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Abstract

In this study, we develop a fractional-order cooperative enzy-
matic reaction model using the Liouville–Caputo derivative to ex-
tend its kinetics. We present the existence and uniqueness of the
solutions through the theory of nonlinear functional analysis. We
find the numerical solutions of the specified model using the Euler
method and the Laplace Adomian decomposition method (LADM).
The precision of the considered technique is evaluated with the
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aid of Levenberg-Marquardt neural network (NN) platform, com-
plemented with regression analysis and error distribution statistics.
The data are divided into several sets including training (70%), val-
idation (15%), and testing (15%). The approximate solutions are
analyzed graphically using 2D and 3D phase portraits for various
fractional orders and reaction parameters with the help of MAT-
LAB R2024a. Furthermore, a comparative analysis of numerical so-
lutions is presented for both integer and fractional order dynamical
systems. This approach provides a new way to chemical reactions
and presents the dynamics of these reactions in a new look un-
der fractional derivatives. These findings highlight the potential of
fractional calculus (FC) as a powerful modeling framework for com-
plex biochemical kinetics. The framework introduced here provides
a theoretical foundation that may support future research in op-
timizing biochemical processes, including applications in metabolic
engineering and controlled drug release mechanisms.

Introduction

Enzymatic reactions are extremely essential to most biochemical processes

since they govern physiological process and metabolic pathways in living

organisms, [13, 33, 38]. Mathematical modeling of such reactions helps

in studying reaction efficiencies, substrate dynamics, and enzyme kinetics

[21]. Generally, biochemical reactions are usually discussed with classical

differential equations of integer order. Amen investigated the dynamics

of a small autonomous three-dimensional biochemical reaction system [6].

A lorenz-based chemical reaction system is studied by Marwan et. al

[30] for seeking fractals in their trajectories. In 2024, Kreikemeyer et

al. [24] worked on enzyme chemical reaction model by extracting its data

using sparse identification method to elaborate its nonlinear dynamics.

Sometimes, such models are unable to accommodate effects of long-range

dependencies and memory effect, which characterize complex biological

systems. In order to overcome such limitations, generalized frameworks

like fractional calculus must be taken into account.

Fractional calculus provides more generalized form as compared to clas-

sical calculus and gives more fluctuation. Fractional order systems have po-

tential applications in pharmaceutical research, metabolic engineering, and

optimization of biochemical processes [3,7,31]. This provides more appro-
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priate framework that describes non-local interactions and unique heredi-

tary properties present in biochemical and other systems [11,14,26,35,36].

Over the past ten years, fractional order models have attracted much at-

tention in the modeling of anomalous diffusion, memories over long periods

of time, and fractal-like behavior in different scientific activities such as bi-

ology [25], physics [1,5], and engineering, [15]. Therefore, it is evident that

fractional-order models attract attention due to their ability to describe

biochemical reactions while facing failure in integer-order models.

Recent studies have indicated that within a set of long-range dependen-

cies and diffusion effects, enzyme reactions show a complex kinetic behav-

ior [10]. Classical Michaelis-Menten kinetics [29], relying on an integer-

order model, assumes local and instantaneous interactions between en-

zymes and substrates. Though biochemical reactions often involve time-

dependent memory effects that cannot be captured satisfactorily through

classical descriptions [22]. An alternative enzymatic reaction model that

permits a fractional differential approach amended this inconvenience and

allows extra flexibility in depicting the reaction dynamics.

Chemical reactions and mathematics are interconnected through giving

shape of differential equations to to the balancing of chemical reactions.

