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Abstract

Let u be a vertex of a simple connected graph G. Transmission
of u, Tra(u) is the sum of all distances between u and other vertices
in G. The Wiener index of G, W(G), is half of the sum of the trans-
mission of all vertices. The Wiener complexity of G is the number
of different vertex transmissions of G. In this paper, we characterize
trees with Wiener complexity at most three, while we discuss the
structure of trees with Wiener complexity four and illustrate many
cases that arise. The trees of Wiener complexity four have been
identified within 16 categories.

1 Introduction

All considered graphs are simple and connected. Let G(V(G), E(G)) be a
graph. The order and size of G are denoted by n(G) and m(G) respectively.
We denote by deg(u), degree of vertex u. A vertex of degree 1 is called
a pendant vertex and an edge is said to be a pendant edge (or a leaf) if
one of its end vertices is a pendant vertex. Distance between two vertices
wand v in G, dg(u,v), (shortly d(u,v)) is the length of the shortest path
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between u and v. For a vertex u and a positive integer ¢, I';(u) denotes the
set of vertices at distance ¢ from u. We denote by Ng(u) (briefly N(u)),
the set of adjacent vertices to w in G, i.e., N(u) = I';(u). The maximum
distance from a vertex v to all other vertices is called the eccentricity of v
and is denoted by eg(v). Center of G, C(G), is the vertex set of minimum
eccentricity. Diameter, diam(G), and radius, rad(G), are the maximum
and minimum eccentricity of vertices of G, respectively. Transmission of
v, Trg(v) is the sum of all distances between v and other vertices of G.
Imbalance transmission of an edge uv, Ig(uv), is defined as Ig(uv) =
|Tr(u) — Tr(v)|. We denote by Tr(G), the set of vertex transmission of
G. The Wiener complexity of G, C,,(G), is defined as the cardinality of
Tr(G) [2]. Transmission in graphs has introduced several metric concepts
in graph theory. For instance, the well-known topological index, Wiener

index [16] can be defined as half of the sum of vertex transmission, i.e.,

W(G):% S Tr().

veV(G)

Also, the Mostar index has been introduced in [1] as:

Mo(G)= > Ife).

e€E(G)

Furthermore, interesting graphs have been proposed based on transmission
and Wiener complexity in several investigations. Graphs with the Wiener
complexity 1 are called transmission regular graphs [14]. Transmission
irregular graphs (Briefly TI) have the Wiener complexity equal to their
order [4]. Some particular families of TI- starlike trees in [7,11,13], 2-
connected and 3-connected TI graphs in [9,10] were identified. Interval
transmission graphs [6] are a subclass of TT— graphs in which the set
of vertex transmissions form a sequence of consecutive positive integers.
A graph G is said to be a stepwise irregular graph (SI for short) [12] if
Ig(e) =1 for each edge e € E(G). Generalized SI-graphs, k—SI graphs,
introduced in [5], are the graphs in which Ig(e) = k holds for each edge

e of the graph. Extremal results on STI graphs concerning the diameter,
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the Wiener index and the eccentricity index were characterized in [3]. In
this paper, we characterize all classes of trees with Wiener complexity of
at most 3 and identify the structure of all trees with Wiener complexity of
4. Several examples of such trees are also illustrated. It has been proven

that the Wiener complexity of a tree is at least equal to its radius.

2 Main results

We first refer to some basic concepts and properties of vertex transmission
in simple graphs. Next, we try to characterize all trees with a given small
Wiener complexity at most 4. It is well-known that the center of a tree
T, is a single vertex or two adjacent vertices. Let us denote by T € C,.(z)
and T € C,(z,y) if T is a tree with rad(T") = r and its center C'(T') = {z}
and C(T) = {x,y}, respectively.

Lemma 1. [8] Let u and v be two adjacent vertices of G. Then Tr(u) —
Tr(v) = n, — ny, where n, denotes the number of all vertices which are

closer to u than v in the graph G and n, is defined similarly.

Lemma 2. Let G be a graph of order n. If uwv is an edge of G, then
|Tr(u) — Tr(v)| <n—2, with equality holds if and only if uv is a pendant
edge.

Proof. Without loss of generality, suppose that Tr(u) > Tr(v). From

Lemma 1,
Tr(u) —Tr(v) =n, —n, <n—2deg(u) <n-—2.

The equality holds if and only if deg(u) = 1. This means that wv is a
pendant edge. [ ]
The next result shows that the Wiener complexity of a tree is greater

than or equal to Its radius. Of course, this is not true in general.
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Theorem 1. If T is a tree with rad(T) = r, then

rad(T)+1 T e Cr(x)
Cw(T) >
rad(T) if T € Cr(z,y)

Proof. We must consider two cases. First: T € C,.(x). Let P be a dia-
metrical path. Since any diametrical path contains central vertices in a
tree, consider the path P as P =v, —vp_1---¥1 — T — U] — Ug * - Uyp. Let
T1 be the connected component of T — zv; containing v; and T be the
connected component of T'— zu containing u;. Without loss of generality,

suppose that n(T7) < n(T:). Using Lemma 1, we get
Tr(vy) —Tr(z) =ng —ny, > (n(T2) +1) —n(Ty) > 1.

