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Abstract

Let u be a vertex of a simple connected graph G. Transmission
of u, TrG(u) is the sum of all distances between u and other vertices
in G. The Wiener index of G, W (G), is half of the sum of the trans-
mission of all vertices. The Wiener complexity of G is the number
of different vertex transmissions of G. In this paper, we characterize
trees with Wiener complexity at most three, while we discuss the
structure of trees with Wiener complexity four and illustrate many
cases that arise. The trees of Wiener complexity four have been
identified within 16 categories.

1 Introduction

All considered graphs are simple and connected. Let G(V (G), E(G)) be a

graph. The order and size ofG are denoted by n(G) andm(G) respectively.

We denote by deg(u), degree of vertex u. A vertex of degree 1 is called

a pendant vertex and an edge is said to be a pendant edge (or a leaf) if

one of its end vertices is a pendant vertex. Distance between two vertices

u and v in G, dG(u, v), (shortly d(u, v)) is the length of the shortest path
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between u and v. For a vertex u and a positive integer i, Γi(u) denotes the

set of vertices at distance i from u. We denote by NG(u) (briefly N(u)),

the set of adjacent vertices to u in G, i.e., N(u) = Γ1(u). The maximum

distance from a vertex v to all other vertices is called the eccentricity of v

and is denoted by εG(v). Center of G, C(G), is the vertex set of minimum

eccentricity. Diameter, diam(G), and radius, rad(G), are the maximum

and minimum eccentricity of vertices of G, respectively. Transmission of

v, TrG(v) is the sum of all distances between v and other vertices of G.

Imbalance transmission of an edge uv, IG(uv), is defined as IG(uv) =

|Tr(u) − Tr(v)|. We denote by Tr(G), the set of vertex transmission of

G. The Wiener complexity of G, Cw(G), is defined as the cardinality of

Tr(G) [2]. Transmission in graphs has introduced several metric concepts

in graph theory. For instance, the well-known topological index, Wiener

index [16] can be defined as half of the sum of vertex transmission, i.e.,

W (G) =
1

2

∑
v∈V (G)

Tr(v).

Also, the Mostar index has been introduced in [1] as:

Mo(G) =
∑

e∈E(G)

I(e).

Furthermore, interesting graphs have been proposed based on transmission

and Wiener complexity in several investigations. Graphs with the Wiener

complexity 1 are called transmission regular graphs [14]. Transmission

irregular graphs (Briefly TI) have the Wiener complexity equal to their

order [4]. Some particular families of TI- starlike trees in [7, 11, 13], 2-

connected and 3-connected TI graphs in [9, 10] were identified. Interval

transmission graphs [6] are a subclass of TI− graphs in which the set

of vertex transmissions form a sequence of consecutive positive integers.

A graph G is said to be a stepwise irregular graph (SI for short) [12] if

IG(e) = 1 for each edge e ∈ E(G). Generalized SI-graphs, k−SI graphs,

introduced in [5], are the graphs in which IG(e) = k holds for each edge

e of the graph. Extremal results on STI graphs concerning the diameter,
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the Wiener index and the eccentricity index were characterized in [3]. In

this paper, we characterize all classes of trees with Wiener complexity of

at most 3 and identify the structure of all trees with Wiener complexity of

4. Several examples of such trees are also illustrated. It has been proven

that the Wiener complexity of a tree is at least equal to its radius.

2 Main results

We first refer to some basic concepts and properties of vertex transmission

in simple graphs. Next, we try to characterize all trees with a given small

Wiener complexity at most 4. It is well-known that the center of a tree

T , is a single vertex or two adjacent vertices. Let us denote by T ∈ Cr(x)

and T ∈ Cr(x, y) if T is a tree with rad(T ) = r and its center C(T ) = {x}
and C(T ) = {x, y}, respectively.

Lemma 1. [8] Let u and v be two adjacent vertices of G. Then Tr(u)−
Tr(v) = nv − nu, where nu denotes the number of all vertices which are

closer to u than v in the graph G and nv is defined similarly.

Lemma 2. Let G be a graph of order n. If uv is an edge of G, then

|Tr(u)− Tr(v)| ≤ n− 2, with equality holds if and only if uv is a pendant

edge.

Proof. Without loss of generality, suppose that Tr(u) ≥ Tr(v). From

Lemma 1,

Tr(u)− Tr(v) = nv − nu ≤ n− 2 deg(u) ≤ n− 2.

The equality holds if and only if deg(u) = 1. This means that uv is a

pendant edge.

The next result shows that the Wiener complexity of a tree is greater

than or equal to Its radius. Of course, this is not true in general.
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Theorem 1. If T is a tree with rad(T ) = r, then

CW (T ) ≥


rad(T ) + 1 if T ∈ Cr(x)

rad(T ) if T ∈ Cr(x, y)

Proof. We must consider two cases. First: T ∈ Cr(x). Let P be a dia-

metrical path. Since any diametrical path contains central vertices in a

tree, consider the path P as P = vr − vr−1 · · · v1 − x− u1 − u2 · · ·ur. Let

T1 be the connected component of T − xv1 containing v1 and T2 be the

connected component of T −xu1 containing u1. Without loss of generality,

suppose that n(T1) ≤ n(T2). Using Lemma 1, we get

Tr(v1)− Tr(x) = nx − nv1 ≥ (n(T2) + 1)− n(T1) ≥ 1.

