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Abstract

Direct Ocean Capture (DOC) has emerged as a promising Car-
bon Dioxide Removal (CDR) strategy, yet its structural and dy-
namic properties remain underexplored compared to the more estab-
lished Direct Air Capture (DAC). To address this, we construct and
analyze a kinetic system for DOC using Chemical Reaction Network
Theory (CRNT). Our analysis identifies the necessary conditions for
the existence of positive steady states and highlights the potential
for multistationarity, emphasizing critical tipping points within the
carbon cycle. Furthermore, we characterize the conditions under
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which specific carbon pools exhibit Absolute Concentration Robust-
ness (ACR) and determine the system’s carbon reduction capability.
Finally, we present a comparative analysis of the DOC model against
an established DAC model and an integrated DOC-DAC framework,
providing insights into their roles in climate mitigation.

1 Introduction

Over the past several hundred years, the expansion of society’s consump-
tion of fossil fuels and extensive alteration of the terrestrial biosphere has
led to a dramatic rise in levels of carbon dioxide and other greenhouse
gases in the atmosphere. The resulting climate change is one of the most
serious issues society is facing today. It is challenging to significantly cut
down on COs emissions since this modern world relies heavily on fossil
fuels to keep the economy running [24].

The Earth’s carbon cycle is a complex and dynamic system that plays
an important role in regulating the climate of our planet and sustaining
life. It involves the exchange of carbon between terrestrial ecosystems, the
atmosphere, and the oceans. Understanding the intricacies of this cycle is
important for predicting the impacts of activities, such as anthropogenic
carbon dioxide (CO2) emissions in the atmosphere, which affect global
climate change and for developing strategies to mitigate these effects [4,
13,26].

So far, efforts to remove excess CO5 from the air have largely focused
on what can be done on the land, such as growing trees or building direct
air capture plants [20,21,27]. However, a growing number of researchers,
companies and even national governments have begun to look at the ocean
as a potential location for carbon dioxide removal [24].

In the fight against climate change, Carbon Dioxide Removal (CDR)
technologies are essential for reducing COs levels. It is established that
the ocean is good at sequestering carbon because it has already absorbed
30% of the CO5 - and 90% of excess heat - caused by human activities,
significantly dampening the impacts of climate change [12,19]. In total,
the ocean holds around 42 times more carbon than the atmosphere [11,21].

Carbon dioxide removal through Direct Ocean Capture (DOC) incor-
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porates novel electrochemical engineering techniques where dissolved COs
is separated from seawater and stored into long-term geological stock. Al-
though similar to Direct Air Capture (DAC) which captures carbon from
the atmosphere, the physical processes and flux constraints differ in key
ways. A parameter-minimal analysis of DAC has recently been studied
in [9]. The present paper, developing a compartmental ocean-based cap-
ture model, differs from the paper of Fortun et al. [9] as we establish new
criteria specific to DOC’s structure and carbon interactions. In addition,
we also introduce in this paper an integrated model which includes both
DOC and DAC as carbon dioxide removal techniques, and analyze its
long-term behavior.

A key to understanding the DOC system is the application of chemical
reaction network theory (CRNT). CRNT is particularly valuable for ana-
lyzing the structural and dynamical behavior of a system with uncertain or
variable parameters. In particular, we explore crucial properties of DOC
systems using CRNT: existence of positive steady states, multistationarity
and absolute concentration robustness (ACR). We also identify conditions
for the carbon reduction capability of the DOC system.

Studying the steady states of a system provides us with an under-
standing of its long-term behavior and helps us determine its stability.
Furthermore, understanding the complexities of climate change requires
a thorough examination of climate tipping points. These points denote
critical thresholds where the climate system undergoes changes that could
lead to irreversible impacts. Predicting and comprehending these tipping
points is crucial for developing effective strategies to mitigate the impacts
of climate change. Multistationarity, associated with tipping points, de-
scribes how a system could swiftly and irreversibly switch to another state.
In the context of chemical reaction networks, multistationarity refers to the
system’s ability to maintain multiple steady states under identical parame-
ters, including the same set of rate constants and conserved quantities. On
the other hand, ACR ensures the maintenance of the concentration level
of key species despite changes in initial conditions. For DOC systems,
achieving ACR is critical to maintaining robustness in carbon capture and

storage processes over the long term.
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We then conduct a comparative analysis of the structural and dynamic
properties of the Direct Ocean Capture (DOC) model, alongside the well-
established Direct Air Capture (DAC) model by Fortun et al. This com-
parison is crucial given that DAC is a well-established technology with
large-scale projects already, while DOC is still in the early stages, with
only a few trials conducted so far. Furthermore, DOC is geographically
constrained to oceanic vicinity.

The integration of multiple technologies, i.e., the integrated DOC-DAC
approach, is likely to be necessary for large-scale carbon reduction, and our
study demonstrates how this can be effectively modeled within the CDR

framework.

2 Preliminaries

2.1 Chemical reaction networks

A chemical reaction network or simply CRN is a triple of nonempty finite

sets, where
i. §={A41,As,..., A} is the set of species,

ii. C ={C1,Cs,...,Cy} is the set of complexes that are non-negative

linear combinations of the species, and
iii. R ={R1, Ra,...,Rn} CC xC is the set of reactions.

A reaction (C;,C;) € R is typically represented as C; — C;. The
complex Cj; is called the reactant compler and Cj is called the product
complex. The reaction vector for this reaction is defined by the difference
C;—C;. Furthermore, the linear subspace S of R™ spanned by the reaction
vectors is called the stoichiometric subspace of a given network, i.e., S =
span{C; — C; e R"™ | C; — C; € R}.

Consider the CRN, hereafter referred to as the DOC (direct ocean

capture) network, which consists of the following seven reactions:

R11A1+2A2*>2A1+A2
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Ry :2A1 4+ Ay — Ay + 24,
R3: Ay — As
Ry:As — A
Rs: Ay — Ao
Rg: A7 — Ay
R7: As — Asr.

The network has m = 5 species (A;, Aa, A3, A4, and A;7). Further-
more, it has n = 6 complexes (A1 + 245, 241 + As, Ay, Az, Aq and Aj7)
and has r = 7 reactions (R, R, ..., Ry7).

The molecularity matriz Y is an m X n matrix where Y;; is the stoi-
chiometric coeflicient of species A; in complex C;. The incidence matriz

I, is an n X r matrix where

—1 if C; is in the reactant complex of reaction R;,
(Ill)ij = 1 if C; is in the product complex of reaction R;,

0 otherwise.

The stoichiometric matrix N is the m X r matrix given by N = YI,.
The deficiency of a CRN is § = n — £ — s where n is the number of
complexes, £ is the number of connected components, and s is the rank of
the stoichiometric matrix of the network.
For our network, the molecularity, incidence, and stoichiometric matri-

ces are given by

A1 +2A5 2A1 + Ao Az As Ay Ayr

A 1 2 0O 0 0 0
As P 1 1 0 0 0
Y= 4 0 0 0 1 0 0]
Ay 0 0 0 0 1 0
Avr 0 0 0o 0 0 1
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Ry Ry Rs R4 Rs Re¢ Ry
Ay +24, [-1 1 0 0 0 0 07
241 + Az 1 —1 0 0 0 0
L— A |0 0 -1 1 1 0 o0f
As 0 0 -1 0 0 -1
Ay 0 0 0 1 1 0
Aiq L 0 0 0 0 -1 1

and

ATl -1 0 0 0 0 0
A |1 1 -1 1 1 0 0
N=Yl.= , |0 o0 1 0 0 -1
As 0 1 1 0
Avr 0 0 -1 1

The deficiency of the DOC network is 6§ =n—{¢—s =6—2—4 = 0 because
there are six complexes, two connected components, and the rank of NV is
four.

A CRN is weakly reversible if each of its reactions is contained in a
directed cycle. Since each reaction in the DOC network belongs to a cycle,
it is a weakly reversible network.

Therefore, the DOC network is a weakly reversible and deficiency zero

network.

2.2 Chemical kinetic systems

A kinetics for a reaction network N' = (S,C,R) is an assignment to
each reaction C; — C; € R of a continuously differentiable rate func-
tion K¢, ¢, R‘;O — R>( such that this positivity condition holds:
Ke,»c;(c) > 0 if and only if supp C; C supp c. Here, supp C; refers
to the support of the vector C;, which is the set of species with nonzero

coefficient in C;. Hence, the pair (N, K) is called a chemical kinetic system.



167
The species formation rate function (SFRF) of (N, K) is defined as

f (.13) = Z K:Ci—>cj (Z‘) (CJ - CZ)

Ci%CjGR

with x a vector of concentrations of the species that change over time.
Equivalently, f(z) = NK(z) where N is the stoichiometric matrix of N
and IC(z) is the vector of rate functions. The system of ordinary differential
equations (ODESs) of a chemical kinetic system is given by z—f =f(z). A
positive steady state is a positive vector that makes each time derivative

equal to zero. Thus, the set of positive steady states of a chemical kinetic
system (N, K) is given by E; (N, K) = {z € RZ,|f (z) = 0}.

2.3 Power law systems

A power law kinetics has the form K; () = k; [[x;%% for each reaction
J
i =1,...,r where k; € Ry and F;; € R. The r x m matrix F = [F};]

is called the kinetic order matriz that contains the kinetic order values
Fj;, and k; is called the ith rate constant. A power law system is a CRN
endowed with power law kinetics.

Specifically, if each kinetic order row contains the stoichiometric coef-
ficients of each reactant for the associated reaction in the network, then

the system follows the well-known mass action kinetics.