Moreover, for any pair of adjacent vertices v; and v;41 of the path P, we

have

Tr(vig1) — Tr(v;) = n(v) —n(vip1) > ((Te) +i+1) — (n(Ty) — i)
=n(Ty) — n(Ty) + 2i + 1.

This turn yields the following strictly increasing sequence as

Tr(z) <Tr(vi) <Tr(ve) - <Tr(v).
Second: T € C,(z,y). Consider a diametrical path as P = v, —vp_1 -+ v1—
T—y—u; —ug--u. Let T —xy =Ty UT, with n(T1) < n(Tz) and T3 be
the component containing = . Applying an analogous argument, we get

Tr(z) <Tr(v) <--- <Tr(v.).

The proof is completed. |

Now, we are going to determine the structure of trees with 1 < C,, < 4.
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2.1 Trees of the Wiener complexity 1

As an immediate consequence of Theorem 1, the unique tree of Wiener

complexity 1 is determined as follows.

Corollary. Let T be a tree then Cyw (T) = 1 if and only if T = Ps.

Proof. Let xy be a leaf of a tree T with deg(x) = 1. Then Tr(z) =
Tr(y) + n — 2. Obviously Cw (T) = 1 if and only if n = 2. The proof is
complete. |

2.2 Trees of the Wiener complexity 2

Next, we show that the trees of Wiener complexity 2 belong to only two
families; stars S, (n > 3) or double stars S, , for some positive integer
a > 2. Recall that a double star S, is formed by joining the centers of

two stars S, and Sp.

Theorem 2. Let T be a tree of order n > 3. Then Cyw (T) = 2 if and only
ifT S {Sn,S%,%}

Proof. From Theorem 1, rad(7") < 2. This shows that T is a star when
rad(T) =1 and T is a double star when rad(T") = 2. If T is a double star
with C'(T) = {z,y}, Lemma 1 follows that all pendant vertices joining to
the center of T get the same transmission. For v € N(z) and w € N(y)

we have

Tr(v) = 1+ 2(deg(z) — 1)+ 3(deg(y) — 1),

Tr(w) = 14 2(deg(y) — 1)+ 3(deg(z) —1).
Thus, deg(z) = deg(y) and then T'= S» n |
2.3 Trees of the Wiener complexity 3
Let ag,ay,--- ,a, be positive integers. Suppose that T*(ag,a; --- ,a,), for

k = 1,2; denotes trees with k central vertices, whose vertices at distance j

from the center of T%(ag,a; - - - ,a,) have the same degree a; for0 <j <.
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Theorem 3. Let T be a tree. Then Cw(T) = 3 if and only if T €

{T*(ag,a1,1),T*(ag,a1,1)} for some integers ag,a; > 2.

Proof. By Theorem 1, rad(7T) < 3. First, consider the case T' € Cy(x)
with P : z; —y; —x —y2 — 22 as a diametrical path. Suppose that deg(y;) <
deg(y2). By Lemma 1 the following relations hold. For i = 1,2

Tr(z) = Tr(y)+n-—2,

Tr(y;)) = Tr(z)+n—2deg(y:),

Tr(y1) — Tr(yz2) = 2(deg(yz) — deg(y1)),

Tr(z1) — Tr(z) = 2(deg(y2) — deg(y1)). (1)

This implies that Tr(z;) > Tr(y;) > Tr(z) for i = 1,2. Since Cw (T) = 3,
Tr(z1) = Tr(ze) and Tr(y;) = Tr(yz), consequently deg(y;) = deg(y2).
Therefor, T' 2 T'(ag, a1, 1) where ag = deg(z) and a; = deg(y). Note that
if w € N(z) is a pendant vertex, then Tr(w) — Tr(z) = n — 2. Since
Cy(T) = 3 and by Theorem 1, Tr(w) = Tr(z1). Thus by (1)

n—24Tr(z)=Tr(w)=Tr(z1) =Tr(z) + n—2+n — 2deg(y1)-

So we get deg(y1) = %, that is a contradiction. Second, assume that
T € Co(z,y). Such a tree is a double star, let T = S, ;. If a = b then
Cw(T) =2 and if a # b then Cw (T) = 4. Third case is T' € C3(x,y) by
Theoreml. Let P : x93 —x1 — x — y — y1 — y2 be a diametrical path. let
T —zy =T, UT, where z € V(T1) and y € V(T3) with n(T1) < n(T2). By
a similar argument, we infer that Tr(z2) > Tr(x1) > Tr(z). By lemma 1,
Tr(xz) —Tr(y) = n(Tz) —n(Ty) > 0. Since Cw (T) = 3 so Tr(z) = Tr(y)
and consequently n(Ty) = n(T»). This implies that Tr(ys) > Tr(y) >
Tr(y). Since Cw (T) = 3 we get Tr(xa) = Tr(yz2) and Tr(z1) = Tr(y1).

