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Abstract

Chemical transformations depend not only on the identities of
the reacting species but also on the catalytic, environmental, and
intermediate conditions under which they occur. Classical binary re-
action formalisms usually treat such conditions as external annota-
tions, which obscures the genuinely multi-state and multi-parameter
character of real chemical processes.
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In this paper we introduce an axiomatic framework in which
a chemical system is modeled by a ternary Γ-semiring. The el-
ements of the state set represent chemical states, while the pa-
rameter set encodes catalytic and environmental conditions. A Γ-
dependent ternary operation is used to describe mediated transfor-
mations, treating reactants, intermediates, and mediators as intrin-
sic arguments of the transformation law.

We develop the algebraic axioms governing these mediated in-
teractions and interpret their associativity, distributivity, and Γ-
linearity in terms of multi-step pathways, parallel processes, and
controlled environmental dependence. We introduce chemical ideals
and Γ-ideals as algebraic structures modeling reaction-closed sub-
systems and pathway-stable domains, and study their prime and
semiprime forms. Homomorphisms between TGS-chemical systems
are shown to preserve reaction pathways and describe consistent
changes of chemical environment.

Abstract examples from catalysis, thermodynamic phase con-
trol, and field-induced quantum transitions illustrate how familiar
chemical phenomena fit within this framework. The resulting theory
provides a unified algebraic foundation for multi-parameter chemical
behavior and establishes the structural basis for subsequent devel-
opments involving kinetics, geometric methods, and computational
or AI-assisted models.

1 Introduction

Chemical systems have long served as a rich source of intuition and ex-

amples for mathematics, while mathematical structures have, in turn, pro-

vided increasingly refined languages for describing reactivity, stability, and

transformation in chemistry. Classical formalisms in chemical kinetics,

thermodynamics, and quantum chemistry typically encode reactions in

terms of binary combinations of species (see [2] for mathematical models

of reactivity) ,

A+B −→ C,

with additional information—such as catalysts, solvents, temperature, pre-

ssure, or external fields—being attached as annotations to the reaction ar-

row rather than as intrinsic components of the algebraic operation itself.

This viewpoint is extremely successful in many settings, but it obscures the

genuinely multi-parameter and multi-state nature of real chemical trans-



221

formations.

In practice, a reaction pathway is rarely determined solely by the iden-

tities of the reacting species. Instead, it is governed by a constellation of

mediating factors: catalysts that open or close pathways, solvent environ-

ments that stabilize intermediates, pressure–temperature conditions that

reshape energy landscapes, and external fields that deform quantum states.

These ingredients do not simply modify a pre-existing binary operation;

they participate structurally in how chemical states are transformed. From

an algebraic viewpoint, this suggests that the primitive operation underly-

ing chemical change should be a higher-arity map (higher-arity algebraic

structures were earlier studied in [5,7,10,11]) that treats mediators on the

same footing as the states they control (compare with classical semiring

frameworks [4, 6]) .

The aim of the present paper is to make this intuition precise. We

propose an axiomatic framework in which a chemical system is modeled

by a ternary Γ-semiring, and in which the fundamental reaction-like trans-

formation is encoded by a Γ-dependent ternary operation

[A,α,B, β, C] ∈ S,

where A,B,C ∈ S represent chemical states and α, β ∈ Γ represent me-

diating parameters. This construction elevates catalysts, solvents, and

environmental conditions from external labels to algebraically active in-

puts, thereby providing a unified structure in which multi-state, multi-

parameter(for general algebraic perspectives, see [3])

interactions can be studied with the full precision of modern algebra.

1.1 Motivation

The starting point for our work is the observation that classical reaction

notation is intrinsically binary both in syntax and in its implicit algebraic

interpretation. A formal reaction of the form

A+B −→ C
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suggests an underlying binary operation that takes a pair of input states

(A,B) and produces an output state C. When catalysts or conditions are

present, one typically writes

A+B
catalyst, T,p−−−−−−−−→

solvent
C,

but the additional data are carried outside the core operation; they do not

enter as arguments of the algebraic map itself. In particular, the difference

between a catalyzed and an uncatalyzed reaction, or between two reactions

run under distinct temperature profiles, is not reflected at the level of the

algebraic arity.

However, empirical chemistry shows that these “external” features are

often decisive. The presence or absence of a catalyst can completely al-

ter both the available pathways and the final products. Solvents stabilize

different intermediates, reshaping the energy landscape. Pressure and tem-

perature selectively favor certain phases or reaction channels, while electric

or magnetic fields modify quantum states and transition probabilities. All

of these effects are not accidental decorations but intrinsic components of

how chemical states transform.

From a structural point of view, this suggests that chemical systems

should be viewed as mediated transformation systems: the outcome of

an interaction between states is mediated by additional parameters that

influence, constrain, or enable certain transitions. Instead of encoding this

mediation by enlarging the state space in an ad hoc manner, it is natural

to treat the mediators as elements of a separate set Γ and to allow the basic

operation to depend explicitly on them. A higher-arity algebraic system

whose fundamental operation

[A,α,B, β, C]

takes both states and mediators as arguments is then a natural candidate

for formalizing chemical behavior.