Moreover, for any pair of adjacent vertices vi and vi+1 of the path P , we

have

Tr(vi+1)− Tr(vi) = n(vi)− n(vi+1) ≥ (n(T2) + i+ 1)− (n(T1)− i)

= n(T2)− n(T1) + 2i+ 1.

This turn yields the following strictly increasing sequence as

Tr(x) < Tr(v1) < Tr(v2) · · · < Tr(vt).

Second: T ∈ Cr(x, y). Consider a diametrical path as P = vr−vr−1 · · · v1−
x− y−u1 −u2 · · ·ur. Let T −xy = T1 ∪T2 with n(T1) ≤ n(T2) and T1 be

the component containing x . Applying an analogous argument, we get

Tr(x) < Tr(v1) < · · · < Tr(vr).

The proof is completed.

Now, we are going to determine the structure of trees with 1 ≤ Cw ≤ 4.
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2.1 Trees of the Wiener complexity 1

As an immediate consequence of Theorem 1, the unique tree of Wiener

complexity 1 is determined as follows.

Corollary. Let T be a tree then CW (T ) = 1 if and only if T = P2.

Proof. Let xy be a leaf of a tree T with deg(x) = 1. Then Tr(x) =

Tr(y) + n − 2. Obviously CW (T ) = 1 if and only if n = 2. The proof is

complete.

2.2 Trees of the Wiener complexity 2

Next, we show that the trees of Wiener complexity 2 belong to only two

families; stars Sn, (n ≥ 3) or double stars Sa,a for some positive integer

a ≥ 2. Recall that a double star Sa,b is formed by joining the centers of

two stars Sa and Sb.

Theorem 2. Let T be a tree of order n ≥ 3. Then CW (T ) = 2 if and only

if T ∈ {Sn, Sn
2 ,n2

}

Proof. From Theorem 1, rad(T ) ≤ 2. This shows that T is a star when

rad(T ) = 1 and T is a double star when rad(T ) = 2. If T is a double star

with C(T ) = {x, y}, Lemma 1 follows that all pendant vertices joining to

the center of T get the same transmission. For v ∈ N(x) and w ∈ N(y)

we have

Tr(v) = 1 + 2(deg(x)− 1) + 3(deg(y)− 1),

T r(w) = 1 + 2(deg(y)− 1) + 3(deg(x)− 1).

Thus, deg(x) = deg(y) and then T = Sn
2 ,n2

.

2.3 Trees of the Wiener complexity 3

Let a0, a1, · · · , ar be positive integers. Suppose that T k(a0, a1 · · · , ar), for
k = 1, 2; denotes trees with k central vertices, whose vertices at distance j

from the center of T i(a0, a1 · · · , ar) have the same degree aj for 0 ≤ j ≤ r.
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Theorem 3. Let T be a tree. Then CW (T ) = 3 if and only if T ∈
{T 1(a0, a1, 1), T

2(a0, a1, 1)} for some integers a0, a1 ≥ 2.

Proof. By Theorem 1, rad(T ) ≤ 3. First, consider the case T ∈ C2(x)

with P : z1−y1−x−y2−z2 as a diametrical path. Suppose that deg(y1) ≤
deg(y2). By Lemma 1 the following relations hold. For i = 1, 2

Tr(zi) = Tr(yi) + n− 2,

T r(yi) = Tr(x) + n− 2 deg(yi),

T r(y1) − Tr(y2) = 2(deg(y2)− deg(y1)),

T r(z1) − Tr(z2) = 2(deg(y2)− deg(y1)). (1)

This implies that Tr(zi) > Tr(yi) > Tr(x) for i = 1, 2. Since CW (T ) = 3,

Tr(z1) = Tr(z2) and Tr(y1) = Tr(y2), consequently deg(y1) = deg(y2).

Therefor, T ∼= T (a0, a1, 1) where a0 = deg(x) and a1 = deg(y). Note that

if w ∈ N(x) is a pendant vertex, then Tr(w) − Tr(x) = n − 2. Since

Cw(T ) = 3 and by Theorem 1, Tr(w) = Tr(z1). Thus by (1)

n− 2 + Tr(x) = Tr(w) = Tr(z1) = Tr(x) + n− 2 + n− 2 deg(y1).

So we get deg(y1) = n
2 , that is a contradiction. Second, assume that

T ∈ C2(x, y). Such a tree is a double star, let T = Sa,b. If a = b then

CW (T ) = 2 and if a ̸= b then CW (T ) = 4. Third case is T ∈ C3(x, y) by

Theorem1. Let P : x2 − x1 − x − y − y1 − y2 be a diametrical path. let

T − xy = T1 ∪ T2 where x ∈ V (T1) and y ∈ V (T2) with n(T1) ≤ n(T2). By

a similar argument, we infer that Tr(x2) > Tr(x1) > Tr(x). By lemma 1,

Tr(x) − Tr(y) = n(T2) − n(T1) ≥ 0. Since CW (T ) = 3 so Tr(x) = Tr(y)

and consequently n(T1) = n(T2). This implies that Tr(y2) > Tr(y1) >

Tr(y). Since CW (T ) = 3 we get Tr(x2) = Tr(y2) and Tr(x1) = Tr(y1).

