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Abstract

This study is based on the analysis of non-associativity in the
hypercompositional algebraic structure of chain reaction and to dis-
cover the ‘algebraic-behavior’ of the elements using the probability
of some non-associative properties. It was discovered that the hy-
percompositional algebraic structure that is represented in the chain
reaction is non-associative. In addition, the ‘algebraic-behavior’ of
each element based on the non-associative properties was analyzed,
and elements with high, higher and highest probabilities were iden-
tified in the chain reaction. Some of the elements were found to
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be right nuclear, flexible, left alternative and right alternative. It
was shown that the chain reaction structure has equal likelihood of
being left nuclear or middle nuclear or right nuclear. Also, chain
reaction structure was established to have equal likelihood of being
flexible or left alternative. It was discovered that the chain reaction
structure is more likely to be flexible or left alternative than being
left nuclear or middle nuclear or right nuclear or right alternative. It
was also discovered that the chain reaction structure is more likely
to be right alternative than being left nuclear or middle nuclear or
right nuclear. The differences in probabilities form the increasing
sequence 0.0 < 0.008 < 0.08 < 0.088.

1 Introduction

1.1 Hypercompositional algebraic structures

The concept of hypercompositional structure theory was formulated in
1934 by Marty [25] where the study was viewed in a theoretical point and
its applications to different fields of mathematics that are pure and applied
mathematics, as illustrated in [5,12]. In a classical algebraic structure it
was shown that the composition of two elements is an element while the
composition of two elements in an hypercompositional algebraic structure
is a set. Consequently, researchers are exploring its applications across
various fields such as physical [15,28], chemical [1,2,7-9,11,13,20,22,27]
and biological science [3,4,16,29]. One of the motivations for studying
hypercompositional structures is based on chemical reactions.

Some of the most popular types of hypercompositional algebraic struc-
tures are semihypergroup, quasihypergroup, hypergroup and H,-group.
Some new ones which are weak associative were introduced and studied
by Ilori et al. [23] and Jaiyéold et al. [24].

Definition 1 (Semihypergroup, Quasihypergroup, Hypergroup, H,-group).
An hypergroupoid or polygroupoid (H,o) is the pair of a non-empty set
H with an hyperoperation o : H x H — P(H)\{0} defined on it.

An hypergroupoid (H, o) is called a semihypergroup if

(i) it obeys the associativity law a o (boc) = (aob)oc for all a,b,c € H,
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which means that

U woe= J aov

u€ aob v€E boc
An hypergroupoid (H, o) is called a quasihypergroup if
(ii) it obeys the reproduction axiom x o H = H = Hox for all z € H.

An hypergroupoid (H, o) is called an hypergroup if it is a semihypergroup
and a quasihypergroup.

A hypergroupoid (H, o) is called an H,-semigroup it obeys the weak
associativity (WASS) condition

(iii) zo(yoz)N(zoy)oz# D for all z,y,z € H.

A hypergroupoid (H, o) is called an H,-group if it is a quasihypergroup

and a H,-semigroup.

2 Chemical hypercompositional structures

in chain reaction

2.1 Radical reactions

A radical is an atom or a group of atoms with an unpaired electron. Such
elements can either be electrically neutral or charged, called free radicals.
Homolytic bond breakage, induced by heating in non-polar solvents or
in the vapour phase, yields electrically neutral free radical pairs. High
temperatures of exposure to ultraviolet light at room temperature cause
molecular species to dissociate into radicals. Thus, homolysis or homolytic
bonding takes place when a two-electron covalent bond and one electron
are transferred to each of the resulting species. For instance, chlorine (Cls)
forms chlorine radicals (C1®) that is X — X — 2X* which can be expressed
as Cl — Cl — 2C1*°

Radical reactions tend to proceed as chain reaction processes which

involve identical propagation steps, these steps are clearly stated in [26]
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as chain-initiating steps, chain-propagating steps, and chain-terminating

steps.