This shift in perspective has several conceptual advantages. First, it al-

lows us to distinguish chemically between different uses of the same species

under distinct conditions without artificially duplicating the state space.
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Second, it creates a direct route for encoding multi-step and cooperative

phenomena: ternary operations can be iterated and composed in a way

that keeps track of how mediators combine or interact. Third, it aligns

chemical reasoning with modern algebraic practices, where higher-arity op-

erations and parameterized structures play a central role in understanding

complex systems.

1.2 Why ternary Γ-semirings?

The abstract notion of a ternary Γ-semiring provides a particularly suit-

able environment for realizing the above programme. At a formal level,

a ternary Γ-semiring consists of a set S, a parameter set Γ, and a Γ-

dependent ternary operation

[ · , · , · , · , · ] : S × Γ× S × Γ× S −→ S

that satisfies appropriate associativity, distributivity, and Γ-linearity con-

ditions. When S is interpreted as a space of chemical states and Γ as

a space of mediators (such as catalysts, solvents, or thermodynamic con-

trols), the value

[A,α,B, β, C]

can be read as the resulting state of a mediated transformation in which

A,B,C interact under the influence of α and β.

Several features of ternary Γ-semirings align naturally with chemical

behavior:

• Catalyst-dependent reactions. Mediators in Γ can represent catalysts,

so that different catalytic scenarios correspond to different choices of

α and β, even when the underlying species A,B,C are fixed.

• Solvent and environment effects. Solvents and bulk environmental

parameters can be encoded as elements of Γ, allowing changes in

solvent or ambient medium to be reflected directly as changes in the

operators governing S.

• Pressure and temperature conditions. Thermodynamic variables can
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be grouped into mediating parameters, making it possible to distin-

guish transformations that are identical in stoichiometry but distinct

in their pressure–temperature regimes.

• Multi-species interactions. The ternary operation simultaneously in-

volves three states of S, permitting the modeling of complex elemen-

tary steps, cooperative effects, or intermediate formation within a

single algebraic act.

From an algebraic standpoint, the Γ-dependence provides a controlled

way to encode families of reaction laws indexed by conditions, while the

ternary nature reflects the intrinsically multi-input character of mediated

transformations. The ternary Γ-semiring therefore emerges as a natural

and flexible candidate for an axiomatic definition of chemical systems.

1.3 Contribution of this paper

In this work we develop a systematic axiomatic theory of chemical sys-

tems based on ternary Γ-semirings. More precisely, we proceed along the

following lines:

• We introduce the notion of a TGS-chemical system, defined as a

ternary Γ-semiring whose elements are interpreted as chemical states

and whose Γ-indexed ternary operation encodes mediated transfor-

mations of those states. The central object of study is the map

[A,α,B, β, C] ∈ S,

which we interpret as the resulting state of a ternary interaction

between A,B,C ∈ S under mediators α, β ∈ Γ.

• We formalize the reaction operation as a Γ-mediated ternary map

and specify axioms that capture associativity, distributivity, and

compatibility with the Γ-structure in a way that reflects multi-step

reactions, parallel pathways, and composite environments.

• We develop the structural theory of TGS-chemical systems, intro-

ducing and analyzing suitable notions of ideals and Γ-ideals that
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correspond to chemically meaningful subsystems and reaction-closed

families of states. In particular, we study prime and semiprime ideals

in this setting and interpret them in terms of irreducible or stability

properties of reaction networks.

• We investigate homomorphisms of TGS-chemical systems as stru-

cture-preserving maps between chemical environments. These ho-

momorphisms provide a natural language for comparing and trans-

porting reaction laws between different systems, and for formalizing

operations such as changing solvent, adjusting environmental condi-

tions, or embedding a subsystem into a larger chemical context.

• Throughout, we illustrate the theory with examples that show how

catalyzed reactions, solvent effects, phase transitions, and other che-

mically relevant phenomena can be encoded within the TGS frame-

work, thereby demonstrating that the proposed axioms are not me-

rely formal but admit a concrete interpretation in chemical practice.

Taken together, these contributions establish a unified algebraic pic-

ture in which chemical states, mediators, and transformations are treated

within a single ternary Γ-semiring structure. This provides a foundation

on which further developments—including kinetic refinements, computa-

tional models, and connections to symbolic reasoning and machine-assisted

chemistry—can be built in subsequent work.

2 Preliminaries on ternary Γ-semirings

In this section we recall the algebraic notions needed throughout the pa-

per. Our treatment follows standard practice in the theory of higher-arity

algebraic systems, adapted to the setting of Γ-parameterized ternary op-

erations. No chemical interpretation is introduced here; the objective is

purely structural. All subsequent sections will build on these foundations.
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2.1 Ternary operations

A ternary operation on a set S is a map

µ : S × S × S −→ S,

(see [5,11]). which assigns to each triple (A,B,C) an element µ(A,B,C) ∈
S. Ternary operations generalize the familiar notion of binary operations

by allowing three inputs to participate simultaneously in the formation of a

new element. In the presence of additional structure, such as a parameter

set or distributive laws, ternary operations serve as the basic building

blocks for higher-arity semigroup or semiring-like systems.