Moreover

Tr(x1)− Tr(x) = n− 2 deg(x1),

T r(y1)− Tr(y) = n− 2 deg(y1).

Thus deg(x1) = deg(y1). If central vertices have some pendant adjacent
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vertices, say w ∈ N(x), then theorem 1 yields that Tr(w) = Tr(x2). Thus

(Tr(x2)− Tr(x1)) + (Tr(x1)− Tr(x)) = Tr(w)− Tr(x),

(n− 2) + (n− 2 deg(x1)) = n− 2.

Thus deg(x1) =
n
2 , a contradiction. Moreover, we have

0 = Tr(x)− Tr(y) = deg(x)(deg(x1)− 1)− deg(y)(deg(y1)− 1).

The equality Tr(x) = Tr(y) yields that deg(x) = deg(y). Therefore

T =

T 1(a0, a1, 1) if T ∈ C2(x)

T 2(a0, a1, 1) if T ∈ C3(x, y)

where a0 = deg(x) and a1 = deg(x1).

2.4 Trees of the Wiener complexity 4

In this section, the structure of the trees of Wiener complexity 4 is verified.

In particular, several examples of such trees with different structures are

also provided. Let T be a tree with CW (T ) = 4. From Theorem 1,

rad(T ) ≤ 4. It is necessary to consider the trees in 5 cases concerning

their center and radius.

1. T ∈ C2(x).

Analogous Theorem 3, the relations (1) hold.

First, suppose that all adjacent vertices to x are of degree at least

2. By (1), vertices in N(x) with the same degree get the same

transmission. Since Cw(T ) = 4, there are two vertices, say y1 and

y2, in N(x) with different degrees. Without loss of generality sup-

pose that P : z1 − y1 − x − y2 − z2 be a diametrical path where

1 < deg(y1) < deg(y2). From Lemma 1, Tr(z1) > Tr(y1) > Tr(x).

Consider the following cases:

(a) deg(y2) <
n
2 . The relations (1) hold and then

Tr(z1) > Tr(y1) > Tr(y2) > Tr(x).
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Further, Tr(z1) > Tr(z2). Since Cw(T ) = 4, Tr(z2) = Tr(y1).

This follows

Tr(z2)− Tr(y2) = Tr(y1)− Tr(y2),

n− 2 = 2(deg(y2)− deg(y1)).

Thus deg(y1) < 1, which is a contradiction.

(b) deg(y2) =
n
2 . Using (1), Tr(y2) = Tr(x). Further

Tr(z2)− Tr(y1) = 2(deg(y1)− 1) > 0

Thus

Tr(T ) = {Tr(z1) > Tr(z2) > Tr(y1) > Tr(x) = Tr(y2)}

Also y2 is the unique vertex of N(x) with degree deg(y2) =
n
2

and the other vertices in N(x) are of the same degree deg(y1),

where

deg(y1)(deg(x)− 1) =
n

2
− 1. (2)

An example of such a tree is illustrated in Figure 1.

y2

12

x

1214

y1z1

20

20
z2

18
18

18

Figure 1. A tree of C2(x) with deg(y2) =
n
2
.

(c) deg(y2) >
n
2 . Immediately we get Tr(y2) < Tr(x) and Tr(z1) >

Tr(z2) by (1). Since Cw(T ) = 4 then Tr(z2) = Tr(y1). Thus

Tr(T ) = {Tr(z1) > Tr(z2) = Tr(y1) > Tr(x) > Tr(y2)} .
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Moreover

Tr(z2)− Tr(y2) = Tr(y1)− Tr(y2),

n− 2 = 2(deg(y2)− deg(y1)).

This follows that

deg(y1) = deg(y2)−
n

2
+ 1. (3)

See Figure 2 for an instance of such trees.

10

y2x

12

y1

16

z1

22 16

z2

16 16

16

Figure 2. A tree of C2(x) with deg(y2) >
n
2
.

Second, assume that x has a pendant adjacent vertex, say w. We

get the following by Lemma 1; for i = 1, 2

Tr(w)− Tr(x) = n− 2,

T r(zi)− Tr(w) = n− 2 deg(yi),

T r(w)− Tr(yi) = 2(deg(yi)− 1).

This follows that Tr(z1) > Tr(w) > Tr(y1) > Tr(x). Since Cw(T ) =

4, we have

Tr(T ) = {Tr(z1) > Tr(w) > Tr(y1) > Tr(x)} .

If deg(y2) ≥ n
2 , then Lemma 1 and Lemma 2 imply that Tr(z2) ∈

{Tr(z1), T r(w)}. Tr(z2) = Tr(z1) follows that deg(y2) = deg(y1)

that is impossible. So Tr(z2) = Tr(w) and by Lemma 2 we have
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Tr(y2) = Tr(x). Thus deg(y2) =
n
2 and then

Tr(T ) = {Tr(z1) > Tr(w) = Tr(z2) > Tr(y1) > Tr(x) = Tr(y2)} .

