, and harmonic index.

e MTIs: Narumi-Katayama index, multiplicative Zagreb indices, mul-

tiplicative Randi¢ index, and multiplicative harmonic index.

e Revan-degree indices: First Revan Zagreb index, second Revan Za-
greb index, Revan Sombor index, Revan Randi¢ index, and Revan
harmonic index. Also, Revan Narumi-Katayama index, multiplica-
tive Revan Zagreb indices, multiplicative Revan Randi¢ index, and

multiplicative Revan harmonic index.

e Spectral indice: Rodriguez-Velazquez indices, graph energy, and sub-

graph centrality.

It is relevant to mention that previos studies of the distributions of TIs
were reported in Refs. [22,23,33,34]. However, the statistical studies of
Refs. [22,23] were not exhaustive while the analytical studies of Refs. [33,
34] were not numerically verified, so in this work we believe we fill those
gaps. Therefore, our results can be summarized as follows.

For both ERGs and RGGs:

(i) asymptotically, for large enough connectivity and graph size, the
distributions of the TIs follow a normal distribution (see Figs. 3
and 8);

(ii) asymptotically, for large enough connectivity and graph size, since
the distributions of the logarithm of the MTIs follow a normal dis-



373

(iii)

(iv)

(vi)

tribution (see Figs. 4 and 9), the distributions of the MTIs follow a

log-normal distribution;

deep in the dense limit, the distributions of the Revan-degree indices

follow a normal distribution (see Figs. 5 and 10);

deep in the dense limit, since the distributions of the logarithm of the
multiplicative Revan-degree indices follow a normal distribution (see
Figs. 6 and 11), the distributions of the multiplicative Revan-degree

indices follow a log-normal distribution;

the distribution of the graph energy exhibits the shape of a normal
distribution for any graph connectivity and graph size (see Figs. 7
and 12);

the distributions of the Rodriguez-Velazquez indices as well as those
of the subgraph centrality follow an asymmetric, right-skewed, log-
normal distribution (see Eq. (38) and Figs. 7 and 12).

We finally stress that our results validate the analytical prediction of

Ref.

mal

[32] stating that the distributions of TIs on ERGs converge to nor-

distributions; see Fig. 3. However, and even more interesting, our

results contradict the prediction of Ref. [34] which claims that the limit-

ing distribution of the Randi¢ index on RGGs is not the standard normal

distribution; see Fig. 8.

We hope our results may motivate further analytical studies.
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No. 100405811-VIEP2025), Mexico. C.T.M.-M. Thanks for the support
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Appendix: Distribution of topological and
spectral indices on random geometric graphs

In this Appendix, we report our results on the distributions of topological
and spectral indices on RGGs, see Figs. 8-12. Note that Figs. 812 for
RGGs are equivalent to Figs. 3-7 for ERGs, respectively. Indeed, from

Figs.

8-12 we draw similar conclusions as those already discussed in the

main text for ERGs:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Asymptotically, for large enough connectivity and graph size, the
distributions of the TIs follow a normal distribution; see Fig. 8.

Asymptotically, for large enough connectivity and graph size, since
the distributions of the logarithm of the MTTs follow a normal distri-
bution (see Fig. 9), the distributions of the MTIs follow a log-normal
distribution.

Deep in the dense limit, the distributions of the Revan-degree indices
follow a normal distribution; see Fig. 10.

Deep in the dense limit, since the distributions of the logarithm of
the multiplicative Revan-degree indices follow a normal distribution
(see Fig. 11), the distributions of the multiplicative Revan-degree
indices follow a log-normal distribution.

The distribution of the graph energy exhibits the shape of a normal
distribution for any graph connectivity and graph size; see Fig. 12.

