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Abstract

Direct Ocean Capture (DOC) has emerged as a promising Car-
bon Dioxide Removal (CDR) strategy, yet its structural and dy-
namic properties remain underexplored compared to the more estab-
lished Direct Air Capture (DAC). To address this, we construct and
analyze a kinetic system for DOC using Chemical Reaction Network
Theory (CRNT). Our analysis identifies the necessary conditions for
the existence of positive steady states and highlights the potential
for multistationarity, emphasizing critical tipping points within the
carbon cycle. Furthermore, we characterize the conditions under
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which specific carbon pools exhibit Absolute Concentration Robust-
ness (ACR) and determine the system’s carbon reduction capability.
Finally, we present a comparative analysis of the DOCmodel against
an established DAC model and an integrated DOC-DAC framework,
providing insights into their roles in climate mitigation.

1 Introduction

Over the past several hundred years, the expansion of society’s consump-

tion of fossil fuels and extensive alteration of the terrestrial biosphere has

led to a dramatic rise in levels of carbon dioxide and other greenhouse

gases in the atmosphere. The resulting climate change is one of the most

serious issues society is facing today. It is challenging to significantly cut

down on CO2 emissions since this modern world relies heavily on fossil

fuels to keep the economy running [24].

The Earth’s carbon cycle is a complex and dynamic system that plays

an important role in regulating the climate of our planet and sustaining

life. It involves the exchange of carbon between terrestrial ecosystems, the

atmosphere, and the oceans. Understanding the intricacies of this cycle is

important for predicting the impacts of activities, such as anthropogenic

carbon dioxide (CO2) emissions in the atmosphere, which affect global

climate change and for developing strategies to mitigate these effects [4,

13,26].

So far, efforts to remove excess CO2 from the air have largely focused

on what can be done on the land, such as growing trees or building direct

air capture plants [20, 21, 27]. However, a growing number of researchers,

companies and even national governments have begun to look at the ocean

as a potential location for carbon dioxide removal [24].

In the fight against climate change, Carbon Dioxide Removal (CDR)

technologies are essential for reducing CO2 levels. It is established that

the ocean is good at sequestering carbon because it has already absorbed

30% of the CO2 - and 90% of excess heat - caused by human activities,

significantly dampening the impacts of climate change [12, 19]. In total,

the ocean holds around 42 times more carbon than the atmosphere [11,21].

Carbon dioxide removal through Direct Ocean Capture (DOC) incor-
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porates novel electrochemical engineering techniques where dissolved CO2

is separated from seawater and stored into long-term geological stock. Al-

though similar to Direct Air Capture (DAC) which captures carbon from

the atmosphere, the physical processes and flux constraints differ in key

ways. A parameter-minimal analysis of DAC has recently been studied

in [9]. The present paper, developing a compartmental ocean-based cap-

ture model, differs from the paper of Fortun et al. [9] as we establish new

criteria specific to DOC’s structure and carbon interactions. In addition,

we also introduce in this paper an integrated model which includes both

DOC and DAC as carbon dioxide removal techniques, and analyze its

long-term behavior.

A key to understanding the DOC system is the application of chemical

reaction network theory (CRNT). CRNT is particularly valuable for ana-

lyzing the structural and dynamical behavior of a system with uncertain or

variable parameters. In particular, we explore crucial properties of DOC

systems using CRNT: existence of positive steady states, multistationarity

and absolute concentration robustness (ACR). We also identify conditions

for the carbon reduction capability of the DOC system.

Studying the steady states of a system provides us with an under-

standing of its long-term behavior and helps us determine its stability.

Furthermore, understanding the complexities of climate change requires

a thorough examination of climate tipping points. These points denote

critical thresholds where the climate system undergoes changes that could

lead to irreversible impacts. Predicting and comprehending these tipping

points is crucial for developing effective strategies to mitigate the impacts

of climate change. Multistationarity, associated with tipping points, de-

scribes how a system could swiftly and irreversibly switch to another state.

In the context of chemical reaction networks, multistationarity refers to the

system’s ability to maintain multiple steady states under identical parame-

ters, including the same set of rate constants and conserved quantities. On

the other hand, ACR ensures the maintenance of the concentration level

of key species despite changes in initial conditions. For DOC systems,

achieving ACR is critical to maintaining robustness in carbon capture and

storage processes over the long term.
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We then conduct a comparative analysis of the structural and dynamic

properties of the Direct Ocean Capture (DOC) model, alongside the well-

established Direct Air Capture (DAC) model by Fortun et al. This com-

parison is crucial given that DAC is a well-established technology with

large-scale projects already, while DOC is still in the early stages, with

only a few trials conducted so far. Furthermore, DOC is geographically

constrained to oceanic vicinity.

The integration of multiple technologies, i.e., the integrated DOC-DAC

approach, is likely to be necessary for large-scale carbon reduction, and our

study demonstrates how this can be effectively modeled within the CDR

framework.

2 Preliminaries

2.1 Chemical reaction networks

A chemical reaction network or simply CRN is a triple of nonempty finite

sets, where

i. S = {A1, A2, . . . , Am} is the set of species,

ii. C = {C1, C2, . . . , Cn} is the set of complexes that are non-negative

linear combinations of the species, and

iii. R = {R1, R2, . . . , Rn} ⊂ C × C is the set of reactions.

A reaction (Ci, Cj) ∈ R is typically represented as Ci → Cj . The

complex Ci is called the reactant complex and Cj is called the product

complex. The reaction vector for this reaction is defined by the difference

Cj−Ci. Furthermore, the linear subspace S of Rm spanned by the reaction

vectors is called the stoichiometric subspace of a given network, i.e., S =

span{Cj − Ci ∈ Rm | Ci → Cj ∈ R}.
Consider the CRN, hereafter referred to as the DOC (direct ocean

capture) network, which consists of the following seven reactions:

R1 : A1 + 2A2 → 2A1 +A2
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R2 : 2A1 +A2 → A1 + 2A2

R3 : A2 → A3

R4 : A3 → A2

R5 : A4 → A2

R6 : A17 → A4

R7 : A3 → A17.

The network has m = 5 species (A1, A2, A3, A4, and A17). Further-

more, it has n = 6 complexes (A1 + 2A2, 2A1 + A2, A2, A3, A4 and A17)

and has r = 7 reactions (R1, R2, . . . , R7).

The molecularity matrix Y is an m × n matrix where Yij is the stoi-

chiometric coefficient of species Ai in complex Cj . The incidence matrix

Ia is an n× r matrix where

(Ia)ij =


−1 if Ci is in the reactant complex of reaction Rj ,

1 if Ci is in the product complex of reaction Rj ,

0 otherwise.

The stoichiometric matrix N is the m× r matrix given by N = Y Ia.

The deficiency of a CRN is δ = n − ℓ − s where n is the number of

complexes, ℓ is the number of connected components, and s is the rank of

the stoichiometric matrix of the network.

For our network, the molecularity, incidence, and stoichiometric matri-

ces are given by

Y =

A1 + 2A2 2A1 + A2 A2 A3 A4 A17


A1 1 2 0 0 0 0

A2 2 1 1 0 0 0

A3 0 0 0 1 0 0

A4 0 0 0 0 1 0

A17 0 0 0 0 0 1

,
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Ia =

R1 R2 R3 R4 R5 R6 R7



A1 + 2A2 −1 1 0 0 0 0 0

2A1 + A2 1 −1 0 0 0 0 0

A2 0 0 −1 1 1 0 0

A3 0 0 1 −1 0 0 −1

A4 0 0 0 0 −1 1 0

A17 0 0 0 0 0 −1 1

,

and

N = Y Ia =

R1 R2 R3 R4 R5 R6 R7


A1 1 −1 0 0 0 0 0

A2 −1 1 −1 1 1 0 0

A3 0 0 1 −1 0 0 −1

A4 0 0 0 0 −1 1 0

A17 0 0 0 0 0 −1 1

.

The deficiency of the DOC network is δ = n−ℓ−s = 6−2−4 = 0 because

there are six complexes, two connected components, and the rank of N is

four.

A CRN is weakly reversible if each of its reactions is contained in a

directed cycle. Since each reaction in the DOC network belongs to a cycle,

it is a weakly reversible network.

Therefore, the DOC network is a weakly reversible and deficiency zero

network.

2.2 Chemical kinetic systems

A kinetics for a reaction network N = (S, C,R) is an assignment to

each reaction Ci → Cj ∈ R of a continuously differentiable rate func-

tion KCi→Cj : RS
≥0 → R≥0 such that this positivity condition holds:

KCi→Cj (c) > 0 if and only if supp Ci ⊂ supp c. Here, supp Ci refers

to the support of the vector Ci, which is the set of species with nonzero

coefficient in Ci. Hence, the pair (N ,K) is called a chemical kinetic system.
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The species formation rate function (SFRF) of (N ,K) is defined as

f (x) =
∑

Ci→Cj∈R
KCi→Cj

(x) (Cj − Ci)

with x a vector of concentrations of the species that change over time.

Equivalently, f(x) = NK(x) where N is the stoichiometric matrix of N
and K(x) is the vector of rate functions. The system of ordinary differential

equations (ODEs) of a chemical kinetic system is given by
dx

dt
= f (x). A

positive steady state is a positive vector that makes each time derivative

equal to zero. Thus, the set of positive steady states of a chemical kinetic

system (N ,K) is given by E+ (N ,K) = {x ∈ Rm
>0|f (x) = 0} .

2.3 Power law systems

A power law kinetics has the form Ki (x) = ki
∏
j

xj
Fij for each reaction

i = 1, . . . , r where ki ∈ R>0 and Fij ∈ R. The r × m matrix F = [Fij ]

is called the kinetic order matrix that contains the kinetic order values

Fij , and ki is called the ith rate constant. A power law system is a CRN

endowed with power law kinetics.

Specifically, if each kinetic order row contains the stoichiometric coef-

ficients of each reactant for the associated reaction in the network, then

the system follows the well-known mass action kinetics.

2.4 Network decomposition

We can decompose a CRN into pieces of networks called subnetworks by

partitioning its reaction set into disjoint subsets. A network decomposition

N = N1 ∪ N2 ∪ . . . ∪ Nk is said to be independent if its stoichiometric

subspace is a direct sum of the stoichiometric subspaces of its subnetworks.

