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Abstract

Motivated by the classical cosine rule from the trigonometric ge-
ometry, a novel generalization of the Sombor index is proposed. The
Cosine-Rule Generalized Sombor index CoRSOy is defined via the
expression /d(u)2 + d(v)2 — 2d(u)d(v) cos§ where d(u) and d(v)
denote the degrees of adjacent vertices, and cos 6 is the cosine mod-
ulator of the degree interaction. The recently proposed variable
Euler-Sombor topological index EU(A, G) defined via the expression
Vd(u)? + d(v)? + Ad(u)d(v) with restricted parameter A € [—2,2]
is derived from the new index. The functional generalization of the
Sombor index is proposed. Mathematical properties of CoRSOy in-
dex are established and its chemical applicability is demonstrated.
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1 Introduction

This paper is concerned with simple graphs (i.e undirected, unweighted,
and no multiple edges or loops). Let G = (V(G), E(G)) be a simple graph
with n vertices and m edges, where V(G) = {v1,v2,...,v,} is the vertex-
set and F(QG) is the edge-set. The degree of the vertex w is denoted by
d(u). The edge connecting the adjacency vertices u and v is denoted by
uv.

Chemical graph theory utilizes topological indices and the principles
of graph theory to model molecular structures and predict their physico-
chemical properties and biological activities [5,18]. The TUPAC defines a
topological index as a numerical value associated with the chemical consti-
tution, used to correlate molecular structure with various physical proper-
ties, chemical reactivity or biological activity [28].

A degree-based topological index of a (molecular) graph G denoted by
TI(Q) is generally defined as

TIG)= Y fld(u),d(v)) (1)

uwveE(G)

where f(z,y) > 0 (non-negative and real-valued) such that f(z,y) =
f(y,z) (symmetric).

The classical and modern degree-based topological indices along with
certain generalizations, have proven highly effective in QSPR and QSAR
studies. Examples of these indices include Zagreb indices (M; and Ma),
Albertson Alb, geometric-arithmetic GA, atom-bond connectivity ABC,
sum-connectivity SCI, Randi¢ R, Sombor SO, Elliptic-Sombor ESO, Euler-
Sombor EU, the Diminished Sombor (DSO), and the hyperbolic Sombor
HSO indices, among others. Despite extensive research on topological
indices of (chemical) graphs, there remains a critical need to develop novel
generalized indices with enhanced predictive potential.

Recently, in 2021, Ivan Gutman proposed a novel geometric approach
for developing degree-based topological indices [12]. Based on an Euclidean

geometric perspective he developed a novel degree-based topological index
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called Sombor index, defined as follows:

SOG)= > d(u)?+dv)?

wveE(G)

After his work, a lot of articles that use the geometric approach to develop
topological indices have been published, refer to [4,13,16,27] as illustra-
tive examples. Geometric approach attracted many researchers because it
provides a base for derivation of the functions f(x,y) used in constructing
topological indices. More recently, [14] proposed a variable Euler-Sombor
index EU (A, G) defined as follows:

UNG)= Y dw)?+d(v)?+ d(u)d(v)

weEE(Q)

The variable index EU (A, G) constitutes a generalization of recently in-
troduced Euler-Sombor index [27]. This paper presents the geometric
derivation of the variable Euler-Sombor index via the cosine rule. Several
generalized topological indices involve parametric generalization, see Ta-
ble 2. This paper introduces a novel functional generalization framework
using simple bounded bivariate functions. In summary, this work makes

four key contributions:

1. The development of a novel cosine-rule generalization of the Sombor
index [12]. The reduced, normalized, diminished, and two-parameter
variants are proposed. Mathematical properties of the cosine-rule

generalized Sombor index are rigorously established.

2. The paper serves as the base for geometric derivation of the recently
introduced variable Euler-Sombor index [14], with parameter A re-

stricted to the compact interval [—2, 2].

3. The proposal of a novel functional generalization framework based

on a bounded function ¢ with range restricted to the interval [—1, 1].

4. Chemical applicability of the novel index is demonstrated. The
closed forms of CoRSOy index of certain carbon compounds are de-

rived.
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Table 1 contains a not necessarily complete list of functions f(d(u),d(v))

used to define the classical and recently introduced degree-based topolog-

ical indices. The functions are the inputs in the equation (1).

Name of the index Year f(d(u),d(v))
First Zagreb [11] 1972 d(u) + d(v)
Second Zagreb [11] 1972 d(u)d(v)
Randi¢ [23] 1975 !

d(u)d(v)
Albertson [1] 1997 |d(u) — d(v)]

-2
Atom-Bond Connectivity [8] 1998 d(uzl(—lql)dd((i;))
2+/d(u)d

Geometric-Arithmetic [29] 2009 a0 <_7:1) d((;j))
Sum-Connectivity [30] 2009

d(u) 4 d(v)
Forgotten [10] 2015 d(u)* + d(v)?
Sombor [12] 2021 /d(u)? +d(v)?

