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Abstract

Motivated by the classical cosine rule from the trigonometric ge-
ometry, a novel generalization of the Sombor index is proposed. The
Cosine-Rule Generalized Sombor index CoRSOθ is defined via the
expression

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ where d(u) and d(v)

denote the degrees of adjacent vertices, and cos θ is the cosine mod-
ulator of the degree interaction. The recently proposed variable
Euler-Sombor topological index EU(λ,G) defined via the expression√

d(u)2 + d(v)2 + λd(u)d(v) with restricted parameter λ ∈ [−2, 2]
is derived from the new index. The functional generalization of the
Sombor index is proposed. Mathematical properties of CoRSOθ in-
dex are established and its chemical applicability is demonstrated.
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1 Introduction

This paper is concerned with simple graphs (i.e undirected, unweighted,

and no multiple edges or loops). Let G = (V (G), E(G)) be a simple graph

with n vertices and m edges, where V (G) = {v1, v2, . . . , vn} is the vertex-

set and E(G) is the edge-set. The degree of the vertex u is denoted by

d(u). The edge connecting the adjacency vertices u and v is denoted by

uv.

Chemical graph theory utilizes topological indices and the principles

of graph theory to model molecular structures and predict their physico-

chemical properties and biological activities [5, 18]. The IUPAC defines a

topological index as a numerical value associated with the chemical consti-

tution, used to correlate molecular structure with various physical proper-

ties, chemical reactivity or biological activity [28].

A degree-based topological index of a (molecular) graph G denoted by

TI(G) is generally defined as

TI(G) =
∑

uv∈E(G)

f(d(u), d(v)) (1)

where f(x, y) ≥ 0 (non-negative and real-valued) such that f(x, y) =

f(y, x) (symmetric).

The classical and modern degree-based topological indices along with

certain generalizations, have proven highly effective in QSPR and QSAR

studies. Examples of these indices include Zagreb indices (M1 and M2),

Albertson Alb, geometric-arithmetic GA, atom-bond connectivity ABC,

sum-connectivity SCI, Randić R, Sombor SO, Elliptic-Sombor ESO, Euler-

Sombor EU, the Diminished Sombor (DSO), and the hyperbolic Sombor

HSO indices, among others. Despite extensive research on topological

indices of (chemical) graphs, there remains a critical need to develop novel

generalized indices with enhanced predictive potential.

Recently, in 2021, Ivan Gutman proposed a novel geometric approach

for developing degree-based topological indices [12]. Based on an Euclidean

geometric perspective he developed a novel degree-based topological index
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called Sombor index, defined as follows:

SO(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2

After his work, a lot of articles that use the geometric approach to develop

topological indices have been published, refer to [4, 13, 16, 27] as illustra-

tive examples. Geometric approach attracted many researchers because it

provides a base for derivation of the functions f(x, y) used in constructing

topological indices. More recently, [14] proposed a variable Euler-Sombor

index EU (λ,G) defined as follows:

EU(λ,G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2 + λd(u)d(v)

The variable index EU(λ,G) constitutes a generalization of recently in-

troduced Euler–Sombor index [27]. This paper presents the geometric

derivation of the variable Euler-Sombor index via the cosine rule. Several

generalized topological indices involve parametric generalization, see Ta-

ble 2. This paper introduces a novel functional generalization framework

using simple bounded bivariate functions. In summary, this work makes

four key contributions:

1. The development of a novel cosine-rule generalization of the Sombor

index [12]. The reduced, normalized, diminished, and two-parameter

variants are proposed. Mathematical properties of the cosine-rule

generalized Sombor index are rigorously established.

2. The paper serves as the base for geometric derivation of the recently

introduced variable Euler-Sombor index [14], with parameter λ re-

stricted to the compact interval [−2, 2].

3. The proposal of a novel functional generalization framework based

on a bounded function ϕ with range restricted to the interval [−1, 1].

4. Chemical applicability of the novel index is demonstrated. The

closed forms of CoRSOθ index of certain carbon compounds are de-

rived.
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Table 1 contains a not necessarily complete list of functions f(d(u), d(v))

used to define the classical and recently introduced degree-based topolog-

ical indices. The functions are the inputs in the equation (1).

Name of the index Year f (d(u), d(v))

First Zagreb [11] 1972 d(u) + d(v)

Second Zagreb [11] 1972 d(u)d(v)

Randić [23] 1975
1√

d(u)d(v)

Albertson [1] 1997 |d(u)− d(v)|

Atom-Bond Connectivity [8] 1998

√
d(u) + d(v)− 2

d(u)d(v)

Geometric-Arithmetic [29] 2009
2
√
d(u)d(v)

d(u) + d(v)

Sum-Connectivity [30] 2009
1√

d(u) + d(v)

Forgotten [10] 2015 d(u)2 + d(v)2

Sombor [12] 2021
√
d(u)2 + d(v)2

Diminished Sombor [22] 2021

√
d(u)2 + d(v)2

d(u) + d(v)

Nirmala [17] 2021
√
d(u) + d(v)

Atom-Bond-Sum [2,32] 2022

√
d(u) + d(v)− 2

d(u) + d(v)

Harmonic-Arithmetic [7] 2023
4d(u)d(v)

(d(u) + d(v))
2

Euler-Sombor [27] 2024
√

d(u)2 + d(v)2 + d(u)d(v)

Elliptic Sombor [13] 2024 (d(u) + d(v))
√
d(u)2 + d(v)2

Hyperbolic Sombor [4] 2025

√
d(u)2 + d(v)2

d(u)

Table 1. Function forms of certain classical and recently proposed
degree-based topological indices

Generalization of topological indices involves defining the indices using

the parametric functions f(x, y;α, β, γ, λ, . . . ). Table 2 contains a not nec-
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essarily complete list of parametric functions f(d(u), d(v);α, β, γ, λ, . . . )

used to define the classical and recently introduced generalized degree-

based topological indices.