In 2025 Gao et al. [16] discussed the codimension-one and codimension-

two bifurcations of an auto-catalyst chemical reactions-based system. A

reaction-diffusion model of glucose and chemical retrial queue models are

being studied by Izadi et al. [19] and Mathavavisakan et al. [27], respec-

tively. The large chemical reaction network for the atom transition and

isotope labeling patterns is discussed by Golnik et al. [17]. There are more

dynamical systems designed on the basis of chemical reactions in the lit-

erature, but the following system (1) that we considered in our current

study is based on the following kinetic scheme that extends the classical

Michaelis-Menten mechanism:

S + E
α−−⇀↽−−
β

C
γ−−→ P + E,

S + C
ω−−⇀↽−−
η

Q
σ−−→ P + C,

where S(t) represents the concentration of substrate, C(t) shows the con-
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centration of a single bound substrate-enzyme complex, Q(t) is the concen-

tration of dual bound substrate-enzyme complex, E(t) is the concentration

of enzyme, P (t) presents the concentration of product.

The enzyme E(t) binds a substrate S(t) to form a single bound substr-

ate-enzyme complex enzyme C(t). This complex enzyme C(t) not only

breaks down to form a product P (t) and the enzyme E(t) again, but it

can also combine with another substrate molecule to form a dual-bound

substrate-enzyme complex Q(t). This Q(t) breaks down to form product

P (t) and the single bound C(t). The parameters α and β are the forward

and reverse rate constants for the primary binding step. The parameter γ

is the catalytic rate constant for C(t). The parameter ω governs the rate

of second substrate binding. The parameters η and σ are the dissociation

and catalytic rate constants for the dual-bound Q(t).

After applying the law of mass action to the above kinetic scheme, we have

the following system of differential equations [32, Sec. 5.3, p. 119]:

dS(t)

dt
= −αS(t)E(t) + βC(t)− ωS(t)C(t) + ηQ(t),

dC(t)

dt
= αS(t)E(t)− (β + γ)C(t)− ωS(t)C(t) + (η + σ)Q(t),

dQ(t)

dt
= ωS(t)C(t)− (η + σ)Q(t),

dE(t)

dt
= −αS(t)E(t) + (β + γ)C(t),

dP (t)

dt
= γC(t) + σQ(t),

(1)

with the initial conditions S(0) = S0, C(0) = C0, Q(0) = Q0, E(0) = E0,

P (0) = P 0. The conservation of the enzyme is obtained by summing the

second, third and fourth equations of the system (1), it is straightforward

to verify that d
dt [E(t) + C(t) +Q(t)] = 0 and using the initial conditions;

it is E(t) + C(t) +Q(t) = E0.

Fractional order models can be applied to multi-enzyme systems [39],

allosteric regulation [18], and cooperative enzymatic behavior [20] with

multiple interacting species. The flexibility of FC in capturing non-local

effects makes it an ideal framework for exploring biochemical reactions
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that exhibit time-dependent and spatially heterogeneous properties such as

drug formulations [4], enzyme-based biosensors [40], and metabolic path-

way simulations [28]. In this work, the classical cooperative enzymatic

reaction model is extended to the Liouville–Caputo fractional-order model

LCDθ
0,tS(t) = −αS(t)E(t) + βC(t)− ωS(t)C(t) + ηQ(t),

LCDθ
0,tC(t) = αS(t)E(t)− (β + γ)C(t)− ωS(t)C(t) + (η + σ)Q(t),

LCDθ
0,tQ(t) = ωS(t)C(t)− (η + σ)Q(t),

LCDθ
0,tE(t) = −αS(t)E(t) + (β + γ)C(t),

LCDθ
0,tP (t) = γC(t) + σQ(t),

(2)

with the initial conditions S(0) = S0, C(0) = C0, Q(0) = Q0, E(0)

= E0, P (0) = P 0. The system (2) is the extension or generalization of

the system (1); we can get the model (1) by putting θ = 1. This spe-

cific derivative is one of those most relevant when modeling physical and

biological systems [9]. Therefore, this analysis helps in better determin-

ing dynamics of reaction models such as substrate concentration, enzyme

concentration, and product concentration at a given time. In this case,

fractional differentiation achieves the objective of improving the predic-

tion power of an enzymatic model and allowing the creation of models

that can accurately reflect enzyme kinetics.