2.4 Network decomposition

We can decompose a CRN into pieces of networks called subnetworks by
partitioning its reaction set into disjoint subsets. A network decomposition
N =N, UM U...UN, is said to be independent if its stoichiometric
subspace is a direct sum of the stoichiometric subspaces of its subnetworks.
An equivalent condition is to show that the rank of the stoichiometric
matrix of the whole network is the sum of the ranks of the stoichiometric
matrices of its subnetworks.

This concept of independent decomposition is important to our study,

as it establishes a significant relationship between the structure of the set of
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positive steady states of a given network and its independent subnetworks.
The following result by M. Feinberg, which we call Feinberg Decomposition
Theorem, highlights this relationship [5, Appendix 6.A].

Theorem 1. Let (N, K) be a chemical kinetic system. Suppose N is de-
composed into k subnetworks, say N1,Na,...,Ni, and denote the restric-
tion of K to the restrictions in N; as K;. If the network decomposition is

independent, then
k

m E (N, Ki) = EL (N, K).
i=1
To get the finest independent decomposition (independent decompo-
sition with maximum number of subnetworks), a MATLAB program was
provided in [22]. By entering the DOC network and applying the pro-
gram, we obtain the following such decomposition: N; = {R;, R2} and
N2 ={R3,Ry,...,R7}.
Recall from Section 2.1 that the stoichiometric matrix of the whole
DOC network is

1 -1 0 0 0 0 07 4
1 1 -1 1 1 0 0] a
N=lo 0 1 -1 0 0 -1| a
0 0 0 0 -1 1 0] A
0 0 0 0 0 -1 11 ay

Furthermore, the stoichiometric matrices of the two subnetworks (N}
and N3) are

Ry Ro Rs Ry Rs5 Rg R7

1 17 A O 0 0 0 07 A

11| o4 1 1 1 0 0] a
N=109 o a a0dNoe=|7 1 o 0 —1| a

0 0| a 0 0 -1 1 0| a

0 01 an 0 -1 1] an
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Since rank N = 4, rank Ny = 1 and rank Ny = 3. Then, the sum of the

ranks of the stoichiometric matrices of the subnetworks is the rank of the

stoichiometric matrix of the whole network. Indeed, the decomposition is

independent.

3 Results and discussion

3.1 The direct ocean capture system

The Direct Ocean Capture (DOC) system is based on a three-compartment
biochemical framework of the pre-industrial model of Anderies et al. [2],
which describes the carbon cycle interactions through the transfer of car-
bon between the land (A7), atmosphere (As), and ocean (As).

As seen in Figure 1, the solid arrows indicate active carbon trans-
fers between these pools, while the dashed arrows represent passive car-
bon transfers induced by regulatory influences. For example, the solid
arrow from the atmosphere (A3) to the ocean (Ajs) indicates that a por-
tion of carbon in the atmosphere can be actively transferred to the ocean.
Meanwhile, the transfer of carbon from land to atmosphere has both ac-
tive and passive components and is influenced by both A; and As. As
a result, we use dashed arrows in the diagram and write the reaction
A1+(A1+As) = As+(A1+A), which is the same as 241+ Ay — A1+2A,,
to represent both components of carbon transfer.

The modeling framework utilizes a power-law system in which the pro-
cesses (or reactions) are represented by power-law functions. The structure
of the rate function of the two processes with regulatory influences, where
the two species A; and A, are involved, follows the form kalad [8].

Our extended model includes an additional compartment (A4) for the
geological stock, which facilitates the transfer of carbon to the atmosphere
at a linear rate. This transfer of carbon from geological stock to atmo-
sphere is facilitated by fossil fuel combustion [2]. Furthermore, we in-
corporate an additional compartment for direct ocean capture (A7), also
with a linear rate. The compartment for geological stock will then serve

as a terminal and long-term reservoir for the carbon captured by CDR
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technologies. These extensions to the original Anderies model allow us
to define four functional subsystems: the Anderies pre-industrial carbon
cycle subsystem, the direct ocean capture subsystem, the carbon storage

subsystem, and the carbon emission subsystem.

Atmosphere

_/

Land biota

4, 3 L Ocean
43

Direct ocean

Geological capture
stock A
1
A, ’

Figure 1. A biochemical map of the Earth’s carbon cycle with direct
ocean capture (DOC). The nodes represent the carbon pools.
Furthermore, the solid arrows indicate carbon transfer, while
the dashed arrows represent regulatory influences.

The biochemical map in Figure 1 can be represented as a chemical re-
action network taking the different carbon pools as our species and the
carbon transfers as reactions. The reactions in the DOC systems’s corre-
sponding network N, together with the corresponding rate functions for

each of them are given by

Ry Ay + 245 = 24, + Ay (kra?*a2),
Ry :2A1 4+ Ay — A + 245 (koal?al?),
R3: Ay — Aj (ksaz),
Ry:As — A (ksas),
Rs: Ay — Ay (ksayq),
Rg : Ar7 — Ay (keairy,
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R7 : Ag — A17 (k7a3),

where the k;’s, for i = 1,2,...,7, denote the rate constants for each of the
seven reactions. We can also represent the underlying network of the DOC

system in the following diagram

As As

Al 4+ 24 —— Ay + 244

A4 — A17

The kinetic order values of our system, as well as additional important
quantities for our analysis are given in Table 1. In the table, we define the
interaction differences of respiration and photosynthesis in the land biota

and atmosphere, as well as their corresponding difference ratios, R and Q.

Notation | Definition
D1 kinetic order of land photosynthesis interaction (p-interaction)
D2 kinetic order of land respiration interaction (r-interaction)
Q kinetic order of atmosphere photosynthesis interaction
(p-interaction)
q2 kinetic order of atmosphere respiration interaction (r-interaction)
P2 — P1 land r-p-interaction difference
Q2 — q1 atmosphere r-p-interaction difference
R= ZL? land-atmosphere r-p-interaction difference ratio
2 —q1
= ;2 — Zl atmosphere-land r-p-interaction difference ratio
2 — P1

Table 1. Model parameters in the DOC system

From the defined parameters, we generate the ordinary differential

equations (ODEs) that describe the dynamics of the network given by

da1

= = kial*adt — koal?ad?

day — kodP?a® — kgt a? — k k L
o 207 Ay~ — K1Q7 Gy — K302 + K4a3 + K504
dag

E = k3a2 — k4a3 — k7a3
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da

cT: = kear7 — ksas
d

227 == k:7a3 - k6a17.

We proceed by defining four different classes of the direct ocean capture
system based on the signs of R and @). This concept of classifying carbon
systems was introduced by Fortun and Mendoza in [10] and we provide a
similar classification to our systems given the modification for direct ocean

capture technology.

Definition 1. The set of direct ocean capture systems such that R > 0
(R < 0) is denoted by DOCs (DOC.). Elements of DOC. (DOC.) are
called positive (negative) DOC systems.

Notice that the ratios R and () are multiplicative reciprocals of each
other. Hence, both difference ratios must have the same signs. As such, we
can equivalently check the sign of @) to determine whether a DOC system
is positive or negative. To be precise, a DOC system is also said to be
positive (negative) if @ > 0 (Q < 0).

Now, note that the ratios R and @ are defined for ¢; # g2 and p; # pa,
respectively. Moreover, R and @ are zero if p; = ps and q1 = ¢o, respec-

tively. This allows us to define two more classes for our DOC systems.

Definition 2. The set of all direct ocean capture systems such that R = 0,
ie. p1 = py but ¢1 # ¢o is denoted by DOCp,, Similarly, if Q) = 0, i.e.
g1 = g2 but p1 # po, then this set is denoted by DOCgq,. Here, DOC
systems in DOCp, (DOCgq,) are said to be a P-null (@-null) DOC system.

As much as possible, we formulate our results in this study in terms
of the four classes of DOC systems, namely, DOCs,DOC.,DOCp,, and
DOCq,. The following sections discuss the existence, multiplicity, and ab-
solute concentration robustness (ACR) in the four classes of DOC systems

and, if necessary, some of its specific subsets.
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3.2 Existence of positive steady states in the DOC

model

Steady states typically describe the long-term behaviors of chemical or
biochemical systems. Mathematically, at these states, the time derivatives
vanish, meaning that over a long period of time, the concentrations of the
species remain constant.

As we study the steady state related properties of our DOC model,
we first check the existence of its positive steady states depending on the
rate constants. Since the model follows power law kinetics, we can use the
results presented by Alamin and Hernandez in [1] to verify the existence of
positive steady states for the entire system through the subsystems induced
by its underlying independent subnetworks (see Section 2.4 for details).
Applying the MATLAB program [22] to our model for finding independent
decompositions gives two independent subnetworks (N; and N3) whose
reactions sets are given by Ry = { Ry, Ro} and Ro = {R3, R4, R5, Re, R7},
respectively.

Regardless of the interactions of photosynthesis and respiration on land
and in the atmosphere, the decomposition of the network into its connected
components satisfies both requirements in checking the existence of posi-
tive steady states: stoichiometric independence and f—independence (see
Appendix A for details). Therefore, invoking Theorem 2 in [1], all defined
classes of our DOC systems, i.e. positive, negative, P-null, and @-null,
have a positive steady state for any rate constants if and only if each sub-
system induced by the independent subnetworks of the decomposition also
has a positive steady state for any set of rate constants.

Indeed, whenever p; # ps or g1 # g2, we can use the method of John-
ston et al. [17], the steps of [3,14], as well as the computational package
COMPILES from [14] to show that the set of positive steady states of
the independent subsystems of the DOC system is nonempty and may be
parametrized in terms of its rate constants (see Appendix B for details).
In terms of our defined classes, this means that all classes of our DOC sys-
tems admit at least one positive steady state for any set of rate constants.