Moreover

Tr(z;) —Tr(z) = n—2deg(z1),
Tr(y) —Tr(y) n — 2deg(y1).

Thus deg(z1) = deg(y1). If central vertices have some pendant adjacent
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vertices, say w € N(x), then theorem 1 yields that Tr(w) = Tr(xs). Thus

(Tr(xe) — Tr(xzy)) + (Tr(xy) — Tr(x)) = Tr(w) — Tr(zx),
(n—2)4 (n—2deg(xz1)) =n—2.

Thus deg(z1) = §, a contradiction. Moreover, we have
0="Tr(z) — Tr(y) = deg(x)(deg(x1) — 1) — deg(y)(deg(y1) — 1).
The equality Tr(xz) = Tr(y) yields that deg(x) = deg(y). Therefore

Tl(ao,al,l) if T e 02(33)
T%(ag,a1,1) if T € C3(z,y)

T =

where ag = deg(x) and a; = deg(x1). |

2.4 Trees of the Wiener complexity 4

In this section, the structure of the trees of Wiener complexity 4 is verified.
In particular, several examples of such trees with different structures are
also provided. Let T be a tree with Cw(T) = 4. From Theorem 1,
rad(7T) < 4. Tt is necessary to consider the trees in 5 cases concerning

their center and radius.

1. T € Cy(x).

Analogous Theorem 3, the relations (1) hold.

First, suppose that all adjacent vertices to x are of degree at least
2. By (1), vertices in N(z) with the same degree get the same
transmission. Since C,,(T) = 4, there are two vertices, say y; and
Y2, in N(z) with different degrees. Without loss of generality sup-
pose that P : z; — y; —  — y2 — 22 be a diametrical path where
1 < deg(y1) < deg(yz). From Lemma 1, Tr(z1) > Tr(y1) > Tr(x).

Consider the following cases:

(a) deg(y2) < 5. The relations (1) hold and then

Tr(z1) > Tr(y1) > Tr(y2) > Tr(x).
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(c)

Further, Tr(z1) > Tr(z2). Since Cyw(T) = 4, Tr(z2) = Tr(y1).
This follows

Tr(z2) —Tr(y2) Tr(y1) —Tr(y2),
n—2 = 2(deg(y2) — deg(y1))-

Thus deg(y;) < 1, which is a contradiction.
deg(y2) = 4. Using (1), Tr(y2) = Tr(x). Further

Tr(ze) — Tr(y1) = 2(deg(y1) — 1) >0
Thus
Tr(T) ={Tr(z1) > Tr(z2) > Tr(y1) > Tr(z) =Tr(y2)}

Also y3 is the unique vertex of N(x) with degree deg(y2) = §
and the other vertices in N(z) are of the same degree deg(y1),

where

deg(yn)(deg(x) — 1) = 5 — L. (2)

An example of such a tree is illustrated in Figure 1.

20 18
zf\y} yhz/oza
e O O
20 14 f2\018

18

Figure 1. A tree of C2(x) with deg(y2) = 5.

—_
el

deg(y2) > 4. Immediately we get Tr(y2) < T'r(z) and Tr(z) >
Tr(z2) by (1). Since Cy,(T) = 4 then Tr(z2) = Tr(y1). Thus

Tr(T)={Tr(z1) > Tr(z) =Tr(y1) > Tr(z) > Tr(y2)}.
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Moreover
Tr(ze) —Tr(y2) = Tr(yi) —Tr(y2),
n—2 = 2(deg(y2) —deg(y1)).
This follows that
n
deg(y1) = deg(y2) — 5 +1. (3)

See Figure 2 for an instance of such trees.

16 16

21 Z,’l} z Y2 22
% 16 12 10 16
16

Figure 2. A tree of C2(x) with deg(y2) > 5.

Second, assume that = has a pendant adjacent vertex, say w. We

get the following by Lemma 1; for ¢ = 1,2
Tr(w)—Tr(z) = n-—2,

Tr(z)—Tr(w) = n—2deg(y),
Tr(w) —Tr(y;) 2(deg(y;) — 1).

This follows that Tr(z1) > Tr(w) > Tr(y1) > Tr(x). Since Cyy(T) =

4, we have
Tr(T) ={Tr(z1) > Tr(w) > Tr(y1) > Tr(z)}.

If deg(y2) > %, then Lemma 1 and Lemma 2 imply that Tr(z2) €
{Tr(z1),Tr(w)}. Tr(ze) = Tr(z1) follows that deg(yz) = deg(y1)
that is impossible. So Tr(z2) = Tr(w) and by Lemma 2 we have
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Tr(yz) = Tr(x). Thus deg(y2) = 5 and then
Tr(T) ={Tr(z1) > Tr(w) =Tr(z2) > Tr(y1) > Tr(z) =Tr(y2)}.