Apart from this, to find the mathematical soundness of the specified

model, existence and uniqueness of solutions is one of the best tool, using

nonlinear functional analysis, to investigate further dynamics. This the-

oretical framework guarantees that the model is well-posed and delivers

meaningful solutions under the prescribed initial conditions. Additionally,

the LADM and Euler method [2] are used to obtain the approximate so-

lutions, ensuring computational efficiency and accuracy. Recently, Bilal

et al. [8] utilized artificial neural networks in irreversible biochemical re-

actions but the dynamics of fractional-order enzyme reaction system in

artificial neural networks still need to be discussed.

In this paper we have worked on the following points to cover several

problems including:
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(1) Complete study of enzyme reaction dynamics under varying frac-

tional orders and parameters of the reaction.

(2) Numerical solutions are achieved and compared for both integer and

fractional order systems.

(3) The influence of fractional calculus is examined on the kinetics our

proposed dynamical system.

(4) How the stability and efficiency of enzymatic reactions are affected

by various fractional order is integral part of the current work.

The importance of our study is not limited to theoretical contributions

but has variety of applications in neural networking as well. Moreover, this

work provides a guidance for future work on enzyme-substrate interactions,

catalysis, and large study sets of biochemical networks by showing that FC

can be applied to modeling enzymatic reactions.

The subsequent sections are structured as follows. In Section 1, funda-

mental definitions, lemmas and theorems are given to understand analyti-

cal results in the paper with ease. Qualitative analysis of the transformed

dynamical system is discussed in Section 2. Numerical simulations of the

analytical results provided in previous sections are plotted and discussed

in Section 3, while the concluding remarks are given in the Section 4.

1 Preliminaries

The present section consist of fundamental definitions, Lemma and the-

orem that are considered as useful tools in rest of the paper. We cre-

ated a Banach space (W, ||.||), with norm ∥z∥ = max
t∈J

∣∣z(t)∣∣, where t ∈

[0, ϖ] = J . Consequently, we get W = W5 a Banach space with norm

||(S,C,Q,E, P )|| = max
t∈J

{||S||, ||C||, ||Q||, ||E||, ||P ||} for system (2).

Definition 1. [23] Suppose that θ ∈ (0, 1), then the fractional integral

for a function z(t) is

Iθ0,tz(t) =
1

Γ(θ)

t∫
0

(t− κ)θ−1z(κ)dκ. (3)
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Definition 2. [23] Let θ ∈ (0, 1), then for a function z(t) the fractional

Liouville–Caputo derivative is

LCDθ
0,tz(t) =

1

Γ(1− θ)

t∫
0

(t− κ)−θz′(κ)dκ, (4)

where z(t) is absolutely continuous on the interval [0, t], and ensures the

existence of the ordinary derivative z′(κ) almost everywhere.

Definition 3. The Laplace transformation for the Liouville–Caputo deri-

vative (4) gives

L[LCDθ
0,tz(t)] = sθZ(s)− sθ−1z(0), (5)

where Z(s) is the Laplace transformation of z(t).

Lemma 1. The solution of the fractional differential equation LCDθ
0,tz(t)

= g(t) with the initial condition z(0) = z0, using Riemann–Liouville frac-

tional integral (3), can be written as

z(t) = z0 +
1

Γ(θ)

t∫
0

(t− κ)θ−1g(κ)dκ.

Theorem 1. [12, 41] Let B be a convex, closed, and bounded subset of a

Banach space W, and let T : B → B be a continuous and compact operator,

then T has at least one fixed point in B.

2 Qualitative study of the specified model

In this section, we investigated qualitative analysis of the solutions achi-

eved using the theory of nonlinear functional analysis. In Theorem 2, we

presented the uniqueness of a solution for the fractional-ordered dynamical

system (2), and in Theorem 3 the existence of its solutions is discussed.
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In rest of the paper, we rewrite system (2) in the following form