2.2 The halogens in chain reactions

Recall that halogens are classified as non-metals. Though the physical
forms of the halogens differ such as fluorine and chlorine are gases while
bromine is a liquid and iodine exhibits solid at room temperature, each
consists of diatomic molecules: F5, Cls, Bry and I,. Halogens react with
hydrogen (H) to form gaseous compounds such as HF, HCl, HBr and
HI which are all soluble in water. The reaction of these halogens with
metals gives halides.

According to Davvaz et al. [6], they considered the chain reaction;
A2 + Bg Heat %Light 2AB

then there exist molecules Ay, By, and AB and their fragment parts in
the experiment such that elements of this collection can be combined with
each other. Thus, all combinations for the set Sy = {A®, B®, A, By, AB}

are formed without energy as shown in Table 1.

Table 1. Multiplication table of Sy = {A®, B®, Ay, B2, AB}

-+ A® B* Ao B AB

i, B A*, AB

(] [ ] L ] [ ] [ ] b b ) b

A A%, A, A*,B*, AB A%, Ay B s e

i, B i, B°

[ ] [ ] [ ] [ ] b b [ ] b b

B* | A* B, AB B*, By B, B*, B, Y B,

i, B i, B

L ] [ ] L ] L ] 9 b 9 9

As A% Ay | ANBRAB Ay | At A | AR

A'?‘B.? [ ] A.7B.7 [ ] A.7B.7

B2 | B aB B*, By A9, By, AB | BT P2 By, AB
AB A*,AB, A*, B*, A*, B*, A*, B*, A*,B*, Az,

Az, B® AB, By Ao, AB Bs, AB B, AB

The authors in [6], discovered a result that was stated as follows.
Theorem 1. [6] (Sg,+) is an H,-group.

Lemma 1. The only H,-subgroups of (Sm,+) are X = {A®, A3} and
Y = {B*, By).
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Considering A = H and B € {F,Cl, Br, I}; for instance, when B = F,

Table 2 shows the complete reaction.

Table 2. Multiplication table of Sy = {H®,F*, Hz, Fo, HF'}

¥ H® F* H, F HF

H*, F H* HF,

L] (] L] [ ] [ ] b K b bl

H H*, Ho H® F*, HF H®, Hs o P Ho. Fe

H* F* H* F*

L] L] L ] [ ] b ) (] 9 )

F H* F* HF F* Fy HE Fy F*, Fy HEFy

H® F* H* F* H® F*

( ] b b L] b b 9 b

Hy H*, Hy HF, Ho H®, Hy Hy, Fy,HF Hy,HF

H.7F.? [ ] H.7F.7 [ ] H.7F.7

F Fy,HF LR Hy,F>,HF By Fy,HF
HF H.zHF7 H.7F.7 H.zF.z H.vF.7 H.yF.:H27

Hy, F* HF, F, Hy,HF Fy,HF Fy,HF

2.3 Analysis of non-associativity in H,-structures

2.3.1 Left nuclear element and probability of left nuclear ele-

ment

Definition 2. (Left nuclear element) [22]

Let (P,-) be a polygroupoid. The left nucleus pair of x € P is denoted
by Nx(z) and defined as Ny(z) = {(y,2) € P x P | z - (yz) = (zy) - z}.
z € P is said to be left nuclear if Ny(x) = P x P.

Definition 3. (Probability of left nuclear element/polygroupoid) [22]

Let (P,-) be a polygroupoid.

1. The probability of an element x € P being left nuclear is denoted by

Pry, (p,y(x) and defined as

N,\ X
Pt = 0

2. The probability of (P,-) being left nuclear is denoted by Pry, (P, ")
and defined as
Z P’I"N)\(p’.)(.’lf)

zEP
PT‘NA(P7 ') = T.
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Lemma 2. [22] Let (P,-) be a polygroupoid. Let the left nucleus of (P, )
be defined as Nx(P,-) = {x € P | z-(yz) = (zy) -z V (y,2) € P x P}.
Then:

1. Nx(P,-)={xz € P| Nx(x) =P x P} ={x € P | z is left nuclear}.

> INa(z)

zeP

2. PTNA(P,'): W

2.3.2 Middle nuclear element and probability of middle nuclear

element

Definition 4. (Middle nuclear element) [22]

Let (P,-) be a polygroupoid. The middle nucleus pair of z € P is
denoted by N, (z) and defined as N,(z) = {(y,2) € Px P | y- (zz) =
(yx) - z}. x € P is said to be middle nuclear if N,(z) = P x P.