Such a tree is shown in Figure 3.

17
21 U T Y2 22
O O O O
21 5 11 f1\017
17
wolr

Figure 3. A Tree of Ca(x) with pendant vertices adjacent to the center
and deg(ys) = 2

Note that if deg(y2) < % then Tr(yg) > Tr(z) and by Lemma 2
Tr(y2) = Tr(y1) and Tr(ze) = Tr(z1). This implies that deg(ys) =
deg(y1). Therefore, if N(z)

non-pendant vertices in N (z) have the same degree as deg(y;). Fur-
ther

includes pendant vertices, then other

Tr(T) ={Tr(z) > Tr(w) > Tr(y;) > Tr(x)}.

Figure 4 illustrates such a tree with deg(y;) = deg(y2).

25 25
N T Z{g/sz
O o O
%i//,////I? 15 f?\\\\\\zé
25 w693 25

Figure 4. A Tree of Ca(x) with pendant vertices adjacent to the center
and deg(y1) = deg(y2)

2. T € Cy(z1,22).
Note that in this case, T' is a double star. Let C(T) = {z1,z2}.
z1 and xo have different degrees, because if deg(z;) = deg(xs) then
Tr(x1) = Tr(ze) and consequently Cyw (T) = 2, a contradiction.
Without loss of generality suppose that deg(x;) < deg(z2) and y; be
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adjacent vertex to z; for ¢ = 1,2. Then

N
=
—
b5y
—

I

2(n —1) — deg(zi),
Tr(y;) = 3n—4—deg(x;).

Moreover
Tr(y2) — Tr(x1) =n — 2 — deg(az2) + deg(z1) > 0.

Therefore, Tr(T) = {Tr(y1) > Tr(y2) > Tr(x1) > Tr(z2)}. A dou-
ble star of Wiener complexity 4 with vertex transmission next to

each vertex is illustrated in Figure 5.

22

25 29
ylo\x"l o Y
O O
25 O/fﬁ 13 22
25 22

Figure 5. A double star with Cy, =4

. T € Cs(x).

Let P:vy — 21 —y1 — ¢ — y2 — 22 — v2 be a diametrical path and
T — x =Ty UT; where T; is the subtree containing y; for i = 1, 2.
Let n; denotes the order of T; with ny; < ns. The following relations
hold, for i =1, 2,

Tr(v;)) —Tr(z) = n—2>0,
Tr(z)—Tr(y;) = n—2deg(z) >0,
Tr(y1) —Tr(z) = n—2n; >0. (4)

That follows

Tr(T) ={Tr(vy) >Tr(z)>Tr(y1) > Tr(z)}.
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Since Tr(y1) — Tr(yz) = ny —ny > 0, s0 Tr(ye) € {Tr(z), Tr(y)}-
If Tr(ys) = Tr(x) then

ny —ng =Tr(y2) — Tr(y1) = Tr(x) — Tr(y1) = 2n1 — n.

Thus n = ny + ne, a contradiction. Therefore Tr(y2) = Tr(y1), that

implies n; = ny. Lemma 1 follows that
Tr(ve) > Tr(z2) > Tr(y2) > Tr(z).

Thus Tr(ve) = Tr(vy) and Tr(z2) = Tr(z). From (4), deg(z1) =
deg(z2). Thus all adjacent vertices of y; and y, are of the same

degree, this follows deg(y1) = deg(y2). So

Tr(yl) = TT(yz),
(deg(y2) — 1)(k — 1) = (deg(y1) — 1)(k — 1),
= deg(y1) = deg(y2).

Hence, vertices on a diametrical path with the same distance from
the center have the same degree. If there is a pendant vertex say
u, adjacent to x, then Tr(u) — Tr(z) = n—2 > 0. From (4) we
get Tr(y1) = Tr(z) + n — 2nq, consequently Tr(u) > Tr(y1). Thus
Tr(u) € {Tr(v1),Tr(z1)}.

x If Tr(u) = Tr(vy), by (4)
Tr(u) —Tr(z) =Tr(vy) — Tr(z),
n—2=Tr(v1) —Tr(y1) +n — 2n4,

n—2=Tr(v1) —Tr(z1) +n—2deg(z1) + n — 2n4,
n—2=n—2+n—2deg(z1) +n — 2ny.

Thus deg(z1) = n — ny, a contradiction.
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« If Tr(u) = Tr(z1), we get

Tr(u) —Tr(z) Tr(z1) — Tr(zx),

n—2 = Tr(z)—Tr(y1) +n—2nq,
n—2 = n—2deg(z)+n—2n;.
So
n
deg(zl) = 5 —ni+ 1. (5)
Therefore,

Tr(T) ={Tr(v;) > Tr(z)=Tr(u) >Tr(y;) >Tr(z)}.