Generalized index Year f(d(u), d(v);α, β, γ, λ, . . . )

Generalized Randić [3] 1998 (d(u)d(v))α

Generalized M1 [20] 2004 d(u)2λ

Generalized M2 [20] 2004 d(u)λd(v)λ

Generalized χ [31] 2010 (d(u) + d(v))α

Generalized ISI [6] 2020 (d(u)d(v))α(d(u) + d(v))β

Generalized ISI [15] 2020
(d(u)d(v))α

(d(u) + d(v))β

Generalized Sombor [24] 2021 (d(u)p + d(v)p)
1
p

Generalized Sombor [19] 2024
(
d(u)2 + d(v)2

)α
Generalized EU [14] 2025

√
d(u)2 + d(v)2 + λd(u)d(v)

Table 2. Parametric function forms used to define certain classical and
novel degree-based generalized topological indices

In this paper we present an extension of the recently introduced Sombor

and Euler-Sombor degree-based topological indices of (molecular) graphs

via the trigonometric-geometric perspective.

2 Generalization of the Sombor index via the

cosine rule (the law of cosines)

According to the law of cosines, the sides a, b, and c of any triangle ABC

satisfy the three equations:

a2 =b2 + c2 − 2bc cosα

b2 =a2 + c2 − 2ac cos γ

c2 =a2 + b2 − 2ab cos θ
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where α, γ, and θ denote the angles between the sides AB and AC, BC

and AB, and AC and BC, respectively. In the Figure 1, we consider a

triangle OAB where O is the origin and ∠AOB = θ.The line segment OA

makes angle β with the positive X-axis. Thus, the line segment OB makes

an angle β− θ with the positive X-axis. The coordinates of the vertices A

and B are given in terms of the sides a and b and angles θ and β.

X-axis

Y-axis

O

A(b cosβ, b sinβ)

B(a cos(β − θ), a sin(β − θ))

r

a

b

β
θ

Figure 1. Illustration of the Cosine Rule

We derive the Euclidean distance from vertex A to B as follows:

r =

√
(b cosβ − a cos(β − θ))

2
+ (b sinβ − a sin(β − θ))

2

=
√
a2 + b2 − 2ab [cosβ cos(β − θ) + sinβ sin(β − θ)]

=
√
a2 + b2 − 2ab cos [β − (β − θ)]

=⇒ r =
√
a2 + b2 − 2ab cos θ

where θ ∈ [0, π]. The expression for r can also be written as an Euclidean

norm of the point (a− b cos θ, b sin θ) as follows:

r = ∥(a− b cos θ, b sin θ)∥2 =
√

a2 + b2 − 2ab cos θ

Construction of the novel index uses the following parametric function:

fθ(x, y) =
√

x2 + y2 − 2xy cos θ (2)
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Let x = d(u) and y = d(v) be the degrees of adjacent vertices u and

v, respectively. Motivated by the variable Euler-Sombor index recently

introduced in [14] and the parametric function (2), we formally define a

novel generalized Sombor index, which we refer to it as the Cosine-Rule

Generalized Sombor Index CoRSOθ of a graph G as

CoRSOθ(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ (3)

where θ ∈ [0, π], and consequently cos θ ∈ [−1, 1]. The cosine function

cos θ modulates (or scales) the interaction between the degrees, and ac-

cordingly, we refer to it as the cosine modulator. This is the cosine-rule

generalization of the Sombor index. Let (d(u), d(v)) be the raw degree

point of an edge uv ∈ E(G), the corresponding cosine-rule degree point is

given by (d(u)− d(v) cos θ, d(v) sin θ). Thus, the CoRSOθ index (3) can

alternatively be interpreted in a sense of the original Sombor index SO by

considering the Euclidean norm of the cosine-rule degree point. The Ta-

ble 3 shows the novel variants of the CoRSOθ index for the given standard

angles θ.

θ Novel Sombor Variant

π
6 CoRSOπ

6
(G) =

∑
uv∈E(G)

√
d(u)2 + d(v)2 −

√
3d(u)d(v)

π
4 CoRSOπ

4
(G) =

∑
uv∈E(G)

√
d(u)2 + d(v)2 −

√
2d(u)d(v)

π
3 CoRSOπ

3
(G) =

∑
uv∈E(G)

√
d(u)2 + d(v)2 − d(u)d(v)

3π
4 CoRSO 3π

4
(G) =

∑
uv∈E(G)

√
d(u)2 + d(v)2 +

√
2d(u)d(v)

5π
6 CoRSO 5π

6
(G) =

∑
uv∈E(G)

√
d(u)2 + d(v)2 +

√
3d(u)d(v)

Table 3. The resultant novel Cosine-Rule Sombor indices for the given
standard angles

The Cosine-Rule Sombor indices CoRSO0, CoRSOπ
2
, CoRSO 2π

3
, and
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CoRSOπ correspond to the Albertson, Sombor, ordinary Euler-Sombor

and first Zagreb indices, respectively.

Considering the superior predictive performance of the reduced Sombor

index over the original Sombor index [25], we propose the reduced version

of CoRSOθ index, defined as:

RCoRSOθ(G) =
∑

uv∈E(G)

√
dr(u)2 + dr(v)2 − 2 dr(u) dr(v) cos θ (4)

where dr(v) = d(v)− 1 denote the reduced degree of a vertex v.