LCDθ
0,tS(t) = Φ1(S,C,Q,E, P ),

LCDθ
0,tC(t) = Φ2(S,C,Q,E, P ),

LCDθ
0,tQ(t) = Φ3(S,C,Q,E, P ),

LCDθ
0,tE(t) = Φ4(S,C,Q,E, P ),

LCDθ
0,tP (t) = Φ5(S,C,Q,E, P ),

where

Φ1(S,C,Q,E, P ) = −αS(t)E(t) + βC(t)− ωS(t)C(t) + ηQ(t),

Φ2(S,C,Q,E, P ) = αS(t)E(t)− (β + γ)C(t)− ωS(t)C(t) + (η + σ)Q(t),

Φ3(S,C,Q,E, P ) = ωS(t)C(t)− (η + σ)Q(t),

Φ4(S,C,Q,E, P ) = −αS(t)E(t) + (β + γ)C(t),

Φ5(S,C,Q,E, P ) = γC(t) + σQ(t).

(6)

Furthermore, the class of fractional order systems can be rewritten in the

following compact form:{
LCDθ

0,tF (t) = G(t, F (t)),

F (0) = F 0,
(7)

where, F (t), F 0, and G(t, F (t)) are defined as follows:

F (t) =



S(t)

C(t)

Q(t)

E(t)

P (t)


, F 0 =



S0

C0

Q0

E0

P 0


and G(t, F (t)) =



Φ1(t, S, C,Q,E, P )

Φ2(t, S, C,Q,E, P )

Φ3(t, S, C,Q,E, P )

Φ4(t, S, C,Q,E, P )

Φ5(t, S, C,Q,E, P )


.

In view of Lemma 1, the solution of system (6) can be rewritten as

F (t) = F 0 +
1

Γ(θ)

t∫
0

(t− κ)θ−1G(κ, F (κ))dκ.
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The operator T is considered for further work:

TF (t) = F 0 +
1

Γ(θ)

t∫
0

(t− κ)θ−1G(κ, F (κ))dκ. (8)

The following assumptions are helpful in understanding theorems and rest

of the paper:

(A1) For F1, F2 ∈ W, we have aG > 0 such that:

∥∥G(F1)−G(F2)
∥∥ ≤ aG∥F1 − F2∥.

(A2) For F ∈ W, we have bG, cG > 0 such that:

∥∥G(F )
∥∥ ≤ bG∥F∥+ cG.

Theorem 2. Suppose that the assumption (A1) holds along with consid-

ering the inequality aGϖ
θ < Γ(θ + 1). Then, the problem (6) exhibits a

unique solution.

Proof. Consider F1, F2 ∈ W, one can write

∥TF1 − TF2∥ = max
t∈J

{
1

Γ(θ)

{ t∫
0

(t− κ)θ−1G(κ, F1(κ))dκ

−
t∫

0

(t− κ)θ−1G(κ, F2(κ))dκ

}}

≤ max
t∈J

{
1

Γ(θ)

{ t∫
0

(t− κ)θ−1 |G(κ, F1(κ))

−G(κ, F2(κ))| dκ
}}

≤ max
t∈J

{
aGt

θ

Γ(θ + 1)
|F1 − F2|

}
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≤ aGϖ
θ

Γ(θ + 1)
∥F1 − F2∥.

Hence, T has a unique solution.

Theorem 3. Let us consider that assumptions (A1, A2) are true, then

there exists at least one solution of the system (6).

Proof. To prove that T : W → W satisfies the condition of Schaudar fixed

point theorem, we suppose a closed convex subset B = {F ∈ W : ∥F∥ ≤
r}. Moreover, the proof is divided in the following steps:

Step–1 (Continuity of the operator T): Let us suppose a sequence Fn such

that Fn → F and t ∈ J , we consider

∥TFn − TF∥ = max
t∈J

{
1

Γ(θ)

{ t∫
0

(t− κ)θ−1G(κ, Fn(κ))dκ

−
t∫

0

(t− κ)θ−1G(κ, F (κ))dκ

}}

≤ max
t∈J

{
1

Γ(θ)

{ t∫
0

(t− κ)θ−1 |G(κ, Fn(κ))

−G(κ, F (κ))| dκ
}}

≤ max
t∈J

{
aGt

θ

Γ(θ + 1)
|Fn − F |

}
≤ aGϖ

θ

Γ(θ + 1)
∥Fn − F∥.