An equivalent condition is to show that the rank of the stoichiometric

matrix of the whole network is the sum of the ranks of the stoichiometric

matrices of its subnetworks.

This concept of independent decomposition is important to our study,

as it establishes a significant relationship between the structure of the set of
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positive steady states of a given network and its independent subnetworks.

The following result by M. Feinberg, which we call Feinberg Decomposition

Theorem, highlights this relationship [5, Appendix 6.A].

Theorem 1. Let (N ,K) be a chemical kinetic system. Suppose N is de-

composed into k subnetworks, say N1,N2, . . . ,Nk, and denote the restric-

tion of K to the restrictions in Ni as Ki. If the network decomposition is

independent, then
k⋂

i=1

E+(Ni,Ki) = E+(N ,K).

To get the finest independent decomposition (independent decompo-

sition with maximum number of subnetworks), a MATLAB program was

provided in [22]. By entering the DOC network and applying the pro-

gram, we obtain the following such decomposition: N1 = {R1, R2} and

N2 = {R3, R4, . . . , R7}.
Recall from Section 2.1 that the stoichiometric matrix of the whole

DOC network is

N =

R1 R2 R3 R4 R5 R6 R7


1 −1 0 0 0 0 0 A1

−1 1 −1 1 1 0 0 A2

0 0 1 −1 0 0 −1 A3

0 0 0 0 −1 1 0 A4

0 0 0 0 0 −1 1 A17

.

Furthermore, the stoichiometric matrices of the two subnetworks (N1

and N2) are

N1 =

R1 R2


1 −1 A1

−1 1 A2

0 0 A3

0 0 A4

0 0 A17

and N2 =

R3 R4 R5 R6 R7


0 0 0 0 0 A1

−1 1 1 0 0 A2

1 −1 0 0 −1 A3

0 0 −1 1 0 A4

0 0 0 −1 1 A17

.



169

Since rank N = 4, rank N1 = 1 and rank N2 = 3. Then, the sum of the

ranks of the stoichiometric matrices of the subnetworks is the rank of the

stoichiometric matrix of the whole network. Indeed, the decomposition is

independent.

3 Results and discussion

3.1 The direct ocean capture system

The Direct Ocean Capture (DOC) system is based on a three-compartment

biochemical framework of the pre-industrial model of Anderies et al. [2],

which describes the carbon cycle interactions through the transfer of car-

bon between the land (A1), atmosphere (A2), and ocean (A3).

As seen in Figure 1, the solid arrows indicate active carbon trans-

fers between these pools, while the dashed arrows represent passive car-

bon transfers induced by regulatory influences. For example, the solid

arrow from the atmosphere (A2) to the ocean (A3) indicates that a por-

tion of carbon in the atmosphere can be actively transferred to the ocean.

Meanwhile, the transfer of carbon from land to atmosphere has both ac-

tive and passive components and is influenced by both A1 and A2. As

a result, we use dashed arrows in the diagram and write the reaction

A1+(A1+A2) → A2+(A1+A2), which is the same as 2A1+A2 → A1+2A2,

to represent both components of carbon transfer.

The modeling framework utilizes a power-law system in which the pro-

cesses (or reactions) are represented by power-law functions. The structure

of the rate function of the two processes with regulatory influences, where

the two species A1 and A2 are involved, follows the form kap1a
q
2 [8].

Our extended model includes an additional compartment (A4) for the

geological stock, which facilitates the transfer of carbon to the atmosphere

at a linear rate. This transfer of carbon from geological stock to atmo-

sphere is facilitated by fossil fuel combustion [2]. Furthermore, we in-

corporate an additional compartment for direct ocean capture (A17), also

with a linear rate. The compartment for geological stock will then serve

as a terminal and long-term reservoir for the carbon captured by CDR
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technologies. These extensions to the original Anderies model allow us

to define four functional subsystems: the Anderies pre-industrial carbon

cycle subsystem, the direct ocean capture subsystem, the carbon storage

subsystem, and the carbon emission subsystem.

Figure 1. A biochemical map of the Earth’s carbon cycle with direct
ocean capture (DOC). The nodes represent the carbon pools.
Furthermore, the solid arrows indicate carbon transfer, while
the dashed arrows represent regulatory influences.

The biochemical map in Figure 1 can be represented as a chemical re-

action network taking the different carbon pools as our species and the

carbon transfers as reactions. The reactions in the DOC systems’s corre-

sponding network N , together with the corresponding rate functions for

each of them are given by

R1 : A1 + 2A2 → 2A1 +A2 (k1a
p1

1 aq12 ),

R2 : 2A1 +A2 → A1 + 2A2 (k2a
p2

1 aq22 ),

R3 : A2 → A3 (k3a2),

R4 : A3 → A2 (k4a3),

R5 : A4 → A2 (k5a4),

R6 : A17 → A4 (k6a17),
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R7 : A3 → A17 (k7a3),

where the ki’s, for i = 1, 2, . . . , 7, denote the rate constants for each of the

seven reactions. We can also represent the underlying network of the DOC

system in the following diagram

A1 + 2A2 −−−⇀↽−−− A2 + 2A1

A17

A3A2

A4

.

The kinetic order values of our system, as well as additional important

quantities for our analysis are given in Table 1. In the table, we define the

interaction differences of respiration and photosynthesis in the land biota

and atmosphere, as well as their corresponding difference ratios, R and Q.

Notation Definition
p1 kinetic order of land photosynthesis interaction (p-interaction)
p2 kinetic order of land respiration interaction (r-interaction)
q1 kinetic order of atmosphere photosynthesis interaction

(p-interaction)
q2 kinetic order of atmosphere respiration interaction (r-interaction)

p2 − p1 land r-p-interaction difference
q2 − q1 atmosphere r-p-interaction difference

R =
p2 − p1
q2 − q1

land-atmosphere r-p-interaction difference ratio

Q =
q2 − q1
p2 − p1

atmosphere-land r-p-interaction difference ratio

Table 1. Model parameters in the DOC system

From the defined parameters, we generate the ordinary differential

equations (ODEs) that describe the dynamics of the network given by

da1
dt

= k1a
p1

1 aq12 − k2a
p2

1 aq22

da2
dt

= k2a
p2

1 aq22 − k1a
p1

1 aq12 − k3a2 + k4a3 + k5a4

da3
dt

= k3a2 − k4a3 − k7a3
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da4
dt

= k6a17 − k5a4

da17
dt

= k7a3 − k6a17.

We proceed by defining four different classes of the direct ocean capture

system based on the signs of R and Q. This concept of classifying carbon

systems was introduced by Fortun and Mendoza in [10] and we provide a

similar classification to our systems given the modification for direct ocean

capture technology.

Definition 1. The set of direct ocean capture systems such that R > 0

(R < 0) is denoted by DOC> (DOC<). Elements of DOC> (DOC<) are

called positive (negative) DOC systems.

Notice that the ratios R and Q are multiplicative reciprocals of each

other. Hence, both difference ratios must have the same signs. As such, we

can equivalently check the sign of Q to determine whether a DOC system

is positive or negative. To be precise, a DOC system is also said to be

positive (negative) if Q > 0 (Q < 0).

Now, note that the ratios R and Q are defined for q1 ̸= q2 and p1 ̸= p2,

respectively. Moreover, R and Q are zero if p1 = p2 and q1 = q2, respec-

tively. This allows us to define two more classes for our DOC systems.

Definition 2. The set of all direct ocean capture systems such that R = 0,

i.e. p1 = p2 but q1 ̸= q2 is denoted by DOCP0 , Similarly, if Q = 0, i.e.

q1 = q2 but p1 ̸= p2, then this set is denoted by DOCQ0 . Here, DOC

systems in DOCP0 (DOCQ0) are said to be a P -null (Q-null) DOC system.

As much as possible, we formulate our results in this study in terms

of the four classes of DOC systems, namely, DOC>,DOC<,DOCP0 , and

DOCQ0 . The following sections discuss the existence, multiplicity, and ab-

solute concentration robustness (ACR) in the four classes of DOC systems

and, if necessary, some of its specific subsets.
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3.2 Existence of positive steady states in the DOC

model

Steady states typically describe the long-term behaviors of chemical or

biochemical systems. Mathematically, at these states, the time derivatives

vanish, meaning that over a long period of time, the concentrations of the

species remain constant.

As we study the steady state related properties of our DOC model,

we first check the existence of its positive steady states depending on the

rate constants. Since the model follows power law kinetics, we can use the

results presented by Alamin and Hernandez in [1] to verify the existence of

positive steady states for the entire system through the subsystems induced

by its underlying independent subnetworks (see Section 2.4 for details).

Applying the MATLAB program [22] to our model for finding independent

decompositions gives two independent subnetworks (N1 and N2) whose

reactions sets are given by R1 = {R1, R2} and R2 = {R3, R4, R5, R6, R7},
respectively.

Regardless of the interactions of photosynthesis and respiration on land

and in the atmosphere, the decomposition of the network into its connected

components satisfies both requirements in checking the existence of posi-

tive steady states: stoichiometric independence and T̂ -independence (see

Appendix A for details). Therefore, invoking Theorem 2 in [1], all defined

classes of our DOC systems, i.e. positive, negative, P -null, and Q-null,

have a positive steady state for any rate constants if and only if each sub-

system induced by the independent subnetworks of the decomposition also

has a positive steady state for any set of rate constants.

Indeed, whenever p1 ̸= p2 or q1 ̸= q2, we can use the method of John-

ston et al. [17], the steps of [3, 14], as well as the computational package

COMPILES from [14] to show that the set of positive steady states of

the independent subsystems of the DOC system is nonempty and may be

parametrized in terms of its rate constants (see Appendix B for details).

In terms of our defined classes, this means that all classes of our DOC sys-

tems admit at least one positive steady state for any set of rate constants.

On the other hand, when both p1 = p2 and q1 = q2, the corresponding
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ODEs of the first subnetwork are

da1
dt

= k1a
p1

1 aq12 − k2a
p2

1 aq22 = k1a
p1

1 aq12 − k2a
p1

1 aq12 = (k1 − k2)a
p1

1 aq12 ,

da2
dt

= k2a
p2

1 aq22 − k1a
p1

1 aq12 = k2a
p1

1 aq12 − k1a
p1

1 aq12 = (k2 − k1)a
p1

1 aq12 .