2.2 Γ-sets and parameterized operations

Throughout this paper, Γ denotes a nonempty set whose elements act as

mediating parameters. A Γ-set is simply a pair (S,Γ) consisting of a set S

together with an external parameter set Γ. The elements of Γ do not act

on S directly unless a specific operation is specified; instead, they serve as

indices governing how elements of S combine.

In particular, a Γ-parameterized ternary operation on S is a map

[ · , · , · , · , · ] : S × Γ× S × Γ× S −→ S,

where the parameters in Γ may influence the resulting element in a nontriv-

ial way. This form of parameterization is essential for modeling situations

in which the behavior of a ternary interaction depends on contextual or

environmental data.

2.3 Ternary Γ-semirings

We now introduce the central notion used in this work [4, 6] .

Definition 1. A ternary Γ-semiring is a triple (S,Γ, [ ]) consisting of a

nonempty set S, a nonempty parameter set Γ, and a Γ-parameterized



227

ternary operation

[ , , , , ] : S × Γ× S × Γ× S → S,

satisfying the following axioms for all A,B,C,D,E ∈ S and all α, β, γ, δ ∈
Γ:

1. Associativity. The operation is associative in the sense that

[A,α, [B, β,C, γ,D], δ, E] = [[A,α,B, β, C], γ,D, δ, E],

whenever the expressions are formed. This ensures that iterated

ternary combinations are well defined.

2. Γ-linearity. For fixed internal arguments, the dependence on the

parameters α, β is compatible with the Γ-structure. (The specific

linearity or compatibility conditions imposed on Γ will be detailed

when required for structural results.)

3. Distributivity. The ternary operation distributes over itself in each

argument in the appropriate higher-arity analogue of semiring dis-

tributivity. For instance, [A,α,B, β, [C, γ,D, δ, E]]

= [[A,α,B, β, C], γ,D, δ, E]

= [A,α, [B, β,C, γ,D], δ, E], with analogous conditions holding in

the remaining positions. These distributivity relations guarantee

that the operation behaves coherently when nested.

The axioms above give a flexible framework in which ternary interac-

tions can be iterated, nested, and composed while respecting a fixed set of

mediating parameters.(related ternary operations appear in [10])

In later sections we will interpret S as a set of chemical states and

Γ as a set of mediators (such as catalysts, solvents, or thermodynamic

conditions), with the ternary operation modeling parameter-dependent

transformations. At this stage, however, we treat (S,Γ, [ ]) as a purely

algebraic object, postponing chemical meaning until the core definitions of

TGS-chemical systems are introduced.
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3 Chemical systems as ternary Γ-semirings

We now introduce the central conceptual framework of the paper: a chemi-

cal system viewed as a ternary Γ-semiring whose elements represent chem-

ical states and whose mediators encode the environmental or catalytic

factors influencing their transformations. While the preceding section pro-

vided the purely algebraic foundation, our goal here is to explain how these

structures naturally model multi-parameter, multi-state chemical behav-

ior.

3.1 Chemical interpretation of S and Γ

Let S be a nonempty set. In the context of chemical systems, we interpret

the elements of S as chemical states. The notion of a state is intentionally

broad and may encompass:

• molecular configurations or species identities;

• concentration levels in a reaction mixture;

• phase descriptors (solid, liquid, gas, plasma);

• electronic, vibrational, or quantum mechanical states;

• intermediate structures arising during reaction pathways.

Thus, S serves as the universe within which chemically meaningful ob-

jects reside.This perspective aligns with classical mathematical chemistry

frameworks that treat chemical structure and states using abstract math-

ematical representations (see [1, 8, 12]).

Let Γ be a nonempty parameter set. Its elements are interpreted as

mediators, representing conditions or influences under which chemical in-

teractions occur. Typical examples include:

• catalysts and co-catalysts;

• solvent environments;

• pressure and temperature conditions;
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• electromagnetic or external field parameters;

• pH, ionic strength, or other environmental controls.

These mediators do not transform chemical states directly; rather, they

govern or modulate the transformation rules encoded by the ternary oper-

ation defined below. In this sense, (S,Γ) forms the structural substrate of

a chemical system.Such a parametrization of environmental and catalytic

conditions is consistent with algebraic treatments of ternary and mediated

transformations in other settings (compare [13]).

3.2 Core chemical operation

The essential ingredient of a TGS-chemical system is a Γ-parameterized

ternary operation

[ · , · , · , · , · ] : S × Γ× S × Γ× S −→ S,

which assigns, to each triple of states A,B,C ∈ S and each pair of medi-

ators α, β ∈ Γ, a resulting state D ∈ S. We write this compactly as

[A,α,B, β, C] = D.

Chemically, this is interpreted as follows:

• A is an initial or reactant state;

• B is an interacting state, possibly another reactant or an intermedi-

ate;

• C is a subsequent state, often representing an intermediate or tran-

sition configuration;

• α, β encode mediating conditions (catalysts, solvents,

temperature/pressure regimes, or external fields);

• D is the resulting state after the mediated interaction of A, B, and

C under parameters α and β.
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This notation may be viewed as a symbolic representation of a para-

meter-dependent reaction pathway:

A
α−→ B

β−→ C ⇝ D,

in which the overall transformation is encoded by the ternary Γ-operation.