Hence, ∥TFn − TF∥ → 0 as n → ∞ proves that T is continuous.

Step–2 (Boundedness of the operator T): The image of the bounded set

under T is bounded in W. Mathematically,

∥TF∥ = max
t∈J

∣∣∣∣F 0 +
1

Γ(θ)

t∫
0

(t− κ)θ−1G(κ, F (κ))dκ

∣∣∣∣
≤ max

t∈J

{
|F 0|+ 1

Γ(θ)

t∫
0

(t− κ)θ−1|G(κ, F (κ))|dκ
}
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≤ F 0 +
(bGr + cG)

Γ(θ + 1)
,

where ||F || ≤ r, which shows that T is bounded.

Step–3 (Equi-continuity of the operator T): Let t1, t2 ∈ J , such that

t1 < t2. Then, the norm gives

∥TF (t1)− TF (t2)∥ = max
t∈J

∣∣∣∣ 1

Γ(θ)

t1∫
0

(t1 − κ)θ−1G(κ, F (κ))dκ

− 1

Γ(θ)

t2∫
0

(t2 − κ)θ−1G(κ, F (κ))dκ

∣∣∣∣
= max

t∈J

∣∣∣∣ 1

Γ(θ)

t1∫
0

(t1 − κ)θ−1G(κ, F (κ))dκ

− 1

Γ(θ)

t1∫
0

(t2 − κ)θ−1G(κ, F (κ))dκ

− 1

Γ(θ)

t1∫
t1

(t2 − κ)θ−1G(κ, F (κ))dκ

∣∣∣∣
≤ bGr + cG

Γ(θ + 1)

{(
t1

θ − t2
θ
)
+ (t2 − t1)

θ − (t2 − t1)
θ
}
.

Applying limit t1 → t2 to get ∥TF (t1)− TF (t2)∥ → 0. Steps 1–3 are the

desired results of the Schaudar fixed point theorem, T is equi-continuous,

and consequently, problem (6) has at least one solution.

3 Results and discussion

In this part, we obtained the approximate solutions of the system (2)

through Euler method and LADM. After finding the approximate solu-

tions, we briefly discuss the behavior of their obtained solutions with the

aid of two- and three-dimensional plots. A comparative study is also pro-

vided in the current section with the help of tables for various values of

the fractional-order.



140

3.1 Solutions with Euler method
In this subsection, we get the solution of the concerned problem with the
help of the Euler method. First, we obtain the numerical solutions, and
then using MATLAB, the numerical simulations are obtained. The Euler
scheme for system (2) is given as follows:



S(ti+1) = S(ti) +
hθ

Γ(θ + 1)

{
−αS(ti)E(ti) + βC(ti) − ωS(ti)C(ti) + ηQ(ti)

}
,

C(ti+1) = C(ti) +
hθ

Γ(θ + 1)

{
αS(ti)E(ti) − (β + γ)C(ti) − ωS(ti)C(ti) + (η + σ)Q(ti)

}
,

Q(ti+1) = Q(ti) +
hθ

Γ(θ + 1)

{
ωS(ti)C(ti) − (η + σ)Q(ti)

}
,

E(ti+1) = E(ti) +
hθ

Γ(θ + 1)

{
−αS(ti)E(ti) + (β + γ)C(ti)

}
,

P (ti+1) = P (ti) +
hθ

Γ(θ + 1)

{
γC(ti) + σQ(ti)

}
.

(9)

In Eq. (9), h is the step size defined as: ti+1 = ti+h for i = 0, 1, 2, 3, · · · , λ.
One can get the classical Euler scheme by putting θ = 1 into system (9).

We consider the initial values S0 = 0.6, E0 = 0.4 and C0 = Q0 = P 0 = 0

to obtain the approximate solution.
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Figure 1. Investigating S(t), C(t), Q(t), E(t), P (t) visually for various
values of θ and parameter values α = 0.1, β = 0.05, γ = 0.03,
ω = 0.2, η = 0.01, σ = 0.05, h = 0.1.