Thus, positive steady states of this subnetwork’s associated system exist

only when k1 = k2. For independent subnetworks, the intersection of their

sets of positive steady states is the set of positive steady states of the

whole network (see Theorem 1 for details). Since the decomposition is

also T̂ -independent, we have the existence of positive steady states for the

entire system only if k1 = k2 [1]. Furthermore, the DOC systems admit a

positive steady state for every stoichiometric class, i.e., for each positive

value of the conserved total quantity (see Appendix D for details).

3.3 Conditions for multistationarity of the DOC sys-

tem

The capacity of the DOC system to admit multiple steady states depends

on the values of its kinetic orders. Specifically, whether the system can

exhibit multistationarity is determined by the sign of its interaction dif-

ference ratios

R =
p2 − p1
q2 − q1

and Q =
q2 − q1
p2 − p1

.

For the DOC system, the stoichiometric subspace S is given as follows

(see Appendix C for details):

S = span




1

−1

0

0

0

 ,


0

−1

1

0

0

 ,


0

0

−1

0

1

 ,


0

0

0

1

−1




.

Furthermore, the orthogonal complement (S̃)⊥ of the kinetic flux subspace
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S̃ is given as follows (see Appendix C for details):

(S̃)⊥ =



span




−Q

1

1

1

1




when written in terms of Q

span




−1

R

R

R

R




when written in terms of R

.

The subspaces S and (S̃)⊥ are needed in the simple criterion of Müller

and Regensburger [23], which determines when a system admits more than

one (complex balanced) steady state. This is performed by examining the

possible sign patterns of the vectors in these spaces, which in turn rely on

the mentioned difference ratios. Using such criterion (see Appendix C for

details), the system has the capacity to admit multiple steady states when

R > 0. Therefore, all positive DOC systems are multistationary and can

admit multiple steady states under the same set of parameters.

Next, we use the criterion of Feliu and Wiuf [7, 28] and individually

investigate the signs of kinetic orders p1, p2, q1 and q2 to conclude when

the system is monostationary (see Appendix C for details). Indeed, by

this criterion (see Theorem 4), the DOC system admits a unique positive

steady state whenever p1, q2 < 0 and p2, q1 > 0, or whenever p1, q2 > 0

and p2, q1 < 0. Note that the conditions on the signs of the kinetic orders

imply that R < 0 but such negativity condition for the difference ratios

themselves are not sufficient conditions for the DOC system to become

monostationary. We note then that although all monostationary DOC

systems are negative, the converse does not immediately follow. Only

systems in the subset of DOC< satisfying p1, q2 < 0 and p2, q1 > 0 or

p1, q2 > 0 and p2, q1 < 0 have been shown to exhibit monostationarity.
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3.4 Conditions for ACR of the DOC system

Following the method of Hernandez et al. for computing steady state

parametrization of chemical reaction networks [3,14], we obtain some pos-

itive steady state parametrizations of the DOC system for different values

for the kinetic orders (see Appendix B for the computation). First, when

the kinetic order of the land photosynthesis interaction differs from that

of the land respiration interaction, that is, when p1 ̸= p2, we have

a1 =

(
k1
k2

) 1
p2−p1

τ q2−q1

a2 = τp1−p2

a3 =
k3

k4 + k7
τp1−p2

a4 =
k3k7

k5(k4 + k7)
τp1−p2

a17 =
k3k7

k6(k4 + k7)
τp1−p2 .

where τ > 0. To ensure that the concentration of CO2 in land (A1) remains

stable regardless of the initial conditions, the kinetic order of the atmo-

sphere photosynthesis interaction should be equal to the kinetic order of

the atmosphere respiration interaction, i.e., q1 = q2. The concentration of

carbon dioxide in the other carbon pools remains variable in this scenario.

Note that in this case, the atmosphere-land r-p-interaction difference ra-

tio becomes zero, i.e., Q = 0. Thus, we achieve absolute concentration

robustness (ACR) on A1 only whenever we have a Q-null DOC system.

Analogously, when the kinetic order of the atmosphere photosynthesis

interaction is different from the kinetic order of the atmosphere respira-

tion interaction, i.e., q1 ̸= q2, we obtain the following parametrization of

positive steady states of the DOC system:

a1 = τ q2−q1

a2 =

(
k1
k2

) 1
q2−q1

τp1−p2
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a3 =
k3

k4 + k7

(
k1
k2

) 1
q2−q1

τp1−p2

a4 =
k3k7

k5(k4 + k7)

(
k1
k2

) 1
q2−q1

τp1−p2

a17 =
k3k7

k6(k4 + k7)

(
k1
k2

) 1
q2−q1

τp1−p2

where τ > 0. Similar to our analysis in the previous case, the concentra-

tions of CO2 in the atmosphere (A2), ocean (A3), DOC (A17), and total

carbon stock pools (A4) is stable whenever the kinetic order of the land

photosynthesis interaction equals that of the land respiration interaction,

i.e. p1 = p2. In this case, we have R = 0 and so we achieve ACR in species

A2, A3, A4, and A17 in P -null DOC systems.

Finally, if we have p1 ̸= p2 and q1 ̸= q2, then we can take any of

the above positive steady state parametrizations for our system. As a

result, the concentration of all species at their respective steady states will

vary over different sets of initial concentrations. Therefore, for the case of

positive and negative DOC systems, we do not achieve ACR in any of the

species.

Remark. An alternative method to determine the ACR property of the

DOC system is using the species hyperplane criterion [18]. This states

that a system has ACR species if and only if the vector coordinates cor-

responding to these species are zero for all basis vectors in (S̃)⊥. Recall

from the previous section that

(S̃)⊥ =


span

{[
−Q 1 1 1 1

]⊤}
when written in terms of Q

span

{[
−1 R R R R

]⊤}
when written in terms of R

.

Hence, positive and negative DOC systems have no ACR in any species.

On the other hand, P -null systems, with R = 0, have ACR in species A2,

A3, A4 and A17, while Q-null systems, with Q = 0, have ACR in species

A1.
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3.5 Sufficient conditions for carbon reduction

In this section, we determine sufficient conditions to ensure that for any

set of initial conditions A◦
1, . . ., A

◦
4, A

◦
17 and any set of steady state values

A∗
1, . . ., A

∗
4, A

∗
17 in an associated stoichiometric class S◦, there is carbon

pool reduction in the ocean, i.e., A◦
3 > A∗

3. In other words, the long-term

concentration of carbon in the ocean is lower than its initial concentration.

The approach taken here is to use the conserved quantity of the DOC, i.e.,

T = A◦
1 +A◦

2 +A◦
3 +A◦

4 +A◦
17.

Note that the underlying network of the DOC system is conservative,

and hence each stoichiometric class is compact [15]. Hence, we can define

the continuous maps pri: Rm → R where i denotes the index of the carbon

pools of our system, i.e. pr2(A) is the concentration of A2 in the system.

Note that these maps and their sums attain maxima and minima on any

of its stoichiometric class or closed subset. We now present a sufficient

condition on the network parameters for carbon reduction in the ocean.

Proposition 2. Suppose a DOC system has initial conditions A◦
i and

steady state values A∗
i in the associated stoichiometric class S◦. Let m′ be

the minimum of pr2 and M ′ be the maximum of pr1 +pr2 +pr4 +pr17 on

S◦. Then A∗
3 < A◦

3 whenever
k3

k4 + k7
<

T −M ′

m′ .

Proof. We consider the cases when p1 ̸= p2 or q1 ̸= q2. These two cases

are sufficient to describe the behavior for positive, negative, P -null, and

Q-null systems. Note that if either p1 = p2 or q1 = q2, but not both,

steady states of some species may be parametrized by A2. Specifically,

for systems where p1 ̸= p2, i.e. Q-null if q1 = q2 and positive/negative

otherwise, we have

A1 =

(
k1
k2

) 1
p2−p1

A2 = A2

A3 =
k3

k4 + k7
A2
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A4 =
k3k7

k5(k4 + k7)
A2

A17 =
k3k7

k6(k4 + k7)
A2.

For systems with q1 ̸= q2, i.e. P -null if p1 = p2 and positive/negative

otherwise, we have

A1 = τ q2−q1

A2 = A2

A3 =
k3

k4 + k7
A2

A4 =
k3k7

k5(k4 + k7)
A2

A17 =
k3k7

k6(k4 + k7)
A2.

For either case, we have A3 =
k3

k4 + k7
A2. Thus, we have

A∗
3 =

k3
k4 + k7

A∗
2 <

T −M ′

m′ A∗
2 ≤ T−M ′ ≤ T−(A◦

1+A◦
2+A◦

4+A◦
17) = A◦

3,

which gives our desired result.

We compare the sufficient conditions for carbon reduction for our pro-

posed DOC model to one with direct air capture. In contrast to our DOC

model which looks at the sufficient conditions for carbon reduction in the

ocean, we look at the sufficient conditions for carbon reduction in the at-

mosphere for models with direct air capture. We present these sufficient

conditions in Table 2. We remark that the sufficient conditions for car-

bon reduction in the atmosphere with DAC involve more parameters than

those of carbon reduction in the ocean with DOC.
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3.6 Tabular summary of dynamic properties of the

DOC system

In this work, we study the long-term behaviors of a global carbon cycle

model incorporating Direct Ocean Capture (DOC) technology through

its positive steady states. Applying results in chemical reaction network

theory, we were able to provide conditions for the existence of positive

steady states, multistationarity, and absolute concentration robustness in

our DOC model.

First, we have shown that for all four defined classes of DOC systems,

namely, the positive, negative, P -null, and Q-null systems, there exists at

least one positive steady state for any set of rate constants. In contrast, if

a DOC system is not in any of these classes, i.e. when both p1 = p2 and

q1 = q2, positive steady states exist only when k1 = k2.
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Steady State Property Class of DOC systems*
Existence DOC> : for any set of rate constants

DOC< : for any set of rate constants
DOCP0

: for any set of rate constants
DOCQ0 : for any set of rate constants

Multiplicity DOC> : multistationary
DOC< : contains monostationary systems;

must satisfy p1, q2 < 0 and p2, q1 > 0
or p1, q2 > 0 and p2, q1 < 0

DOCP0
: monostationary

DOCQ0 : monostationary
ACR DOC> : no ACR

DOC< : no ACR
DOCP0

: ACR in A2, A3, A4, and A17 only
DOCQ0

: ACR in A1 only

* Positive (DOC>), Negative (DOC<), P -null (DOCP0
), or Q-null (DOCQ0

).