Unlike the classical binary reaction form A + B → C, this framework

treats mediators as intrinsic arguments of the operation rather than ex-

ternal labels.This sharply contrasts with binary mathematical models of

reactivity commonly used in algebraic treatments of chemical transforma-

tions (see [2]).

This allows chemically distinct processes that share the same stoichiom-

etry but differ in conditions to be represented distinctly at the algebraic

level.

3.3 Axioms for chemical TGS

The axioms of a ternary Γ-semiring, introduced earlier in a purely alge-

braic setting, acquire a natural chemical interpretation when applied to

the present framework. We summarize the interpretative content of the

main axioms below.

(1) Associativity and multi-step reactions. The associativity axiom

ensures that the outcome of a sequence of mediated transformations is

independent of the order in which the ternary combinations are grouped.

Chemically, this corresponds to the fact that a multi-step reaction pathway

A −→ B −→ C −→ D −→ E

admits a coherent overall description, regardless of whether one groups

intermediate steps as (A → B → C) followed by (C → D → E) or uses

another valid decomposition. Thus, associativity provides an algebraic

representation of multi-step or multi-intermediate reaction processes.
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(2) Γ-linearity and scaling of conditions. The Γ-linearity condition

expresses compatibility between the mediators and the ternary operation.

While no specific algebraic structure on Γ is imposed at this stage, the

general principle is that variations or combinations of catalytic or envi-

ronmental parameters correspond to predictable or structured variations

in the resulting state. From a chemical standpoint, increasing catalyst

concentration, changing solvent polarity, or adjusting temperature should

influence reaction behavior in a manner consistent with the dependence

encoded by the operation [A,α,B, β, C].

(3) Distributivity and parallel reactions. The distributivity axioms

capture the idea that the ternary Γ-operation behaves coherently when

nested or combined with itself. Chemically, this reflects the presence of

parallel or branching reaction pathways. For example, if C can arise from

multiple competing intermediates or if the environment induces branch-

ing in the transformation sequence, the distributive laws ensure that such

behavior is represented in a controlled algebraic manner. Distributivity

therefore encodes the superposition or recombination of reaction channels.

Together, these axioms allow ternary Γ-semirings to model chemical

systems in which states evolve under the influence of environmental condi-

tions, catalysts, and other mediating factors. The remainder of the paper

develops the structural theory of such systems and illustrates how classical

and nonclassical chemical processes fit naturally within the TGS frame-

work.

4 Structural theory of TGS-chemical

systems

In this section we develop the basic structural theory of TGS-chemical

systems. Our aim is to identify those subsets of the state space S that

behave as chemically meaningful subsystems, closed under reaction and

stable under the mediating parameters Γ. These subsets will be formalized

as various kinds of ideals, and their properties will be interpreted in terms
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of reaction networks and pathways.

Throughout, (S,Γ, [ ]) denotes a fixed ternary Γ-semiring equipped with

the chemical interpretation of Section 3.

4.1 Chemical ideals

We first single out subsets that are internally closed under the reaction

operation and, in a stronger form, absorb interactions with the ambient

system in a controlled way.

Definition 2 (Reaction-closed subset). A nonempty subset R ⊆ S is

called reaction-closed if for all A,B,C ∈ R and all α, β ∈ Γ,

[A,α,B, β, C] ∈ R.

This notion generalizes closure concepts appearing in classical semiring

structures (compare [3,4]), but adapted to the mediated ternary operation

governing chemical interactions.

In chemical terms, a reaction-closed subset represents a collection of

states that, once present together in the system, can only yield states that

remain within the same collection, irrespective of the mediating conditions.

Such a subset may be viewed as a self-contained reaction universe: all

internally accessible states via the ternary operation stay inside R.

Reaction-closedness captures purely internal behavior. To model inter-

action with the surrounding system, we require an absorption property.

Definition 3 (Chemical ideal). A nonempty subset I ⊆ S is called a

chemical ideal if it satisfies the following conditions:

1. Internal closure: for all A,B,C ∈ I and all α, β ∈ Γ,

[A,α,B, β, C] ∈ I;

2. Boundary absorption: for all A,C ∈ I, all B ∈ S and all α, β ∈ Γ,

[A,α,B, β, C] ∈ I.
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The internal closure and absorption properties reflect the role of one-

and two-sided ideals in semiring theory ( [3, 4]), extended here to the

ternary Γ-interaction and its chemical interpretation.

Condition (C1) states that I is reaction-closed in the sense defined

above. Condition (C2) expresses that if a mediated transformation be-

gins and ends in I, then the entire effect of any intervening state B and

any mediating parameters α, β remains confined to I. Chemically, I can

be thought of as a subsystem that is closed under all internal reactions

and stable under any process that connects two of its states, even when

intermediate species from outside I are involved.

Proposition 1. The intersection of any family of chemical ideals in S is

again a chemical ideal.