By letting λ = −2 cos θ ∈ [−2, 2] our framework provides a geometric

derivation of a variable Euler-Sombor index introduced by [14]. In the

same notation, we write a parametric generalization of the Sombor index

and Euler-Sombor index as follows:

CoRSOλ(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2 + λd(u)d(v) (5)

The values λ = 2,−2, 0, 1 recover the first Zagreb, Albertson, Sombor

and, the ordinary Euler-Sombor indices, respectively [14]. Interestingly,

the index (5) naturally conforms to the approximation results of EU(λ,G)

in [14] where

EU(λ,G) ≈ λ2

8
(M1 +Alb− 2SO) +

λ

4
(M1 −Alb) + SO (6)

is best suited for λ ∈ [−2, 2].

We also propose a functional generalization of the Sombor index defined

as follows:

CoRSOϕ(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2 − 2d(u)d(v)ϕ(d(u), d(v)) (7)

where ϕ : N × N → [−1, 1] is a bounded bivariate function, that is

−1 ≤ ϕ(d(u), d(v)) ≤ 1 and 0 < d(u) ≤ d(v). We give some examples

of suitable functions ϕ(d(u), d(v)) and their range ⊆ [−1, 1] for defining
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new indices based on the functional generalization f(d(u), d(v)) of the

CoRSOϕ index. The kernel functions of the Geometric–Arithmetic (GA)

and Harmonic–Arithmetic (HA) indices are bounded within the interval

(0, 1]. That is ϕGA(x, y) =
2
√
xy

x+y ∈ (0, 1] and ϕHA(x, y) =
4xy

(x+y)2 ∈ (0, 1].

The two functions are simple and therefore can be used to develop a new

expression for defining new index using the general index (7). The sigmoid

activation function σ(z) defined as

σ(z) =
1

1 + e−z

is a well-known function in the field of machine learning and deep learn-

ing. It is a simple function which maps the values of z in the interval

( 12 , 1) ⊆ [−1, 1] for z > 0. We adapt this function and define simple

bounded functions of x and y obtained by substituting zp = xy and

zs = x+ y. The Sigmoid-Product and Sigmoid-Sum functions are defined

as ϕsp(x, y) = 1
1+e−xy and ϕss(x, y) = 1

1+e−(x+y) , respectively. Table 4

shows some relevant examples of the bounded functions ϕ(d(u), d(v)) and

their corresponding new kernels f(d(u), d(v)).

ϕ(d(u), d(v)) Range f(d(u), d(v)), 0 < d(u) ≤ d(v)

2
√
d(u)d(v)

d(u) + d(v)
(0, 1]

√
d(u)2 + d(v)2 − 4(d(u)d(v))

3
2

d(u) + d(v)

4d(u)d(v)

(d(u) + d(v))2
(0, 1]

√
d(u)2 + d(v)2 − 8

(
d(u)d(v)

d(u) + d(v)

)2

1

1 + e−d(u)d(v)

(
1
2 , 1
) √

d(u)2 + d(v)2 − 2d(u)d(v)

1 + e−d(u)d(v)

1

1 + e−(d(u)+d(v))

(
1
2 , 1
) √

d(u)2 + d(v)2 − 2d(u)d(v)

1 + e−(d(u)+d(v))

Table 4. Examples of bounded functions ϕ(d(u), d(v)) and their resul-
tant function forms f(d(u), d(v))

Motivated by recent study [4], we also propose a normalized CoRSOθ
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index NCoRSO(G), defined as

NCoRSOθ(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

d(u)
(8)

where 0 < d(u) ≤ d(v). The angle θ = π
2 recovers the original Hyperbolic

Sombor index. Motivated by [22] we also define a Diminished Cosine-Rule

Generalized Sombor DCoRSOθ index as follows:

DCoRSOθ(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

d(u) + d(v)
(9)

where 0 < d(u) ≤ d(v). It is evident that DCoRSOπ
2
(G) = DSO(G) and

DCoRSOπ(G) = |E(G)|. Motivated by the diminished CoRSOθ index

in eq. (9), we proposed a two-parameter cosine-rule index CoRSOα,θ as

follows:

CoRSOα,θ(G) =
∑

uv∈E(G)

(d(u) + d(v))
α
√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

(10)

Table 5 presents some special cases of CoRSOα,θ index.

Topological index CoRSOα,θ index

Albertson index, Alb(G) CoRSO0,0(G)

First Zagreb index, M1(G) CoRSO0,π(G)

Sombor index, SO(G) CoRSO0,π2
(G)

Diminished Sombor index, DSO(G) CoRSO−1,π2
(G)

Euler-Sombor index, EU(G) CoRSO0, 2π3
(G)

Elliptic Sombor index, ESO(G) CoRSO1,π2
(G)

First hyper-Zagreb index, HM1(G) CoRSO1,π(G)

Variable Euler-Sombor index, EU(λ,G) CoRSO0,θ(G)

Table 5. The relationship between CoRSOα,θ index and other topo-
logical indices
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3 Mathematical properties of the CoRSO

index

In this section, some basic mathematical properties of the CoRSOθ index

are established.

Proposition 1. Let θ be an angle such that 0 ≤ θ ≤ π, θ = cos−1
(
−λ

2

)
,

and λ ∈ [−2, 2] and let CoRSOθ be the corresponding Cosine–Rule Gener-

alized Sombor index. Then

CoRSOθ(G) = EU(λ,G), (11)

CoRSO0(G) = Alb(G), (12)

CoRSOπ
2
(G) = SO(G), (13)

CoRSO 2π
3
(G) = EU(G), (14)

CoRSOπ(G) = M1(G), (15)

The equations(11)–(15) hold for any simple and connected graph G.

The relations stated in Proposition 1 provides the basic mathematical

properties of the novel cosine-rule generalized Sombor index CoRSOθ(G).