Table 3. Summary of steady state properties of the different classes of
DOC systems

Next, we have shown that all positive DOC systems can admit more

than one positive steady states for a fixed set of parameters, i.e. they are

multistationary. In contrast, not all negative DOC systems exhibit mono-

stationarity. Specifically, only two subsets of our negative DOC systems,

satisfying p1, q2 < 0 and p2, q1 > 0, or p1, q2 > 0 and p2, q1 < 0 admit

a unique positive steady state for each fixed set of parameters. We em-

phasize that although monostationarity in a DOC system implies that the

system is negative, the converse does not follow. For P -null and Q-null

DOC systems, we investigate the induced ODEs and associated conser-

vation laws of these systems to determine the multiplicity of their steady

states. Following this approach, we conclude that all DOCP0
and DOCQ0

systems are monostationary (see Theorems 5 and 6 for the proofs). These

results are validated in Appendix E.

Finally, absolute concentration robustness, or ACR, on some species

of our DOC system was exhibited for P -null and Q-null systems only.

Specifically, regardless of initial concentrations, stable concentrations at

steady state for the atmosphere (A2), ocean (A3), direct ocean capture

(A17), and total carbon stock pools (A4), are achieved in P -null DOC

systems. For Q-null DOC systems, this allows for ACR of carbon dioxide

in the land biota (A1) only. These results are validated in Appendix F.
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Ideally, carbon dioxide removal through direct ocean capture technol-

ogy aims to achieve a stable and unique concentration of carbon dioxide

in the ocean at its steady state. Our results imply that this ideal situation

can be achieved in P -null direct ocean capture systems.

3.7 Comparison of carbon capture systems

Figure 2. Side-by-side comparison of the biochemical maps of the un-
derlying networks of DAC and DOC systems, placed on the
left and right panels, respectively.

In this section, we begin to compare carbon capture systems, focusing

specifically on models which utilize either direct air capture (DAC) or

direct ocean capture (DOC) exclusively. Figure 2 shows the biochemical

maps of the underlying networks of the DAC and DOC systems. Both

models contain the four basic carbon pools (A1, A2, A3 and A4), along

with their associated processes. The key difference of the models is the

exclusive presence of compartments A5 (direct air capture) and A17 (direct

ocean capture) in the DAC and DOC models, respectively. Furthermore,

the reaction that captures the carbon from the atmosphere (A2 → A5) is

present only in the DAC network, whereas the reaction that captures the

carbon from the ocean (A3 → A17) is present only in the DOC network.

In Table 4, we list and compare some network numbers describing network

structure and composition to compare the DAC and DOC models. Using

the standard CRNToolbox [6] to obtain these numbers, we note that the
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network numbers for both models match exactly.

Network Numbers Notation DAC DOC
Species m 5 5
Complexes n 6 6
Reactant Complexes nr 6 6
Reversible Reactions rrev 2 2
Irreversible Reactions rirrev 3 3
Reactions r 7 7
Linkage Classes ℓ 2 2
Strong Linkage Classes sℓ 2 2
Terminal Strong Linkage Classes t 2 2
Rank s 4 4
Deficiency δ 0 0

Table 4. Network numbers of the models exclusively with DAC and
DOC technologies using CRNToolbox

We also obtain from CRNToolbox [6] the coincidence of some structural

properties of the DOC and DAC models as seen in Table 5.

Property DAC DOC Description of the property
Deficiency zero Yes Yes The deficiency is a non-negative integer that

measures the linear dependence of the reactions.
Weakly reversible Yes Yes Each reaction belongs to a cycle.
Positive dependent Yes Yes There is a set of positive numbers for which the

linear combination of the reaction vectors in the
network equals zero.

Conservative Yes Yes There is a vector in the positive orthant that is
orthogonal to all the reaction vectors, hence,
respecting a conservation law.

Concordant No No A structural property that enforces a degree of
dull, reliable behavior even against varieties
of kinetics; multistationarity is not possible.

Independent linkage classes Yes Yes The linkage class decomposition is independent.
Maximally closed Yes Yes The dimension of the stoichiometric subspace

is one less than the number of species, i.e., s = m− 1.
High reactant diversity Yes Yes The number of reactant complexes is more

than the dimension of the stoichiometric
subspace, i.e., nr > s.

Table 5. Structural properties of the DAC and DOC networks obtained
from the standard CRNToolbox

Finally, using the results of Fortun et al. [9] and Table 3 in this paper,

we see a coincidence in the dynamic properties of the DAC-only and DOC-

only models. Indeed, for all four classes that we have previously identified
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(i.e., positive, negative, P -null, and Q-null), both systems incorporating

DAC and DOC exclusively exhibit the same dynamic properties on the

existence of positive equilibrium, multistationarity and ACR.

Finally, in Section 3.5, we presented the sufficient conditions for oceanic

carbon reduction for systems with DOC and atmospheric carbon reduc-

tion for systems with DAC. Notably, the sufficient conditions for the DAC

model are more complex than that for the DOC model. This increased

complexity may be attributed to the difference of the number of reactions

occurring in the carbon compartments for the atmosphere and the ocean.

For the DOC model, our results are consistent with our intuition that a

higher value for the rate constants corresponding to an outflow of carbon

in the ocean pool lead to greater oceanic carbon reduction efficiency. Sim-

ilarly, for systems with direct air capture, rate constants corresponding to

an outflow of carbon in the atmosphere also implies greater atmospheric

carbon reduction efficiency.

3.8 Analysis of the integrated air and ocean carbon

capture system

In this last section, we present a model which integrates both direct air

capture and direct ocean capture technologies. In contrast to our compar-

ison of the DAC-only and DOC-only systems, we show here that there are

some differences to the network numbers and dynamic properties of the

integrated carbon capture model.

First, we present the biochemical map of the integrated system with

both DAC and DOC technologies in Figure 3. We note that this model

now has six species, as a result of the integration of the carbon capture

technologies.



186

Figure 3. Biochemical map of the underlying networks of the inte-
grated DAC and DOC systems.

Next, Table 6 gives the network numbers of the integrated system.

The differences in some network numbers are immediate, but we do note

that similar to the systems employing only one of the carbon capture

technologies, the underlying network of the integrated system also has

zero deficiency. In contrast, the rank of the integrated system is greater

than one compared to the DAC-only and DOC-only due to the addition

of the carbon pools for DOC and DAC, respectively.

The structural properties of the integrated system are the same with

those of the DOC-only and DAC-only models. That is, the integrated

carbon capture system satisfies the descriptions of deficiency zero, weakly

reversible, positive dependent, conservative, independent linkage classes,

maximally closed, and high reactant diversity, and is also not concordant.

Table 5 shows the precise descriptions of these properties.

Finally, we now compare the dynamical properties of the integrated

system with the DOC-only and DAC-only systems. Specifically, we com-

pare the dynamical properties of the integrated system with the DOC-only

system. For existence, the addition of the species for direct air capture does
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Network Numbers Notation Integrated
Species m 6
Complexes n 7
Reactant Complexes nr 7
Reversible Reactions rrev 2
Irreversible Reactions rirrev 5
Reactions r 9
Linkage Classes ℓ 2
Strong Linkage Classes sℓ 2
Terminal Strong Linkage Classes t 2
Rank s 5
Deficiency δ 0

Table 6. Network numbers of the integrated network using CRNTool-
box

not affect the conditions required for a positive steady state. Instead, this

addition increases the system’s rank by one, which still allows it to satisfy

the criteria established in [1] for the existence of a positive steady state

through its independent subnetworks. Moreover, the conditions for multi-

plicity of the integrated system are also the same as that of the DOC-only

system, as shown in Appendix I. Finally, based on the parametrization of

the positive steady states of the integrated system (see Appendix H), the

addition of the new species in the integrated system does not eliminate

any species exhibiting ACR in any of the identified classes. Essentially,

the set of species exhibiting ACR across four classes in the integrated sys-

tem is the union of the same species exhibiting ACR in the DOC-only and

DAC-only systems.

4 Conclusion and recommendations

In this work, we study a global carbon cycle model that incorporates direct

ocean capture (DOC) technology, using tools and concepts from Chemical

Reaction Network Theory (CRNT) to analyze the system’s long-term be-

havior without requiring specific parameter values. Specifically, we investi-

gate the existence and multiplicity of steady states and identify parameter

conditions under which long-term concentration robustness emerges among
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the carbon pools.

Our analysis shows that the DOC model always admits at least one

positive steady state for any set of rate constants. This implies the ability

of the system to go to a nonzero concentration of carbon across its pools

in the long term. We also derive conditions on the rate constants that give

rise to multistationarity. In the context of the global carbon cycle, the

presence of such multiple positive steady states may correspond to low-

or high-carbon equilibria. A low-carbon steady state typically reflects a

stable climate that supports biodiversity, agriculture, and habitability. In

contrast, a high-carbon steady state may lead to global warming, extreme

weather events, and ecosystem disruption.

Additionally, we identify conditions under which the system exhibits

absolute concentration robustness. This study suggests unique and robust

oceanic carbon concentrations arise when the kinetic order of atmospheric

photosynthesis differs from that of atmospheric respiration.

We further extend our analysis by introducing a model that integrates

both direct air capture (DAC) and direct ocean capture (DOC) technolo-

gies. We find that this integration does not affect the required conditions

for a positive steady state. In the combined system, the set of species ex-

hibiting ACR across four different model classes corresponds to the union

of the ACR species identified in the DAC-only and DOC-only subsystems.

Although some of the results could be derived by directly decoupling

the associated ODEs of the system, the goal of applying CRNT extends

beyond solving these particular systems. Our approach begins with rela-

tively simple models as a foundational step, enabling a systematic applica-

tion of CRNT techniques to more complex systems, particularly in scenar-

ios where decoupling is infeasible or where parameter-free or parameter-

minimal analyses are especially beneficial. CRNT offers a general frame-

work to infer dynamic properties such as multistationarity and ACR with-

out detailed knowledge of rate constants, making it a powerful tool for

analyzing the qualitative behavior of reaction networks.