. . . 2 2
Diminished Sombor [22] 2021 W
Nirmala [17] 2021  +/d(u) + d(v)

d(u) +d(v) — 2
Atom-Bond-Sum [2, 32] 2022 () 1 d(o
Harmonic-Arithmetic [7] 2023 2dwd(v) .
(d(u) +d(v))

Euler-Sombor [27] 2024 \/d(u)? + d(v)? + d(u)d(v)
Elliptic Sombor [13] 2024 (d(u) + d(v))y/d(u)? + d(v)?

) Vd(u)? 4+ d(v)?
Hyperbolic Sombor [4] 2025 W

u

Table 1. Function forms of certain classical and recently proposed
degree-based topological indices

Generalization of topological indices involves defining the indices using

the parametric functions f(z,y; a, 8,7, A, ..

.). Table 2 contains a not nec-
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essarily complete list of parametric functions f(d(u),d(v);a, 8,7, A,...)
used to define the classical and recently introduced generalized degree-

based topological indices.

Generalized index Year f(d(u),d(v);a, 8,7, A,...)

Generalized Randié [3] 1998  (d(u)d(v))”

Generalized M; [20] 2004 d(u)*

Generalized My [20] 2004 d(u)*d(v)*

Generalized x [31] 2010 (d(u) +d(v))”

Generalized ISI [6] 2020 (d(u)d(v))®(d(u) + d(v))?
d(u)d(v))®

Generalized IST [15] 2020 (C;(qj) :-(d()v)))ﬁ 1

Generalized Sombor [24] 2021  (d(u)? + d(v)P)?»

Generalized Sombor [19] 2024 (d(u)® + d(v)z)a

Generalized EU [14] 2025 \/d(u)? + d(v)% + Md(u)d(v)

Table 2. Parametric function forms used to define certain classical and
novel degree-based generalized topological indices

In this paper we present an extension of the recently introduced Sombor
and Euler-Sombor degree-based topological indices of (molecular) graphs

via the trigonometric-geometric perspective.

2 Generalization of the Sombor index via the

cosine rule (the law of cosines)

According to the law of cosines, the sides a,b, and ¢ of any triangle ABC

satisfy the three equations:

a? =b + ¢ — 2bc cos a
b2 =a® + & — 2accosy

® =a® +b*> — 2abcosd
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where «, «, and 0 denote the angles between the sides AB and AC, BC
and AB, and AC' and BC, respectively. In the Figure 1, we consider a
triangle OAB where O is the origin and ZAOB = §.The line segment OA

makes angle § with the positive X-axis. Thus, the line segment OB makes

an angle 8 — 6 with the positive X-axis. The coordinates of the vertices A

and B are given in terms of the sides a and b and angles 6 and (.

Y-axis

A(bcos ,bsin )

B(acos(8 — 0),asin(f — 6))

X-axis

Figure 1. Illustration of the Cosine Rule

We derive the Euclidean distance from vertex A to B as follows:

r :\/(bcosﬂ —acos(f —0))° + (bsin B — asin(f — 0))°
=+/a2 + b2 — 2ab [cos [ cos(B — 6) + sin Bsin(B — 6)]
=\/a% + b2 — 2abcos [ — (6 — 0)]

= r :\/(12 + b2 — 2abcosf

where 6 € [0,7]. The expression for  can also be written as an Euclidean

norm of the point (a — bcos6,bsin ) as follows:

r=|/(a—bcost,bsind)|, = \/Cl2 + b2 — 2abcos 6

Construction of the novel index uses the following parametric function:

folz,y) = \/332 + 42 — 2zy cosd (2)
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Let z = d(u) and y = d(v) be the degrees of adjacent vertices u and
v, respectively. Motivated by the variable Euler-Sombor index recently
introduced in [14] and the parametric function (2), we formally define a
novel generalized Sombor index, which we refer to it as the Cosine-Rule
Generalized Sombor Index CoRSOy of a graph G as

CoRSO4(G) = Y +/d(u) )2 — 2d(u)d(v) cos 0 (3)
wweE(G)

where 6 € [0, 7], and consequently cosf € [—1,1]. The cosine function
cos @ modulates (or scales) the interaction between the degrees, and ac-
cordingly, we refer to it as the cosine modulator. This is the cosine-rule
generalization of the Sombor index. Let (d(u),d(v)) be the raw degree
point of an edge uv € E(G), the corresponding cosine-rule degree point is
given by (d(u) — d(v)cosf,d(v)sinf). Thus, the CoRSOy index (3) can
alternatively be interpreted in a sense of the original Sombor index SO by
considering the Fuclidean norm of the cosine-rule degree point. The Ta-
ble 3 shows the novel variants of the CoRSOy index for the given standard

angles 6.