Proposition 2. Let Pn, Cn, Sn, and Kn denote the path, cycle, star, and

complete graphs on n vertices, respectively. Consider n ≥ 2 for Pn, n ≥ 3

for Cn and Sn, and n ≥ 1 for Kn, then:

CoRSOθ(Pn) = 2
√
5− 4 cos θ + 4(n− 3) sin

(
θ

2

)

CoRSOθ(Cn) = 4n sin

(
θ

2

)

CoRSOθ(Sn) = (n− 1)

√
(n− 2)2 + 4(n− 1) sin2

(
θ

2

)

CoRSOθ(Kn) = n(n− 1)2 sin

(
θ

2

)
Proof. Given a path Pn, |V (Pn)| = n and |E(Pn)| = n − 1. The path Pn
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has the degree sequence (1, 2, 2, 2, . . . , 2, 1). So, there are exactly two types

of edges E1,2 and E2,2 such that |E1,2(Pn)| = 2 and |E2,2(Pn)| = n − 3.

Therefore

CoRSOθ(Pn) =
∑

uv∈E(Pn)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

=2
√

12 + 22 − 2(1)(2) cos θ + (n− 3)
√
22 + 22 − 23 cos θ

=2
√
5− 4 cos θ + 2

√
2(n− 3)

√
1− cos θ

=2
√
5− 4 cos θ + 4(n− 3) sin

(
θ

2

)
Also, given a cycle Cn, |V (Cn)| = |E(Cn)| = n. Every vertex of Cn has

degree 2. Thus

CoRSOθ(Cn) =
∑

uv∈E(Cn)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

=n
√
22 + 22 − 23 cos θ = 2n

√
2− 2 cos θ = 4n sin

(
θ

2

)
Similarly, for a star graph Sn, |V (Sn)| = n and |E(Sn)| = n− 1. There is

only one type of edge E1,n−1. Thus

CoRSOθ(Sn) =
∑

uv∈E(Sn)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

=(n− 1)
√
12 + (n− 1)2 − 2(n− 1) cos θ

=(n− 1)
√
1 + (n− 1)2 − 2(n− 1) cos θ

Substituting cos θ = 1− 2 sin2
(
θ
2

)
, we have

CoRSOθ(Sn) =(n− 1)

√
1 + (n− 1)2 − 2(n− 1)

[
1− 2 sin2

(
θ

2

)]

=(n− 1)

√
(n− 2)2 − 4(n− 1) sin2

(
θ

2

)

In a complete graph Kn, every vertex has degree d(u) = d(v) = n − 1.
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Then,

CoRSOθ(Kn) =
∑

uv∈E(Kn)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

=
∑

uv∈E(Kn)

√
(n− 1)2 + (n− 1)2 − 2(n− 1)2 cos θ

=
∑

uv∈E(Kn)

√
2(n− 1)2(1− cos θ)

=
∑

uv∈E(Kn)

(n− 1)
√
2(1− cos θ)

Substitute 1− cos θ = 2 sin2
(
θ
2

)
CoRSOθ(Kn) =

∑
uv∈E(Kn)

(n− 1)
√
2(1− cos θ)

=
∑

uv∈E(Kn)

(n− 1)

√
4 sin2

(
θ

2

)

=
∑

uv∈E(Kn)

2(n− 1) sin

(
θ

2

)

Since, the compete graph Kn has m =

(
n

2

)
= n(n−1)

2 edges, then

CoRSOθ(Kn) =
n(n− 1)

2
· 2(n− 1) sin

(
θ

2

)
=⇒ CoRSOθ(Kn) =n(n− 1)2 sin

(
θ

2

)
Theorem 1. Let G be a simple and connected graph having m edges.

Then, for a fixed angle θ ∈ (0, π], we have:

CoRSOθ(G) ≥ 2m sin

(
θ

2

)
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with equality if and only if G ∼= K2. Moreover, the equality

CoRSOθ(G) = 2mr sin

(
θ

2

)
holds if and only if G is an r-regular graph.

Proof. For x, y > 0 and θ ∈ (0, π] we have

x2 + y2 − 2xy cos θ =(x− y)2 + 2xy(1− cos θ)

=⇒ x2 + y2 − 2xy cos θ ≥2xy(1− cos θ)√
x2 + y2 − 2xy cos θ ≥

√
2xy(1− cos θ)√

x2 + y2 − 2xy cos θ ≥2 sin

(
θ

2

)
√
xy

By letting x = d(u) and y = d(v), we get

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ ≥2 sin

(
θ

2

)√
d(u)d(v)∑

uv∈E(G)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ ≥2 sin

(
θ

2

) ∑
uv∈E(G)

√
d(u)d(v)

Since 1 ≤ d(u), d(v) ≤ 4, in a simple and connected (molecular) graph,

each term
√

d(u)d(v) ≥ 1. Thus,∑
uv∈E(G)

√
d(u)d(v) ≥m

=⇒ CoRSOθ(G) ≥2 sin

(
θ

2

) ∑
uv∈E(G)

√
d(u)d(v) ≥ 2m sin

(
θ

2

)

Hence, for any simple and connected graph G of size m, we have

CoRSOθ(G) ≥2m sin

(
θ

2

)
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If G ∼= K2, both vertices have degree d(u) = d(v) = 1 and∑
uv∈E(G)

√
d(u)d(v) =

∑
uv∈E(G)

1 = m = 1

=⇒ CoRSOθ(G) =2m sin

(
θ

2

)
= 2 sin

(
θ

2

)
If G is an r-regular graph, both vertices have degree d(u) = d(v) = r.

Then ∑
uv∈E(G)

√
d(u)d(v) =

∑
uv∈E(G)

√
r · r =

∑
uv∈E(G)

r = mr

CoRSOθ(G) =2 sin

(
θ

2

) ∑
uv∈E(G)

√
d(u)d(v) = 2mr sin

(
θ

2

)

=⇒ CoRSOθ(G) =2mr sin

(
θ

2

)
Theorem 2. Let G be a simple connected graph and θ ∈

[
π
2 , π

]
be a fixed

angle. Then,

sin

(
θ

2

)
M1(G) ≤ CoRSOθ(G) ≤ M1(G)

with equality if and only if G is a complete graph.