This framework can be expanded to include other carbon dioxide re-

moval (CDR) strategies. Future work will explore necessary conditions

for effective carbon reduction across various models, providing a way to
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evaluate and compare the long-term viability of different CDR approaches.
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Appendix A Details of showing the existe-
nce of positive steady states of
the DOC system

The network N can be decomposed into (stoichiometrically) independent
subnetworks N1 and N2 given by

N1 : A1 + 2A2 −−−⇀↽−−− A2 + 2A1

N2 :

A17

A3A2

A4

.
.

This decomposition is computed in Section 2.4, which can also be obtained
using the MATLAB program in [22]. In order to invoke the result of [1], we
show that this decomposition also satisfies independence of its augmented
matrix of kinetic order vectors (i.e. T̂ -independence). Indeed, the T̂ matrix
of the entire network N is given by

T̂ =

A1 + 2A2 2A1 + A2 A2 A3 A4 A17



A1 p1 p2 0 0 0 0
A2 q1 q2 1 0 0 0
A3 0 0 0 1 0 0
A4 0 0 0 0 1 0
A17 0 0 0 0 0 1
N1 1 1 0 0 0 0
N2 0 0 1 1 1 1

which has rank six (t = 6) whenever p1 ̸= p2 or q1 ̸= q2. Moreover, if

p1 = p2 and q1 = q2, then the rank of T̂ is five (t = 5). The decomposition
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of N into N1 and N2 gives rise to two T̂ matrices given by

T̂1 =

A1 + 2A2 2A1 + A2[ ]
A1 p1 p2
A2 q1 q2
N1 1 1

and T̂2 =

A2 A3 A4 A17


A2 1 0 0 0
A3 0 1 0 0
A4 0 0 1 0
A17 0 0 0 1
N2 1 1 1 1

,

which have ranks two (t1 = 2) and four (t2 = 4), respectively, whenever

p1 ̸= p2 or q1 ̸= q2. Now, if p1 = p2 and q1 = q2, then the rank of T̂1 is one
(t1 = 1). In any case, we get T̂ = T̂1 ⊕ T̂2 since their respective ranks add

up, i.e. t = t1 + t2. (T̂ -independence). Invoking the result of Alamin and
Hernandez [1], we conclude that the entire direct ocean capture system
has positive steady states if and only if each subsystem induced by the
independent subnetworks have positive steady states. This means that
the existence of positive steady states of the DOC system, regardless of
the values of p1, p2, q1, and q2 may be determined through its independent
subnetworks.

Appendix B Details of parametrization of
positive steady states of the
DOC system

To compute the positive steady state parametrization, we follow the steps
provided in [3, 14]. The first step is to get the finest independent decom-
position of the whole network N as computed in Section 2.4. Next, we get
the positive steady states of each subnetwork (N1 and N2) individually.

B.1 Computation of positive steady states of N1

The following steps are due to Johnston et al. [17] via the so-called “net-
work translation.” If we can find such a network that is weakly reversible
and deficiency zero, then we can compute the positive steady states via
this method. For a more detailed discussion of the method, please refer
to [3, 17].
STEP 1: Find a weakly reversible and deficiency zero translated network.
Translating a network can be done by adding or subtracting the same term
to both sides of the reactions (preserving the stoichiometric matrix of the
network) but considering the original kinetic vectors (preserving the rate
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functions).

Original Network Kinetic Order Vector
R1 : A1 + 2A2 −→ 2A1 +A2 p1A1 + q1A2 = [p1, q1]

⊤

R2 : 2A1 +A2 −→ A1 + 2A2 p2A1 + q2A2 = [p2, q2]
⊤

Translated Network

1

A2

(p1A1 + q1A2)

2

A1

(p2A1 + q2A2)

k1

k2

STEP 2: Get all the spanning trees, with edges labeled by rate constants,
towards each node.

Towards 1 Towards 2
k2 : 2 −→ 1 k1 : 1 −→ 2
K1 = k2 K2 = k1

STEP 3: Choose any spanning tree containing all the nodes. (Here, we

choose 1 → 2.) Furthermore, we compute κi→i′ =
Ki′

Ki
and get the kinetic

difference(s) (i.e., difference between the kinetic vectors given inside the
parentheses in the translated network) associated to the edge(s) of the
tree.

κ1→2 =
K2

K1
=

k1
k2

(p2 − p1)A1 + (q2 − q1)A2

STEP 4: Compute matricesM , H, and B. We have M =
[
p2 − p1 q2 − q1

]
(the matrix of kinetic differences). We find H =

[
h1 h2

]⊤
such that

MHM = M , i.e.,

[
p2 − p1 q2 − q1

] [h1

h2

] [
p2 − p1 q2 − q1

]
=
[
p2 − p1 q2 − q1

]

We have H =

 1

p2 − p1
0

.
Let B =

[
b1 b2

]⊤
. We find matrix B such that ker M = B. We have
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[
p2 − p1 q2 − q1

] [b1
b2

]
= 0

(p2 − p1)b1 + (q2 − q1)b2 = 0

(q2 − q1)b2 = (p1 − p2)b1

b2 =
(p1 − p2)b1
q2 − q1

.

If b1 = q2 − q1, then b2 = p1 − p2. So B =

[
q2 − q1
p1 − p2

]
.

STEP 5: Establish positive steady states. The values of a1 and a2 using
the entries of matrices H and B as exponents are

a1 = (κ2→1)
1

p2−p1 τ q2−q1 =

(
k1
k2

) 1
p2−p1

τ q2−q1

a2 = (κ2→1)
0 τp1−p2 = τp1−p2

with τ > 0, a free parameter (only one) since the matrix B only has one
column vector. This covers the case when p1 ̸= p2.

However, we can also choose H to be

 0
1

q2 − q1

. In this case, the

parametrization is

a1 = (κ2→1)
0 τ q2−q1 = τ q2−q1

a2 = (κ2→1)
1

q2−q1 τp1−p2 =

(
k1
k2

) 1
q2−q1

τp1−p2 .

This covers the case when q1 ̸= q2.

B.2 Computation of positive steady states of N2

Here, we provide a parametrization of N2 via the computational pack-
age COMPILES (COMPutIng anaLytic stEady States) developed in [14],
which is built in MATLAB. It derives a steady state parametrization of
the network by decomposing the CRN into independent subnetworks and
combines parametrizations of the subnetworks. Note that COMPILES is
only applicable for mass action systems.
Code (used on the script file)

model.id = ’Direct Ocean Capture’;
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model = addReaction(model, ’A1+2A2<->2A1+A2’, ...

{’A1’, ’A2’}, {1, 2}, [1, 2], ...

{’A1’, ’A2’}, {2, 1}, [2, 1], ...

true);

model = addReaction(model, ’A2<->A3’, ...

{’A2’}, {1}, [1], ...

{’A3’}, {1}, [1], ...

true);

model = addReaction(model, ’A4->A2’, ...

{’A4’}, {1}, [1], ...

{’A2’}, {1}, [ ], ...

false);

model = addReaction(model, ’A17->A4’, ...

{’A17’}, {1}, [1], ...

{’A4’}, {1}, [ ], ...

false);

model = addReaction(model, ’A3->A17’, ...

{’A3’}, {1}, [1], ...

{’A17’}, {1}, [ ], ...

false);

[equation, species, free_parameter, conservation_law, model]

= steadyState(model);

Output

The network has 2 subnetworks.

- Subnetwork 1 -

R1: A1+2A2->2A1+A2

R2: 2A1+A2->A1+2A2

Solving Subnetwork 1...

A1 = (k1*tau1)/k2

A2 = tau1

- Subnetwork 2 -

R3: A2->A3

R4: A3->A2

R5: A4->A2
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R6: A17->A4

R7: A3->A17

Solving Subnetwork 2...

A17 = (k5*tau2)/k6

A2 = (k5*tau2*(k4 + k7))/(k3*k7)

A3 = (k5*tau2)/k7

A4 = tau2

Solving positive steady state parametrization of the entire

network...

The solution is as follows.

A1 = (A4*k1*k5*(k4 + k7))/(k2*k3*k7)

A2 = (A4*k5*(k4 + k7))/(k3*k7)

A3 = (A4*k5)/k7

A17 = (A4*k5)/k6

Free parameter: A4

We focus solely on the solution for the second subnetwork in the out-
put, as it follows the mass action formalism, whereas the first network
follows the power law formalism and was computed earlier in the previous
subsection.

Hence the obtained parametrized steady state solution for N2 is given
by 

a2 =
(k5ω)(k4 + k7)

k3k7

a3 =
k5ω

k7
a4 = ω

a17 =
k5ω

k6

.

B.3 Computation of positive steady states of the DOC
system

First, we consider the case when p1 ̸= p2, we merge the obtained positive
steady states in the preceding two subsections (the values of a2 which is
common to both subnetworks must agree) to obtain the following steady
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state parametrization of the whole network:

a1 =

(
k1
k2

) 1
p2−p1

τ q2−q1

a2 = τp1−p2

a3 =
k3

k4 + k7
τp1−p2

a4 =
k3k7

k5(k4 + k7)
τp1−p2

a17 =
k3k7

k6(k4 + k7)
τp1−p2

Free parameter: τ > 0.

Recall that the ODEs for N are

da1
dt

= k1a
p1

1 aq12 − k2a
p2

1 aq22

da2
dt

= k2a
p2

1 aq22 − k1a
p1

1 aq12 − k3a2 + k4a3 + k5a4

da3
dt

= k3a2 − k4a3 − k7a3

da4
dt

= k6a17 − k5a4

da17
dt

= k7a3 − k6a17.

We substitute the obtained parameterized steady-state solution into each
of the ODEs and verify that it indeed makes the right-hand side of each
equation in the ODE system for the entire network N equal to zero.

Second, we consider the case when q1 ̸= q2. Following the same steps
from the previous case, we arrive at the parametrization

a1 = τ q2−q1

a2 =

(
k1
k2

) 1
q2−q1

τp1−p2

a3 =
k3

k4 + k7

(
k1
k2

) 1
q2−q1

τp1−p2

a4 =
k3k7

k5(k4 + k7)

(
k1
k2

) 1
q2−q1

τp1−p2

a17 =
k3k7

k6(k4 + k7)

(
k1
k2

) 1
q2−q1

τp1−p2

Free parameter: τ > 0.