Definition 5. (Probability of middle nuclear element of polygroupoid) [22]
Let (P, ) be a polygroupoid.

1. The probability of an element x € P being middle nuclear is denoted
by Pry,(p.)(z) and defined as

[N ()|
|P?

Pry,p)(z) =

2. The probability of (P, -) being middle nuclear is denoted by Pry,, (P, -)
and defined as

ZP’I’N p)

zeP

Pry,(P,) = [P]

Lemma 3. [22] Let (P,-) be a polygroupoid. Let the middle nucleus of
(P,-) be defined as N, (P,-) ={x € P|y-(xz) = (yr) -2V (y,2) € Px P}.
Then:

1. Ny(P,-)={x€P | Nyx)=PxP}={zx e

P | z is middle nuclear}.
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Z [Nu(2)]

zEP

2. P?"N‘L(P,'): T

2.3.3 Right nuclear element and probability of right nuclear

element

Definition 6. (Right nuclear element) [22]

Let (P,-) be a polygroupoid. The right nucleus pair of 2 € P is denoted
by N,(z) and defined as N,(z) = {(y,2) € P x P | y - (z2x) = (yz) - z}.
x € P is said to be right nuclear if N,(z) = P x P.

Definition 7. (Probability of right nuclear element/polygroupoid) [22]
Let (P, ) be a polygroupoid.

1. The probability of an element x € P being right nuclear is denoted
by Pry,p,y(z) and defined as

[Np(2)]
P2

Pry,py(z) =

2. The probability of (P, -) being right nuclear is denoted by Pry, (P, )

and defined as

Z P’I’Np(py.)(.’l,‘)

Pry,(P,-) = 2P

|P|
Lemma 4. [22] Let (P,-) be a polygroupoid. Let the right nucleus of (P, -)
be defined as Ny(P,-) ={x € P | y-(zx) = (yz) -2 V (y,2) € P x P}.
Then:

1. Ny(P,-)={z € P | Ny(x) =P x P} ={x € P | x is right nuclear}.

> IN(@)]

zEP

2. PT’Nﬂ(P,'):W
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2.3.4 Flexibility and alternativity

Definition 8. (Flexibility set of an element) [22]

Let (P,-) be a polygroupoid. The flexibility set of an element x € P
is denoted by FLEX (z) and defined as FLEX (z) = {y € P | (ay)z =
2(ye)}.

The set of flexible elements in P is denoted by FLEX (P, -) and defined
as FLEX(P,-)={zx € P | FLEX(x) = P}.

Definition 9. (Probability of flexible element /polygroupoid) [22]

Let (P,-) be a polygroupoid. The probability of an element z € P
being flexible is denoted by Prprgx(z) and defined as
_ |FLEX()
- |P
The probability of (P,-) being flexible is denoted by Prprpx(P,) and
defined as

Prrrex(x)

Z Prrrex ()
Prpiex(P,) = 22
|P|
Lemma 5. [22]
Let (P,-) be a polygroupoid.
> |FLEX (x)|
zEP

Then, P’I“FLE)((P,~)= |P|2

Definition 10. (Left alternative element) [22]

Let (P,-) be a polygroupoid. The left alternative set of an element
z € P is denoted by LAP(z) and defined as LAP(z) = {y € P | (zx)y =
x(zy)}. The set of left alternative element of (P, -) is denoted by LAP(P, -)
and defined as LAP(P,-) = {x € P | LAP(x) = P}.