In Fig. 1, the solutions obtained through the Euler method are pre-

sented. It is observed in Figs. 1(a)–(c) that after decreasing the fractional
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orders, the solutions tends to a stable direction, which confirms the im-

portance of the fractional dynamics in enzymatic processes. In Fig.
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Figure 2. Concentration dynamics of all species S(t), C(t), Q(t), E(t),
and P (t) as functions of time t and fractional order θ, with
fixed reaction parameters α = 0.1, β = 0.05, γ = 0.03,
ω = 0.2, η = 0.01, σ = 0.05, and step size h = 0.1
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Figure 3. Concentration profiles of the fractional-order enzymatic re-
action model against reaction parameters α and β, with fixed
values t = 5, θ = 0.95, γ = 0.03, ω = 0.2, η = 0.01, σ = 0.05,
and h = 0.1.
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2, the variations in concentrations with respect to the fractional order

θ are plotted. One can see the natural phenomena of the reaction with

the advancement in time, the concentrations of S(t) and E(t) decrease

while P (t) and Q(t) increase. The concentration of C(t) shows a trend

of increase before attaining steady state. The fractional order parameter

introduces distinctive dynamics to the solutions and expands the range of

possible behaviors beyond what is achievable with integer-order models.

Moreover, in Figs. 3–5, we illustrated geometrical representations of the

solutions, where the concentrations are plotted against randomly selected

reaction parameters.

In Fig. 3, the concentrations against the reaction parameters α and

β are provided. The cooperative nature of the reaction reveals that these

parameters exert a significant impact during the early phase of the process.

The parameter α specifies the initial binding affinity, while β regulates

the turnover rate of the reaction. It is observed that significant changes-

particularly in the concentrations of substrate and enzyme—occur with

variations in α and β, affecting the stability of the enzymatic process.
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Figure 4. Response of substrate, enzyme, and product concentrations
to variations in cooperative parameters ω and η, evaluated
at t = 5 and θ = 0.95, under fixed kinetic constants α = 0.1,
β = 0.05, γ = 0.03, σ = 0.05, and step size h = 0.1.



143

In a similar fashion, ω and η have the same impact on the enzyme kinet-

ics as shown in Fig. 4. Similarly, the usage of cooperative phenomena on

the parameters ω and η control in the third stage of the reaction and have

a great impact on the concentrations of substrate and complex enzyme-

substrate. As these mentioned parameters vary, the total activity of the

solutions or concentrations changes. It is clear from the reaction that we
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Figure 5. Response of S(t), C(t), Q(t), E(t), and P (t) to variations
in γ and σ, at t = 5 and θ = 0.95, with α = 0.1, β = 0.05,
ω = 0.2, η = 0.01, h = 0.1.

have taken these parameters randomly just for the readers to show visually

the impact of these parameters on the concentrations in the reactions.

In this regard, the solutions of the system (2) are provided in Fig. 5.

The parameter γ has an impact on the concentrations of complex enzyme-

substrate, product, and enzyme. The parameter σ has a direct impact on

the concentrations of dual bound substrate-enzyme, complex substrate-

enzyme, and product. The impacts of these parameters on the dynamics

of the reaction are clear from the aforementioned figure. Thus, from Figs.

1–5, it is obvious that these reaction parameters (α, β, γ, σ, ω, η) have

a versatile nature of the solutions on the enzymatic reaction dynamics in

the presence of fractional order.
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3.2 LADM solutions

This subsection presents the solution of system (2) obtained through the

Laplace–Adomian decomposition method (LADM). Moreover, we have

provided the approximate solutions along with complete geometrical in-

terpretation for better analysis.

We begin by applying the Laplace transform (5) to the first equation

of system (2) to obtain:

L{S(t)} =
S(0)

s
+

1

sθ
L {−αS(t)E(t) + βC(t)− ωS(t)C(t) + ηQ(t)} .