199

Appendix C Details of the analysis for the
conditions of multistationarity
in DOC systems

To determine some sufficient conditions for the direct ocean capture model
to admit multiple steady states, we utilize the following result by Müller
and Regensburger [23].

Theorem 3. If for a weakly reversible generalized mass action system with
sign(S) ∩ sign(S̃)⊥ ̸= {0}, then there is a stoichiometric class with more
than one (complex balanced) steady state.

The theorem tells us that for weakly reversible generalized mass action
systems, a sufficient condition for the system to be multistationary is the
existence of a non-trivial vector whose sign pattern is the same as that of
the stoichiometric subspace S and the orthogonal complement of kinetic
flux subspace S̃.

First, we solve for the sign pattern of S̃. Note that S̃ = Im (Ỹ · Ia)
where

Ỹ =

A1 + 2A2 2A1 + A2 A2 A3 A4 A17


A1 p1 p2 0 0 0 0
A2 q1 q2 1 0 0 0
A3 0 0 0 1 0 0
A4 0 0 0 0 1 0
A17 0 0 0 0 0 1

and

Ia =

R1 R2 R3 R4 R5 R6 R7


A1 + 2A2 −1 1 0 0 0 0 0
2A1 + A2 1 −1 0 0 0 0 0

A2 0 0 −1 1 1 0 0
A3 0 0 1 −1 0 0 −1
A4 0 0 0 0 −1 1 0
A17 0 0 0 0 0 −1 1

.

Here, the Ỹ matrix is defined using the kinetic order vectors of the system
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(see [23]) and Ia is the incidence matrix of the network. Hence,

Ỹ · Ia =


p2 − p1 p1 − p2 0 0 0 0 0
q2 − q1 q1 − q2 −1 1 1 0 0

0 0 1 −1 0 0 −1
0 0 0 0 −1 1 0
0 0 0 0 0 −1 1



⇒ S̃ = Im (Ỹ · Ia) = span




p2 − p1
q2 − q1

0
0
0

 ,


0
−1
1
0
0

 ,


0
0
−1
0
1

 ,


0
0
0
1
−1


 .

The orthogonal complement (S̃)⊥ of S̃ is given by

(S̃)⊥ = span




q1−q2
p2−p1

1
1
1
1


 = span




−Q
1
1
1
1


 = span




−1
R
R
R
R




where R =
p2 − p1
q2 − q1

and Q =
q2 − q1
p2 − p1

, as defined.

We now investigate the multiplicity of steady states for positive (R >
0), negative (R < 0), P -null (R = 0 and defined), and Q-null (Q = 0 and
defined) systems.

First, for positive DOC systems, i.e., R > 0 (Q > 0), we have

sign(S̃⊥) =




−
+
+
+
+

 ,


+
−
−
−
−


 .

Indeed, if we let x be in the stoichiometric subspace S given by

S = span




1
−1
0
0
0

 ,


0
−1
1
0
0

 ,


0
0
−1
0
1

 ,


0
0
0
1
−1


 ,
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then

x = a1


1
−1
0
0
0

+ a2


0
−1
1
0
0

+ a3


0
0
−1
0
1

+ a4


0
0
0
1
−1

 =


a1

−a1 − a2
a2 − a3

a4
a3 − a4

 .

We can then choose a1 > 0 and a2 < a3 < a4 < 0 so that we have

sign(x) =


+
−
−
−
−

 ∈ sign(S̃⊥)

and thus sign(x)∩ sign(S̃)⊥ ̸= {0}. Therefore, by Theorem 3, any positive
DOC system is multistationary.

Now, for negative DOC systems, we cannot utilize Theorem 3 to con-
clude monostationarity. Because of this, we employ a different criterion to
conclude when the system is monostationary. The following computational
method introduced by Wiuf and Feliu [7,28] reveals network injectivity for
a specific subset of the collection of negative DOC systems.

Theorem 4. (Feliu and Wiuf, 2013 [7]) The interaction network with
power law kinetics and fixed kinetic orders is injective if and only if the
determinant of M∗ is a nonzero homogeneous polynomial with all coeffi-
cients being positive or all being negative.

Since network injectivity implies monostationarity [5], we can study
the individual signs of p1, p2, q1, and q2 to know when the system achieve
monostationarity.

The matrix M∗ in the theorem is defined using the kinetic order ma-
trix F and stoichiometric matrix N of the network. Indeed, we con-
sider symbolic vectors k = (k1, . . . , km) and z = (z1, . . . , zr) and define
M = Ndiag(z)Fdiag(k). Taking {w1, . . . , wd} to be a basis of the left ker-
nel of N and i1, . . . , id row indices as above, we can write ij to denote the
index of the first nonzero entry of wj [25]. From this, we define the m×m
matrix M∗, by replacing the ij-th row of M by wj . Note that matrix M∗

is a symbolic matrix in z∗ and k∗.
The stoichiometric matrix and matrix of kinetic order vectors for our
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DOC system is given by

N =


1 −1 0 0 0 0 0
−1 1 −1 1 1 0 0
0 0 1 −1 0 0 −1
0 0 0 0 −1 1 0
0 0 0 0 0 −1 1

 , and

F =



p1 q1 0 0 0
p2 q2 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0


.

respectively. Moreover, given the symbolic vectors k and z, we have

diag(z) =



z1 0 0 0 0 0 0
0 z2 0 0 0 0 0
0 0 z3 0 0 0 0
0 0 0 z4 0 0 0
0 0 0 0 z5 0 0
0 0 0 0 0 z6 0
0 0 0 0 0 0 z7


, and

diag(k) =


k1 0 0 0 0
0 k2 0 0 0
0 0 k3 0 0
0 0 0 k4 0
0 0 0 0 k5

 .

We construct the matrix M = Ndiag(z)Fdiag(k) and obtain

M =


k1p1z1 − k1p2z2 k2q1z1 − k2q2z2 0 0 0
−k1p1z1 + k1p2z2 −k2q1z1 + k2q2z2 − k2z3 k3z4 k4z5 0

0 k2z3 −k3z4 − k3z7 0 0
0 0 0 −k4z5 k5z6
0 0 k3z7 0 −k5z6


Now, the basis of the left kernel of N is {[1, 1, 1, 1, 1]}. This row vector
will replace the first row of the matrix M . Therefore, we have our matrix
M∗ given by
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M∗ =


1 1 1 1 1

−k1p1z1 + k1p2z2 −k2q1z1 + k2q2z2 − k2z3 k3z4 k4z5 0
0 k2z3 −k3z4 − k3z7 0 0
0 0 0 −k4z5 k5z6
0 0 k3z7 0 −k5z6


The determinant of M∗, using computer software MATLAB is found to
be

detM∗ =− p1k1k2k4k5z1z3z5z6 − p1k1k2k3k4z1z3z5z7

− p1k1k2k3k5z1z3z6z7 − p1k1k3k4k5z1z4z5z6

− p1k1k3k4k5z1z5z6z7 + p2k1k2k3k4z2z3z5z7

+ p2k1k2k4k5z2z3z5z6 + p2k1k2k3k5z2z3z6z7

+ p2k1k3k4k5z2z4z5z6 + p2k1k3k4k5z2z5z6z7

+ q1k2k3k4k5z1z4z5z6 + q1k2k3k4k5z1z5z6z7

− q2k2k3k4k5z2z4z5z6 − q2k2k3k4k5z2z5z6z7.

Hence, for p1 < 0, p2 > 0, q1 > 0, and q2 < 0, all the terms of the
determinant are positive, and for p1 > 0, p2 < 0, q1 < 0, and q2 > 0, all
the terms of the determinant are negative. By Theorem 4, the systems
in these cases are injective, and hence monostationary. These conditions,
although sufficient, are not necessary for monostationarity. Therefore,
only a subset of our negative DOC systems, specifically systems satisfying
either (i) p1, q2 > 0 and p2, q1 < 0 or (ii) p1, q2 < 0 and p2, q1 > 0, exhibit
monostationarity.

Finally, for the P -null and Q-null DOC systems, we investigate their
induced ODEs and arrive at the following theorems:

Theorem 5. All DOCP0 systems are monostationary.

Proof. Suppose otherwise and let E1 and E2 be two distinct equilibria in
the same stoichiometric class of a P -null system. Since we achieve ACR
on A2, A3, A4, and A17, the concentrations at steady state for such species
are fixed for any set of rate constants. Hence, E1 and E2 differ in their
concentration of A1. Note that by the induced ODEs of DOC systems, we
have the conservation law

A′
1(t) +A′

2(t) +A′
3(t) +A′

4(t) +A′
17(t) = 0.

Thus, at its steady state, we have

a1 = A0 − a2 − a3 − a4 − a17
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where A0 is the initial concentration of carbon in the system, which re-
mains fixed in the same set of rate constants. From this, we have

a1 = A0 −
(
k1
k2

) 1
q2−q1

(
1 +

k3
k4 + k7

+
k3k7

k5(k4 + k7)
+

k3k7
k6(k4 + k7)

)
.

Thus, noting that A0 remains fixed, the concentration of a1 is unique at
steady state for any fixed set of rate constants. Therefore, the system is
monostationary.

A similar approach may be done to conclude the monostationarity of
Q-null DOC systems.

Theorem 6. All DOCQ0
systems are monostationary.

Proof. Following the proof of Theorem 5, we utilize the same conservation
law so that at steady state, we also have

a1 = A0 − a2 − a3 − a4 − a17

where A0 is the initial concentration of carbon in the system. Using the
parametrization of the steady states of systems in DOCQ0 , we have

a1 = A0 − τp1−p2

(
1 +

k3
k4 + k7

+
k3k7

k5(k4 + k7)
+

k3k7
k6(k4 + k7)

)
where τ > 0. Since we achieve ACR on A1 only for Q-null DOC systems,
the free parameter τ becomes determined since a1 is the same across all
sets of rate constants, i.e.

τ =

(
A0 − a1

1 + k3

k4+k7
+ k3k7

k5(k4+k7)
+ k3k7

k6(k4+k7)

) 1
p1−p2

.