% Novel Sombor Variant

T CoRSO=z(G)= Y \/d — V3d(u)d(v)
weE(G)

T CoRSOz(G)= Y \/d(u)2+d(v)2—\/§d(u)d(v)
weE(G)

I CoRSOz(G)= Y +/d(u)?+d(v)?—d(u)d(v)
weE(G)

8 CoRSOs:(G)= Y. \/d )2 4+ V2d(u)d(v)
wweE(G)

5 CoRSOs:(G)= Y| \/d )2 4+ V/3d(u)d(v)
weE(G)

Table 3. The resultant novel Cosine-Rule Sombor indices for the given
standard angles

The Cosine-Rule Sombor indices CoRS0Oy, CoRSOz, CORSO%W7 and
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CoRSO, correspond to the Albertson, Sombor, ordinary Euler-Sombor
and first Zagreb indices, respectively.

Considering the superior predictive performance of the reduced Sombor
index over the original Sombor index [25], we propose the reduced version
of CoRSOy index, defined as:

RCoRSO4(G) = Y /dp(u)?+d,(v)? — 2d,(u) dp(v) cosf  (4)
weE(G)

where d,.(v) = d(v) — 1 denote the reduced degree of a vertex v.

By letting A = —2cosf € [—2,2] our framework provides a geometric
derivation of a variable Euler-Sombor index introduced by [14]. In the
same notation, we write a parametric generalization of the Sombor index

and Euler-Sombor index as follows:

CoRSO\(G) = > +/d(u)?+d(v)* + Ad(u)d(v) (5)
weE(G)

The values A = 2,—-2,0,1 recover the first Zagreb, Albertson, Sombor
and, the ordinary Euler-Sombor indices, respectively [14]. Interestingly,
the index (5) naturally conforms to the approximation results of EU (A, G)
in [14] where

A2 A
BU\G) ~ T (M +Alb —250) + 7 (My — AIb) + 50 (6)

is best suited for A € [-2,2].
We also propose a functional generalization of the Sombor index defined

as follows:

CoRSO4(G) = Z V)2 + d(v)? = 2d(u)d(v)p(d(u),d(v))  (7)

weE(G)

where ¢ : N x N — [-1,1] is a bounded bivariate function, that is
-1 < ¢(d(u),d(v)) <1 and 0 < d(u) < d(v). We give some examples
of suitable functions ¢(d(u),d(v)) and their range C [—1,1] for defining
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new indices based on the functional generalization f(d(u),d(v)) of the
CoRSO, index. The kernel functions of the Geometric—Arithmetic (GA)
and Harmonic—Arithmetic (HA) indices are bounded within the interval
(0,1]. That is ¢galz,y) = 22 € (0,1] and ¢pa(w,y) = by € (0,1].
The two functions are simple and therefore can be used to develop a new

expression for defining new index using the general index (7). The sigmoid

activation function o(z) defined as

1

oG = T

is a well-known function in the field of machine learning and deep learn-
ing. It is a simple function which maps the values of z in the interval
(3,1) € [-1,1] for = > 0. We adapt this function and define simple
bounded functions of x and y obtained by substituting 2z, = zy and
zs = x +y. The Sigmoid-Product and Sigmoid-Sum functions are defined
as Psp(z,y) = He%,y and ¢ss(x,y) = rlwﬂ), respectively. Table 4
shows some relevant examples of the bounded functions ¢(d(u),d(v)) and

their corresponding new kernels f(d(u),d(v)).

P(d(u),d(v)) Range  f(d(u),d(v)),0 < d(u) < d(v)
2\ /A(a)d() A(d(w)d(v))?
d(w) + d(v) (0,1] \/d(“)2 ) = e dw)
4d(u)d(v) o dwd(v) \?
@+ dwpz O \/d(“)z )-8 (d<u> T d<v>>
1 1 2d(u)d(v
1+ e d(wd(v) (3:1) d(u)? + d(v)? - 1+ e(fgl(u()d)(v)

- - 1 2 2 _ S\
1 + e—(d@)+d(v)) (2’ 1) \/d(u) + d(v) 1+ e (du

Table 4. Examples of bounded functions ¢(d(u),d(v)) and their resul-
tant function forms f(d(u),d(v))

Motivated by recent study [4], we also propose a normalized CoRSOy
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index NCoRSO(G), defined as

NCoRSOy(G) = Z \/d(u)2 + d(v)? — 2d(u)d(v) cos 8 (®)

uwweE(G) d(u)

where 0 < d(u) < d(v). The angle § = 7 recovers the original Hyperbolic
Sombor index. Motivated by [22] we also define a Diminished Cosine-Rule
Generalized Sombor DCoRS0O¢ index as follows:

DCoRSO4(G) = 3 \/d(u)2+cil(8;+ j(ci()u)d(v)coso o

weE(G)
where 0 < d(u) < d(v). It is evident that DCoRSOz (G) = DSO(G) and
DCoRSO,(G) = |E(G)|. Motivated by the diminished CoRSOy index
in eq. (9), we proposed a two-parameter cosine-rule index CoRSO, 9 as

follows:

CoRSO.0(G) = Y (d(u)+d(v))™ \/d(u)? + d(v)? - 2d(u)d(v) cos 0
w€EE(G)
(10)

Table 5 presents some special cases of CoRSO,, ¢ index.