Such a tree is shown in Figure 3.

11

y2x

11

17w

y1

15

z1

21

z2

17

17

17

Figure 3. A Tree of C2(x) with pendant vertices adjacent to the center
and deg(y2) =

n
2

Note that if deg(y2) < n
2 then Tr(y2) > Tr(x) and by Lemma 2

Tr(y2) = Tr(y1) and Tr(z2) = Tr(z1). This implies that deg(y2) =

deg(y1). Therefore, if N(x) includes pendant vertices, then other

non-pendant vertices in N(x) have the same degree as deg(y1). Fur-

ther

Tr(T ) = {Tr(zi) > Tr(w) > Tr(yi) > Tr(x)} .

Figure 4 illustrates such a tree with deg(y1) = deg(y2).

17

y2x

15

23w

y1

17

z1

25

25

25

z2

25

25

25

Figure 4. A Tree of C2(x) with pendant vertices adjacent to the center
and deg(y1) = deg(y2)

2. T ∈ C2(x1, x2).

Note that in this case, T is a double star. Let C(T ) = {x1, x2}.
x1 and x2 have different degrees, because if deg(x1) = deg(x2) then

Tr(x1) = Tr(x2) and consequently CW (T ) = 2, a contradiction.

Without loss of generality suppose that deg(x1) < deg(x2) and yi be
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adjacent vertex to xi for i = 1, 2. Then

Tr(xi) = 2(n− 1)− deg(xi),

T r(yi) = 3n− 4− deg(xi).

Moreover

Tr(y2)− Tr(x1) = n− 2− deg(x2) + deg(x1) > 0.

Therefore, Tr(T ) = {Tr(y1) > Tr(y2) > Tr(x1) > Tr(x2)}. A dou-

ble star of Wiener complexity 4 with vertex transmission next to

each vertex is illustrated in Figure 5.

13

x2x1

16

y1

25

25

25

22

22
y2

22
22

22
22

Figure 5. A double star with Cw = 4

3. T ∈ C3(x).

Let P : v1 − z1 − y1 − x − y2 − z2 − v2 be a diametrical path and

T − x = T1 ∪ T2 where Ti is the subtree containing yi for i = 1, 2.

Let ni denotes the order of Ti with n1 ≤ n2. The following relations

hold, for i = 1, 2,

T r(vi)− Tr(zi) = n− 2 > 0,

T r(zi)− Tr(yi) = n− 2 deg(zi) > 0,

T r(y1)− Tr(x) = n− 2n1 > 0. (4)

That follows

Tr(T ) = {Tr(v1) > Tr(z1) > Tr(y1) > Tr(x)} .
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Since Tr(y1) − Tr(y2) = n2 − n1 ≥ 0, so Tr(y2) ∈ {Tr(x), T r(y1)}.
If Tr(y2) = Tr(x) then

n1 − n2 = Tr(y2)− Tr(y1) = Tr(x)− Tr(y1) = 2n1 − n.

Thus n = n1 +n2, a contradiction. Therefore Tr(y2) = Tr(y1), that

implies n1 = n2. Lemma 1 follows that

Tr(v2) > Tr(z2) > Tr(y2) > Tr(x).

Thus Tr(v2) = Tr(v1) and Tr(z2) = Tr(z1). From (4), deg(z1) =

deg(z2). Thus all adjacent vertices of y1 and y2 are of the same

degree, this follows deg(y1) = deg(y2). So

Tr(y1) = Tr(y2),

(deg(y2)− 1)(k − 1) = (deg(y1)− 1)(k − 1),

⇒ deg(y1) = deg(y2).

Hence, vertices on a diametrical path with the same distance from

the center have the same degree. If there is a pendant vertex say

u, adjacent to x, then Tr(u) − Tr(x) = n − 2 > 0. From (4) we

get Tr(y1) = Tr(x) + n − 2n1, consequently Tr(u) > Tr(y1). Thus

Tr(u) ∈ {Tr(v1), T r(z1)}.

∗ If Tr(u) = Tr(v1), by (4)

Tr(u)− Tr(x) = Tr(v1)− Tr(x),

n− 2 = Tr(v1)− Tr(y1) + n− 2n1,

n− 2 = Tr(v1)− Tr(z1) + n− 2 deg(z1) + n− 2n1,

n− 2 = n− 2 + n− 2 deg(z1) + n− 2n1.

Thus deg(z1) = n− n1, a contradiction.
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∗ If Tr(u) = Tr(z1), we get

Tr(u)− Tr(x) = Tr(z1)− Tr(x),

n− 2 = Tr(z1)− Tr(y1) + n− 2n1,

n− 2 = n− 2 deg(z1) + n− 2n1.

So

deg(z1) =
n

2
− n1 + 1. (5)

Therefore,

Tr(T ) = {Tr(vi) > Tr(zi) = Tr(u) > Tr(yi) > Tr(x)} .

In Figures 6 and 7, two examples of trees T1, T2 ∈ C3(x) are shown in

which NT1
(x) has no pendant vertices while NT2

(x) contains pendant

vertices.