On the other hand, when both p; = py and ¢; = g2, the corresponding
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ODEs of the first subnetwork are

da1

— P1 II1 P2 (J2 — P1 41 P1 (h — P1 41
- = kpaf — koal = kiaitad' — koaltad' = (k1 — k2)al ad',
day = koa??a®® — kyaP a?t = kya® 111 B A (J1 = (ky — k1)a? p1 !h
dt = R2Q7" Gy 147 Qg ay 17 2 1

Thus, positive steady states of this subnetwork’s associated system exist
only when ky = ks. For independent subnetworks, the intersection of their
sets of positive steady states is the set of positive steady states of the
whole network (see Theorem 1 for details). Since the decomposition is
also f-indepemdent7 we have the existence of positive steady states for the
entire system only if k1 = ko [1]. Furthermore, the DOC systems admit a
positive steady state for every stoichiometric class, i.e., for each positive

value of the conserved total quantity (see Appendix D for details).

3.3 Conditions for multistationarity of the DOC sys-

tem

The capacity of the DOC system to admit multiple steady states depends
on the values of its kinetic orders. Specifically, whether the system can
exhibit multistationarity is determined by the sign of its interaction dif-

ference ratios
R:P2—P1 and Q — QQ_(h.
92 —q1 pP2—D1
For the DOC system, the stoichiometric subspace S is given as follows

(see Appendix C for details):

1 0 0 0
-1 -1 0 0
S = span O, 1],[{-1{,|0O
0 0 0 1
0 0 1 -1

Furthermore, the orthogonal complement (5’ )% of the kinetic flux subspace



175

S is given as follows (see Appendix C for details):

-Q
1
span 1 when written in terms of @
1
(8)* = -
-1
R
span R when written in terms of R
R
| R

The subspaces S and (S)* are needed in the simple criterion of Miiller
and Regensburger [23], which determines when a system admits more than
one (complex balanced) steady state. This is performed by examining the
possible sign patterns of the vectors in these spaces, which in turn rely on
the mentioned difference ratios. Using such criterion (see Appendix C for
details), the system has the capacity to admit multiple steady states when
R > 0. Therefore, all positive DOC systems are multistationary and can
admit multiple steady states under the same set of parameters.

Next, we use the criterion of Feliu and Wiuf [7,28] and individually
investigate the signs of kinetic orders pi,p2,¢q1 and g2 to conclude when
the system is monostationary (see Appendix C for details). Indeed, by
this criterion (see Theorem 4), the DOC system admits a unique positive
steady state whenever pi,g> < 0 and pa,q; > 0, or whenever p1,q2 > 0
and ps,q1 < 0. Note that the conditions on the signs of the kinetic orders
imply that R < 0 but such negativity condition for the difference ratios
themselves are not sufficient conditions for the DOC system to become
monostationary. We note then that although all monostationary DOC
systems are negative, the converse does not immediately follow. Only
systems in the subset of DOC. satisfying p1,q2 < 0 and p2,q1 > 0 or
p1,q2 > 0 and p2, ¢1 < 0 have been shown to exhibit monostationarity.
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3.4 Conditions for ACR of the DOC system

Following the method of Hernandez et al. for computing steady state
parametrization of chemical reaction networks [3,14], we obtain some pos-
itive steady state parametrizations of the DOC system for different values
for the kinetic orders (see Appendix B for the computation). First, when
the kinetic order of the land photosynthesis interaction differs from that

of the land respiration interaction, that is, when p; # ps, we have

1

kl P2—P1 _
a; = | — 720
ko

as k3 P1—PpP2
ky + k7
_ k3kz pP1—p2
7 e (ka + k)
_ k3kr p1—p2
M helkat+ k)

where 7 > 0. To ensure that the concentration of COq in land (A;) remains
stable regardless of the initial conditions, the kinetic order of the atmo-
sphere photosynthesis interaction should be equal to the kinetic order of
the atmosphere respiration interaction, i.e., g1 = ¢s. The concentration of
carbon dioxide in the other carbon pools remains variable in this scenario.
Note that in this case, the atmosphere-land r-p-interaction difference ra-
tio becomes zero, i.e., @ = 0. Thus, we achieve absolute concentration
robustness (ACR) on A; only whenever we have a @-null DOC system.
Analogously, when the kinetic order of the atmosphere photosynthesis
interaction is different from the kinetic order of the atmosphere respira-
tion interaction, i.e., g1 # g2, we obtain the following parametrization of

positive steady states of the DOC system:

a; = 727N

1

ki) e2a _
as = (k P1=P2
2
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1
az = kg <k1> e TP1—P2
ka + k7 \ k2

— kgk'z kl ﬁ P1—p2
= ks(ka + k7) <k2> i
1
_ k3kq <k1> TN pi—pe
U7 Fo(ka + k) \ k2 !

where 7 > 0. Similar to our analysis in the previous case, the concentra-
tions of COg in the atmosphere (As3), ocean (Az), DOC (A17), and total
carbon stock pools (Ay) is stable whenever the kinetic order of the land
photosynthesis interaction equals that of the land respiration interaction,
i.e. p1 = po. In this case, we have R = 0 and so we achieve ACR in species
Ay, A3, Ay, and A7 in P-null DOC systems.

Finally, if we have p; # ps and g1 # ¢o, then we can take any of
the above positive steady state parametrizations for our system. As a
result, the concentration of all species at their respective steady states will
vary over different sets of initial concentrations. Therefore, for the case of
positive and negative DOC systems, we do not achieve ACR in any of the

species.

Remark. An alternative method to determine the ACR property of the
DOC system is using the species hyperplane criterion [18]. This states
that a system has ACR species if and only if the vector coordinates cor-
responding to these species are zero for all basis vectors in (S)*. Recall

from the previous section that

T
span { [—Q 1 11 1} } when written in terms of @
(S)L = T ‘
span { [71 R R R R] } when written in terms of R

Hence, positive and negative DOC systems have no ACR in any species.
On the other hand, P-null systems, with R = 0, have ACR in species A,
As, Ay and Aj7, while @-null systems, with @ = 0, have ACR in species
A
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3.5 Sufficient conditions for carbon reduction

In this section, we determine sufficient conditions to ensure that for any
set of initial conditions AY, ..., A%, A}, and any set of steady state values

T, ..., A5, A}, in an associated stoichiometric class S°, there is carbon
pool reduction in the ocean, i.e., A3 > Aj. In other words, the long-term
concentration of carbon in the ocean is lower than its initial concentration.

The approach taken here is to use the conserved quantity of the DOC, i.e.,
T=A7+ A5+ A3+ Aj + AT,

Note that the underlying network of the DOC system is conservative,
and hence each stoichiometric class is compact [15]. Hence, we can define
the continuous maps pr;: R”™ — R where ¢ denotes the index of the carbon
pools of our system, i.e. pry(A) is the concentration of Ay in the system.
Note that these maps and their sums attain maxima and minima on any
of its stoichiometric class or closed subset. We now present a sufficient

condition on the network parameters for carbon reduction in the ocean.

Proposition 2. Suppose a DOC system has initial conditions A and
steady state values A in the associated stoichiometric class S°. Let m' be

the minimum of pry and M’ be the mazimum of pry + pry + pry + pry; on

k T—M
S°. Then A3 < A3 whenever " —s/ﬁ < Y

Proof. We consider the cases when p; # pa or g1 # go. These two cases
are sufficient to describe the behavior for positive, negative, P-null, and
@Q-null systems. Note that if either p; = py or ¢ = @2, but not both,
steady states of some species may be parametrized by As. Specifically,
for systems where p; # po, i.e. @Q-null if ¢ = g2 and positive/negative

otherwise, we have
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kskr
Ay=—"7" A
T (ks + k)
ksky
App = —————— A,
1 ke(ka + k7) 2

For systems with ¢; # ¢o, i.e. P-null if p; = po and positive/negative
otherwise, we have

Al — 7—‘12—(11

Ay = Ay
k3
Az = A
P kat ky
kskr
Ay=—————A
Y skt k)
kskr
Ay = ——F———As.
N
. k3
For either case, we have A3 = ———— A,. Thus, we have
ky + k7
* ]fg * T—-M * o o o o o
As = Tt k7A2 < — AS<T—M <T—(Aj+AS+ A +AS;) = A3,
which gives our desired result. |

We compare the sufficient conditions for carbon reduction for our pro-
posed DOC model to one with direct air capture. In contrast to our DOC
model which looks at the sufficient conditions for carbon reduction in the
ocean, we look at the sufficient conditions for carbon reduction in the at-
mosphere for models with direct air capture. We present these sufficient
conditions in Table 2. We remark that the sufficient conditions for car-
bon reduction in the atmosphere with DAC involve more parameters than

those of carbon reduction in the ocean with DOC.
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3.6 Tabular summary of dynamic properties of the
DOC system

In this work, we study the long-term behaviors of a global carbon cycle
model incorporating Direct Ocean Capture (DOC) technology through
its positive steady states. Applying results in chemical reaction network
theory, we were able to provide conditions for the existence of positive
steady states, multistationarity, and absolute concentration robustness in
our DOC model.