This implies then that the concentrations of A2, A3, A4, and A17 at steady
state is unique. Therefore, systems in DOCQ0 are monostationary.
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Appendix D DOC admits a positive steady
state for every stoichiometric
class

We can observe in the ODE system of the DOC in Section 2.1 that the
following equation holds

da1
dt

+
da2
dt

+
da3
dt

+
da4
dt

+
da17
dt

= 0

by adding the right hand side of all the equations in the ODE system.
This means that the total concentration is constant for any time t, i.e.,
a1 + a2 + a3 + a4 + a17 = T > 0, the conservation equation. In particular,
at the positive steady state,

(
k1
k2

) 1
p2−p1

τ q2−q1 + τp1−p2 +
k3

k4 + k7
τp1−p2 +

k3k7
k5(k4 + k7)

τp1−p2 +
k3k7

k6(k4 + k7)
τp1−p2 = T(

k1
k2

) 1
p2−p1

τ q2−q1 +

[
1 +

k3
k4 + k7

+
k3k7

k5(k4 + k7)
+

k3k7
k6(k4 + k7)

]
τp1−p2 = T

by replacing the concentrations using the parametrization of positive ste-
ady states computed for the DOC system. Thus, the equation has the
form aτ q2−q1 + bτp1−p2 − c = 0. where a, b, c > 0.

We now analyze the existence of solutions to the equation by exam-
ining sign changes, based on a generalization of Descartes’ rule of signs
for counting the number of positive solutions [16]. There are nine possible
combinations of the values of the exponents q2− q1 and p1−p2, since each
exponent difference can be positive, negative, or zero. The case where both
differences are zero is not included. Furthermore, other combinations can
be combined into a single condition. Arranging the generalized polyno-
mial so that the exponents are listed in decreasing order gives rise to the
following scenarios:

1. q2 − q1 > 0 and p1 − p2 > 0: one sign change

2. q2 − q1 < 0 and p1 − p2 < 0: one sign change

3. q2 − q1 = 0 and p1 − p2 ̸= 0: one sign change

4. q2 − q1 ̸= 0 and p1 − p2 = 0: one sign change

5. q2 − q1 > 0 and p1 − p2 < 0: two sign changes

6. q2 − q1 < 0 and p1 − p2 > 0: two sign changes
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For the first four cases, there is exactly one positive solution. In the last
two cases, the number of positive solutions is either zero or two. However,
we have demonstrated that the system exhibits multistationarity in these
two cases. Thus, a positive steady state exists for each stoichiometric class
in any DOC system.

Appendix E Simulations confirming monos-
tationarity or multistationarity
of DOC systems

In this section, we validate our results on multistationarity for the DOC
systems summarized in Table 3 of the main manuscript by plotting the
functions

y(τ) = C1τ
q2−q1 + C2τ

p1−p2 − T

for non-P-null systems (i.e., positive, negative, and Q-null DOC systems),
and

z(τ) = τ q2−q1 + C2C3τ
p1−p2 − T

for P-null systems, as derived in Appendix D. Here, T represents the total
concentration given by the conservation relation.

We consider four sets of kinetic orders (p1, q1, p2, q2), each correspond-
ing to a different DOC type:

1. (1.5, 1.0, 2.5, 3.0) for positive DOC (plotted using the function y(τ));

2. (−1.0, 1.5, 1.0,−1.5) for negative DOC (plotted using the function
y(τ));

3. (1.0, 0.5, 1.0, 2.5) for P-null DOC (plotted using the function z(τ));

4. (3.0, 1.5, 1.0, 1.5) for Q-null DOC (plotted using the function y(τ)).

The asterisks on the graphs indicate the values of τ at which the cor-
responding function crosses the x-axis. These points identify the steady
state solutions of the system. If the function intersects the x-axis at two
points, the system admits two steady states (multistationarity) while a
single intersection implies monostationarity. Each root of τ corresponds
to a distinct set of steady-state concentrations via the parametrization
formulas.
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Figure 4. Plots of the the functions y(τ) = C1τq2−q1 +C2τp1−p2 − T
for non-P-null systems (positive, negative, and Q-null DOC
systems), and z(τ) = τq2−q1 + C2C3τp1−p2 − T for P-null
systems, where T is the total concentration from the con-
servation equation. These expressions result from substitut-
ing the steady state parametrizations into the conservation
equation. Figure 4 shows plots of the functions with four sets
of kinetic orders (p1, q1, p2, q2) correspond to various DOC
types: 1. (1.5, 1.0, 2.5, 3.0) corresponds to a positive DOC,
2. (−1.0, 1.5, 1.0,−1.5) corresponds to a negative DOC, 3.
(1.0, 0.5, 1.0, 2.5) is for a P-null DOC and uses the function
z(τ), and 4. (3.0, 1.5, 1.0, 1.5) corresponds to a Q-null DOC.
Asterisks on the plot mark the τ values where the functions
cross the x-axis, indicating monostationarity (with one solu-
tion) or multistationarity (with two solutions) of the DOC
systems.

Appendix F Simulations confirming absolu-
te concentration robustness in
DOC systems

In this section, we validate our theoretical results for the absolute concen-
tration robustness property in the DOC systems through simulations. As
summarized in Table 3 of the main manuscript, the positive and negative
DOC systems do not exhibit ACR, consistent with the behavior shown
in Figure 7. For P-null systems, the table indicates that all species ex-
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cept A1 exhibit ACR, while for Q-null systems, only species A1 exhibits
ACR. These findings are in agreement with the simulation results shown
in Figures 5 and 6, respectively.

We selected initial conditions from different stoichiometric compati-
bility classes to empirically verify our analytic results: specifically, that
the steady-state concentration of A1 in P-null systems exhibits the ACR
property and is therefore independent of the total conserved quantity.

We note from the figure that the rapid accumulation of A2 observed
in the simulation is driven by high rate constants assigned to the A2-
producing reactions (A1 → A2 and A3 → A2). These parameters are
illustrative and were selected to visually demonstrate the system’s conver-
gence to Absolute Concentration Robustness (ACR) within the simulation
window.
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Figure 5. Time evolution of species concentrations in a P-null DOC system
simulated under three different sets of initial conditions. In this
system, p1 = p2. Parameters for the rate constants: k1 = 0.5,
k2 = 0.8, k3 = 0.5, k4 = 0.7, k5 = 0.4, k6 = 0.6, and k7 = 0.2,
and kinetic orders: p1 = 1.0, q1 = 1.5, p2 = 1.0, and q2 = 0.5
were used. The upper, middle, and lower subplots represent the
system behavior under the following initial concentrations for
[A1, A2, A3, A4, A17]: (upper) [1.0, 0.8, 0.3, 0.9, 0.6], (mid-
dle) [0.5, 1.0, 0.5, 1.0, 1.0], and (lower) [0.9, 0.9, 0.9, 0.9, 0.9],
respectively. The resulting steady-state concentrations verify
that indeed the system exhibits absolute concentration robust-
ness in all species except A1.



210

Figure 6. Time evolution of species concentrations in a Q-null DOC system
simulated under three different sets of initial conditions. In this
system, q1 = q2. Parameters for the rate constants: k1 = 0.5,
k2 = 0.8, k3 = 0.5, k4 = 0.7, k5 = 0.4, k6 = 0.6, and k7 = 0.2,
and kinetic orders: p1 = 0.5, q1 = 1.5, p2 = 1.4, and q2 = 1.5
were used. The upper, middle, and lower subplots represent the
system behavior under the following initial concentrations for
[A1, A2, A3, A4, A17]: (upper) [1.0, 0.9, 0.7, 0.4, 0.2], (mid-
dle) [0.5, 0.4, 0.6, 0.1, 0.7], and (lower) [0.4, 0.4, 0.4, 0.4, 0.4],
respectively. The observed steady-state concentrations reveal
that the system exhibits absolute concentration robustness only
in species A1.
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Figure 7. Time evolution of species concentrations in a positive or nega-
tive DOC system simulated under three different sets of initial
conditions. In this system, p1 ̸= p2 and q1 ̸= q2. Parameters
for the rate constants: k1 = 0.5, k2 = 0.8, k3 = 0.5, k4 = 0.7,
k5 = 0.4, k6 = 0.6, and k7 = 0.2, and kinetic orders: p1 = 0.7,
q1 = 1.5, p2 = 1.2, and q2 = 0.5 were used. The upper, middle,
and lower subplots represent the system behavior under the fol-
lowing initial concentrations for [A1, A2, A3, A4, A17]: (upper)
[1.0, 0.9, 0.7, 0.4, 0.2], (middle) [0.5, 0.4, 0.6, 0.1, 0.7], and
(lower) [0.4, 0.4, 0.4, 0.4, 0.4], respectively. The distinct steady-
state concentrations observed in each subplot indicate that the
system does not exhibit absolute concentration robustness.
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Appendix G Positive steady state parame-
trization of the DAC system

Following the steps provided in Appendix B, we also obtain a positive
steady state parametrization of the DAC system, which was not provided
in [9]. For the case when p1 ̸= p2, we have

a1 =

(
k1
k2

) 1
p2−p1

τ q2−q1

a2 = τp1−p2

a3 =
k3
k4

τp1−p2

a4 =
k6
k5

τp1−p2

a5 =
k6
k7

τp1−p2

Free parameter: τ > 0.

On the other hand, for the case when q1 ̸= q2, we have

a1 = τ q2−q1

a2 =

(
k1
k2

) 1
q2−q1

τp1−p2

a3 =
k3
k4

(
k1
k2

) 1
q2−q1

τp1−p2

a4 =
k6
k5

(
k1
k2

) 1
q2−q1

τp1−p2

a5 =
k6
k7

(
k1
k2

) 1
q2−q1

τp1−p2

Free parameter: τ > 0.

Appendix H Positive steady state parame-
trization of the integrated sys-
tem

Again, we follow the same steps in Appendix B to obtain a positive steady
state parametrization of the system where both DOC and DAC technolo-
gies are present. If p1 ̸= p2, then we have a2 = τp1−p2 where τ > 0 is a
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free parameter. Thus, we have

a1 =

(
k1
k2

) 1
p2−p1

τ q2−q1

a2 = τp1−p2

a3 =
k3

k4 + k7
τp1−p2

a4 =
k3k7 + k4k8 + k7k8

k5(k4 + k7)
τp1−p2

a5 =
k8
k9

τp1−p2

a17 =
k3k7

k6(k4 + k7)
τp1−p2

Free parameter: τ > 0.