In Figures 6 and 7, two examples of trees T7,T» € C3(z) are shown in

which N, (z) has no pendant vertices while N, (x) contains pendant

vertices.
45 45
45 45
u 21 Al z Y2 2 v2
45 34 31 30 31 34 45
45 \45

Figure 6. T1 € C3(x) in which N7, (z) has no pendant vertices

82
82 32
82 82
U1 2! V2
o 0
82 64 82
82

Figure 7. Tree T> € C3(x) in which its center has an adjacent pendant
vertex

If there is a vertex w € N(z) with deg(w) > 2 where N(w)\ {z} is a
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set of pendant vertices. Let p € N(w) \ {«}. The following relations

hold.
Tr(p) —Tr(w) = n—2>0,
Tr(w)—Tr(z) = n—2deg(w),
Tr(y1) —Tr(z) = n-—2n,
Tr(y) =Tr(w) = 2(deg(w) —n).

Since Cw(T) = 4 and Tr(vy) > Tr(z1) > Tr(y1) > Tr(x), three
cases on Tr(w) must be considered:

* First: Tr(w) = Tr(x); that yields deg(w) = 5. From Lemma 2,
Tr(p) > Tr(yy). Therefore, Tr(p) = Tr(z1) or Tr(p) = Tr(vy).
If Tr(p) = Tr(z1) then

Tr(z1) —Tr(y1) = Tr(p)—Tr(y1),
n—2deg(z1) = Tr(p)—Tr(x) —n+2nq,
n—2deg(z1) = 2(n—deg(w)—1)—n+2n;.

n

Since deg(w) = 5, so deg(z1) = § —n1 +1>n; +1, that is a
contradiction. In the case Tr(p) = Tr(v1), we have

Tr(vy)) —Tr(z1) =n—2="Tr(p) — Tr(w).

That follows Tr(w) = Tr(z1), a contradiction.

* Second: Tr(w) =Tr(y1). By Lemma 2, Tr(p) # Tr(z1). Thus
Tr(p) = Tr(vy). It follows that

n—2=Tr(p)—Tr(w) = Tr(vy)—Tr(y)
>Tr(vy) —Tr(z) =n—2.

which is a contradiction.
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« Third. Tr(w) = Tr(z1). We get Tr(p) = Tr(vy); further

Tr(z1) = Tr(yi) Tr(w) = Tr(y),

n—2deg(z1) = 2(ny — deg(w)).
Thus
n
deg(w) = deg(z1) +n1 — 5 (6)
So we have

Tr(T) ={Tr(v;) =Tr(p) > Tr(z;) = Tr(w) > Tr(y;) > Tr(x)}.
Note that by equations (5) and (6), I';(«) and T's(x) can not both

include pendant vertices. For instance, a tree T' € C3(x) where I'z(z)

includes pendant vertices is shown in Figure 8.

59 59
N, e
U1 Z1 €T Y2 Z V2
O O O O
59 O/FE) 5 39 4“5\o 59
59 59
w b

59 45 59

Lo

Figure 8. T € C3(x) with I'2(z) including pendant vertices

. T e C3(.’E17£C2).
Let T — xyx90 = Ty U T, where T; includes x; for ¢ = 1,2. Let
P:2z —y —x1 — x2 — y2 — 29 be a diametrical path. Suppose that

ny1 < no. Consider two cases on nq.

(a) First. ny < ng. Analogously we get

Tr(T) ={Tr(z1) > Tr(y1) > Tr(z1) > Tr(ze).}
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Let t; € N(x1) NV(T1). Then by Lemma 1,

Tr(ty) —Tr(zy) = n—2deg(t;) >0,
Tr(ty) —=Tr(y1) = 2(deg(yr) — deg(t1)).

Since Cy(T) = 4, Tr(ty) = Tr(z1) or Tr(t1) = Tr(y1). Note
that Tr(t1) = Tr(z1) follows that

Tr(t1) —Tr(y1) = Tr(z1)—Tr(y),
2(deg(yr) — deg(tr) = n—2.

Thus deg(y1) > 3,

and consequently deg(t1) = deg(y1). Hence all adjacent vertices

a contradiction. Therefore Tr(t1) = Tr(y1)

to x1 in T get the same degree. Further, the following relations
hold,

Tr(z) = Tr(y)+n-2,
Tr(ys) — Tr(za) =n—2deg(ys). (7)

We proceed by considering the following conditions on deg(ys).
# deg(y2) > §; This follows T'r(y2) < T'r(x2), a contradiction
since Cw (T') = 4.
# deg(y2) = 5; Thus Tr(y2) = Tr(xz). By Lemma 2, we
have
Tr(ze) € {Tr(y1), Tr(z1)}

If Tr(z9) = Tr(z1) then

Tr(z) —Tr(ys) = Tr(z)—Tr(xzs)
n—2 = Tr(z)—Tr(y1)
+ Tr(y) = Tr(z1) + Tr(zy) — Tr(z2)
n—2 = n—2deg(y1)+ ne — ni,

so deg(y1) = neg, a contradiction. Thus Tr(z2) = Tr(y1);
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It follows deg(y2) = & and then

Ny — Ny

deg(y1) = —5—+1. (8)

Therefore
Tr(T) ={Tr(z1) > Tr(z) > Tr(xy) > Tr(za)}.

with Tr(y1) = Tr(z2) and Tr(y2) = Tr(zz). Figure 9
shows a tree of C3(z1,x2) with deg(y2) = 3.