First, we have shown that for all four defined classes of DOC systems,
namely, the positive, negative, P-null, and @Q-null systems, there exists at
least one positive steady state for any set of rate constants. In contrast, if
a DOC system is not in any of these classes, i.e. when both p; = ps and

q1 = g2, positive steady states exist only when ki = ko.
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Steady State Property Class of DOC systems*
Existence DOC. : for any set of rate constants
DOC. : for any set of rate constants
DOCp, : for any set of rate constants
DOCyq,: for any set of rate constants
Multiplicity DOC. : multistationary
DOC. : contains monostationary systems;
must satisfy p1,¢2 < 0 and p2,¢1 >0
or p1,q2 > 0 and p2,q1 <0
DOCp, : monostationary
DOCq,: monostationary
ACR DOC. : no ACR
DOC. : no ACR
DOCp,: ACR in Ay, Az, Ay, and A;7 only
DOCg,: ACR in A; only

* Positive (DOC> ), Negative (DOC<), P-null (DOCp,), or @-null (DOCq,).

Table 3. Summary of steady state properties of the different classes of
DOC systems

Next, we have shown that all positive DOC systems can admit more
than one positive steady states for a fixed set of parameters, i.e. they are
multistationary. In contrast, not all negative DOC systems exhibit mono-
stationarity. Specifically, only two subsets of our negative DOC systems,
satisfying p1,q2 < 0 and p2,q1 > 0, or p1,q2 > 0 and ps,q1 < 0 admit
a unique positive steady state for each fixed set of parameters. We em-
phasize that although monostationarity in a DOC system implies that the
system is negative, the converse does not follow. For P-null and @-null
DOC systems, we investigate the induced ODEs and associated conser-
vation laws of these systems to determine the multiplicity of their steady
states. Following this approach, we conclude that all DOCp, and DOCq,
systems are monostationary (see Theorems 5 and 6 for the proofs). These
results are validated in Appendix E.

Finally, absolute concentration robustness, or ACR, on some species
of our DOC system was exhibited for P-null and @-null systems only.
Specifically, regardless of initial concentrations, stable concentrations at
steady state for the atmosphere (A43), ocean (As), direct ocean capture
(A17), and total carbon stock pools (A4), are achieved in P-null DOC
systems. For @-null DOC systems, this allows for ACR of carbon dioxide
in the land biota (A;) only. These results are validated in Appendix F.
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Ideally, carbon dioxide removal through direct ocean capture technol-
ogy aims to achieve a stable and unique concentration of carbon dioxide
in the ocean at its steady state. Our results imply that this ideal situation

can be achieved in P-null direct ocean capture systems.

3.7 Comparison of carbon capture systems

Direct air capture model Direct ocean capture model

Atmosphere
4,

Atmosphere
4,

Land biota
4,

Land biota
4

Ocean
43

v
Direct air Direct ocean
Geological capture Geological capture
stock A stock Ay,
A, 4,

Figure 2. Side-by-side comparison of the biochemical maps of the un-
derlying networks of DAC and DOC systems, placed on the
left and right panels, respectively.

In this section, we begin to compare carbon capture systems, focusing
specifically on models which utilize either direct air capture (DAC) or
direct ocean capture (DOC) exclusively. Figure 2 shows the biochemical
maps of the underlying networks of the DAC and DOC systems. Both
models contain the four basic carbon pools (Aj, Az, A3 and Ay), along
with their associated processes. The key difference of the models is the
exclusive presence of compartments As (direct air capture) and Aq7 (direct
ocean capture) in the DAC and DOC models, respectively. Furthermore,
the reaction that captures the carbon from the atmosphere (As — As) is
present only in the DAC network, whereas the reaction that captures the
carbon from the ocean (A3 — A7) is present only in the DOC network.
In Table 4, we list and compare some network numbers describing network
structure and composition to compare the DAC and DOC models. Using
the standard CRNToolbox [6] to obtain these numbers, we note that the
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network numbers for both models match exactly.

Network Numbers Notation | DAC | DOC
Species m 5 5
Complexes n 6 6
Reactant Complexes Ny 6 6
Reversible Reactions Trey 2 2
Irreversible Reactions Tirrev 3 3
Reactions r 7 7
Linkage Classes l 2 2
Strong Linkage Classes st 2 2
Terminal Strong Linkage Classes t 2 2
Rank s 4 4
Deficiency ) 0 0

Table 4. Network numbers of the models exclusively with DAC and
DOC technologies using CRNToolbox

We also obtain from CRNToolbox [6] the coincidence of some structural
properties of the DOC and DAC models as seen in Table 5.

Property DAC | DOC | Description of the property

Deficiency zero Yes Yes | The deficiency is a non-negative integer that
measures the linear dependence of the reactions.

Weakly reversible Yes Yes | Each reaction belongs to a cycle.

Positive dependent Yes Yes | There is a set of positive numbers for which the

linear combination of the reaction vectors in the
network equals zero.

Conservative Yes Yes | There is a vector in the positive orthant that is
orthogonal to all the reaction vectors, hence,
respecting a conservation law.

Concordant No No | A structural property that enforces a degree of
dull, reliable behavior even against varieties

of kinetics; multistationarity is not possible.

Independent linkage classes | Yes Yes | The linkage class decomposition is independent.
Maximally closed Yes Yes | The dimension of the stoichiometric subspace

is one less than the number of species, i.e., s =m — 1.
High reactant diversity Yes Yes | The number of reactant complexes is more

than the dimension of the stoichiometric
subspace, i.e., n, > s.

Table 5. Structural properties of the DAC and DOC networks obtained
from the standard CRNToolbox

Finally, using the results of Fortun et al. [9] and Table 3 in this paper,
we see a coincidence in the dynamic properties of the DAC-only and DOC-

only models. Indeed, for all four classes that we have previously identified



185

(i.e., positive, negative, P-null, and @-null), both systems incorporating
DAC and DOC exclusively exhibit the same dynamic properties on the
existence of positive equilibrium, multistationarity and ACR.

Finally, in Section 3.5, we presented the sufficient conditions for oceanic
carbon reduction for systems with DOC and atmospheric carbon reduc-
tion for systems with DAC. Notably, the sufficient conditions for the DAC
model are more complex than that for the DOC model. This increased
complexity may be attributed to the difference of the number of reactions
occurring in the carbon compartments for the atmosphere and the ocean.
For the DOC model, our results are consistent with our intuition that a
higher value for the rate constants corresponding to an outflow of carbon
in the ocean pool lead to greater oceanic carbon reduction efficiency. Sim-
ilarly, for systems with direct air capture, rate constants corresponding to
an outflow of carbon in the atmosphere also implies greater atmospheric

carbon reduction efficiency.

3.8 Analysis of the integrated air and ocean carbon

capture system

In this last section, we present a model which integrates both direct air
capture and direct ocean capture technologies. In contrast to our compar-
ison of the DAC-only and DOC-only systems, we show here that there are
some differences to the network numbers and dynamic properties of the
integrated carbon capture model.

First, we present the biochemical map of the integrated system with
both DAC and DOC technologies in Figure 3. We note that this model
now has six species, as a result of the integration of the carbon capture

technologies.
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Figure 3. Biochemical map of the underlying networks of the inte-
grated DAC and DOC systems.

Next, Table 6 gives the network numbers of the integrated system.
The differences in some network numbers are immediate, but we do note
that similar to the systems employing only one of the carbon capture
technologies, the underlying network of the integrated system also has
zero deficiency. In contrast, the rank of the integrated system is greater
than one compared to the DAC-only and DOC-only due to the addition
of the carbon pools for DOC and DAC, respectively.

The structural properties of the integrated system are the same with
those of the DOC-only and DAC-only models. That is, the integrated
carbon capture system satisfies the descriptions of deficiency zero, weakly
reversible, positive dependent, conservative, independent linkage classes,
maximally closed, and high reactant diversity, and is also not concordant.
Table 5 shows the precise descriptions of these properties.

Finally, we now compare the dynamical properties of the integrated
system with the DOC-only and DAC-only systems. Specifically, we com-
pare the dynamical properties of the integrated system with the DOC-only

system. For existence, the addition of the species for direct air capture does



187

Network Numbers Notation | Integrated
Species m 6
Complexes n 7
Reactant Complexes Ty 7
Reversible Reactions Trev 2
Irreversible Reactions Tirrev 5
Reactions r 9
Linkage Classes 4 2
Strong Linkage Classes st 2
Terminal Strong Linkage Classes t 2
Rank ] 5
Deficiency ) 0

Table 6. Network numbers of the integrated network using CRNTool-
box

not affect the conditions required for a positive steady state. Instead, this
addition increases the system’s rank by one, which still allows it to satisfy
the criteria established in [1] for the existence of a positive steady state
through its independent subnetworks. Moreover, the conditions for multi-
plicity of the integrated system are also the same as that of the DOC-only
system, as shown in Appendix I. Finally, based on the parametrization of
the positive steady states of the integrated system (see Appendix H), the
addition of the new species in the integrated system does not eliminate
any species exhibiting ACR in any of the identified classes. Essentially,
the set of species exhibiting ACR across four classes in the integrated sys-
tem is the union of the same species exhibiting ACR in the DOC-only and
DAC-only systems.

4 Conclusion and recommendations

In this work, we study a global carbon cycle model that incorporates direct
ocean capture (DOC) technology, using tools and concepts from Chemical
Reaction Network Theory (CRNT) to analyze the system’s long-term be-
havior without requiring specific parameter values. Specifically, we investi-
gate the existence and multiplicity of steady states and identify parameter

conditions under which long-term concentration robustness emerges among
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the carbon pools.

Our analysis shows that the DOC model always admits at least one
positive steady state for any set of rate constants. This implies the ability
of the system to go to a nonzero concentration of carbon across its pools
in the long term. We also derive conditions on the rate constants that give
rise to multistationarity. In the context of the global carbon cycle, the
presence of such multiple positive steady states may correspond to low-
or high-carbon equilibria. A low-carbon steady state typically reflects a
stable climate that supports biodiversity, agriculture, and habitability. In
contrast, a high-carbon steady state may lead to global warming, extreme
weather events, and ecosystem disruption.