Topological index CoRSO, index
Albertson index, Alb(G) CoRS0¢0(G)
First Zagreb index, M;(G) CoRSO¢ (G)
Sombor index, SO(G) CoRS0y,z (G)
Diminished Sombor index, DSO(G) CoRSO_1 = (G)
Euler-Sombor index, EU(G) CoRSO, 2= (G)
Elliptic Sombor index, ESO(G) CoRS01,z (G)
First hyper-Zagreb index, HM;(G) CoRSO1 - (G)

Variable Euler-Sombor index, EU(A,G) CoRSOg¢(G)

Table 5. The relationship between CoRSO, ¢ index and other topo-
logical indices
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3 Mathematical properties of the CoRSO

index

In this section, some basic mathematical properties of the CoRSOy index

are established.

Proposition 1. Let 6 be an angle such that 0 < 0 < 7, § = cos™! (—%),

and X € [—2,2] and let CoRSOy be the corresponding Cosine—Rule Gener-

alized Sombor index. Then

CoRS04(G) = EUA,G), (11)
CoRSO(G) = Alb(G), (12)
CoRSOz (G) = SO(G), (13)
CoRSO2 (G) = EU(G), (14)
CoRSO,(G) = M, (G), (15)

The equations(11)—(15) hold for any simple and connected graph G.

The relations stated in Proposition 1 provides the basic mathematical

properties of the novel cosine-rule generalized Sombor index CoRSOy(G).

Proposition 2. Let P,, C),, Sy, and K,, denote the path, cycle, star, and
complete graphs on n vertices, respectively. Consider n > 2 for P,, n >3
for Cp, and Sy, and n > 1 for K, then:

0

CoRSOy(P,,) = 2v5 — 4cos @ + 4(n — 3) sin <2)

0
CoRSOy(C),) = 4nsin (2>

CoRSOy(Sy) = (n — 1)\/(n —2)2 4 4(n — 1) sin? (Z)

CoRSOy(Ky) = n(n —1)*sin <Z)

Proof. Given a path P,, |V(P,)| = n and |E(P,)| = n — 1. The path P,
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has the degree sequence (1,2,2,2,...,2,1). So, there are exactly two types
of edges E1 2 and Es 4 such that |E1,2(Pn)| = 2 and |E23(P,)| = n — 3.

Therefore

CoRSOp(P,) = > +/d(u) )2 — 2d(u)d(v) cos 0

uwv€EE(Py,)
=2/12 422 = 2(1)(2) cos 0 + (n — 3)v/22 + 22 — 23 cos f
=2v/5 — 4cosf + 2v/2(n — 3)v/1 — cos b

=2v5 —4cosf + 4(n — 3) sin <§>

Also, given a cycle C,, |V(C,)| = |E(Cy)| = n. Every vertex of C,, has
degree 2. Thus

CoRSOy(Cy) = Y /d(u) )2 — 2d(u)d(v) cos 0

weE(Cy)

0
=n\/22 + 22 — 23 cosf = 2nv/2 — 2cos 0 = dn sin (2)

Similarly, for a star graph Sy, |V(S,)| = n and |E(S,)| = n — 1. There is
only one type of edge F ,,—1. Thus

CoRSOy(S Z Vd(u) )2 — 2d(u)d(v) cos
w€E(Sy)

=(n—1)y/12 4+ (n —1)2 —2(n — 1) cos
=(n—1)y/1+ (n—1)2 —2(n — 1) cosf

Substituting cos§ = 1 — 2sin? (%), we have

CoRSO0(S,) =(n — 1)\/1 +(n—1)2-2(n—-1) {1 — 2sin? (Z)]

=(n— 1>\/ (n—2) —4(n - 1)sin® @

In a complete graph K, every vertex has degree d(u) = d(v) = n — 1.
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Then,
CoRSOy(Kn) = > +/d(u) — 2d(u)d(v) cos 0

weE(Ky)

= Z V(=124 (n—1)2—=2(n—1)2cosf
weE(Ky)

= Z V2(n —1)2(1 — cosf)
weE(K,)

= Z (n —1)y/2(1 — cos )
weE(K,)

Substitute 1 — cos# = 2sin? (g)

CoRSOy(K,) = Z (n—1)v/2(1 — cosb)

weE(Ky)
= Z (n — 1)y [4sin® (Z)
w€EE(K,)
0
Z 2(n — 1) sin (2>
weFE(K,)

Since, the compete graph K, has m = (Z) = "(" D edges, then

CoRSOy(K,) :w -2(n —1)sin (g)