Proof. Let {Ij}j∈J be a family of chemical ideals and set I :=
⋂

j∈J Ij .

Since each Ij is nonempty, the intersection is either empty or nonempty;

if empty, it is excluded from consideration, so we assume I ̸= ∅. Let

A,B,C ∈ I and α, β ∈ Γ. Then A,B,C ∈ Ij for every j, and by (C1)

in each Ij we have [A,α,B, β, C] ∈ Ij for all j. Hence [A,α,B, β, C] ∈⋂
j Ij = I, so (C1) holds for I.

Similarly, let A,C ∈ I, B ∈ S and α, β ∈ Γ. Then A,C ∈ Ij for every

j, and by (C2) in each Ij we obtain [A,α,B, β, C] ∈ Ij for all j. Therefore

[A,α,B, β, C] ∈ I, and (C2) holds. Thus I is a chemical ideal.

This result shows that chemical ideals form a complete lattice under

intersection, providing a natural hierarchy of chemically stable subsystems

inside a given TGS-chemical system.Such hierarchical decompositions re-

flect analogous structural decomposition phenomena in classical semiring

theory (see [6]).

4.2 Γ-ideals and reaction pathways

The previous notion focuses on subsets of S that are stable under interac-

tions involving their boundary states. We now refine this by distinguish-

ing the role of a single participating state and allowing the other states

to range freely. This leads to a Γ-ideal structure, reflecting how certain

states control or channel reaction pathways.
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Definition 4 (Γ-ideals). A nonempty subset J ⊆ S is called:

(G1) a left Γ-ideal if for all X ∈ J , all A,B ∈ S and all α, β ∈ Γ,

[X,α,A, β,B] ∈ J ;

(G2) a right Γ-ideal if for all X ∈ J , all A,B ∈ S and all α, β ∈ Γ,

[A,α,B, β,X] ∈ J ;

(G3) a middle Γ-ideal if for all X ∈ J , all A,C ∈ S and all α, β ∈ Γ,

[A,α,X, β, C] ∈ J ;

(G4) a (two-sided) Γ-ideal if it is simultaneously a left, right, and middle

Γ-ideal.

Loosely speaking, a left Γ-ideal is stable under all transformations in

which one of its elements appears in the first argument position, and sim-

ilarly for right and middle Γ-ideals. A two-sided Γ-ideal is stable under

all ternary interactions in which at least one position is occupied by an

element of the ideal.

Chemically, these notions correspond to different forms of control over

reaction pathways:

• a left Γ-ideal collects states that, once present as “initiators” of in-

teractions, always lead back into the same collection, regardless of

what they interact with;

• a right Γ-ideal behaves analogously for “terminal” positions, captur-

ing states that cannot be escaped once they appear as final products;

• a middle Γ-ideal models states that, when acting as intermediates,

keep the system confined to a specific region of the state space;

• a two-sided Γ-ideal encodes a robustly closed set of states that con-

trols and absorbs reaction pathways in all three positions.
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We now describe reaction pathways in this setting.

Definition 5 (Reaction pathway). Let (S,Γ, [ ]) be a TGS-chemical sys-

tem. A reaction pathway of length n ≥ 1 is a finite sequence

(X0, X1, . . . , Xn)

of elements of S such that for each k = 1, . . . , n there exist Ak, Bk ∈ S

and αk, βk ∈ Γ with

Xk = [Ak, αk, Bk, βk, Xk−1] or Xk = [Xk−1, αk, Ak, βk, Bk]

or Xk = [Ak, αk, Xk−1, βk, Bk].

The element X0 is the source and Xn the target of the pathway.

This notion captures the idea that chemical evolution proceeds through

a chain of mediated ternary interactions, with each step determined by a

choice of two companion states and a pair of mediators.

Proposition 2. Let J ⊆ S be a two-sided Γ-ideal. If a reaction pathway

(X0, . . . , Xn) satisfies X0 ∈ J , then Xk ∈ J for all k = 0, . . . , n.

Proof. We argue by induction on k. For k = 0 this is true by assumption.

Suppose Xk ∈ J for some 0 ≤ k < n. By definition of a reaction pathway,

Xk+1 is obtained from Xk by one of the following forms:

Xk+1 = [Xk, α,A, β,B], Xk+1 = [A,α,B, β,Xk],

Xk+1 = [A,α,Xk, β, B],

for suitable A,B ∈ S and α, β ∈ Γ. Since J is a two-sided Γ-ideal, each

of these expressions belongs to J whenever Xk ∈ J . Hence Xk+1 ∈ J ,

completing the induction.

Chemically, this proposition states that once a system enters a two-

sided Γ-ideal, all states reachable via reaction pathways remain confined

within that ideal. Thus, two-sided Γ-ideals model reaction basins or do-

mains in which the chemistry is dynamically trapped under the available

mediators.
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4.3 Prime and semiprime chemical ideals

To understand how reaction activity distributes across the state space, it

is useful to introduce notions of primeness and semiprimeness that adapt

classical ideal-theoretic concepts to the ternary Γ-setting.