Definition 11. (Probability of left alternative element /polygroupoid) [22]
Let (P,-) be a polygroupoid. The probability of an element x € P
being left alternative is denoted by Prpap(z) and defined as

Priap(z) = |LIT§|<3:)| -
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The probability of (P,-) being left-alternative is denoted by Prpap(P,-)
and defined as

> Proap(z)
Proap(P,) = =2 |P|
Lemma 6. [22]
Let (P,-) be a polygroupoid.
> |LAP(x)|
zeP

Then, Prpap(P,-) = TZE

Definition 12. (Right alternative element) [22]

Let (P,-) be a polygroupoid. Right alternative set of an element 2 € P
is denoted by RAP(z) and defined as RAP(z) = {y € P | y(zz) = y(zx)}.
The set of right alternative elements is denoted by RAP(P,-) and defined
as RAP(P,-) ={x € P| RAP(z) = P}.

Definition 13. (Probability of right alternative element/polygroupoid)
[22]

Let (P,-) be a polygroupoid. The probability of an element = € P
being right alternative is denoted by Prrap(x) and defined as

|[RAP(z)|
Prrap(z) = T

The probability of (P, -) being a right alternative is denoted by Prrap(P,-)
and defined as

> Prrap()
Prpap(P,-) = 22
(P,) P
Lemma 7. [22]
Let (P,-) be a polygroupoid.
> IRAP(z)|

zEP

Then, P’I"RAP(P,') = ‘P|2
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In this work, our main objective is to analyze some non-associative
properties in chain reaction which were identified in [6], [11] and [13]. Also,
since the structure obtained is an H,-group, this motivates us to quantify
non-associative properties such as flexibility, left alternative property, right
alternative property, left (middle, right) nuclear property. and their im-
plications to chain reaction. A computer application program was used to

identify and analyze weak associativity in chain reactions.

3 Main results

The following definition of terms are introduced and will be needed in the

analysis.

Definition 14. Let (P,-) be a polygroupoid.
1. x € P will be said to be flexible if FLEX (z) = P.
2. (P,-) will be said to be flexible if FLEX(P,:) = P.
3. x € P will be said to be left alternative if LAP(z) = P.
4. (P,-) will be said to be left alternative if LAP(P,-) = P.
5. € P will be said to be right alternative if RAP(x) = P.
6. (P,-) will be said to be right alternative if RAP(P,-) = P.

We now present the analysis of non-associative properties for chain
reactions carried out based on Definition 2 to Definition 13, Definition 14

and using Lemma 2 to Lemma 7.

3.1 Algebraic analysis for the triples found in chain

reaction

3.1.1 Algebraic properties and probability of elements in chain

reactions

Discussions:
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Table 3. Algebraic analysis of chain reaction

Properties Number of Triples

A® B®* | Ay | B2 | AB

Left Nucleus True 14 24 24 24 23
[N False 11 1 1 1 2

Middle Nucleus True 23 21 24 21 20
[Nu ()| False 2 4 1 4 5

Right Nucleus True 25 22 25 15 22
[N, ()] False 0 3 0 10 3
Flexibility True 5 5 5 4 5
|FLEX(-)| False 0 0 0 1 0
Left Alternative Property True 4 5 5 5 5
|[LAP()| False 1 0 0 0 0
Right Alternative Property | True 5 4 5 4 4
|[RAP(-)| False 0 1 0 1 1

Table 4. Probability of elements in chain reaction Sg

Probability of Properties A B* A, By, | AB
Left Nucleus Py, (+) 0.56 | 0.96 | 0.96 | 0.96 | 0.92
Middle Nucleus Py, (-) 0.92 | 0.84 | 0.96 | 0.84 | 0.80
Right Nucleus Py, (:) 1.00 | 0.88 | 1.00 | 0.60 | 0.88

Flexibility Prrrx(-) 1.00 | 1.00 | 1.00 | 0.80 | 1.00

Left Alternative Property 080 | 1.00 | 1.00 | 1.00 | 1.00
Prap(’)

Right Alternative Property 1.00 | 0.80 | 1.00 | 0.80 | 0.80
Prap(:)