= CoRSOy(K,) =n(n — 1)2 sin <§> [ |

Theorem 1. Let G be a simple and connected graph having m edges.
Then, for a fized angle 6 € (0, 7], we have:

0
CoRSOy(G) > 2m sin<2)
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with equality if and only if G =2 Ks. Moreover, the equality
. (0
CoRSOy(G) = 2mr sin B
holds if and only if G is an r-regular graph.
Proof. For x,y > 0 and 6 € (0, 7] we have

2% +y? — 2zycos O =(z — y)* + 2xy(1 — cos )
= 2% +9y? — 2zycosf >2zy(1 — cosh)
\/;U2 +y2 — 2zy cosf 2\/2xy(1 — cosf)

0
Va2 4 y? — 2zy cosf >2sin (2) VTY

By letting = d(u) and y = d(v), we get

Vd(u)? + d(v)? — 2d(u)d(v) cos § >2sin (g) d(u)d(v)

> Vd(u)? +d(v)? — 2d(u)d(v) cos  >2sin <Z> > Vd(u)d(v)

weE(Q) weE(G)

Since 1 < d(u),d(v) < 4, in a simple and connected (molecular) graph,

each term +/d(u)d(v) > 1. Thus,
Z Vd(w)d(v) >m

wveE(G)

= CoRS0,(G) 22sin (Z) S Vidu)d(w) > 2msin <g)

wvEE(G)

Hence, for any simple and connected graph G of size m, we have

CoRSOy(G) >2msin (Z)
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If G = K>, both vertices have degree d(u) = d(v) = 1 and

Z Vd(uw)d(v) = Z l=m=1

wveE(G) wveE(G)

= CoRSOy(G) =2msin <g> = 2sin <g)

If G is an r-regular graph, both vertices have degree d(u) = d(v) = 7.
Then

Z Vd(uw)d(v) = Z Vrer = Z r=mr

w€EE(G) w€EE(G) wEE(G)
CoRSOy(G) =2sin < ) Z Vd = 2mr sin <g)
weE(G)
= CoRSOy(G) =2mrsin (g) |

Theorem 2. Let G be a simple connected graph and 0 € [%,ﬂ'] be a fixed
angle. Then,

sin <8> M1(G) < CoRSO4(G) < My(G)

with equality if and only if G is a complete graph.

Proof. For x,y > 0 and 0 € [gﬂTL we have

2% +y? — 2wy cosf =(z — y)? + 2zy(1 — cos)
z? +y? — 2zy cos @ =2 + y? — 2zycosb

By AM-GM inequality

a;bz\/c%

By letting a = 22 and b = 32, we have

2,2
rty >ry = 22 +y? > 2y

— 2%+ 9% — 2zycosh >2® + 9% — (2? + y?) cos b
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2?4+ y® — 2xycosf > (z® + y2) (1 —cosb)

0
2sin? <2) (x2 + y2) <z? 4+ y* — 2zy cos O

25111( >\/x2+y2 <\/$2 + y2 — 2xy cos b
Consider the RMS-AM inequality
24+9y2 x4y T+y
> — < /22 2
V2 =2 vz S VT
x—i—y) <Va? 4 y? — 2xy cos b

V2

) (
sin <§> (x4 y) <22 +y? — 2zycosb
(3)

(x4y) <Va? +y? —2zycosh <z +y

By letting = d(u) and y = d(v) and taking summation over uv € E(G),

we get
. (0
sm(2> Z (d(u) Z Vd(u) )2 — 2d(u)d(v) cos 0
uwweE(G) quE(G’)
Z d(u) +d(v
wveE(G)
= sin <Z) M; (G) <CoRSOy(G) < My (G) ]

Theorem 3. Let G be a simple connected graph and 0 € [%,w] be a fired
angle. Then,

V2sin ( ) SO(G) < CoRSO4(G) < SO(G)

with equality if and only if G is a complete graph.



311

Proof. Consider
22 +y? — 2xycosf = 2% + y* — 2xy cosh
By AM-GM inequality of 22 and 32, we have

z? 4+ y? >y
— 2%+ y? — 2zycosh > (Jc2 +y2) — (x2 —|—y2) cos
2 4+ 4% — 2y cosh > (502 +y%) (1 — cosf)

0
2sin? (2> (332 + y2) <a? 4+ y* — 2zy cos b

281n< >\/x2+y2 <22+ y2 — 2zycos b

= 2s1n< )\/ac2+y2<\/x2 y2 — 2zycosf < \/x2 + 2

By letting = d(u) and y = d(v) and by taking the summation over all
wv € E(G), we obtain

V2sin (Z) SO(G) < CoRSOy(G) < SO(G) n

Theorem 4. Let G be a simple connected graph and 6 € [0, 7] be a fized
angle. Then
Alb(G) < CoRSOy(G) < My (G)

Proof. For x,y > 0:

(x —y)? <(z —y)? + 2zy(1 — cosh) = 2% + y* — 2xy cos b
(x —y)? <a® +y* — 2xycosh

|z — y| <\/x2 + 32 — 2zy cos d

By letting = d(u) and y = d(v), we get

|d( (v)] <\/d(u) )2 — 2d(u)d(v) cos
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Z |[d(u) — d(v)] < Z Vd(u)? + d(v)2 — 2d(u)d(v) cos f

wEE(G) wEE(G)
— AIN(G) <CoRSO4(G)

On the other hand

(x+1)? >(x+y)? — 2zy(1 + cosh) = 2% + y* — 2xy cos b
(x +y)? >2? +y* — 2wy cosf

4y >\/a2 +y2 — 2rycosh

By letting x = d(u) and y = d(v), we get

d(u) + d(v) >+v/d(u)? + d(v)? — 2d(u)d(v) cos f
Z d(u) + d(v) > Z Vd(u)? + d(v)? — 2d(u)d(v) cos 6

weE(G) weE(G)
— My(G) >CoRS0y(G)

Hence

AIb(G) < CoRSO0y(G) < My (G) |

Theorem 5. Let G be a simple connected graph and 6 € [0, 7] be a fized
angle. Then

<EUG) if 0<<Z
CoRS0y(G)
>EUG) if <0<~

(16)

Proof. For 0 <6 < %’T (i.e 1 <cosf < —%), we have

22 4+ y? — 2zycos O <z® +y* +zy
Va2 4+ y? — 2zycos b <22 + 2 + xy

By letting = d(u) and y = d(v), and by taking the summation over all
wv € E(G), we obtain

CoRSOy(G) <EU(G)
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On the other hand, for —3 <cosf < —lie 2 <6<

22 +y? — 2xycos O >x? + % + xy
\/z2+y2 — 2zy cos 6 2\/z2+y2+xy

By letting « = d(u) and y = d(v), and by taking the summation over all
uv € E(G), we obtain

CoRS0y(G) >EU(G)

Hence
<EU(G) if 0<9< 2
CoRS0y(@G)
>EU(G) if <6<~

Theorem 6. Let G be a simple graph and 0 € [0, T] be a fived angle. Then
Alb(G) < CoRSOy(G) < SO(G)
Proof. For 0 <0 < 7 (i.e 0 <cosf <1)

x? +y? — 2xycosf > + oy — 22y = (x — y)?

|z — y| <\/x2 + 32 — 2zy cos

By letting = d(u) and y = d(v), we get

ld(u) — d(v)| <v/d(u)? + d(v)? —2d(u)d(v)cos€
D0 Jdw) —d) < Y Vdw)? + d(v)? — 2d(u)d(v) cos 0
wveE(G) wveE(G)
= Alb(G) <CoRSOy(G)

On the other hand, for 0 <0 < 7 (i.e 0 < cosf < 1)

22+ y? — 2zycosh <z + ¢
Va2 +y2 — 2zycos  </a2 + 12
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By letting = d(u) and y = d(v), we have

Vd(u)? + d(v)? — 2d(u)d(v) cos 0 <\/d(u)? + d(v)?

> Vd(w)? +dv)? —2d(u)d(v)cosd < > /d(u)? +d(v)?

wEE(G) weEE(G)
— CoRSO04(G) <SO(G)

Hence

Alb(G) < CoRSO,(G) < SO(G) n

4 Chemical applicability of the Cosine-Rule

Generalized Sombor index

One of the key contributions of this study is the geometric derivation of
the variable Euler-Sombor index EU (X, G) with A € [—2, 2] recently intro-
duced in [27]. To demonstrate the chemical applicability of the variable
Euler-Sombor index, [27] considered the standard entropy S° of the octane
isomers. In light of Eq. (6), the model EU(\, G)4+0.5EU(—\, G) gives the
best performance under the following unique combination of topological

indices:
S0 = 70.179375M, (G) — 0.004375A16(G) + 1.31525050(G)

In addition, the chemical applications of the CoRSOy index discussed in
this paper focus on derivation of closed forms of CoRSOy index of three
carbon allotropes namely graphene G, carbon graphite C'G, and crystal
cubic structure of carbon C'CC. This application is motivated by the
computation of some topological indices for certain chemical structures,
see for example [6,17,26].

Graphene is a single layer of carbon atoms arranged in a hexagonal
honeycomb lattice. It is recognized as the world’s two dimensional organic
material. The stack of multiple graphene layers is known as graphite.