The distributions of the Rodriguez-Veldzquez indices as well as those
of the subgraph centrality follow an asymmetric, right-skewed, log-
normal distribution; see Fig. 12 and Eq. (38).
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Figure 8. Probability distribution functions of standardized degree-
based topological indices on random geometric graphs: First

Zagreb index M1(G), second Zagreb index Maz(G), Som-
bor index SO(G), Randi¢ index R(G), and harmonic index
‘H(G). Each panel displays five histograms corresponding to
graphs of different sizes n € [50,800].
sponds to a fixed value of the ratio (V(G)) /n. Each his-
togram is constructed with 10 values of X5 (G). The cyan
full line in all panels is a normal distribution with zero mean

and unit variance.
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Figure 9. Probability distribution functions of the logarithm of stan-

dardized multiplicative topological indices on random ge-
ometric graphs: Narumi-Katayama index NK(G), multi-
plicative Zagreb indices TI; (@), T2(G) and TI;(G), multi-
plicative Randié index Ry(G), and multiplicative harmonic
index Hp(G). Each panel displays five histograms corre-
sponding to graphs of different sizes n, (n € [50,800]). Each
column corresponds to a fixed value of the ratio (V(G)) /n.
Each histogram is constructed with 108 values of X(G).
The cyan full line in all panels is a normal distribution with
zero mean and unit variance.
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greb index Ri(G), second Revan Zagreb index Ra(G), Re-
van Sombor index RSO(G), Revan Randi¢ index RR(G),
and Revan harmonic index RH(G). Each panel displays
five histograms corresponding to graphs of different sizes
n € [50,800]. Each column corresponds to a fixed value
of the ratio (V(G)) /n, except for the right column where
(k) = 100 is set. Each histogram is constructed with 106
values of RXx(G). The cyan full line in all panels is a nor-
mal distribution with zero mean and unit variance.




381

P[In RH, (G, )IP[In RR (G, )IP[In R, *G, )IP[In R, (G, )IP[In R (G, )IP[ln RNK(G, )]

o o o
NS TN SN

o
o o

NN
[SEENN

e
=]

e 2
[N

o
= =)

<
~

0.2

o
o o

e 2
I SEEN

(V(G))n=0.1 (V(G))m =05 (V(G))m =09 ky=10

0.6
0.4 - oA
- - lf\‘ i
02— - ,;‘) Yo
0 | L | s
-3_ - - —3_0 3
nRX (G,) WRX(G,) WRX(G,) hRX (G,

Figure 11. Probability distribution functions of the logarithm of stan-
dardized multiplicative Revan-degree indices on random ge-
ometric graphs: Revan Narumi-Katayama index RN K (G),
multiplicative Revan Zagreb indices Ri11(G), Ror(G) and
Rim+ (@), multiplicative Revan Randi¢ index RRy(G), and
multiplicative Revan harmonic index RH1(G). Each panel
displays five histograms corresponding to graphs of differ-
ent sizes n € [50,800]. Each column corresponds to a fixed
value of the ratio (V(G)) /n, except for the right column
where (k) = 10 is set. Each histogram is constructed with
108 values of RX11(G). The cyan full line in all panels is a
normal distribution with zero mean and unit variance.
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Figure 12. Probability distribution functions of standardized spectral

indices on random geometric graphs: Rodriguez-Veldzquez
indices RV, (G) and RV, (G), graph energy E(G), and sub-
graph centrality FE(G). Each panel displays six his-
tograms corresponding to graphs of different sizes n €
[25,800]. Each column corresponds to a fixed value of the
ratio (V(G)) /n. Each histogram is constructed with 10°
values. Magenta full lines are fittings of Eq. (38) to the
distributions corresponding to n = 800; the values of the
fitting parameters are reported in Table 2. The cyan full
line in all panels is a normal distribution with zero mean
and unit variance.

Index | (V(G)) /n o I B
0.1 0.4613 | 0.2753 | 1.5226
RV, 0.5 0.4763 | 0.2569 | 1.5029
0.9 0.4901 | 0.2581 | 1.5114
0.1 0.1838 | 1.3414 | 3.9450
RV, 0.5 0.2067 | 1.3149 | 3.8484
0.9 0.2032 | 1.3552 | 3.9998
0.1 0.2682 | 1.2775 | 3.7256
EE 0.5 0.3186 | 1.1073 | 3.1873
0.9 0.3374 | 1.0406 | 3.0007

Table 2. Values of the parameters o, p, and B obtained from the fit-
tings of Eq. (38) to the probability distribution functions
(with n = 800) of the spectral indices in Fig. 12.
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