Additionally, we identify conditions under which the system exhibits
absolute concentration robustness. This study suggests unique and robust
oceanic carbon concentrations arise when the kinetic order of atmospheric
photosynthesis differs from that of atmospheric respiration.

We further extend our analysis by introducing a model that integrates
both direct air capture (DAC) and direct ocean capture (DOC) technolo-
gies. We find that this integration does not affect the required conditions
for a positive steady state. In the combined system, the set of species ex-
hibiting ACR across four different model classes corresponds to the union
of the ACR species identified in the DAC-only and DOC-only subsystems.

Although some of the results could be derived by directly decoupling
the associated ODEs of the system, the goal of applying CRNT extends
beyond solving these particular systems. Our approach begins with rela-
tively simple models as a foundational step, enabling a systematic applica-
tion of CRNT techniques to more complex systems, particularly in scenar-
ios where decoupling is infeasible or where parameter-free or parameter-
minimal analyses are especially beneficial. CRNT offers a general frame-
work to infer dynamic properties such as multistationarity and ACR with-
out detailed knowledge of rate constants, making it a powerful tool for
analyzing the qualitative behavior of reaction networks.

This framework can be expanded to include other carbon dioxide re-
moval (CDR) strategies. Future work will explore necessary conditions

for effective carbon reduction across various models, providing a way to



189

evaluate and compare the long-term viability of different CDR approaches.
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Appendix A Details of showing the existe-
nce of positive steady states of
the DOC system

The network A/ can be decomposed into (stoichiometrically) independent
subnetworks A7 and A5 given by

N12 A1+2A2:A2+2A1
Ay ———— Aj

Nzt

A4 — A17

This decomposition is computed in Section 2.4, which can also be obtained
using the MATLAB program in [22]. In order to invoke the result of [1], we
show that this decomposition also satisfies independence of its augmented
matrix of kinetic order vectors (i.e. T-independence). Indeed, the T matrix
of the entire network N is given by

A1 +2A2  2A1+ A Ay Az Ay Agr

A [ m D2 0 0 0 07
A, Q1 q2 10 0 0
A 0 0 0 1 0 0
T= 4, 0 0 0 0 1 0
Avr 0 0 0 0 0 1
M 1 1 0 0 0 0

No L0 0 1 1 1 1

which has rank six (¢ = 6) whenever p; # ps or ¢1 # ¢g2. Moreover, if
p1 = p2 and g1 = ¢, then the rank of T is five (¢ = 5). The decomposition
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of N into N, and N> gives rise to two 7' matrices given by

Ay Az Ay Anr

Ap +24;  24; + Ay As 1 0 0 0

~ Ay p1 j2) . Ag 0 1 0 0
Ty = a, [ q1 G2 ] and To= 4, [0 0 1 0|,

N 1 1 Az | 0O 0 0 1

No 1 1 1 1

which have ranks two (¢t; = 2) and four (¢o = 4), respectively, whenever
p1 # p2 or 1 # q2. Now, if p1 = ps and ¢1 = g2, then the rank of T} is one
(t; = 1). In any case, we get T' = T; @ T» since their respective ranks add
up, i.e. t =11 + to. (f—independence). Invoking the result of Alamin and
Hernandez [1], we conclude that the entire direct ocean capture system
has positive steady states if and only if each subsystem induced by the
independent subnetworks have positive steady states. This means that
the existence of positive steady states of the DOC system, regardless of
the values of p1, p2, g1, and g2 may be determined through its independent
subnetworks.

Appendix B Details of parametrization of
positive steady states of the
DOC system

To compute the positive steady state parametrization, we follow the steps
provided in [3,14]. The first step is to get the finest independent decom-
position of the whole network A" as computed in Section 2.4. Next, we get
the positive steady states of each subnetwork (A and N3) individually.

B.1 Computation of positive steady states of N

The following steps are due to Johnston et al. [17] via the so-called “net-
work translation.” If we can find such a network that is weakly reversible
and deficiency zero, then we can compute the positive steady states via
this method. For a more detailed discussion of the method, please refer
to [3,17].

STEP 1: Find a weakly reversible and deficiency zero translated network.
Translating a network can be done by adding or subtracting the same term
to both sides of the reactions (preserving the stoichiometric matrix of the
network) but considering the original kinetic vectors (preserving the rate
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functions).

Original Network Kinetic Order Vector
Ry: A1 +24; — 241+ Ay prAi+qds =[p,q]’
Ry :2A1 4+ Ay — Ay + 245 peAi + @Az = [p2, qo) T

Translated Network

(D) - (2)
A2 Al
(P1A1 + 1 A2) ko (P2 A1 + g2 A2)

Y

A

STEP 2: Get all the spanning trees, with edges labeled by rate constants,
towards each node.

Towards 1 Towards 2
k‘g :2—1 k‘l 11— 2
Ky =k Ky =k

STEP 3: Choose any spanning tree containing all the nodes. (Here, we

K /

choose 1 — 2.) Furthermore, we compute k;_,; = KZ and get the kinetic
i

difference(s) (i.e., difference between the kinetic vectors given inside the

parentheses in the translated network) associated to the edge(s) of the

tree.

Ky Kk
Rls2 = 7 = 7

Kk (p2 —p1)A1 + (g2 — q1) A

STEP 4: Compute matrices M, H, and B. We have M = [po —p1  ¢2 — q1]

(the matrix of kinetic differences). We find H = [hy hgf such that
MHM = M, ie.,

h
[pz —P g2 — fh] {hj [pz —P g2 — fh] = [Pz —P 92— Q1]

1
We have H = P2 — P1
0

Let B= [b1 bs] . We find matrix B such that ker M = B. We have
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b
P2 =11 @2 — a1 [bj =0

(P2 —p1)b1 + (g2 — q1)b2 =0
(@2 — q1)b2 = (p1 — p2)bs
(p1 — p2)b1
©-q

by =

If by = g2 — q1, then by = p; — p2. So B = {qqu].

p1 — P2
STEP 5: Establish positive steady states. The values of a; and as using
the entries of matrices H and B as exponents are

1
1 B kl P2—P1 _
a = (,i2_>1)p2_p1 29 — ]{T 7929
2

ag = (I<L2_>1)O TP1=P2 — P1—P2

with 7 > 0, a free parameter (only one) since the matrix B only has one
column vector. This covers the case when p; # po.

0
However, we can also choose H to be 1 . In this case, the
a2 — q1
parametrization is

a; = (H2—>1)0 720 — 19270

1
1 _ kl a2—4q1 _
as = (H2_>1)q2_q1 rP1i—pP2 — kf TP17P2
2

This covers the case when ¢ # ga.

B.2 Computation of positive steady states of A,

Here, we provide a parametrization of N3 via the computational pack-
age COMPILES (COMPutIng anaLytic stEady States) developed in [14],
which is built in MATLAB. It derives a steady state parametrization of
the network by decomposing the CRN into independent subnetworks and
combines parametrizations of the subnetworks. Note that COMPILES is
only applicable for mass action systems.

Code (used on the script file)

model.id = ’Direct Ocean Capture’;
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model = addReaction(model, ’A1+2A2<->2A1+A2°,
{°a1°, °A2°}, {1, 2}, [1, 2],
{°a1°, °A2°}, {2, 1}, [2, 1],
true) ;
model = addReaction(model, ’A2<->A3’, ..
{’A2°F, {13}, [11,
{°A3°3}, {1}, [1],
true);
model = addReaction(model, ’A4->A2°, ...
{’A4°}, {1}, [11,
{’a2°F, {13, [ 1,
false);
model = addReaction(model, ’A17->A4°,
{’a17°3, {1}, [11,
{843, {13}, [ 1,
false);
model = addReaction(model, ’A3->A17’,
{°A3°}, {1}, [1],
a7y, {13, [ 1,
false);

[equation, species, free_parameter, conservation_law, model]
= steadyState(model);

Output
The network has 2 subnetworks.
- Subnetwork 1 -

R1: A1+2A2->2A1+A2
R2: 2A1+A2->A1+2A2

Solving Subnetwork 1...

Al (k1xtaul) /k2
A2 = taul

- Subnetwork 2 -

R3: A2->A3
R4: A3->A2
R5: A4->A2
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R6: A17->A4
R7: A3->A17

Solving Subnetwork 2...

A17 = (k5*tau2)/k6

A2 = (kbxtau2* (k4 + k7))/(k3%k7)
A3 = (kb*tau2)/k7

A4 = tau?2

Solving positive steady state parametrization of the entire
network. ..

The solution is as follows.

A1l = (A4*k1xk5* (k4 + k7))/(k2%k3*k7)
A2 (A4xk5*x (k4 + k7))/(k3*k7)

A3 = (A4xk5)/k7

A17 = (A4%k5)/k6

Free parameter: A4

We focus solely on the solution for the second subnetwork in the out-
put, as it follows the mass action formalism, whereas the first network
follows the power law formalism and was computed earlier in the previous
subsection.

Hence the obtained parametrized steady state solution for N3 is given
by

- (k5&))(k4 + ]C7)
aQ = ————
ksky

a5 = 5@

3 — k7
Ay = W
ayy = ¥

17 — k6

B.3 Computation of positive steady states of the DOC
system

First, we consider the case when p; # po, we merge the obtained positive
steady states in the preceding two subsections (the values of ay which is
common to both subnetworks must agree) to obtain the following steady
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state parametrization of the whole network:

ks
2  +P1—P2
az = k4 n k7T
k3ky _
ay = — - P17 P2
ks(ky + k7)
k3ke

a — TP1—P2
T ke (ks + kr)
Free parameter: 7 > 0.