34

z2x

30

y1

31

z1

34

v1

45 31

y2

45

45

45
45

v2

45

45

45

Figure 6. T1 ∈ C3(x) in which NT1
(x) has no pendant vertices

64

64

z2x

46

y1

54

z1

64

v1

82

54

54

y2

82

82

82

82
64u

82
82

82

82

v2

82

82
82

Figure 7. Tree T2 ∈ C3(x) in which its center has an adjacent pendant
vertex

If there is a vertex w ∈ N(x) with deg(w) ≥ 2 where N(w) \ {x} is a
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set of pendant vertices. Let p ∈ N(w) \ {x}. The following relations

hold.

Tr(p)− Tr(w) = n− 2 > 0,

T r(w)− Tr(x) = n− 2 deg(w),

T r(y1)− Tr(x) = n− 2n1,

T r(y1)− Tr(w) = 2(deg(w)− n1).

Since CW (T ) = 4 and Tr(v1) > Tr(z1) > Tr(y1) > Tr(x), three

cases on Tr(w) must be considered:

∗ First: Tr(w) = Tr(x); that yields deg(w) = n
2 . From Lemma 2,

Tr(p) > Tr(y1). Therefore, Tr(p) = Tr(z1) or Tr(p) = Tr(v1).

If Tr(p) = Tr(z1) then

Tr(z1)− Tr(y1) = Tr(p)− Tr(y1),

n− 2 deg(z1) = Tr(p)− Tr(x)− n+ 2n1,

n− 2 deg(z1) = 2(n− deg(w)− 1)− n+ 2n1.

Since deg(w) = n
2 , so deg(z1) =

n
2 − n1 + 1 > n1 + 1, that is a

contradiction. In the case Tr(p) = Tr(v1), we have

Tr(v1)− Tr(z1) = n− 2 = Tr(p)− Tr(w).

That follows Tr(w) = Tr(z1), a contradiction.

∗ Second: Tr(w) = Tr(y1). By Lemma 2, Tr(p) ̸= Tr(z1). Thus

Tr(p) = Tr(v1). It follows that

n− 2 = Tr(p)− Tr(w) = Tr(v1)− Tr(y1)

> Tr(v1)− Tr(z1) = n− 2.

which is a contradiction.
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∗ Third. Tr(w) = Tr(z1). We get Tr(p) = Tr(v1); further

Tr(z1)− Tr(y1) = Tr(w)− Tr(y1),

n− 2 deg(z1) = 2(n1 − deg(w)).

Thus

deg(w) = deg(z1) + n1 −
n

2
. (6)

So we have

Tr(T ) = {Tr(vi) = Tr(p) > Tr(zi) = Tr(w) > Tr(yi) > Tr(x)} .

Note that by equations (5) and (6), Γ1(x) and Γ2(x) can not both

include pendant vertices. For instance, a tree T ∈ C3(x) where Γ2(x)

includes pendant vertices is shown in Figure 8.

z2

45

w

45

x

35

y1

39

z1

45

v1

59

y2

39

59

59

59

v2

59

59

59

59
p

5959

Figure 8. T ∈ C3(x) with Γ2(x) including pendant vertices

4. T ∈ C3(x1, x2).

Let T − x1x2 = T1 ∪ T2 where Ti includes xi for i = 1, 2. Let

P : z1 − y1 − x1 − x2 − y2 − z2 be a diametrical path. Suppose that

n1 ≤ n2. Consider two cases on n1.

(a) First. n1 < n2. Analogously we get

Tr(T ) = {Tr(z1) > Tr(y1) > Tr(x1) > Tr(x2).}
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Let t1 ∈ N(x1) ∩ V (T1). Then by Lemma 1,

Tr(t1)− Tr(x1) = n− 2 deg(t1) > 0,

T r(t1)− Tr(y1) = 2(deg(y1)− deg(t1)).

Since Cw(T ) = 4, Tr(t1) = Tr(z1) or Tr(t1) = Tr(y1). Note

that Tr(t1) = Tr(z1) follows that

Tr(t1)− Tr(y1) = Tr(z1)− Tr(y1),

2(deg(y1)− deg(t1)) = n− 2.

Thus deg(y1) ≥ n
2 , a contradiction. Therefore Tr(t1) = Tr(y1)

and consequently deg(t1) = deg(y1). Hence all adjacent vertices

to x1 in T1 get the same degree. Further, the following relations

hold,

Tr(z2) = Tr(y2) + n− 2,

T r(y2) − Tr(x2) = n− 2 deg(y2). (7)

We proceed by considering the following conditions on deg(y2).

❈ deg(y2) >
n
2 ; This follows Tr(y2) < Tr(x2), a contradiction

since CW (T ) = 4.