1. Left Nuclearity:

e Observations: Since the left nuclear property reveals how
an element algebraically acts in the left nucleus in chain
reaction then, from the Table 4, it can be observed that the
probability of A® being a left nuclear element is the least com-
pared to other elements of (Sp,+). Next is AB. The elements
with the highest probability of 0.96 are B®, As, Bs.

e Implications: Despite that B®, As, By have the highest left
nuclear probability, the trio does not form an H,-subgroup of
(Sg,+). Whereas, by Lemma 1, the only H,-subgroups of
(Su,+) are X = {A°, Ao} and Y = {B*®,By}. This is be-
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cause X and Y are both hypergroupoids and quasihypergroups.
But they are not hypergroups because they are not semihyper-
groups; their elements have left nuclear-probabilities that are
less than 1.

2. Middle Nuclearity:

Observations: The middle nuclear property tells how an element
algebraically acts in the middle nucleus in chain reaction. From
the Table 4, it can be observed that the probability of AB being
a middle nuclear element is the least compared to other elements
of (Sg,+). Next are B® and B with higher probabilities of
middle nuclear property, while the elements with the highest
probabilities of 0.92 and 0.96 are A® and A, respectively.

Implications: Interestingly, A®* and As have the highest mid-
dle nuclear probabilities and the duo forms an H,-subgroup X
of (Su,+) according to Lemma 1. Furthermore, B® and Bs
which have the higher middle nuclear probability of 0.84 form
an H,-subgroup Y of (Sg, +) according to Lemma 1. The least
middle nuclear probability in (Sg,+) is possessed by AB; and
this element is not contained in any of the two non-trivial H,-
subgroups of (Sg,+). Note that even though X and Y are
both hypergroupoids and quasihypergroups, they are not hy-
pergroups because they are not semihypergroups; their elements

have middle nuclear-probabilities that are less than 1.

3. Right Nuclearity:

Observations: Right nuclear property tells how an element al-
gebraically acts in the right nucleus in chain reaction. Based
on Table 4, it can be deduced that the probability of By being
a right nuclear element is the least among other elements of
(Su,+). Next are B®* and AB with higher probability of right
nuclear property, while the elements with the highest probabil-
ity of 1.0 are A® and A, respectively.
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e Implications: A® and As have the highest right nuclear proba-
bility and the duo forms an H,-subgroup X of (Sg,+) accord-
ing to Lemma 1. Further, B® and B, which have the higher and
least right nuclear probabilities of 0.88 and 0.60 respectively,
form an H,-subgroup Y of (S, +) according to Lemma 1. Even
though an high right nuclear probability in (Sg, +) is possessed
by AB; and this element is not contained in any of the two non-
trivial H,-subgroups of (Sg,+). Although the elements of X
have right nuclear probability of 1.0, X is a H,-subgroup of
(SH,+) but not an hypergroup. This is because the elements
of X do not have left and middle nuclear probabilities of 1.0.
Nevertheless, A® and Ay are right nuclear elements of (Sg, +).

4. Flexibility:

e Observations: Flexibility property tells how an element alge-
braically acts to be elastic in a symmetric manner in chain reac-
tion. Based on Table 4, it can be observed that A®, B®, A5, AB
have flexible probability of 1.0. But Bs has a flexible probability
of 0.80.

e Implications: A®, B®, Ay, AB are flexible elements. Thus,
FLEX(Sy,+) = {A®,B*, A2, AB}. Among the flexible ele-
ments are A® and Ay which form an H,-subgroup X of (Sg,+)
according to Lemma 1. Recall that these elements were ear-
lier on found to be right nuclear. Further, B®* and Bs which
have the highest and least flexible probabilities of 1.0 and 0.80
respectively, form an H,-subgroup Y of (Sg,+) according to
Lemma 1. Even though the highest flexible probability in
(Sg,+) is possessed by AB; and this element is not contained in
any of the two non-trivial H,-subgroups of (Sg,+). Although
the elements of X have flexible probability of 1.0, X is a H,-
subgroup of (Sg,+) but not an hypergroup. This is because the
elements of X do not have left and middle nuclear probabilities
of 1.0. Nevertheless, elements of X are right nuclear elements
of (Sy,+).
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5. Left Alternative Property:

Observations: Left alternative property reveals how an element
algebraically acts to be elastic in a left symmetric manner in
chain reaction. Based on Table 4, it can be observed that
B*, Ay, By, AB have left alternative probability of 1.0. But A®
has a left alternative probability of 0.80.