Recall that the ODEs for N are

da1

— = kartay’ — kaal?ay’

d

% = kaai®a3® — kiai'a3' — ksaz + ksas + ksas
d

% = ksag — kqas — kras

d

% = kga17 — ksaq
d

227 = kras — kgarr.

We substitute the obtained parameterized steady-state solution into each
of the ODEs and verify that it indeed makes the right-hand side of each
equation in the ODE system for the entire network A equal to zero.

Second, we consider the case when g; # ¢o. Following the same steps
from the previous case, we arrive at the parametrization

a; = T92—4q1

ki 291 611
as = (k 7—171 —DP2
2

— k?’ kl quql P1—P2
" e+ ke <k2> T

ksks (k;1>q21q1 _
y = TP1—P2
Poks(ha k) \k2)
— k3k7 kl 2mn P1—P2
R Ty <k2> ’

Free parameter: 7 > 0.
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Appendix C Details of the analysis for the
conditions of multistationarity
in DOC systems

To determine some sufficient conditions for the direct ocean capture model
to admit multiple steady states, we utilize the following result by Miiller
and Regensburger [23].

Theorem 3. If for a weakly reversible generalized mass action system with
sign(S) N sign(S)L # {0}, then there is a stoichiometric class with more
than one (complex balanced) steady state.

The theorem tells us that for weakly reversible generalized mass action
systems, a sufficient condition for the system to be multistationary is the
existence of a non-trivial vector whose sign pattern is the same as that of
the stoichiometric subspace S and the orthogonal complement of kinetic
flux subspace S.

First, we solve for the sign pattern of S. Note that S = Im (Y - I,,)
where

Ap +2A2  2A1+ A2 Ay A3 Ay Agr
Av p1 D2 0 0 0 0
. As Q1 q2 r 0 0 0
Y= 4, 0 0 0 1 0 0
Ay 0 0 0 0 1 0
Aiq 0 0 0 0 0 1
and
Ry Ro> Rs3 Ry Rs Rg Ry
A +24, -1 1 0 0 0 0 0
24, + A, 1 -1 0 0 0
I, = Ao 0 0 -1 1 1 0 0 .
A 0 0 1 -1 0 -1
Ay 0 0 0 0 -1 1 0
Ay 0 0 0 0 0 -1 1

Here, the Y matrix is defined using the kinetic order vectors of the system
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(see [23]) and I, is the incidence matrix of the network. Hence,

p2—p1 pr—p2 0 0 0 0
B ©2-—¢ ¢g—¢ -1 1 1 0
Y- I,= 0 0 1 -1 0 0
0 0 0 0 1
0 0 0 0
P2 — D1 0 0
B B g2 — q1 -1 0
=S5=1Im (Y1) =span 0 S O e S |
0 0 0
0 0 1
The orthogonal complement (S)+ of S is given by
1
(§)* = span 1 = span 1 = span
1 1
1 1
where R = L and QQ = 92— , as defined.
g2 — q1 P2 — D1

[0
0
0
1

-1

I
—_

Isvii=vii=v iy

We now investigate the multiplicity of steady states for positive (R >
0), negative (R < 0), P-null (R = 0 and defined), and Q-null (Q = 0 and

defined) systems.

First, for positive DOC systems, i.e., R > 0(Q > 0), we have

_l_

sign(S+) =

++ o+ + |
|

Indeed, if we let x be in the stoichiometric subspace S given by

1 0 0 0
-1 -1 0 0
S = span O, 1],[-1{,|O0
0 0 0 1
0 0 1 -1
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then
1 0 0 0 ay
-1 -1 0 0 —al; — az
z=a1 | 0| +ax| 1| +ag|—-1|4+as| 0| =] as—ag
0 0 0 1 ay
0 0 1 —1 as — Qg4

We can then choose a; > 0 and as < az < aq < 0 so that we have

sign(z) = | —| € sign(St)

and thus sign(z) Nsign(S)+ # {0}. Therefore, by Theorem 3, any positive
DOC system is multistationary.

Now, for negative DOC systems, we cannot utilize Theorem 3 to con-
clude monostationarity. Because of this, we employ a different criterion to
conclude when the system is monostationary. The following computational
method introduced by Wiuf and Feliu [7,28] reveals network injectivity for
a specific subset of the collection of negative DOC systems.

Theorem 4. (Feliv and Wiuf, 2013 [7]) The interaction network with
power law kinetics and fized kinetic orders is injective if and only if the
determinant of M* is a nonzero homogeneous polynomial with all coeffi-
cients being positive or all being negative.

Since network injectivity implies monostationarity [5], we can study
the individual signs of p1,p2,q1, and g2 to know when the system achieve
monostationarity.

The matrix M* in the theorem is defined using the kinetic order ma-
trix F' and stoichiometric matrix N of the network. Indeed, we con-
sider symbolic vectors k = (k1,...,ky,) and z = (z1,...,2-) and define
M = Ndiag(z)Fdiag(k). Taking {w1,...,wa} to be a basis of the left ker-
nel of N and 41,...,iq row indices as above, we can write i; to denote the
index of the first nonzero entry of w? [25]. From this, we define the m x m
matrix M*, by replacing the i;-th row of M by w;. Note that matrix M*
is a symbolic matrix in z, and k..

The stoichiometric matrix and matrix of kinetic order vectors for our
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DOC system is given by

1 -1 0 0 0 0 0
-1 1 -1 1 1 0 0
N=|0 0o 1 -1 0 0 —1|, and
0 0 0 0 -1 1 0
0 0 0 0 0 -1 1
P ¢ 0 0 0
p2 g2 0 0 0
01000
F=|0 0 100
0 0 010
0 0 00 1
(0 0 1 0 0

respectively. Moreover, given the symbolic vectors k£ and z, we have

z 0 0 O O O O

0 2 0 0 0 0 O

0 0 =z 0 0 0 O
diag(z)=10 0 0 2z 0 0 0|, and

0 0 0 0 =2 0 O

0 0 0 0 0 2 O

(100 0 0 0 0 2]

[k, 0 0 0 0

0 k2 0 0 O
diag(k) =10 0 k3 0 O

0 0 0 kg4 O

0 0 0 0 ks

We construct the matrix M = Ndiag(z)Fdiag(k) and obtain

kipiz1 — kipazo kaqiz1 — kagaza 0 0 0
—kip1z1 + kipaza  —kaqiz1 + kaqoza — kozs k3zy kazs 0
M = 0 k223 —]C3Z4 — k3Z7 0 0
0 0 0 —k‘425 k526
0 0 k327 0 *k5Z6

Now, the basis of the left kernel of N is {[1,1,1,1,1]}. This row vector

will replace the first row of the matrix M. Therefore, we have our matrix
M* given by
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1 1 1 1 1

—kip1z1 + kipeze  —kaqiz1 + kagoza — koz3 k3zy kyzs 0

M* = 0 ]CQZ;J, *k3Z4 — k327 0 0
0 0 0 —k425 k526
0 0 k3Z7 0 —k526

The determinant of M™*, using computer software MATLAB is found to
be

det M* = — p1kikokyksz1 232526 — prkikokskazi 232527
— prkikoksksz1232627 — prhikskaksz1242526
— prkikskaksz1 252627 + pakikakskazaz32527
+ pokikakaks 2232526 + pakikoksks 22232627
+ pokikskakszozaz526 + pakikskakszo252627
+ qrkokskaks 21242526 + qukokskaksz1 252627

— qlk2k3k4k‘522242526 — @k2k3k4k522252627.

Hence, for p; < 0,p2 > 0,1 > 0, and g2 < 0, all the terms of the
determinant are positive, and for p; > 0,ps < 0,¢1 < 0, and g2 > 0, all
the terms of the determinant are negative. By Theorem 4, the systems
in these cases are injective, and hence monostationary. These conditions,
although sufficient, are not necessary for monostationarity. Therefore,
only a subset of our negative DOC systems, specifically systems satisfying
either (i) p1,¢2 > 0 and pa,q1 < 0 or (ii) p1,g2 < 0 and pa, g1 > 0, exhibit
monostationarity.

Finally, for the P-null and @-null DOC systems, we investigate their
induced ODEs and arrive at the following theorems:

Theorem 5. All DOCp, systems are monostationary.

Proof. Suppose otherwise and let E; and Fs be two distinct equilibria in
the same stoichiometric class of a P-null system. Since we achieve ACR,
on As, Az, Ay, and A7, the concentrations at steady state for such species
are fixed for any set of rate constants. Hence, Fy and FEy differ in their
concentration of A;. Note that by the induced ODEs of DOC systems, we
have the conservation law

AL () + AL(t) + A5(t) + A () + AL (t) = 0.
Thus, at its steady state, we have

ay = Ayg —az —as — aq — arr
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where Ag is the initial concentration of carbon in the system, which re-
mains fixed in the same set of rate constants. From this, we have

1
kl a2—41 kg k3k7 k3k7 )
=A0— |+ 1+ + + :
“ ’ (k2) ( ky+kr  ks(ka+ke)  ke(ka + k7)
Thus, noting that Ay remains fixed, the concentration of a; is unique at

steady state for any fixed set of rate constants. Therefore, the system is
monostationary. |

A similar approach may be done to conclude the monostationarity of
@Q-null DOC systems.

Theorem 6. All DOCq, systems are monostationary.

Proof. Following the proof of Theorem 5, we utilize the same conservation
law so that at steady state, we also have

ay =Ayg—az —as —as — arr

where A is the initial concentration of carbon in the system. Using the
parametrization of the steady states of systems in DOCgq,, we have

ks kskr7 kskr7 )

= Ay — 7P17P2 1+ +
=TT ( kit k7 ks(ka+ kr) | e(ka+ k7)

where 7 > 0. Since we achieve ACR on A; only for @-null DOC systems,
the free parameter 7 becomes determined since a; is the same across all
sets of rate constants, i.e.