Definition 6 (Prime chemical ideal). A proper chemical ideal P ⊊ S is

called prime if whenever

[A,α,B, β, C] ∈ P

for some A,B,C ∈ S and α, β ∈ Γ, then at least one of A,B,C lies in P .

This notion extends the classical understanding of prime ideals in

semiring theory, where primeness forbids internal factorization of elements

outside the ideal (compare [4]).

Thus, a prime chemical ideal cannot contain the result of a mediated

interaction without “detecting” the presence of one of its participants.

Chemically, P behaves like a region of the state space whose boundary is

sufficiently sharp that it cannot be entered as the product of a reaction

between three states all lying outside P . In this sense, a prime chemical

ideal captures a subsystem in which one interaction or family of interac-

tions dominates access to its interior.

Definition 7 (Semiprime chemical ideal). A chemical ideal I ⊆ S is called

semiprime if for every A ∈ S the following implication holds: if

[A,α,A, β,A] ∈ I for all α, β ∈ Γ,

then A ∈ I.

This condition generalizes the classical semiprime property in semiring

theory, where self-combinations inside an ideal force membership of the

element itself (see [4]).

Here, [A,α,A, β,A] may be understood as a self-interaction or self-

combination of the state A under all possible mediators. The definition

says that if every such self-interaction of A falls inside I, then A itself

must already belong to I. Semiprimeness thus prevents the existence of
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“hidden” states outside I whose entire mediated self-dynamics is trapped

within I.

Proposition 3. Every prime chemical ideal is semiprime.

Proof. Let P be a prime chemical ideal and suppose that [A,α,A, β,A] ∈
P for all α, β ∈ Γ. In particular, there exist α0, β0 ∈ Γ such that

[A,α0, A, β0, A] ∈ P . By primeness, at least one of the three entries in

this interaction must belong to P . Since all three are equal to A, we

conclude that A ∈ P . Thus P is semiprime.

From a chemical perspective, this result indicates that in a prime chem-

ical ideal, any state whose self-interactions are entirely trapped within the

ideal must itself be regarded as belonging to that ideal. Prime subsystems

therefore exclude the possibility of persistent external states whose inter-

nal dynamics is indistinguishable, in terms of reaction products, from that

of genuine internal states.

The theory of prime and semiprime chemical ideals provides a way to

decompose a TGS-chemical system into structurally meaningful compo-

nents, reflecting how reaction activity and mediated transformations are

distributed across the state space. Comparable decomposition principles

appear in algebraic treatments of semirings and their ideal lattices [6]. .

In subsequent work, one may associate to a given system an appropriate

spectrum of prime chemical ideals and study its topology, thus connecting

the present framework with geometric methods.

5 Homomorphisms of chemical TGS

Homomorphisms provide a natural mechanism for comparing different

TGS-chemical systems and transporting reaction behavior from one system

to another. Just as homomorphisms of semirings or semigroups preserve

algebraic structure, homomorphisms of ternary Γ-semirings preserve the

mediated ternary interaction that encodes chemical transformation. The

present section formalizes this notion and explains its chemical significance.

Throughout, (S,Γ, [ ]) and (S′,Γ, [ ]′) denote two TGS-chemical sys-

tems sharing the same parameter set Γ. The requirement of a common
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Γ reflects that mediators (catalysts, solvents, environmental conditions)

are interpreted as parameters intrinsic to the interaction law and therefore

must be preserved.

5.1 Definition

Definition 8. A map

f : S −→ S′

is called a homomorphism of TGS-chemical systems if for all A,B,C ∈ S

and all α, β ∈ Γ,

f([A,α,B, β, C]) = [f(A), α, f(B), β, f(C)]′.

This condition is analogous to structure-preserving maps in classical

semiring and algebraic systems, where homomorphisms preserve the un-

derlying interaction laws (see [4, 6]).

Thus, f commutes with the ternary Γ-operation: applying the reaction

operation in S and then mapping the result via f yields the same state

as first mapping the inputs via f and then applying the reaction opera-

tion in S′. In other words, f is a structure-preserving transformation of

chemical environments.

Several immediate properties follow directly from the definition.

Proposition 4. Let f : S → S′ be a TGS-homomorphism.

(a) If R ⊆ S is reaction-closed, then f(R) is reaction-closed in S′.

(b) If I ⊆ S is a chemical ideal, then f(I) is a chemical ideal in S′.

(c) If J ⊆ S is a Γ-ideal of any type (left, right, middle, or two-sided),

then f(J) is a Γ-ideal of the corresponding type in S′.

Proof. Each property is verified by direct substitution using the homo-

morphism identity. For example, if A,B,C ∈ R and α, β ∈ Γ, then the

reaction-closedness of R gives [A,α,B, β, C] ∈ R, and applying f yields

f([A,α,B, β, C]) = [f(A), α, f(B), β, f(C)]′ ∈ f(R),
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establishing reaction-closedness of f(R). The remaining cases follow the

same pattern.

This result shows that homomorphisms are compatible with the struc-

tural subsystems developed in Section 4: reactors, basins, and pathways

are mapped to reactors, basins, and pathways in the target system.