Proof. For x, y ≥ 0 and θ ∈
[
π
2 , π

]
, we have

x2 + y2 − 2xy cos θ =(x− y)2 + 2xy(1− cosθ)

x2 + y2 − 2xy cos θ =x2 + y2 − 2xy cos θ

By AM-GM inequality
a+ b

2
≥

√
ab

By letting a = x2 and b = y2, we have

x2 + y2

2
≥xy =⇒ x2 + y2 ≥ 2xy

=⇒ x2 + y2 − 2xy cos θ ≥x2 + y2 − (x2 + y2) cos θ
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x2 + y2 − 2xy cos θ ≥
(
x2 + y2

)
(1− cos θ)

2 sin2
(
θ

2

)(
x2 + y2

)
≤x2 + y2 − 2xy cos θ

√
2 sin

(
θ

2

)√
x2 + y2 ≤

√
x2 + y2 − 2xy cos θ

Consider the RMS-AM inequality√
x2 + y2

2
≥x+ y

2
=⇒ x+ y√

2
≤
√
x2 + y2

=⇒
√
2 sin

(
θ

2

)(
x+ y√

2

)
≤
√

x2 + y2 − 2xy cos θ

sin

(
θ

2

)
(x+ y) ≤

√
x2 + y2 − 2xy cos θ

sin

(
θ

2

)
(x+ y) ≤

√
x2 + y2 − 2xy cos θ ≤ x+ y

By letting x = d(u) and y = d(v) and taking summation over uv ∈ E(G),

we get

sin

(
θ

2

) ∑
uv∈E(G)

(d(u) + d(v)) ≤
∑

uv∈E(G)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

≤
∑

uv∈E(G)

d(u) + d(v)

=⇒ sin

(
θ

2

)
M1(G) ≤CoRSOθ(G) ≤ M1(G)

Theorem 3. Let G be a simple connected graph and θ ∈
[
π
2 , π

]
be a fixed

angle. Then,

√
2 sin

(
θ

2

)
SO(G) ≤ CoRSOθ(G) ≤ SO(G)

with equality if and only if G is a complete graph.
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Proof. Consider

x2 + y2 − 2xy cos θ = x2 + y2 − 2xy cos θ

By AM-GM inequality of x2 and y2, we have

x2 + y2 ≥2xy

=⇒ x2 + y2 − 2xy cos θ ≥
(
x2 + y2

)
−
(
x2 + y2

)
cos θ

x2 + y2 − 2xy cos θ ≥
(
x2 + y2

)
(1− cos θ)

2 sin2
(
θ

2

)(
x2 + y2

)
≤x2 + y2 − 2xy cos θ

√
2 sin

(
θ

2

)√
x2 + y2 ≤

√
x2 + y2 − 2xy cos θ

=⇒
√
2 sin

(
θ

2

)√
x2 + y2 ≤

√
x2 + y2 − 2xy cos θ ≤

√
x2 + y2

By letting x = d(u) and y = d(v) and by taking the summation over all

uv ∈ E(G), we obtain

√
2 sin

(
θ

2

)
SO(G) ≤ CoRSOθ(G) ≤ SO(G)

Theorem 4. Let G be a simple connected graph and θ ∈ [0, π] be a fixed

angle. Then

Alb(G) ≤ CoRSOθ(G) ≤ M1(G)

Proof. For x, y > 0:

(x− y)2 ≤(x− y)2 + 2xy(1− cos θ) = x2 + y2 − 2xy cos θ

(x− y)2 ≤x2 + y2 − 2xy cos θ

|x− y| ≤
√

x2 + y2 − 2xy cos θ

By letting x = d(u) and y = d(v), we get

|d(u)− d(v)| ≤
√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ
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uv∈E(G)

|d(u)− d(v)| ≤
∑

uv∈E(G)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

=⇒ Alb(G) ≤CoRSOθ(G)

On the other hand

(x+ y)2 ≥(x+ y)2 − 2xy(1 + cos θ) = x2 + y2 − 2xy cos θ

(x+ y)2 ≥x2 + y2 − 2xy cos θ

x+ y ≥
√

x2 + y2 − 2xy cos θ

By letting x = d(u) and y = d(v), we get

d(u) + d(v) ≥
√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ∑

uv∈E(G)

d(u) + d(v) ≥
∑

uv∈E(G)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

=⇒ M1(G) ≥CoRSOθ(G)

Hence

Alb(G) ≤ CoRSOθ(G) ≤ M1(G)

Theorem 5. Let G be a simple connected graph and θ ∈ [0, π] be a fixed

angle. Then

CoRSOθ(G)

≤ EU(G) if 0 ≤ θ ≤ 2π
3

≥ EU(G) if 2π
3 ≤ θ ≤ π

(16)

Proof. For 0 ≤ θ ≤ 2π
3

(
i.e 1 ≤ cos θ ≤ − 1

2

)
, we have

x2 + y2 − 2xy cos θ ≤x2 + y2 + xy√
x2 + y2 − 2xy cos θ ≤

√
x2 + y2 + xy

By letting x = d(u) and y = d(v), and by taking the summation over all

uv ∈ E(G), we obtain

CoRSOθ(G) ≤EU(G)
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On the other hand, for − 1
2 ≤ cos θ ≤ −1 i.e 2π

3 ≤ θ ≤ π

x2 + y2 − 2xy cos θ ≥x2 + y2 + xy√
x2 + y2 − 2xy cos θ ≥

√
x2 + y2 + xy

By letting x = d(u) and y = d(v), and by taking the summation over all

uv ∈ E(G), we obtain

CoRSOθ(G) ≥EU(G)