45

59 3 15
21 Y1 ! 2 Y2 2%5
O O O

Figure 9. T € C3(z1,x2) with deg(y2) = 5

# deg(y2) < §. By (7), Tr(y2) > Tr(xz). Hence Tr(y2) €
{Tr(x1), Tr(y1)}-
If Tr(ys) = Tr(z1) then

Tr(ys) —Tr(ze) = Tr(xzy)—Tr(xzs),
n—2deg(y2) = n2—ng.

Thus deg(y2) = n1. On the other hand Tr(z2) = Tr(z1) by

Lemma 2. Also, we have

Tr(z) —Tr(ys) = Tr(z)—Tr(xz),
n—2 = Tr(z)—Tr(y1) +Tr(y1) — Tr(zy),
n—2 = n—2+n-—2deg(y),
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that follows deg(y1) = %, a contradiction.
Also if Tr(ya) = Tr(y1), we get Tr(z2) = Tr(z1). Moreover

Tr(y2) —Tr(zy) = Tr(y1) — Tr(x1),

Tr(yz) — Tr(xz) + Tr(xs) — Tr(x1) = n — 2deg(y1),

n — 2deg(y2) + n1 —n2 =n — 2deg(y1). (9)
This follows

No — N
deg(ya) = deg(y1) — 22 -

Thus
Tr(T) ={Tr(z) > Tr(y;) > Tr(zx1) > Tr(zs)}.

Figure 10 shows an example of such trees.

41
22 4 >——o55
55
21 Y1 X1 T2 Y2 z2

o 0 O O o)
55 41 31 29 41 55
95
95 41

Figure 10. T € Cs(x1,x2) with deg(y2) < § and n1 < n2

Recall that all vertices in N, (z1) have the same degree. In

the following, we determine the degree of vertices in Nrp,(x3).

Let ta € Np,(z2) \ {y2} where deg(t2) # deg(y2). Consider two
cases:

% First: deg(t2) > deg(y2). Then deg(y2) < § and Tr(tz) <

Tr(y2). From the above we get Tr(y1) = Tr(yz2)and Tr(z1)

= Tr(z2). Thus Tr(ts) € {Tr(z1), Tr(x2)}. Then we verify

the following cases.
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» If Tr(ty) = Tr(xq).

Tr(te) — Tr(ze) = Tr(xy) — Tr(xs)
n — 2deg(t2) =MN2 — N1
= deg(t2) =

Let sy be an adjacent vertex to to of degree 1. By

Lemma 1 and Lemma 2, Tr(s3) = Tr(z1). Therefore

Tr(sz) — Tr(te) = Tr(z1) — Tr(ta),
n—2=Tr(z)—Tr(z1) =n—2+n—2deg(y1).

Thus deg(y1) = 5, a contradiction.

» If Tr(te) = Tr(z2), then
0=Tr(ts) — Tr(xs) = n — 2deg(ts),

Thus deg(tz2) = 5. From (9) and (8), we get deg(y2) =
1, a contradiction.
% Second: deg(tz2) < deg(yz). Then Tr(ts) > Tr(y2). Two
cases again must be verified.
4+ deg(y2) < 5. From (9), T'r(z2) = Tr(z1) > Tr(y2) and
then T'r(tz) = T'r(z2) that follows

Tr(ta) —Tr(y2) = Tr(ze)—Tr(y2),
Tr(te) — Tr(ze) + Tr(za)—Tr(y2) =n— 2,
n—2deg(ta) — n+2deg(y:) =n—2.

Thus deg(y2) = deg(t2) + 5 — 1 > %, a contradiction.

4+ deg(y2) = 5. Then deg(t2) < §. From (9) and (8) we
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get

no — N
deg(y1) — deg(t2) = %,
deg(y1) = nz;nl g

This implies that deg(t2) = 1. Therefore, all adjacent ver-
tices to zo in Ty have the same degree as deg(yz) when
deg(y2) < %, or they are pendant vertices when deg(ys) =

n

R

Therefore
Tr(T) ={Tr(z1) > Tr(y1) > Tr(z1) > Tr(xzs2)}.

Note that Tr(y1) = Tr(ze) = Tr(ta) and Tr(zs) = Tr(ys).
Figure 11 illustrates an example of such trees.