5.2 Chemical meaning

A TGS-homomorphism models a consistency-preserving transformation

between chemical environments. Its chemical interpretations include the

following:

(1) Change of solvent or medium. Suppose S describes reaction be-

havior in solvent X and S′ in solvent Y . A homomorphism f : S → S′

represents a map translating chemical states from the X-environment to

the Y -environment such that the mediated interactions are preserved: a

triple interaction inX corresponds exactly to the mapped triple interaction

in Y . This formalizes the intuitive idea that a well-defined solvent change

should send reaction pathways to reaction pathways without altering their

essential structure.

(2) Change of catalyst or catalytic regime. Different catalytic envi-

ronments can be modeled by different TGS-chemical systems built on the

same parameter space Γ but with distinct state spaces or distinct ternary

interaction laws. A homomorphism

f : S → S′

can represent the adjustment of reaction behavior when switching from

one catalyst to another. The preservation of the mediated operation en-

sures that catalytic effects are transferred systematically rather than arbi-

trarily.Such environment-to-environment mappings have analogues in al-

gebraic treatments of ternary and parameter-dependent transformations

(see [13]).
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(3) Controlled mapping between chemical environments. More

generally, a homomorphism encodes any structured change of environment

where reaction behavior is transformed coherently. This may represent, for

example:

• embedding a system with restricted state space into a larger one;

• coarse-graining a complex reaction network into a simpler model;

• mapping between different thermodynamic or field-controlled envi-

ronments;

• abstraction from microscopic to effective macroscopic states.

In each of these examples, the homomorphism ensures that reaction mech-

anisms and mediator influences retain their form under translation.

(4) Compatibility with reaction pathways. Since homomorphisms

preserve the ternary Γ-operation, they also preserve reaction pathways in

the sense of Section 4. Every reaction sequence

X0 → X1 → · · · → Xn

in S is carried by f to a reaction pathway

f(X0) → f(X1) → · · · → f(Xn)

in S′. Thus, homomorphisms provide a bridge between dynamical behav-

iors in different systems, enabling the systematic study of how pathways

transform under environmental changes.

Overall, homomorphisms of TGS-chemical systems play a role analo-

gous to structure-preserving maps in algebra, but their chemical interpre-

tation is richer: they express how reaction laws, mediators, and transfor-

mation dynamics behave under coherent changes of environment. This

makes them powerful tools for both mathematical analysis and chemical

modeling.
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6 Examples from chemistry

In this section we present several abstract but chemically meaningful ex-

amples illustrating how mediated ternary interactions arise naturally in

chemical systems.In this section we present several abstract but chemi-

cally meaningful examples illustrating how mediated ternary interactions

arise naturally in chemical systems. These examples parallel mathemat-

ically formal approaches to chemical structure and transformation found

in classical mathematical chemistry (see [1, 8, 12]).

The purpose of these examples is not to model specific experimental

systems but to show how familiar chemical phenomena can be expressed

within the TGS framework introduced above.

Throughout, (S,Γ, [ ]) denotes a TGS-chemical system in the sense of

Section 3, where S represents chemical states and Γ represents mediating

conditions.

6.1 Catalyzed reactions

Catalysis provides a direct example of a mediated transformation in which

the presence of a catalyst modifies the reaction pathway without being

consumed. Let A,B,C ∈ S denote chemical states that participate in a

multi-step reaction, and let α, β ∈ Γ represent catalytic regimes.

Consider the ternary operation

[A,α,B, β, C] = D.

Here, A may be interpreted as an initial reactant state, B as an interacting

partner or intermediate, and C as a subsequent state through which the

system passes. The mediator α can encode the presence of a catalyst that

opens a specific reaction pathway, while β may represent a co-catalyst or

a secondary catalytic condition.

If α corresponds to a catalyst that lowers the effective barrier between

A and B, and β indexes a catalytic effect acting on the transformation from

B to C, then D represents the resulting state of the catalyzed sequence.
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Different choices of α and β generally produce different outcomes:

[A,α1, B, β, C] ̸= [A,α2, B, β, C],

even when the underlying species A,B,C remain fixed. This expresses,

in algebraic form, the well-known fact that changing catalysts can modify

the reaction pathway or final products while preserving stoichiometry.

The ternary structure is essential here: the catalyst is not appended

externally but serves as an intrinsic argument of the reaction law.

6.2 Phase transitions under thermodynamic control

Phase transformations depend sensitively on thermodynamic parameters

such as temperature and pressure. In the TGS framework, such environ-

mental conditions are naturally represented as elements of Γ.

Let Γ consist of pairs (T, p) corresponding to permissible temperature–

pressure regimes.Let A,B,C ∈ S represent physical states of a substance,

such as configurations or phase descriptors. A ternary interaction

[A, (T1, p1), B, (T2, p2), C]

produces a state D, where the mediators (T1, p1) and (T2, p2) govern the

transitions between A → B and B → C respectively.

For example:

• If (T1, p1) represents conditions favoring melting, and (T2, p2) repre-

sents conditions favoring vaporization, then D may correspond to a

higher-energy phase.