Implications: B®, Ay, Bo, AB are left alternative elements.
Thus, LAP(Sg,+) = {B*®, A3, Bo, AB}. Among the left al-
ternative elements are B® and By which form an H,-subgroup
Y of (Sy,+) according to Lemma 1. Recall that only of them
was earlier on found to be right nuclear. Further, A®* and A,
which have the least and highest left alternative probabilities of
0.80 and 1.0 respectively, form an H,-subgroup X of (Sg,+)
according to Lemma 1. Though the highest left alternative
probability in (Sg,+) is possessed by AB; and this element
is not contained in any of the two non-trivial H,-subgroups
of (Su,+). Although the elements of Y have left alternative
probability of 1.0, X is a H,-subgroup of (Sg,+) but not an
hypergroup. This is because the elements of X do not have left

and middle nuclear probabilities of 1.0.

6. Right Alternative Property:

Observations: Right alternative property reveals how an ele-
ment algebraically acts to be elastic in a right symmetric man-
ner in chain reaction. Based on Table 4, it can be observed that
A®, As have right alternative probability of 1.0. But B®, By, AB
have left alternative probability of 0.80.

Implications: A®, A; are right alternative elements. Thus,
RAP(Sp,+) = {A®, A3}. The only right alternative elements
form an H,-subgroup X of (Sg,+) according to Lemma 1. Re-
call that only these two elements were found to be right nuclear
and flexible. Further, B® and By which have the least right al-
ternative probability of 0.80, form an H,-subgroup Y of (Sg, +)

according to Lemma 1.
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3.2 Algebraic analysis for the structure (Sg,+) in

chain reaction

Table 5. Probability of algebraic properties in chain reaction (Sg,+)

Probability of Properties (Su,+)
Left Nucleus Py, () 0.872
Middle Nucleus Py, (*) 0.872
Right Nucleus Py, (-) 0.872
Flexibility PFLEX () 0.96
Left Alternative Property Prap(-) 0.96
Right Alternative Property Prap(+) 0.88

Discussions: From the Table 5, it can be observed that the probabilities
of (Sg,+) being left nuclear, middle nuclear and right nuclear are equal,
which is 0.872 and it is the least among the probabilities. The higher
probability is 0.88 for right alternativity. The chain reaction structure
(Su,+) has the highest probability of 0.96 of being left alternative or
being flexible. The differences in probabilities are: 0.00, |0.96 — 0.88| =
0.08, ]0.88 —0.872| = 0.008, ]0.96 — 0.872| = 0.088. Which means that the
chain reaction structure (Sg,+) has equal likelihood of being left nuclear
or middle nuclear or right nuclear. Also, chain reaction structure (Sg,+)
has equal likelihood of being flexible or left alternative. The chain reaction
structure (S, +) is more likely to be flexible or left alternative than being
left nuclear or middle nuclear or right nuclear or right alternative The
chain reaction structure (Sg,+) is more likely to be right alternative than
being left nuclear or middle nuclear or right nuclear. The differences in
probabilities form the increasing sequence 0.0 < 0.008 < 0.08 < 0.088.

4 Conclusion

This study discovered that hypercompositional algebraic structures rep-
resenting chain reaction is non-associative hypercompositional algebraic

structures. The algebraic behavior of each element based on the non-
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associative properties were analyzed. It can be concluded that the struc-

ture is more likely to be flexible or left alternative than being left nuclear

or middle nuclear or right nuclear or right alternative Furthermore, it can

be concluded that structure is more likely to be right alternative than

being left nuclear or middle nuclear or right nuclear. The differences in
probabilities form the increasing sequence 0.0 < 0.008 < 0.08 < 0.088.
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