❈ deg(y2) = n
2 ; Thus Tr(y2) = Tr(x2). By Lemma 2, we

have

Tr(z2) ∈ {Tr(y1), T r(z1)}

If Tr(z2) = Tr(z1) then

Tr(z2)− Tr(y2) = Tr(z1)− Tr(x2)

n− 2 = Tr(z1)− Tr(y1)

+ Tr(y1)− Tr(x1) + Tr(x1)− Tr(x2)

n− 2 = n− 2 deg(y1) + n2 − n1,

so deg(y1) = n2, a contradiction. Thus Tr(z2) = Tr(y1);
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It follows deg(y2) =
n
2 and then

deg(y1) =
n2 − n1

2
+ 1. (8)

Therefore

Tr(T ) = {Tr(z1) > Tr(z2) > Tr(x1) > Tr(x2)} .

with Tr(y1) = Tr(z2) and Tr(y2) = Tr(x2). Figure 9

shows a tree of C3(x1, x2) with deg(y2) =
n
2 .

y2

31

x1 x2

31

45

3345

y1

45

59

59

z1

59

45
45
45

45

z2

45

45
45

Figure 9. T ∈ C3(x1, x2) with deg(y2) =
n
2

❈ deg(y2) < n
2 . By (7), Tr(y2) > Tr(x2). Hence Tr(y2) ∈

{Tr(x1), T r(y1)}.

If Tr(y2) = Tr(x1) then

Tr(y2)− Tr(x2) = Tr(x1)− Tr(x2),

n− 2 deg(y2) = n2 − n1.

Thus deg(y2) = n1. On the other hand Tr(z2) = Tr(z1) by

Lemma 2. Also, we have

Tr(z2)− Tr(y2) = Tr(z1)− Tr(x1),

n− 2 = Tr(z1)− Tr(y1) + Tr(y1)− Tr(x1),

n− 2 = n− 2 + n− 2 deg(y1),
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that follows deg(y1) =
n
2 , a contradiction.

Also if Tr(y2) = Tr(y1), we get Tr(z2) = Tr(z1). Moreover

Tr(y2)− Tr(x1) = Tr(y1)− Tr(x1),

T r(y2)− Tr(x2) + Tr(x2)− Tr(x1) = n− 2 deg(y1),

n− 2 deg(y2) + n1 − n2 = n− 2 deg(y1). (9)

This follows

deg(y2) = deg(y1)−
n2 − n1

2
.

Thus

Tr(T ) = {Tr(zi) > Tr(yi) > Tr(x1) > Tr(x2)} .

Figure 10 shows an example of such trees.

29

x2x1

31

41

y1

41

55

55

z1

55

55

41
55

55
z2

55
55

41

y2

41

41

Figure 10. T ∈ C3(x1, x2) with deg(y2) <
n
2

and n1 < n2

Recall that all vertices in NT1
(x1) have the same degree. In

the following, we determine the degree of vertices in NT2
(x2).

Let t2 ∈ NT2
(x2) \ {y2} where deg(t2) ̸= deg(y2). Consider two

cases:

❖ First: deg(t2) > deg(y2). Then deg(y2) <
n
2 and Tr(t2) <

Tr(y2). From the above we get Tr(y1) = Tr(y2)and Tr(z1)

= Tr(z2). Thus Tr(t2) ∈ {Tr(x1), T r(x2)}. Then we verify

the following cases.
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➤ If Tr(t2) = Tr(x1).

Tr(t2)− Tr(x2) = Tr(x1)− Tr(x2)

n− 2 deg(t2) = n2 − n1

⇒ deg(t2) = n1

Let s2 be an adjacent vertex to t2 of degree 1. By

Lemma 1 and Lemma 2, Tr(s2) = Tr(z1). Therefore

Tr(s2)− Tr(t2) = Tr(z1)− Tr(t2),

n− 2 = Tr(z1)− Tr(x1) = n− 2 + n− 2 deg(y1).

Thus deg(y1) =
n
2 , a contradiction.

➤ If Tr(t2) = Tr(x2), then

0 = Tr(t2)− Tr(x2) = n− 2 deg(t2),

Thus deg(t2) =
n
2 . From (9) and (8), we get deg(y2) =

1, a contradiction.

❖ Second: deg(t2) < deg(y2). Then Tr(t2) > Tr(y2). Two

cases again must be verified.

✦ deg(y2) <
n
2 . From (9), Tr(z2) = Tr(z1) > Tr(y2) and

then Tr(t2) = Tr(z2) that follows

Tr(t2)− Tr(y2) = Tr(z2)− Tr(y2),

T r(t2)− Tr(x2) + Tr(x2)− Tr(y2) = n− 2,

n− 2 deg(t2) − n+ 2deg(y2) = n− 2.

Thus deg(y2) = deg(t2) +
n
2 − 1 > n

2 , a contradiction.

✦ deg(y2) =
n
2 . Then deg(t2) <

n
2 . From (9) and (8) we
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get

deg(y1)− deg(t2) =
n2 − n1

2
,

deg(y1) =
n2 − n1

2
+ 1.

This implies that deg(t2) = 1. Therefore, all adjacent ver-

tices to x2 in T2 have the same degree as deg(y2) when

deg(y2) <
n
2 , or they are pendant vertices when deg(y2) =

n
2 .

Therefore

Tr(T ) = {Tr(z1) > Tr(y1) > Tr(x1) > Tr(x2)} .

Note that Tr(y1) = Tr(z2) = Tr(t2) and Tr(x2) = Tr(y2).