41 31
\ 31
ch Y1 X1 X2 Y2 22

O

< o o
41 31 25 21 21 31
31

12031 31

Figure 11. T € C3(x1,x2) with deg(y2) = § and t2 € N(x2)

(b) Second: ny = ny. By Lemmal, Tr(zy) = Tr(z2). Assume that
deg(y1) < deg(yz2). The following holds; for i = 1,2

Tr(z) —Tr(y;) =n—2,
Tr(y1) — Tr(y2) = 2(deg(y2) — deg(y1)),
Tr(ze) — Tr(z1) = Tr(y2) — Tr(y1).

Therefore if deg(y;) < deg(y2),

Tr(z1) > Tr(ze) > Tr(y2) > Tr(ze) = Tr(zy).
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Since Tr(y1) > Tr(y2) and Cyw(T) = 4, we have Tr(y;) = Tr(z).
This yields that

Tr(z2) —Tr(y2) = Tr(yi) —Tr(ye),
n—2 = 2(deg(yz) — deg(y1))-

Consequently deg(y2) = deg(y1) + § — 1, that is a contradiction.
Hence deg(y1) = deg(yz). This means all adjacent vertices to the

center of T, placed on the diametrical path, get the same degree. So
Tr(z1) =Tr(ze) > Tr(y1) = Tr(ys) > Tr(xy) = Tr(zxs).

Since Cyw (T) = 4, there is at least a pendant vertex adjacent to a

central vertex. Suppose that w; be such a vertex adjacent to x;. We

have
Tr(w;) —Tr(y;)) = Tr(w) —Tr(z;)+Tr(z;) —Tr(y),
= n-—2+2deg(y;) —n,
~ Tr(w) > Tr(y,).
Further
Tr(z)—Tr(w;) = Tr(z)—Tr(y)+Tr(y;) — Tr(w),
= n—2+2(1—deg(v)),
S Tr(ws) < Tr(z).
Then

Tr(T) ={Tr(z) > Tr(w;) > Tr(y;) > Tr(x;)}.

Trees in Figure 12 are two examples of such trees.
Note that if rad(T") = 4, by Theorem 1, |C(T)| = 2. So it is sufficient
to verify just the following case.

. T e 04(1'1,1'2).

Let P: vy —21 —y1 —x1 —To — Y2 — 22 — U3 be a diametrical path and
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36 36
zlo\zg T T2 yg/o Z2
O O O O
36 O/56 22 2 2“6\036

36 36

w1032  W2032

45
Zlo\y} X1 X2 Y2 Z2
O O O (X O O
45 33 25 /Y\ 3N15
45
33 379 wy 37 ©37 45

Figure 12. Two trees of Cs(z1,z2) with n1 = ng2 and (at least) a
central vertex have adjacent pendant vertex

T — x129 = T1 UTs with ny = n(Th) < n(Tz) = ny. From Lemma 1
and Cy(T) = 4, we have

Tr(T) ={Tr(vi) >Tr(z) >Tr(y1) > Tr(z1)}.

Further, Tr(x1) — Tr(z2) = ne —ny > 0. Since C,,(T) = 4 then

n1 = ng and consequently

Figure 13 shows a tree of Cy(x1,z2) in which central vertices does

not have adjacent pendant.

49{'\{1 Y1 11 T2 Y2 2y 0246
N R 30 32 s0e_ 6
160" 5 16

Figure 13. A tree of C4(z1,z2) in which N(z;) has no pendant vertex
fori=1,2.

Also, we show that vertices on a diametrical path with the same
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distance from the center have the same degree.

Tr(z1) = Tr(y1) = Tr(z2) — Tr(y2),
= n —2deg(z1) = n — 2deg(z2),
= deg(z1) = deg(22).

Note that if there is a pendant vertex adjacent to y;, say u;, then
Tr(u;)) —Tr(y;) =n—2=Tr(u;) =Tr(z) or Tr(u;) =Tr(v;).
By Lemma 2, Tr(u;) # Tr(z;), and then Tr(u;) = Tr(v;). Thus

Tr(u) =Tr(y;) = (Tr(v) —Tr(z)) + (Tr(z) —Tr(y:)),
n—2 = n-—2+n-—2deg(z),
= deg(z;) = %

That is a contradiction. So all vertices in I'; (y;) N I'z(z;) have the

same degree as deg(z;), for i = 1,2. Moreover

r(y1) = Tr(z1) = Tr(y2) — Tr(x2),
2((deg(y1) — 1) deg(z1) +1) =
2((deg(y2) — 1) deg(z2) + 1),

= deg(y1) = deg(y2)-

T
n — 2((deg(
n — 2((deg(

Now we investigate the degree of vertices in N(z;) placed out of the

diametrical path. Two cases need to be verified.
# First: N(x;) contains a pendant vertex. Let s; € N(x;) be a

pendant vertex.