( Ao — > e
k kak ksk :
L+ 53% T Bttin T Relkatin
This implies then that the concentrations of Ao, A3, A4, and A7 at steady
state is unique. Therefore, systems in DOCg, are monostationary. |
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Appendix D DOC admits a positive steady
state for every stoichiometric
class

We can observe in the ODE system of the DOC in Section 2.1 that the
following equation holds

dai das dag day dai7 -
a at T at T at dt*O

by adding the right hand side of all the equations in the ODE system.
This means that the total concentration is constant for any time ¢, i.e.,
a1+ as + as +aq + a7 =T > 0, the conservation equation. In particular,
at the positive steady state,

1
ko —p: ks —p: kskr —p: kskr —p:
—_— 2 + P1—P2 + P1—p2 P1—PpP2 + P1—p2 _— T
<k2> ’ T kot kr ks (ks + k) ko (ka + k)

1
ky ) ERET { ks kskz kskz _
—_— T 4+ [1+ + + TPi—pP2 —
(k’z ka+ ke ks(ka+ke)  ke(ka+ k7)

by replacing the concentrations using the parametrization of positive ste-
ady states computed for the DOC system. Thus, the equation has the
form ar®~% + brP17P2 — ¢ = (. where a, b, c > 0.

We now analyze the existence of solutions to the equation by exam-
ining sign changes, based on a generalization of Descartes’ rule of signs
for counting the number of positive solutions [16]. There are nine possible
combinations of the values of the exponents g3 — g1 and p; — ps, since each
exponent difference can be positive, negative, or zero. The case where both
differences are zero is not included. Furthermore, other combinations can
be combined into a single condition. Arranging the generalized polyno-
mial so that the exponents are listed in decreasing order gives rise to the
following scenarios:

1. g2 —¢1 > 0 and p; — p2 > 0: one sign change
2. @2 —q1 <0 and p; — p2 < 0: one sign change
q2 —q1 = 0 and p; — p2 # 0: one sign change
g2 —q1 # 0 and p; — p2 = 0: one sign change

g2 —q1 > 0 and p; — p2 < 0: two sign changes

A A o

g2 —q1 < 0 and p; — pa > 0: two sign changes
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For the first four cases, there is exactly one positive solution. In the last
two cases, the number of positive solutions is either zero or two. However,
we have demonstrated that the system exhibits multistationarity in these
two cases. Thus, a positive steady state exists for each stoichiometric class
in any DOC system.

Appendix E Simulations confirming monos-
tationarity or multistationarity
of DOC systems

In this section, we validate our results on multistationarity for the DOC
systems summarized in Table 3 of the main manuscript by plotting the
functions

y(T) — ClTsz—(h + 027-]71 —p2 _ T

for non-P-null systems (i.e., positive, negative, and Q-null DOC systems),
and
Z(T) = 79270 + C2C3TP1*Z72 - T

for P-null systems, as derived in Appendix D. Here, T represents the total
concentration given by the conservation relation.

We consider four sets of kinetic orders (p1, q1,p2,g2), each correspond-
ing to a different DOC type:

1. (1.5,1.0,2.5,3.0) for positive DOC (plotted using the function y(7));

2. (-1.0,1.5,1.0,—1.5) for negative DOC (plotted using the function
y(7));

3. (1.0,0.5,1.0,2.5) for P-null DOC (plotted using the function z(7));
4. (3.0,1.5,1.0,1.5) for Q-null DOC (plotted using the function y(7)).

The asterisks on the graphs indicate the values of 7 at which the cor-
responding function crosses the x-axis. These points identify the steady
state solutions of the system. If the function intersects the x-axis at two
points, the system admits two steady states (multistationarity) while a
single intersection implies monostationarity. Each root of 7 corresponds
to a distinct set of steady-state concentrations via the parametrization
formulas.
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Graphs of y(7) or z(7) for various kinetic orders

10 - / :
! / —p1=15,4=10,p,=25,4=3.0 y
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§
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Figure 4. Plots of the the functions y(7) = C1792 79 4 CarP17P2 — T
for non-P-null systems (positive, negative, and Q-null DOC
systems), and z(7) = 79279 + CoC37P1~P2 — T for P-null
systems, where T is the total concentration from the con-
servation equation. These expressions result from substitut-
ing the steady state parametrizations into the conservation
equation. Figure 4 shows plots of the functions with four sets
of kinetic orders (p1,q1,p2,q2) correspond to various DOC
types: 1. (1.5,1.0,2.5,3.0) corresponds to a positive DOC,
2. (-1.0,1.5,1.0,—1.5) corresponds to a negative DOC, 3.
(1.0,0.5,1.0,2.5) is for a P-null DOC and uses the function
z(1), and 4. (3.0,1.5,1.0,1.5) corresponds to a Q-null DOC.
Asterisks on the plot mark the 7 values where the functions
cross the x-axis, indicating monostationarity (with one solu-
tion) or multistationarity (with two solutions) of the DOC
systems.

Appendix F Simulations confirming absolu-

te concentration robustness in
DOC systems

In this section, we validate our theoretical results for the absolute concen-
tration robustness property in the DOC systems through simulations. As
summarized in Table 3 of the main manuscript, the positive and negative
DOC systems do not exhibit ACR, consistent with the behavior shown
in Figure 7. For P-null systems, the table indicates that all species ex-
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cept A; exhibit ACR, while for Q-null systems, only species A; exhibits
ACR. These findings are in agreement with the simulation results shown
in Figures 5 and 6, respectively.

We selected initial conditions from different stoichiometric compati-
bility classes to empirically verify our analytic results: specifically, that
the steady-state concentration of A; in P-null systems exhibits the ACR
property and is therefore independent of the total conserved quantity.

We note from the figure that the rapid accumulation of A, observed
in the simulation is driven by high rate constants assigned to the As-
producing reactions (A4; — Ay and A3 — As). These parameters are
illustrative and were selected to visually demonstrate the system’s conver-
gence to Absolute Concentration Robustness (ACR) within the simulation
window.
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Species concentrations in a P-null DOC system
under different sets of initial conditions

w
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Figure 5. Time evolution of species concentrations in a P-null DOC system
simulated under three different sets of initial conditions. In this
system, p; = p3. Parameters for the rate constants: ki1 = 0.5,
kz = 0.8, k73 = 0.57 k}4 = 0.7, k}5 = 0.4, ]{)6 = 0.67 and k7 = 0.2,
and kinetic orders: p; = 1.0, ¢1 = 1.5, p2 = 1.0, and g2 = 0.5
were used. The upper, middle, and lower subplots represent the
system behavior under the following initial concentrations for
[A1, Aa, Az, A4, Ai7]: (upper) [1.0, 0.8, 0.3, 0.9, 0.6], (mid-
dle) [0.5, 1.0, 0.5, 1.0, 1.0], and (lower) [0.9, 0.9, 0.9, 0.9, 0.9],
respectively. The resulting steady-state concentrations verify
that indeed the system exhibits absolute concentration robust-
ness in all species except Aj.
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Species concentrations in a Q-null DOC system
under different sets of initial conditions

species concentrations species concentrations

species concentrations
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Figure 6. Time evolution of species concentrations in a Q-null DOC system

simulated under three different sets of initial conditions. In this
system, q1 = q2. Parameters for the rate constants: ki = 0.5,
]i}2 = 0.8, k?3 = 0.57 k}4 = 0.7, k}5 = 0.4, I{)G = 0.67 and ]i}7 = 0.2,
and kinetic orders: p; = 0.5, q1 = 1.5, po = 1.4, and g2 = 1.5
were used. The upper, middle, and lower subplots represent the
system behavior under the following initial concentrations for
[A1, As, As, As, Aiz): (upper) [1.0, 0.9, 0.7, 0.4, 0.2], (mid-
dle) [0.5, 0.4, 0.6, 0.1, 0.7], and (lower) [0.4, 0.4, 0.4, 0.4, 0.4],
respectively. The observed steady-state concentrations reveal
that the system exhibits absolute concentration robustness only
in species Aj.
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Species concentrations in a positive or negative DOC system

species concentrations species concentrations

species concentrations

under different sets of initial conditions
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Figure 7. Time evolution of species concentrations in a positive or nega-

tive DOC system simulated under three different sets of initial
conditions. In this system, p; # p2 and ¢q1 # ¢2. Parameters
for the rate constants: k1 = 0.5, ks = 0.8, ks = 0.5, ky = 0.7,
ks = 0.4, k¢ = 0.6, and k7 = 0.2, and kinetic orders: p; = 0.7,
q1 = 1.5, po = 1.2, and g2 = 0.5 were used. The upper, middle,
and lower subplots represent the system behavior under the fol-
lowing initial concentrations for [A1, Az, As, A4, Ai7]: (upper)
[1.0, 0.9, 0.7, 0.4, 0.2], (middle) [0.5, 0.4, 0.6, 0.1, 0.7], and
(lower) [0.4, 0.4, 0.4, 0.4, 0.4], respectively. The distinct steady-
state concentrations observed in each subplot indicate that the
system does not exhibit absolute concentration robustness.
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Appendix G

Positive steady state parame-
trization of the DAC system

Following the steps provided in Appendix B, we also obtain a positive
steady state parametrization of the DAC system, which was not provided
in [9]. For the case when p; # pa, we have

asz = TP1—P2
ky

ay = @7—171 —P2
7125

as = ijl —p2
k7

Free parameter: 7 > 0.