Next, if q1 ̸= q2, then a2 =

(
k1
k2

) 1
q2−q1

τp1−p2 , and so



a1 = τ q2−q1

a2 =

(
k1
k2

) 1
q2−q1

τp1−p2

a3 =
k3

(k4 + k7)

(
k1
k2

) 1
q2−q1

τp1−p2

a4 =
k3k7 + k4k8 + k7k8

k5(k4 + k7)

(
k1
k2

) 1
q2−q1

τp1−p2

a5 =
k8
k9

(
k1
k2

) 1
q2−q1

τp1−p2

a17 =
k3k7

k6(k4 + k7)

(
k1
k2

) 1
q2−q1

τp1−p2

Free parameter: τ > 0.

Appendix I Conditions of multistationarity
for the integrated system

We investigate the multistationarity of the integrated system using the
same arguments in Appendix C.
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Indeed, for positive systems, i.e. whenever R > 0, we have multista-
tionarity.

To determine some sufficient conditions for the direct ocean capture
model to admit multiple steady states, we utilize a result by Müller and
Regensburger [23].

The Theorem 3 tells us that for weakly reversible generalized mass
action systems, a sufficient condition for the system to be multistationary
is the existence of a non-trivial vector whose sign pattern is the same as
that of the stoichiometric subspace S and the orthogonal complement of
kinetic flux subspace S̃.

First, we solve for the sign pattern of S̃. Note that S̃ = Im (Ỹ · Ia)
where

Ỹ =

A1 + 2A2 2A1 + A2 A2 A3 A4 A5 A17


A1 p1 p2 0 0 0 0 0
A2 q1 q2 1 0 0 0 0
A3 0 0 0 1 0 0 0
A4 0 0 0 0 1 0 0
A5 0 0 0 0 0 1 0
A17 0 0 0 0 0 0 1

and

Ia =

R1 R2 R3 R4 R5 R6 R7 R8 R9



A1 + 2A2 −1 1 0 0 0 0 0 0 0
2A1 + A2 1 −1 0 0 0 0 0 0 0

A2 0 0 −1 1 1 0 0 −1 0
A3 0 0 1 −1 0 0 −1 0 0
A4 0 0 0 0 −1 1 0 0 1
A5 0 0 0 0 0 0 0 1 −1
A17 0 0 0 0 0 −1 1 0 0

.

Here, the Ỹ matrix is defined using the kinetic order vectors of the system
(see [23]) and Ia is the incidence matrix of the network. Hence,

Ỹ · Ia =


p2 − p1 p1 − p2 0 0 0 0 0 0 0
q2 − q1 q1 − q2 −1 1 1 0 0 −1 0

0 0 1 −1 0 0 −1 0 0
0 0 0 0 −1 1 0 0 1
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 −1 1 0 0


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⇒ S̃ = Im (Ỹ · Ia) = span




p2 − p1
q2 − q1

0
0
0
0

 ,


0
−1
1
0
0
0

 ,


0
1
0
−1
0
0

 ,


0
0
0
1
0
−1

 ,


0
−1
0
0
1
0




.

The orthogonal complement (S̃)⊥ of S̃ is given by

(S̃)⊥ = span





q1−q2
p2−p1

1
1
1
1
1




= span




−Q
1
1
1
1
1




= span




−1
R
R
R
R
R




where R =

p2 − p1
q2 − q1

and Q =
q2 − q1
p2 − p1

, as defined.

We now investigate the multiplicity of steady states for positive (R >
0), negative (R < 0), P -null (R = 0 and defined), and Q-null (Q = 0 and
defined) systems.

First, for positive integrated systems, i.e., R > 0 (Q > 0), we have

sign(S̃⊥) =




−
+
+
+
+
+

 ,


+
−
−
−
−
−




.

Indeed, if we let x be in the stoichiometric subspace S given by

S = span




1
−1
0
0
0
0

 ,


0
−1
1
0
0
0

 ,


0
1
0
−1
0
0

 ,


0
0
0
1
0
−1

 ,


0
−1
0
0
1
0




,

then
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x = a1


1
−1
0
0
0
0

+ a2


0
−1
1
0
0
0

+ a3


0
1
0
−1
0
0

+ a4


0
0
0
1
0
−1

+ a5


0
−1
0
0
1
0

 =


a1

−a1 − a2 + a3 − a5
a2

−a3 + a4
a5
−a4

 .

We can then choose a1 > 0, a2 < 0, a3 > a4 > 0, a5 < 0 such that 0 <
−a2 + a3 − a5 < a1 so that we have

sign(x) =


+
−
−
−
−
−

 ∈ sign(S̃⊥)

and thus sign(x)∩ sign(S̃)⊥ ̸= {0}. Therefore, by Theorem 3, any positive
integrated system is multistationary.

Now, for negative integrated systems, we cannot utilize Theorem 3 to
conclude monostationarity. Because of this, we employ a different criterion
to conclude when the system is monostationary. The following computa-
tional method introduced by Wiuf and Feliu [7, 28] reveals network injec-
tivity for a specific subset of the collection of negative integrated systems.

If we have a negative integrated system, i.e. we investigate network
injectivity to assess multiplicity of steady states using Theorem 4. For the
integrated system, we similarly solve for M∗ as previously described and
find that

detM∗ = p1k1k2k3k4k5z1z3z5z7z9 + p1k1k2k3k4k6z1z4z5z6z8

− p2k1k2k3k4k5z2z3z5z7z9 − p2k1k2k3k4k6z2z4z5z6z8

+ p1k1k2k4k5k6z1z3z5z6z9 + p1k1k2k3k4k6z1z5z6z7z8

+ p1k1k2k3k5k6z1z3z6z7z9 − p2k1k2k4k5k6z2z3z5z6z9

+ p1k1k3k4k5k6z1z4z5z6z9 − p2k1k2k3k4k6z2z5z6z7z8

+ p1k1k2k3k5k6z1z4z6z8z9 − p2k1k2k3k5k6z2z3z6z7z9

− p2k1k3k4k5k6z2z4z5z6z9 − p2k1k2k3k5k6z2z4z6z8z9

+ p1k1k3k4k5k6z1z5z6z7z9 + p1k1k2k3k5k6z1z6z7z8z9

− p2k1k3k4k5k6z2z5z6z7z9 − p2k1k2k3k5k6z2z6z7z8z9

− q1k2k3k4k5k6z1z4z5z6z9 + q2k2k3k4k5k6z2z4z5z6z9

− q1k2k3k4k5k6z1z5z6z7z9 + q2k2k3k4k5k6z2z5z6z7z9.
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Similar to the steps in Appendix C, all the terms of the determinant of
M∗ are positive whenever p1 > 0, p2 < 0, q1 < 0, and q2 > 0. Similarly, all
the terms are negative whenever p1 < 0, p2 > 0, q1 > 0, and q2 < 0. By
Theorem 4, the integrated system is monostationary if either (i) p1, q2 > 0
and p2, q1 < 0 or (ii) p1, q2 < 0 and p2, q1 > 0 holds.

Finally, for null systems, we investigate the induced ODEs of the system
and find that the integrated system follows the conservation law

A′
1(t) +A′

2(t) +A′
3(t) +A′

4(t) +A′
5(t) +A′

17(t) = 0.

Following the same arguments in Theorems 5 and 6, we can conclude that
the integrated system whenever p1 = p2 or q1 = q2, but not both, i.e.
P -null or Q-null, admits a unique positive steady state.

We notice that this is the same for the case of DOC-only systems.

Appendix J Carbon reduction for the DAC
system

Proposition 7. Let A◦
i , A

∗
i , S

◦ be as defined in the previous proposition
of a DAC system. Let m′ be the minimum of pr2 and M ′′ be the maximum
of pr1 + pr3 + pr4 + pr5 on S◦. Then A∗

2 < A◦
2 whenever

1 +
M ′′

m′ <

(
k1
k2

) 1
p2−p1

(m′)−Q +
k3k5k7 + k6k4(k5 + k7)

k4k5k7
if p1 ̸= p2

or

1 +
M ′′

m′ <

(
k1
k2

) 1
q2−q1

(m′)−R +
k3k5k7 + k6k4(k5 + k7)

k4k5k7
if q1 ̸= q2.

Proof. Note that A∗
2 < A◦

2 if and only if 1 < A∗
2/A

◦
2. Equivalently, we have

1 +
(pr1 + pr3 + pr4 + pr5)(A)

A∗
2

<
A◦

2

A∗
2

+
(pr1 + pr3 + pr4 + pr5)(A)

A∗
2

.

Since (pr1 + pr3 + pr4 + pr5)(A) ≤ M ′′ and 1/A∗
2 ≤ 1/m′′, we have

A∗
2 < A◦

2 ⇐⇒ 1 +
M ′′

m′ <
A◦

2 + (pr1 + pr3 + pr4 + pr5)(A)

A∗
2

.

Denote the right hand side of the above inequality as SUM∗
(2). We establish

a lower bound for SUM∗
(2) using the steady state parametrization of the
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system whenever p1 ̸= p2 with(
k1
k2

)1/p2−p1

(m′)
q2−q1
p1−p2 +

k3
k4

+
k6
k5

+
k6
k7

=

(
k1
k2

) 1
p2−p1

(m′)−Q +
k3k5k7 + k6k4(k5 + k7)

k4k5k7
≤ SUM∗

(2).

Similarly, if q1 ̸= q2, we have(
k1
k2

) 1
q2−q1

(m′)
p1−p2
q2−q1 +

k3
k4

+
k6
k5

+
k6
k7

=

(
k1
k2

) 1
q2−q1

(m′)−R +
k3k5k7 + k6k4(k5 + k7)

k4k5k7
≤ SUM∗

(2).

Then, the right hand side of the equivalence for A∗
2 < A◦

2 is satisfied
whenever

1 +
M ′′

m′ <

(
k1
k2

) 1
p2−p1

(m′)−Q +
k3k5k7 + k6k4(k5 + k7)

k4k5k7
if p1 ̸= p2

or

1+
M ′′

m′ <

(
k1
k2

) 1
q2−q1

(m′)−R+
k3k5k7 + k6k4(k5 + k7)

k4k5k7
if q1 ̸= q2.

Note that Proposition 7 implies that for null DAC systems, i.e. ei-
ther Q = 0 or R = 0, a sufficient condition for carbon reduction in the
atmosphere is given by

1 +
M ′′

m′ <
k3k5k7 + k6k4(k5 + k7)

k4k5k7
.
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