Graphene and graphite have many real life applications. For example,
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graphene are useful in production of high-speed transistors, flexible elec-
tronic circuits, transparent conductive film, and sensors. Graphene is also
used to make photodetectors and touchcreens of smart phones and optical
devices. Graphite is useful in producing electrodes, batteries, strong fibers,
gas absorbers, pencils (lead) and coatings. It is also used as a moderator
and reflector in nuclear reactors. The crystal cubic structure of carbon is
a three-dimensional carbon allotrope consisting of carbon atoms arranged
in a periodic cubic lattice with ¢ levels. The vertex degrees of the CCC|t]
molecular graph are either 3 or 4 depending on the stomic position. In real
life, CC'C is used to produce superhard coatings, semiconductors, energy
storage, and thermal devices.
The number of vertices and edges of graphene are, respectively, given

by

[V(G(m,n))| =2mn + 2m + 2n

|E(G(m,n))| =3mn +2m+2n —1

The degree of adjacent vertices of molecular graph of graphene with m
rows and n benzene ring per row can be partitioned into three parts as

follows:

Es(G(m,n)) = {uv € E(G(m,n)) : d(u) = 2 and d(v) = 2
Es3(G(m,n)) = {uv € E(G(m,n)) : d(u) = 2 and d(v) = 3},
Es3(G(m,n)) = {uv € E(G(m,n)) : d(u) = 3 and d(v) =3

The cardinality of the edge partitions are given as follows:
|E22(G(m,n))| = m +4,
|E23(G(m, n))| =4n+2m — 4,
|Es3(G(m,n))| = 3mn —2n —m — 1.

In the following theorem, we derive the CoRSOy index for the molecular

graph of graphene.

Theorem 7. The CoRSOy index of graphene G with m rows and n ben-
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zeme Tings in each row is given by
CoRSOy(G(m,n)) = 2sin (Z) f(m,n) + (2\/ 13 — 12cos 9) g(m,n)

where

f(m,n) =9mn —6n —m+5
glm,n) =2n+m — 2

Proof. By definition:

CoRSOp(G(m,n)) = > \/d(u)® +d(v)? - 2d(u)d(v) cos §

wv€E(G(m,n))

By substituting the degrees d(u) and d(v) of G(m,n), we have:

CoRSOy(G(m,n)) = Z V/22 422 — 23 cos

wvE Eao(G(m,n))
+ > V22 +32 — 4. 3cosb

uwv€Bs 3(G(m,n))

+ > V32 +32-2.32cosf
wv€ E33(G(m,n))

= Z V8 — 8cos

uv€ Bz (G(m,n))

+ Z V13 —12cos@

uv€Es 3(G(m,n))

+ Z V18 — 18 cos 0

wv€ FE33(G(m,n))

= Z 2v/2 — 2cos

wv€ FEao(G(m,n))

+ Z V13 —12cosf

wv€ Ea3(G(m,n))

+ Z 3vV2—2cosf

wv€ E33(G(m,n))

= (2|F22(G(m,n))| + 3|E33(G(m,n))|) V2 — 2cos
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+[E23(G(m,n))| V13 — 12 cos§

=(2(m +4) +3(3mn —2n —m — 1)) V2 — 2cos
+ (4n 4 2m — 4)V13 — 12cos f

=(9mn — 6n —m + 5)v/2 — 2cosf
+ (4n 4 2m — 4)V13 — 12cos §

Substituting v/2 — 2 cosf = 2sin (g), we obtain

CoRSOy(G(m,n)) =(9mn — 6n —m+5) - 2sin <g)

+(@2n+m—2) (wm)

Hence
. (0
CoRSOy(G(m,n)) =2sin (2> flm,n)+ (2\/ 13 — 12cos 9) g(m,n)
where

f(m,n) =9mn —6n —m+5
g(m,n) =2n+m —2 |

The degrees of adjacent vertices of carbon graphite’s molecular graph

provide six edge-types defined as:

CGlr, s]) = {wv € E(CGr,3]) :
Es3(CGlr,s)) = {uv € E(CGr, s]) :
Esu(CGlr,s)) = {uv € E(CGr, s]) :
Es3(CGlr, s)) = {uv € E(CG]r, s]) :
)
)

CGJr,s]) = {uv € E(CG|r,s]) :
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The cardinalities of the edge partitions of CG([r, s]) are given by,

In the following theorem, we derive the CoRSOy index for the molecular

graph of carbon graphite.

Theorem 8. The CoRSOy index of carbon graphite CG with r rows of

benzene rings, s benzene rings per row, and t levels is given by

CoRSOy(CGlr, s]) =2sin <Z) Alr, s, t) + (\/m) B(r, s, t)+
(V5 =%c0s8) C(r.s,t) + (V25 = 24c038) D(r, 5,1)
where
A(r,s,t) = 2(8rst — 6rt — 4st — 14rs + 167 + 85 + 8t — 15),
B(r,s,t) =4(s+t—1),
C(r,s,t) =8(st+r—s—1),

D(r,s,t) =2(3rs+ 3rt — Tr — 2s — 3t + 6)

Proof.
CoRSO(CG[r,s]) = > V/22+22-222cos60+ » /22+3%2—2:2:3cos0
uv€Egp uwv€Ea3
+ Z V22 142 —2.2.4c0s0 + Z /32 +32 - 2.3-3cos0
uv€E2y uwv€E33

+ > V32442 -234dcosO+ Y /42 +42 —2.4-4cos0.
uv€E3y uvEFE 4
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Substituting v/2 — 2 cosf = 2sin (%), we get
. (0
222 —8cosf = 4sin 5
. (0
V232 —18cosf = 6sin 3)
. (0
V242 — 32cosf = 8sin 7))

and other radicals simplify to

V22 +32 — 12cosf = V13 — 12cos0,
\/22 +42 — 16 cosf = 2v/5 — 4 cos b,
\/32 +42 — 24 cosf = /25 — 24 cosf.