Hence

CoRSOθ(G)

≤ EU(G) if 0 ≤ θ ≤ 2π
3

≥ EU(G) if 2π
3 ≤ θ ≤ π

Theorem 6. Let G be a simple graph and θ ∈ [0, π
2 ] be a fixed angle. Then

Alb(G) ≤ CoRSOθ(G) ≤ SO(G)

Proof. For 0 ≤ θ ≤ π
2 (i.e 0 ≤ cos θ ≤ 1)

x2 + y2 − 2xy cos θ ≥x2 + y2 − 2xy = (x− y)2

|x− y| ≤
√

x2 + y2 − 2xy cos θ

By letting x = d(u) and y = d(v), we get

|d(u)− d(v)| ≤
√

d(u)2 + d(v)2 − 2d(u)d(v) cos θ∑
uv∈E(G)

|d(u)− d(v)| ≤
∑

uv∈E(G)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

=⇒ Alb(G) ≤CoRSOθ(G)

On the other hand, for 0 ≤ θ ≤ π
2 (i.e 0 ≤ cos θ ≤ 1)

x2 + y2 − 2xy cos θ ≤x2 + y2√
x2 + y2 − 2xy cos θ ≤

√
x2 + y2
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By letting x = d(u) and y = d(v), we have√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ ≤

√
d(u)2 + d(v)2∑

uv∈E(G)

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ ≤

∑
uv∈E(G)

√
d(u)2 + d(v)2

=⇒ CoRSOθ(G) ≤SO(G)

Hence

Alb(G) ≤ CoRSOθ(G) ≤ SO(G)

4 Chemical applicability of the Cosine-Rule

Generalized Sombor index

One of the key contributions of this study is the geometric derivation of

the variable Euler-Sombor index EU (λ,G) with λ ∈ [−2, 2] recently intro-

duced in [27]. To demonstrate the chemical applicability of the variable

Euler-Sombor index, [27] considered the standard entropy S0 of the octane

isomers. In light of Eq. (6), the model EU(λ,G)+0.5EU(−λ,G) gives the

best performance under the following unique combination of topological

indices:

S0 = 70.179375M1(G)− 0.004375Alb(G) + 1.315250SO(G)

In addition, the chemical applications of the CoRSOθ index discussed in

this paper focus on derivation of closed forms of CoRSOθ index of three

carbon allotropes namely graphene G, carbon graphite CG, and crystal

cubic structure of carbon CCC. This application is motivated by the

computation of some topological indices for certain chemical structures,

see for example [6, 17,26].

Graphene is a single layer of carbon atoms arranged in a hexagonal

honeycomb lattice. It is recognized as the world’s two dimensional organic

material. The stack of multiple graphene layers is known as graphite.

Graphene and graphite have many real life applications. For example,
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graphene are useful in production of high-speed transistors, flexible elec-

tronic circuits, transparent conductive film, and sensors. Graphene is also

used to make photodetectors and touchcreens of smart phones and optical

devices. Graphite is useful in producing electrodes, batteries, strong fibers,

gas absorbers, pencils (lead) and coatings. It is also used as a moderator

and reflector in nuclear reactors. The crystal cubic structure of carbon is

a three-dimensional carbon allotrope consisting of carbon atoms arranged

in a periodic cubic lattice with t levels. The vertex degrees of the CCC[t]

molecular graph are either 3 or 4 depending on the stomic position. In real

life, CCC is used to produce superhard coatings, semiconductors, energy

storage, and thermal devices.

The number of vertices and edges of graphene are, respectively, given

by

|V (G(m,n))| =2mn+ 2m+ 2n

|E(G(m,n))| =3mn+ 2m+ 2n− 1

The degree of adjacent vertices of molecular graph of graphene with m

rows and n benzene ring per row can be partitioned into three parts as

follows:

E22(G(m,n)) = {uv ∈ E(G(m,n)) : d(u) = 2 and d(v) = 2},

E23(G(m,n)) = {uv ∈ E(G(m,n)) : d(u) = 2 and d(v) = 3},

E33(G(m,n)) = {uv ∈ E(G(m,n)) : d(u) = 3 and d(v) = 3}.

The cardinality of the edge partitions are given as follows:

|E22(G(m,n))| = m+ 4,

|E23(G(m,n))| = 4n+ 2m− 4,

|E33(G(m,n))| = 3mn− 2n−m− 1.

In the following theorem, we derive the CoRSOθ index for the molecular

graph of graphene.

Theorem 7. The CoRSOθ index of graphene G with m rows and n ben-
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zene rings in each row is given by

CoRSOθ(G(m,n)) = 2 sin

(
θ

2

)
f(m,n) +

(
2
√
13− 12 cos θ

)
g(m,n)

where

f(m,n) =9mn− 6n−m+ 5

g(m,n) =2n+m− 2

Proof. By definition:

CoRSOθ(G(m,n)) =
∑

uv∈E(G(m,n))

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ

By substituting the degrees d(u) and d(v) of G(m,n), we have:

CoRSOθ(G(m,n)) =
∑

uv∈E22(G(m,n))

√
22 + 22 − 23 cos θ

+
∑

uv∈E2,3(G(m,n))

√
22 + 32 − 4 · 3 cos θ

+
∑

uv∈E33(G(m,n))

√
32 + 32 − 2 · 32 cos θ

=
∑

uv∈E22(G(m,n))

√
8− 8 cos θ

+
∑

uv∈E2,3(G(m,n))

√
13− 12 cos θ

+
∑

uv∈E33(G(m,n))

√
18− 18 cos θ

=
∑

uv∈E22(G(m,n))

2
√
2− 2 cos θ

+
∑

uv∈E23(G(m,n))