Figure 11 illustrates an example of such trees.

y2

21

t2 31

x2

21

x1

25

y1

31

z1

41

41

z2

31

31

31

31

31

Figure 11. T ∈ C3(x1, x2) with deg(y2) =
n
2

and t2 ∈ N(x2)

(b) Second: n1 = n2. By Lemma1, Tr(x1) = Tr(x2). Assume that

deg(y1) ≤ deg(y2). The following holds; for i = 1, 2

Tr(zi)− Tr(yi) = n− 2,

T r(y1)− Tr(y2) = 2(deg(y2)− deg(y1)),

T r(z2)− Tr(z1) = Tr(y2)− Tr(y1).

Therefore if deg(y1) < deg(y2),

Tr(z1) > Tr(z2) > Tr(y2) > Tr(x2) = Tr(x1).
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Since Tr(y1) > Tr(y2) and Cw(T ) = 4, we have Tr(y1) = Tr(z2).

This yields that

Tr(z2)− Tr(y2) = Tr(y1)− Tr(y2),

n− 2 = 2(deg(y2)− deg(y1)).

Consequently deg(y2) = deg(y1) +
n
2 − 1, that is a contradiction.

Hence deg(y1) = deg(y2). This means all adjacent vertices to the

center of T , placed on the diametrical path, get the same degree. So

Tr(z1) = Tr(z2) > Tr(y1) = Tr(y2) > Tr(x1) = Tr(x2).

Since CW (T ) = 4, there is at least a pendant vertex adjacent to a

central vertex. Suppose that wi be such a vertex adjacent to xi. We

have

Tr(wi)− Tr(yi) = Tr(wi)− Tr(xi) + Tr(xi)− Tr(yi),

= n− 2 + 2deg(yi)− n,

⇒ Tr(wi) > Tr(yi).

Further

Tr(zi)− Tr(wi) = Tr(zi)− Tr(yi) + Tr(yi)− Tr(wi),

= n− 2 + 2(1− deg(yi)),

⇒ Tr(wi) < Tr(zi).

Then

Tr(T ) = {Tr(zi) > Tr(wi) > Tr(yi) > Tr(xi)} .

Trees in Figure 12 are two examples of such trees.

Note that if rad(T ) = 4, by Theorem 1, |C(T )| = 2. So it is sufficient

to verify just the following case.

5. T ∈ C4(x1, x2).

Let P : v1−z1−y1−x1−x2−y2−z2−v2 be a diametrical path and
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37 w2 37 37
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y1

33
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z1

45

45

45

45

z2

45

45

Figure 12. Two trees of C3(x1, x2) with n1 = n2 and (at least) a
central vertex have adjacent pendant vertex

T − x1x2 = T1 ∪ T2 with n1 = n(T1) ≤ n(T2) = n2. From Lemma 1

and Cw(T ) = 4, we have

Tr(T ) = {Tr(v1) > Tr(z1) > Tr(y1) > Tr(x1)} .

Further, Tr(x1) − Tr(x2) = n2 − n1 ≥ 0. Since Cw(T ) = 4 then

n1 = n2 and consequently

Tr(x1) = Tr(x2), T r(y1) = Tr(y2),

T r(z1) = Tr(z2), T r(v1) = Tr(v2).

Figure 13 shows a tree of C4(x1, x2) in which central vertices does

not have adjacent pendant.

z2

36

x2

30

x1

30

y2

32

z1

36

y1

32

46

46

v1
46

v2
46

46

46

Figure 13. A tree of C4(x1, x2) in which N(xi) has no pendant vertex
for i = 1, 2.

Also, we show that vertices on a diametrical path with the same
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distance from the center have the same degree.

Tr(z1)− Tr(y1) = Tr(z2)− Tr(y2),

⇒ n− 2 deg(z1) = n− 2 deg(z2),

⇒ deg(z1) = deg(z2).

Note that if there is a pendant vertex adjacent to yi, say ui, then

Tr(ui)− Tr(yi) = n− 2 ⇒ Tr(ui) = Tr(zi) or Tr(ui) = Tr(vi).

By Lemma 2, Tr(ui) ̸= Tr(zi), and then Tr(ui) = Tr(vi). Thus

Tr(ui)− Tr(yi) = (Tr(vi)− Tr(zi)) + (Tr(zi)− Tr(yi)),

n− 2 = n− 2 + n− 2 deg(zi),

⇒ deg(zi) =
n

2
.

That is a contradiction. So all vertices in Γ1(yi) ∩ Γ2(xi) have the

same degree as deg(zi), for i = 1, 2. Moreover

Tr(y1)− Tr(x1) = Tr(y2)− Tr(x2),

n− 2((deg(y1)− 1) deg(z1) + 1) =

n− 2((deg(y2)− 1) deg(z2) + 1),

⇒ deg(y1) = deg(y2).

Now we investigate the degree of vertices in N(xi) placed out of the

diametrical path. Two cases need to be verified.

❆ First: N(xi) contains a pendant vertex. Let si ∈ N(xi) be a

pendant vertex.