Then by Lemma 2, we have Tr(s;) € {Tr(z;), Tr(v;)}.
If Tr(s;) = Tr(z;) then

Tr(s;) —Tr(z;) = (Tr(z)—Tr(y))+ (Tr(y;) — Tr(z;),
n—2 = (n—2deg(z))+ (n—2ny,),
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deg(z;) = g —ny, + 1. (10)

where n,, = (deg(y;) — 1) deg(z;) + 1. This follows that

deg () deg(y:) = .- (11)
If Tr(s;) = Tr(v;) then we get
(Tr(si) = Tr(w:) + (Tr(2:) = Tr(y:)) = (12)

) —

) = Tr(zi)) + (Tr(zi) — Tr(yi)),

(n—2) + @2y, — 1) = (n— 2) + (n — 2deg(z),
2((deg(y;) — 1) deg(z;) + 1) —n =n — 2deg(z;),

= deg(z;) deg(y;) =n — 1.

Which is impossible, since deg(z;) deg(y;) < %.Thus
Tr(T) ={Tr(v;) > Tr(z) =Tr(s;) >Tr(y;) > Tr(z;)}.

See Figure 14 of such a tree.

82

O\‘l .’L‘l, 46 3’52, 46 y2 212/)1}2
82 64 54 54
82

89 6161 61 6461 o4

Figure 14. A tree of Cy(z1,x2) in which N(z;) has (at least) a pendant
vertex for 1 = 1,2.

# Second: N(z;) contains a vertex, say p; with deg(p;) > 2. Let
g; be a pendant vertex in N(p;) \ {x;}. We have

Tr(qi) > Tr(pi) > Tr(z;).
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Considering
Tr(T) ={Tr(vi) > Tr(zi) > Tr(y:) > Tr(xi)},

We infer that
Tr(pi) € {Tr(y:), Tr(z)}

and
Tr(q;) € {Tr(z), Tr(v;)}.

Thus, we must consider the following cases:

* If Tr(p;) = Tr(y;) and Tr(q;) = Tr(z), then

Tr(qi) = Tr(pi) = Tr(zi) — Tr(yi),
n—2=n—2deg(z) = deg(z) = 1.

That is a contradiction.
* If Tr(p;) = Tr(y;) and Tr(q;) = Tr(v;), then

Tr(gi) =Tr(pi) = (Tr(vi) =Tr(z))
+H(Tr(z:) = Tr(yi),
=n—-2 = n-—2+n—2deg(z),

o) =

a contradiction again.

* If Tr(p;) = Tr(z) and Tr(q;) = Tr(v;), then

Tr(p;) —Tr(x;) = (Tr(z)—Tr(y))
+(Tr(yi) — Tr(zy)),
n—2deg(p;) = (n—2deg(z))+ (n—2ny,).

This also follows that

n
deg(z;) = deg(p:) + 5~ M- (13)
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Consequently

n
deg(p;) = deg(y;) deg(z;) — 5~ L

Tr(T) ={Tr(v;) =Tr(g) > Tr(z) =Tr(p;) > Tr(y;) > Tr(z;)}.

In Figure 15, such a tree is shown.

75 75
U:\Z} Y1 x1,49 2,45 Yo Z,g/ovz
o o o o 0 o
75 9 51 51 5 75

75 a n P2 G2 75

75 75 59 59 64 75

Figure 15. A tree of C4(x1,z2) in which deg(p;) > 2 where p; € N(x;),
fori=1,2.

Let for ¢ = 1,2, s; and t; denote the number vertices in N(z;) with
degree 1 and degree at least 2 which are placed out of any diametrical
path respectively. We show that the central vertices x; and x2 have
the same number of such adjacent vertices, i.e. s1 = sg and t; = to.
Notice that by Eq(10) and Eq(13), at least one of s; and ¢; is zero.
Let k; denotes the number of subtrees isomorphic to T; connecting to
x;, in fact k; = deg(a;) — (s; +t;+1). We claim that if 23 or o have
a pendant adjacent vertex, then k; = 1 for ¢ = 1,2. Without loss of
generality, assume that s; > 1. By Eq(10), deg(z;) + n,, —1 =%
and with the fact kin,, + (deg(z;) — k;) = 5 for i = 1,2, we get

kiny, + (deg(z;) — ki) = deg(z;) +ny, — 1,
(ki — 1)ny, + (deg(w;) — ki) + 1 = deg(2;).

Note that deg(z1) = deg(z2). Further deg(z;) < n,, and deg(z;) > k;
that follow k; = 1 for ¢ = 1,2 and then s; = s3. Now suppose that
t; > 1. Then we have s; = 0 for i = 1,2 and k;ny, +t; deg(p;)+1 = 3.
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By Eq(13), § = deg(z;) — deg(p;) + ny,. This follows
(ki — D)ny, + (t; + 1) deg(p;) + 1 = deg(z;).
Further deg(z;) < n,, implies that k; = 1 and then
deg(z;) = (t; + 1) deg(p;) + 1.

Finally, deg(z1) = deg(z2) follows that ¢; = t2. We are done. |
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