√
13− 12 cos θ

+
∑

uv∈E33(G(m,n))

3
√
2− 2 cos θ

=(2 |E22(G(m,n))|+ 3 |E33(G(m,n))|)
√
2− 2 cos θ
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+ |E23(G(m,n))|
√
13− 12 cos θ

=(2(m+ 4) + 3(3mn− 2n−m− 1))
√
2− 2 cos θ

+ (4n+ 2m− 4)
√
13− 12 cos θ

=(9mn− 6n−m+ 5)
√
2− 2 cos θ

+ (4n+ 2m− 4)
√
13− 12 cos θ

Substituting
√
2− 2 cos θ = 2 sin

(
θ
2

)
, we obtain

CoRSOθ(G(m,n)) =(9mn− 6n−m+ 5) · 2 sin
(
θ

2

)
+ (2n+m− 2)

(
2
√
13− 12 cos θ

)
Hence

CoRSOθ(G(m,n)) =2 sin

(
θ

2

)
f(m,n) +

(
2
√
13− 12 cos θ

)
g(m,n)

where

f(m,n) =9mn− 6n−m+ 5

g(m,n) =2n+m− 2

The degrees of adjacent vertices of carbon graphite’s molecular graph

provide six edge-types defined as:

E22(CG[r, s]) = {uv ∈ E(CG[r, s]) : d(u) = 2 and d(v) = 2 },

E23(CG[r, s]) = {uv ∈ E(CG[r, s]) : d(u) = 2 and d(v) = 3 },

E24(CG[r, s]) = {uv ∈ E(CG[r, s]) : d(u) = 2 and d(v) = 4 },

E33(CG[r, s]) = {uv ∈ E(CG[r, s]) : d(u) = 3 and d(v) = 3 },

E34(CG[r, s]) = {uv ∈ E(CG[r, s]) : d(u) = 3 and d(v) = 4 },

E44(CG[r, s]) = {uv ∈ E(CG[r, s]) : d(u) = 4 and d(v) = 4 }.



318

The cardinalities of the edge partitions of CG([r, s]) are given by,

|E22(CG[r, s])| = 4,

|E23(CG[r, s])| = 4(s+ t− 1),

|E24(CG[r, s])| = 4(st+ r − s− t),

|E33(CG[r, s])| = 4r + 4t− 10,

|E34(CG[r, s])| = 6rs+ 6rt− 14r − 4s− 6t+ 12,

|E44(CG[r, s])| = (4rs− 3r − 2s+ 1)t− 7rs+ 5r + 4s− 2.

In the following theorem, we derive the CoRSOθ index for the molecular

graph of carbon graphite.

Theorem 8. The CoRSOθ index of carbon graphite CG with r rows of

benzene rings, s benzene rings per row, and t levels is given by

CoRSOθ(CG[r, s]) =2 sin

(
θ

2

)
A(r, s, t) +

(√
13− 12 cos θ

)
B(r, s, t)+(√

5− 4 cos θ
)
C(r, s, t) +

(√
25− 24 cos θ

)
D(r, s, t)

where

A(r, s, t) = 2
(
8rst− 6rt− 4st− 14rs+ 16r + 8s+ 8t− 15

)
,

B(r, s, t) = 4(s+ t− 1),

C(r, s, t) = 8(st+ r − s− t),

D(r, s, t) = 2(3rs+ 3rt− 7r − 2s− 3t+ 6)

Proof.

CoRSOθ(CG[r, s]) =
∑

uv∈E22

√
22 + 22 − 2·2·2 cos θ +

∑
uv∈E23

√
22 + 32 − 2·2·3 cos θ

+
∑

uv∈E24

√
22 + 42 − 2·2·4 cos θ +

∑
uv∈E33

√
32 + 32 − 2·3·3 cos θ

+
∑

uv∈E34

√
32 + 42 − 2·3·4 cos θ +

∑
uv∈E44

√
42 + 42 − 2·4·4 cos θ.
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Substituting
√
2− 2 cos θ = 2 sin

(
θ
2

)
, we get

√
2 · 22 − 8 cos θ = 4 sin

(
θ

2

)
,√

2 · 32 − 18 cos θ = 6 sin

(
θ

2

)
,√

2 · 42 − 32 cos θ = 8 sin

(
θ

2

)
.

and other radicals simplify to√
22 + 32 − 12 cos θ =

√
13− 12 cos θ,√

22 + 42 − 16 cos θ = 2
√
5− 4 cos θ,√

32 + 42 − 24 cos θ =
√
25− 24 cos θ.

Hence

CoRSOθ(CG[r, s]) = sin

(
θ

2

)
(4 |E22|+ 6 |E33|+ 8 |E44|)

+
√
13− 12 cos θ |E23|+ 2

√
5− 4 cos θ |E24|

+
√
25− 24 cos θ |E34|.

Substituting the cardinalities of edge partitions, we get

CoRSOθ(CG[r, s]) =2 sin

(
θ

2

)
A(r, s, t) +

(√
13− 12 cos θ

)
B(r, s, t)+(√

5− 4 cos θ
)
C(r, s, t) +

(√
25− 24 cos θ

)
D(r, s, t)

where

A(r, s, t) = 2
(
8rst− 6rt− 4st− 14rs+ 16r + 8s+ 8t− 15

)
,

B(r, s, t) = 4(s+ t− 1),

C(r, s, t) = 8(st+ r − s− t),

D(r, s, t) = 2(3rs+ 3rt− 7r − 2s− 3t+ 6)
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The number of vertices n = |V (CCC[t])| and edges m = |E(CCC[t])|
in the molecular graph of crystal cubic structure of carbon for t ≥ 3 layers

are respectively given by:

n = 2

{
24

t∑
r=3

(
23 − 1

)r−3
+ 31

(
23 − 1

)t−2
+ 2

t−2∑
r=0

(
23 − 1

)r
+ 3

}
,

and

m = 4

{
24

t∑
r=3

(
23 − 1

)r−3
+ 24

(
23 − 1

)t−2
+ 2

t−2∑
r=0

(
23 − 1

)r
+ 3

}
.