Then by Lemma 2, we have Tr(si) ∈ {Tr(zi), T r(vi)}.
If Tr(si) = Tr(zi) then

Tr(si)− Tr(xi) = (Tr(zi)− Tr(yi)) + (Tr(yi)− Tr(xi),

n− 2 = (n− 2 deg(zi)) + (n− 2nyi
),
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deg(zi) =
n

2
− nyi

+ 1. (10)

where nyi
= (deg(yi)− 1) deg(zi) + 1. This follows that

deg(zi) deg(yi) =
n

2
. (11)

If Tr(si) = Tr(vi) then we get

(Tr(si)− Tr(xi)) + (Tr(xi)− Tr(yi)) = (12)

(Tr(vi)− Tr(zi)) + (Tr(zi)− Tr(yi)),

(n− 2) + (2nyi − n) = (n− 2) + (n− 2 deg(zi)),

2((deg(yi)− 1) deg(zi) + 1)− n = n− 2 deg(zi),

⇒ deg(zi) deg(yi) = n− 1.

Which is impossible, since deg(zi) deg(yi) ≤ n
2 .Thus

Tr(T ) = {Tr(vi) > Tr(zi) = Tr(si) > Tr(yi) > Tr(xi)} .

See Figure 14 of such a tree.

z2

64

x2, 46x1, 46 y2

54

z1

64

y1

54

64
s1

64
s2
6464

82

82

v1

82

82

v2

82

6464

82

82

82

Figure 14. A tree of C4(x1, x2) in which N(xi) has (at least) a pendant
vertex for i = 1, 2.

❆ Second: N(xi) contains a vertex, say pi with deg(pi) ≥ 2. Let

qi be a pendant vertex in N(pi) \ {xi}. We have

Tr(qi) > Tr(pi) > Tr(xi).
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Considering

Tr(T ) = {Tr(vi) > Tr(zi) > Tr(yi) > Tr(xi)} ,

We infer that

Tr(pi) ∈ {Tr(yi), T r(zi)}

and

Tr(qi) ∈ {Tr(zi), T r(vi)} .

Thus, we must consider the following cases:

✯ If Tr(pi) = Tr(yi) and Tr(qi) = Tr(zi), then

Tr(qi)− Tr(pi) = Tr(zi)− Tr(yi),

n− 2 = n− 2 deg(zi) ⇒ deg(zi) = 1.

That is a contradiction.

✯ If Tr(pi) = Tr(yi) and Tr(qi) = Tr(vi), then

Tr(qi)− Tr(pi) = (Tr(vi)− Tr(zi))

+(Tr(zi)− Tr(yi)),

⇒ n− 2 = n− 2 + n− 2 deg(zi),

⇒ deg(zi) =
n

2

a contradiction again.

✯ If Tr(pi) = Tr(zi) and Tr(qi) = Tr(vi), then

Tr(pi)− Tr(xi) = (Tr(zi)− Tr(yi))

+(Tr(yi)− Tr(xi)),

n− 2 deg(pi) = (n− 2 deg(zi)) + (n− 2nyi
).

This also follows that

deg(zi) = deg(pi) +
n

2
− nyi . (13)



350

Consequently

deg(pi) = deg(yi) deg(zi)−
n

2
− 1.

T r(T ) = {Tr(vi) = Tr(qi) > Tr(zi) = Tr(pi) > Tr(yi) > Tr(xi)} .

In Figure 15, such a tree is shown.

z2

59

x2, 45x1, 45 y2

51

z1

59

y1

51
p1q1
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p2
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q2

64
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v1

75

v2

75

75

75
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Figure 15. A tree of C4(x1, x2) in which deg(pi) ≥ 2 where pi ∈ N(xi),
for i = 1, 2.

Let for i = 1, 2, si and ti denote the number vertices in N(xi) with

degree 1 and degree at least 2 which are placed out of any diametrical

path respectively. We show that the central vertices x1 and x2 have

the same number of such adjacent vertices, i.e. s1 = s2 and t1 = t2.

Notice that by Eq(10) and Eq(13), at least one of si and ti is zero.

Let ki denotes the number of subtrees isomorphic to Ti connecting to

xi, in fact ki = deg(xi)− (si+ ti+1). We claim that if x1 or x2 have

a pendant adjacent vertex, then ki = 1 for i = 1, 2. Without loss of

generality, assume that s1 ≥ 1. By Eq(10), deg(zi) + nyi − 1 = n
2

and with the fact kinyi + (deg(xi)− ki) =
n
2 for i = 1, 2, we get

kinyi
+ (deg(xi)− ki) = deg(zi) + nyi

− 1,

(ki − 1)nyi + (deg(xi)− ki) + 1 = deg(zi).

Note that deg(z1) = deg(z2). Further deg(zi) ≤ nyi
and deg(xi) > ki

that follow ki = 1 for i = 1, 2 and then s1 = s2. Now suppose that

ti ≥ 1. Then we have si = 0 for i = 1, 2 and kinyi
+ti deg(pi)+1 = n

2 .
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By Eq(13), n
2 = deg(zi)− deg(pi) + nyi . This follows

(ki − 1)nyi
+ (ti + 1) deg(pi) + 1 = deg(zi).

Further deg(zi) ≤ nyi
implies that ki = 1 and then

deg(zi) = (ti + 1) deg(pi) + 1.

Finally, deg(z1) = deg(z2) follows that t1 = t2. We are done.
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