On the other hand, for the case when ¢ # g2, we have

Appendix H

a1 = et

k a2 — rn
ay = (kl) TP1—P2
1
k?’ kl won P1—Pp2
az = /€4 <k‘2> T
1
a4:@ ky ) FP1—P2
ks k:g

1
B kﬁ kl 92 —4q1 p1—ps
as = k7 <k‘2> T

Free parameter: 7 > 0.

Positive steady state parame-
trization of the integrated sys-
tem

Again, we follow the same steps in Appendix B to obtain a positive steady
state parametrization of the system where both DOC and DAC technolo-
gies are present. If p; # po, then we have ay = 71 7P2 where 7 > 0 is a
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free parameter. Thus, we have

_ ki\ P2~ 2 2—q1
[ <k2> T
as = TP1=P2

k3
n = P1—P2
7 ky+ kr
4y = k3k7 —+ k4]€8 + k7k8 PL—p2
]ﬂ5(k4 + k7)

— k‘g P1—p2
a5 = kgT
ayy = k3k7 P1—Pp2

ke(ka + kr)

Free parameter: 7 > 0.

k1

Next, if g1 # q2, then ay = (k
2

’12 Q1
TP17P2 and so

a; = 720

ky\ 2o = _
as = (k TP1—P2
2

_ ks ki) 2o i P1—P2
4= (kg + k7) (k2) 7

kaky + kaks + krks <k1> a S
= T

ks (ks + k7) ka
_ ks (ki) =T = P1—D2
as = kg <I{;2> T
— k?’k? kl ° Q1 P1—p2
= ke (ks + kr) (kz) !

Free parameter: 7 > 0.

Appendix I Conditions of multistationarity
for the integrated system

We investigate the multistationarity of the integrated system using the
same arguments in Appendix C.
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Indeed, for positive systems, i.e. whenever R > 0, we have multista-
tionarity.

To determine some sufficient conditions for the direct ocean capture
model to admit multiple steady states, we utilize a result by Miiller and
Regensburger [23].

The Theorem 3 tells us that for weakly reversible generalized mass
action systems, a sufficient condition for the system to be multistationary
is the existence of a non-trivial vector whose sign pattern is the same as
that of the stoichiometric subspace S and the orthogonal complement of
kinetic flux subspace S.

First, we solve for the sign pattern of S. Note that S = Im (}7 - 1,)
where

A+ 2A5 2A1 + As Ao Az Ay As Ay
M T om D 0O 0 0 0 0
Ag q1 q2 1 0 0 0 0
v — A 0 0 0 1 0 0 0
Ay 0 0 0 0 1 0 0
As 0 0 0 0 0 1 0
Aig 0 0 0O 0 0 O 1
and
Ry Ro R3 Ry Rs Rg Rr Rs Ry
Ar+24, -1 1 0 0 0 0 0 0 07
24, +4, |1 =1 0 0 0 0 0 0 0
Az 0 0 -1 1 1 0 0o -1 0
I, = As 0 0 1 -1 0 0o -1 0 0
Ay 0 0 0 0o -1 1 0 0 1
As 0 0 0 0 0 0 0 1 -1
Arr L O 0 0 0 0o -1 1 0 0 J

Here, the Y matrix is defined using the kinetic order vectors of the system
(see [23]) and I, is the incidence matrix of the network. Hence,

p2—pr ppr—p2 0O O 0O O O 0 O

G2—q1 q—q2 —1 1 1 0o 0 -1 0

. 0 0 1 -1 0 0 -1 0 0
Yolo= 0 0 o 0 -1 1 0 0 1
0 0 o 0 o0 0 0 1 -1

0 0 0O 0 0 -1 1 0 0



215

D2 — D1 0 0 0 0
q> — q1 -1 1 0 -1
5 - 0 1 0 0 0
=S =1Im (Y 1,) = span 0 ol =1l L1170
0 0 0 0 1
0 0 0 -1 0
The orthogonal complement (S)+ of S is given by
G
p;*gzl —Q -1
1 1 R
Nl 1 B 1 - R
(S)~ = span 1 = span 1 = span I
1 1 R
1 1 R

where R = b2 7P and Q = 2~ 0 , as defined.
2 —q1 P2 — D1
We now investigate the multiplicity of steady states for positive (R >

0), negative (R < 0), P-null (R = 0 and defined), and @-null (@ = 0 and
defined) systems.
First, for positive integrated systems, i.e., R > 0(Q > 0), we have

sign(St) =

+++++ |
|

Indeed, if we let x be in the stoichiometric subspace S given by

1 0 0 0 0
-1 -1 1 0 -1

S = span 0 1 0 0 0
o110 [-1]"|1|”]|]O ’
0 0 0 0 1
0 0 0 -1 0

then
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1 0 0 0 0 a
-1 -1 1 0 -1 —a) — a + a3 — as
0 1 0 0 0] _ as
T =a 0 + as 0 +as 1 +aq 1 +as ol = —as + ay
0 0 0 0 1 as
0 0 0 —1 0 —ay

We can then choose a; > 0,a3 < 0,a3 > a4 > 0,a5 < 0 such that 0 <
—as + az — as < ay so that we have

+

sign(z) = | | € sign(Sh)

and thus sign(x) Nsign(S)+ # {0}. Therefore, by Theorem 3, any positive
integrated system is multistationary.

Now, for negative integrated systems, we cannot utilize Theorem 3 to
conclude monostationarity. Because of this, we employ a different criterion
to conclude when the system is monostationary. The following computa-
tional method introduced by Wiuf and Feliu [7,28] reveals network injec-
tivity for a specific subset of the collection of negative integrated systems.

If we have a negative integrated system, i.e. we investigate network
injectivity to assess multiplicity of steady states using Theorem 4. For the
integrated system, we similarly solve for M™* as previously described and
find that

det M* = pikikoksksksz123252729 + prkikokskake 2124252628
— pokikokskakszoz3252729 — pakikakskakez224252628
+ p1kikokakskez123252629 + p1hikekskakez125262728
+ prk1kokskske 2123262729 — pakikekakske 2223252629
+ p1kikskakskez124252620 — pakikokskakezazs5262728
+ p1kikokskskez124262820 — pakikakskskeza23262729
— pekikskakskez224252629 — p2k1kakskskez224262829
+ prkikskakskez125262729 + prh1kokskske 2126272829
- @k1k3k4k5k62225262729 - @k1kzk3k5k62226272829
— qikokzkakske2124252629 + qakakskakske 2224252629

- 2k2]€3k4k‘5k’62125262729 + @k2k3k4k5k62225262729.
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Similar to the steps in Appendix C, all the terms of the determinant of
M* are positive whenever p; > 0,p2 < 0,¢1 < 0, and g2 > 0. Similarly, all
the terms are negative whenever p; < 0,p2 > 0,¢q1 > 0, and ¢» < 0. By
Theorem 4, the integrated system is monostationary if either (i) p1,g2 > 0
and po,q1 < 0 or (ii) p1,¢2 < 0 and pa,q; > 0 holds.

Finally, for null systems, we investigate the induced ODEs of the system
and find that the integrated system follows the conservation law

AL(t) + AY(t) + AS(t) + AL(t) + A5(t) + AL (t) = 0.

Following the same arguments in Theorems 5 and 6, we can conclude that
the integrated system whenever p; = ps or ¢1 = g2, but not both, i.e.
P-null or @Q-null, admits a unique positive steady state.

We notice that this is the same for the case of DOC-only systems.

Appendix J Carbon reduction for the DAC
system

Proposition 7. Let A7, A, S° be as defined in the previous proposition

of a DAC system. Let m’ be the minimum of pry and M" be the mazimum
of pry + pry + pry + pry on S°. Then A5 < A3 whenever

1

M ki P2—r1 _ kskskr + k6k4(k5 + k7) ;
1 - )79
o s <k2> (m)™= + kakske Iz
or
1
M k\ 2o B kskskr + keka(ks + k7).
1 "N—R .
+ S (kz) (')~ kaksky Yot

Proof. Note that A3 < AS$ if and only if 1 < A%/AS. Equivalently, we have

(pry +prs +pry +pr5)(A) _ A3 (pry + prs + pry + prs)(4)
1+ " <=+ " .
Aj Aj Aj

Since (pry + prg + pry + prs)(A) < M” and 1/A5 < 1/m”, we have

M’ AS A
Al < A3 142 < 2+(pr1+prszr4+pr5)( ).
2

Denote the right hand side of the above inequality as SUM(,. We establish
a lower bound for SUMZ‘Q) using the steady state parametrization of the



218
system whenever p; # ps with

kl 1/1)2*171 ’ 112:‘11 ]{73 kG kﬁ
1
ki\7 o kskskr + keka(ks + ki) «
(2L < SUMy,,.
<k2> (m')~% + Fakilin = (2)

Similarly, if q; # g2, we have

kl a2 iq1 /y BL=P2 k3 k6 k6
(k2) (m") + =+ -+

1
kN7, _p kskskr + keka(ks + k) "
_ < M7, .
<k2> ()= kaksky < 5UM)

Then, the right hand side of the equivalence for A3 < A5 is satisfied

whenever
M" (k77 o kskskr + keka(ks + k1)
1 = n=e f
t5< (k2> (mH~™% + Tk if p1 # p2
or

1
M ki 2—a kskskr + k6k4(k5 + k7)
1 <(— R if .on
e () R o
Note that Proposition 7 implies that for null DAC systems, i.e. ei-
ther @ = 0 or R = 0, a sufficient condition for carbon reduction in the
atmosphere is given by

M" ksk
14 ks sky + keka(ks + k?).
m’ k4]€5k7
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