Hence

0
CORSO@(CG[T, S]) = sin <2> (4 ‘E22| + 6 |E33| + 8 |E44D

+ V13 — 12cos 0 |Ea3| + 2v5 — 4 cos 6 | Eay]
+ V25 — 24 cos 6 | Esy|.

Substituting the cardinalities of edge partitions, we get

CoRSOy(CG]r, s]) =2sin (g) A(r, s, t) + (m) B(r, s, t)+
(V5—Tcos0) C(r,5,t) + (V25— 24cos0) D(r5,1)

where

A(r,s,t) = 2(8rst — 6rt — 4st — 14rs + 16r + 85 + 8t — 15),
B(r,s,t) =4(s+t—1),
C(r,s,t) =8(st+r—s—t),

D(r,s,t) =2(3rs+ 3rt — 7r — 2s — 3t + 6)
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The number of vertices n = |V(CCC|t])| and edges m = |E(CCCIt])]

in the molecular graph of crystal cubic structure of carbon for ¢ > 3 layers

are respectively given by:

t t—2
n=2 {242 2°-1)" P32 -1) T2 (2 ) +3} :
r=3

r=0

and

t t—2
m= 4{242 2 -1)" 2@ 1) T2 (20 -1 +3} ,
r=3

r=0

The degree of the adjacent vertices of the molecular graph of crystal

cubic structure of carbon gives the following edge-types:

Es3(CCCY) = {uv € E(CCCH]) : d(u) = 3 and d(v) = 3},
Esy(CCCH) = {uv € E(CCCH]) : d(u) = 3 and d(v) =4},
Eu(CCCH]) = {uv € E(CCC]) : d(u) = 4 and d(v) = 4}.

where the cardinality of these edge sets are given as follows:
|Es3(CCCI))| = 72(2° — 1),

| B34(COCIH))| = 24(2° —1)'72,
|Esu(CCCt])| = 12 <1 + zt:23(23 - 1)@'—3> + 8%(23 —1)%

In the following theorem, we derive the CoRSOy index for the molecular

graph of crystal cubic structure of carbon.

Theorem 9. The CoRSOy index of crystal cubic structure of carbon CCC
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with t levels is given by

1904 12
CoRSOy(CCCt]) = 772 (9?? o+ 24@) - ?8 o.

where o = sin(g).

Proof. By definition, we have

CoRSOg(CCClt) = Y d(u)?+d(v)? —2d(u)d(v) cos 6.
wweE(CCCt])

Using the identity v/2 — 2 cosf = 2sin (g), we have

\/32+32—2-3-3c059:651n<2),

\/42+42—2-4~4C059:8sin<2),

and

0
V32442 - 2.3 . 4cosf = (|1 + 48 sin? (2>
Hence, by letting o = sin (g), we have
CORSOQ(CCCM) = 60|E33| + 80| Ey4| + |E34|V/ 1 + 48052,

Using geometric-series sums, we simplify |E44| as follows:

! = 721 4
P73 =8y Th=8. -~ = Z(7""2_1
2 2 —1 37D
=3 k=0
t—2
S B G
> 7= 7-1 6
=0 -
Then,
|Egg| = 12 1+é(7t—2—1) +38 Tl T 16
= 3 6 3 3"
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Substituting the number of edges, we get

CoRSOy(CCC[t]) = 60 (72 772) + /1 +4802(24 - 7'72)

76 16
o —7t2- ).
+ 0’<3 3>

Factoring 772, we get

1904 12
comsodcoci) =71 (B o v o7 w8 ) - o m

5 Conclusion

In this paper, we introduced the Cosine-Rule Generalized Sombor index
(CoRSOy), whose formulation is motivated by the cosine law from the
trigonometric geometry. The reduced, normalized, diminished, and two-
parameter generalized CoRSOy variants are proposed. This paper presents
a geometric derivation of the variable Euler-Sombor index. The novel
functional generalization framework is proposed. Graph-theoretic prop-
erties of the CoRSOy index are rigorously established. In addition, the
analytical expressions of the CoRSOy index of graphene, carbon graphite,
and crystal cubic structures of carbon are derived. All topological indices
and analytical formulas presented in this article could emerge as promising

alternatives for QSPR analysis.
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