• If (T1, p1) lies in a stability region for a solid phase, and (T2, p2) lies

in a stability region for a metastable phase, then D may encode a

metastable state reached by sequential transitions.

The ternary formulation captures the fact that multi-step phase trans-

formations are governed not only by initial and final conditions but also

by intermediate thermodynamic regimes. Different paths through (T, p)-
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space yield different outcomes, and the dependence is faithfully recorded

by the mediators in the Γ-operation.

6.3 Quantum state transitions under external fields

Quantum systems subject to external electromagnetic fields provide a fur-

ther setting in which ternary, parameter-dependent interactions arise. Let

S denote a set of quantum states, which may include electronic, vibra-

tional, or spin configurations. Let Γ index external field parameters such

as field strength, frequency, or polarization.Such field-mediated transitions

have abstract algebraic analogues in parameter-dependent ternary relation

frameworks (see [13]).

A ternary interaction

[A,α,B, β, C] = D

may then model a sequence of field-induced transitions:

• A → B mediated by field parameter α,

• B → C mediated by field parameter β,

• resulting in a state D after the composite process.

For instance:

• α may represent a low-frequency field inducing a transition from A

to B;

• β may represent a high-frequency field inducing a transition from B

to C;

• the final state D depends on the combined effect of both fields in

sequence.

The value of D may differ significantly from what is obtained by either

field alone, reflecting the well-established sensitivity of quantum transi-

tions to external field combinations. The ternary structure captures this
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dependence by integrating the field parameters directly into the reaction

law.

These examples illustrate how the ternary Γ-operation provides a nat-

ural formalism for expressing catalysis, thermodynamic control, and field-

induced quantum transitions within a single coherent algebraic framework.

The examples are intentionally abstract, focusing on the structural features

that make TGS-chemical systems flexible enough to encode a wide range

of chemical behavior.

7 Conclusion and future work

In this work we have developed an axiomatic framework for modeling

chemical systems using the structure of a ternary Γ-semiring. Beginning

with the observation that chemical transformations are inherently multi-

parameter and multi-state processes, we formulated a reaction law in which

chemical states and mediating conditions appear as intrinsic arguments of

a ternary operation. This contrasts with the classical binary perspective,

where catalysts and environmental factors are appended externally rather

than participating structurally in the transformation process.

The foundational contribution of the paper lies in isolating the math-

ematical axioms that govern such mediated transformations and demon-

strating how these axioms admit chemically meaningful interpretations.

These axioms extend the structural principles familiar from classical semir-

ing theory (see [3,4]) to a ternary Γ-mediated setting appropriate for chem-

ical applications.

The ternary operation encodes multi-step transformations, the Γ-para-

meters incorporate catalytic and environmental effects, and the associa-

tivity and distributivity relations reflect coherence of reaction pathways.

The resulting concept of a TGS-chemical system provides a unified formal-

ism in which multi-state, catalyst-dependent, and environment-dependent

phenomena can be described algebraically.

We also developed the structural theory of these systems, introducing

chemical ideals, Γ-ideals, and their prime and semiprime variants. These
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notions identify chemically stable subsystems, reaction-closed domains,

and regions whose internal behavior governs the structure of mediated

interactions. Reaction pathways were characterized in terms of iterated

ternary operations, and we showed how homomorphisms between TGS-

chemical systems provide consistency-preserving maps between different

chemical environments. Finally, we illustrated the framework with ab-

stract examples drawn from catalysis, phase transitions, and field-driven

quantum processes.

Future directions

The present framework opens several avenues for further development.

• Kinetic and dynamical refinements. While the TGS formal-

ism captures structural relationships between states and mediators,

incorporating explicit temporal or kinetic data would allow the con-

struction of mediated dynamical systems. A natural direction is to

study sequences of ternary interactions as discrete dynamical pro-

cesses and to identify stability, periodicity, or convergence phenom-

ena within this setting.

• Quantitative extensions. The current theory treats S and Γ ab-

stractly. Enriching these sets with additional algebraic or topologi-

cal structure—such as orders, metrics, or weights—could allow the

encoding of reaction energetics, field strengths, or graded catalytic

effects. Such extensions would be essential for connecting the TGS

framework to numerical models.

• Categorical and geometric viewpoints. The ideal theory de-

veloped here suggests the possibility of defining spectra of prime

chemical ideals and studying their geometric features. This may

lead to a form of ternary Γ-geometry in which chemical structure is

represented through geometric invariants of the spectrum.

• Computational and AI-based models. The unified treatment

of states and mediators makes TGS-chemical systems natural candi-

dates for symbolic or rule-based computational models. Subsequent
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work may explore how the ternary operation interacts with algorith-

mic reasoning, abstraction, or machine-assisted simulation, thereby

linking algebraic chemistry with emerging methodologies in compu-

tational chemistry and symbolic AI.Such directions resonate with

semiring-based computational frameworks and ternary parameter-

ized transformations explored in abstract algebraic settings (see [13]).

Overall, the ternary Γ-semiring viewpoint offers a flexible and concep-

tually coherent foundation for the algebraic study of chemical systems.

The theory developed in this paper establishes the basic structure on

which further analytical, geometric, and computational developments can

be built.
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