The degree of the adjacent vertices of the molecular graph of crystal

cubic structure of carbon gives the following edge-types:

E33(CCC[t]) = {uv ∈ E(CCC[t]) : d(u) = 3 and d(v) = 3 },

E34(CCC[t]) = {uv ∈ E(CCC[t]) : d(u) = 3 and d(v) = 4 },

E44(CCC[t]) = {uv ∈ E(CCC[t]) : d(u) = 4 and d(v) = 4 }.

where the cardinality of these edge sets are given as follows:

|E33(CCC[t])| = 72(23 − 1)t−2,

|E34(CCC[t])| = 24(23 − 1)t−2,

|E44(CCC[t])| = 12

(
1 +

t∑
i=3

23(23 − 1)i−3

)
+ 8

t−2∑
i=0

(23 − 1)i.

In the following theorem, we derive the CoRSOθ index for the molecular

graph of crystal cubic structure of carbon.

Theorem 9. The CoRSOθ index of crystal cubic structure of carbon CCC



321

with t levels is given by

CoRSOθ

(
CCC[t]

)
= 7 t−2

(
1904

3
σ + 24

√
1 + 48σ2

)
− 128

3
σ.

where σ = sin
(
θ
2

)
.

Proof. By definition, we have

CoRSOθ(CCC[t]) =
∑

uv∈E(CCC[t])

√
d(u)2 + d(v)2 − 2d(u)d(v) cos θ.

Using the identity
√
2− 2 cos θ = 2 sin

(
θ
2

)
, we have

√
32 + 32 − 2 · 3 · 3 cos θ = 6 sin

(
θ

2

)
,

√
42 + 42 − 2 · 4 · 4 cos θ = 8 sin

(
θ

2

)
,

and √
32 + 42 − 2 · 3 · 4 cos θ =

√
1 + 48 sin2

(
θ

2

)
.

Hence, by letting σ = sin
(
θ
2

)
, we have

CoRSOθ

(
CCC[t]

)
= 6σ|E33|+ 8σ|E44|+ |E34|

√
1 + 48σ2.

Using geometric-series sums, we simplify |E44| as follows:

t∑
i=3

237i−3 = 8

t−3∑
k=0

7k = 8 · 7
t−2 − 1

7− 1
=

4

3

(
7t−2 − 1

)
,

t−2∑
i=0

7i =
7t−1 − 1

7− 1
=

7t−1 − 1

6
.

Then,

|E44| = 12

(
1 +

4

3
(7t−2 − 1)

)
+ 8 · 7

t−1 − 1

6
=

76

3
7t−2 − 16

3
.
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Substituting the number of edges, we get

CoRSOθ(CCC[t]) = 6σ
(
72 · 7 t−2

)
+
√
1 + 48σ2

(
24 · 7t−2

)
+ 8σ

(
76

3
7 t−2 − 16

3

)
.

Factoring 7t−2, we get

CoRSOθ

(
CCC[t]

)
= 7 t−2

(
1904

3
σ + 24

√
1 + 48σ2

)
− 128

3
σ.

5 Conclusion

In this paper, we introduced the Cosine-Rule Generalized Sombor index

(CoRSOθ), whose formulation is motivated by the cosine law from the

trigonometric geometry. The reduced, normalized, diminished, and two-

parameter generalized CoRSOθ variants are proposed. This paper presents

a geometric derivation of the variable Euler–Sombor index. The novel

functional generalization framework is proposed. Graph-theoretic prop-

erties of the CoRSOθ index are rigorously established. In addition, the

analytical expressions of the CoRSOθ index of graphene, carbon graphite,

and crystal cubic structures of carbon are derived. All topological indices

and analytical formulas presented in this article could emerge as promising

alternatives for QSPR analysis.

References

[1] M. O. Albertson, The irregularity of a graph, Ars Comb. 46 (1997)
219–225.
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[14] I. Gutman, I. Redžepović, G. O. Kizilirmak, V. R. Kulli, Euler-
Sombor index and its congeners, Open J. Math. Sci. 9 (2025) 141–148.

[15] S. Hafeez, R. Farooq, On generalized inverse sum indeg index and
energy of graphs, AIMS Math. 5 (2020) 2388–2411.

[16] M. Imran, R. Luo, M. K. Jamil, M. Azeem, K. M. Fahd, Geomet-
ric perspective to degree-based topological indices of supramolecular
chain, Results Eng. 16 (2022) #100716.

[17] V. R. Kulli, Nirmala index, Int. J. Math. Trends Techn. 67 (2021)
8–12.

[18] L. S. Leite, S. Banerjee, Y. Wei, J. Elowitt, A. E. Clark, Modern
chemical graph theory, WIREs Comput. Mol. Sci. 14 (2024) #e1729.



324

[19] V. Maitreyi, S. Elumalai, B. Selvaraj, On the extremal general Sombor
index of trees with given pendent vertices, MATCH Commun. Math.
Comput. Chem. 92 (2024) 225–248.
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[31] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math.
Chem. 47 (2010) 210–218.

[32] X. Zuo, A. Jahanbani, H. Shooshtari, On the atom–bond sum–
connectivity index of chemical graphs, J. Mol. Struct. 1296 (2024)
#136849.


	Introduction
	Generalization of the Sombor index via the cosine rule (the law of cosines)
	Mathematical properties of the CoRSO index
	Chemical applicability of the Cosine-Rule Generalized Sombor index
	Conclusion