(10)

Using the initial condition, Eq. (10) becomes

L{S(t)} =
S0

s
+

1

sθ
L {−αS(t)E(t) + βC(t)− ωS(t)C(t) + ηQ(t)} . (11)

Applying inverse transformation on the Eq. (11) to achieve

S(t) = S0 + L−1

{
1

sθ
L {−αS(t)E(t) + βC(t)− ωS(t)C(t) + ηQ(t)}

}
.

(12)

For further calculations, we consider

S =

∞∑
n=0

Sn, C =

∞∑
n=0

Cn, SE =

∞∑
n=0

An, SC =

∞∑
n=0

Bn.

The equations An and Bn are given as follows:

An =
1

Γ(n+ 1)

dn

dµn

 n∑
j=0

µjSj

 n∑
j=0

µjEj


µ=0

,

Bn =
1

Γ(n+ 1)

dn

dµn

 n∑
j=0

µjSj

 n∑
j=0

µjCj


µ=0

.
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Substituting these values into Eq. (12) yields:

∞∑
n=0

Sn(t) = S0 + L−1

{
1

sθ
L

{
−αAn + β

∞∑
n=0

Cn − ωBn + η

∞∑
n=0

Qn

}}
.

From the preceding equation, we get

S0 = S0, S1 = L−1

{
1

sθ
L {−αA0 + βC0 − ωB0 + ηQ0}

}
,

and so forth. The generic form can be written as:

Sn+1 = L−1

{
1

sθ
L {−αAn + βCn − ωBn + ηQn}

}
, n ≥ 0.

The solution is computed iteratively: starting with S0, we obtain S1, S2,

and so on, leading to the series solution S = S0 +S1 +S2 + · · · . Applying

the same approach to the remaining equations, we find:

C0 = C0, C1 = L−1

{
1

sθ
L {αA0 − (β + γ)C0 − ωB0 + (η + σ)Q0}

}
,

Cn+1 = L−1

{
1

sθ
L {αAn − (β + γ)Cn − ωBn + (η + σ)Qn}

}
, n ≥ 0,

Q0 = Q0, Q1 = L−1

{
1

sθ
L {ωB0 − (η + σ)Q0}

}
,

Qn+1 = L−1

{
1

sθ
L {ωBn − (η + σ)Qn}

}
, n ≥ 0,

E0 = E0, E1 = L−1

{
1

sθ
L {−αA0 + (β + γ)C0}

}
,

En+1 = L−1

{
1

sθ
L {−αAn + (β + γ)Cn}

}
, n ≥ 0,

P0 = P 0, P1 = L−1

{
1

sθ
L {γC0 + σQ0}

}
,

Pn+1 = L−1

{
1

sθ
L {γCn + σQn}

}
, n ≥ 0.

To get more specific and approximate solution from the above general

solution. Consider the same initial values (S0 = 0.6, E0 = 0.4, C0 = Q0 =
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P 0 = 0) of Euler method, and applying the above procedure, one may get

the following approximate solution of the specified model (2):

S(t) = 0.6− 0.24αtθ

Γ(θ + 1)
+ (0.24α+ 0.24αβ − 0.144ω)

t2θ

Γ(2θ + 1)
,

C(t) =
0.24αtθ

Γ(θ + 1)
− 0.24α− 0.24α(β + γ)− 0.144αω

t2θ

Γ(2θ + 1)
,

Q(t) =
0.144αωt2θ

Γ(2θ + 1)
,

E(t) = 0.4− 0.24αtθ

Γ(θ + 1)
+ (0.24α+ 0.24α(β + γ)

t2θ

Γ(2θ + 1)
,

P (t) =
0.24αγt2θ

Γ(2θ + 1)
.

(13)

In solution (13), we present the first three terms for each component of

the transformed model. A more precise approximation of the dynamics of

the considered model can be achieved by including additional terms using

the procedure described above. To properly understand the physical and

geometrical interpretation of the cooperative enzymatic reaction described

by system (2), we present the following visualizations along with complete

descriptions.
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Figure 6. Effect of fractional order θ on S(t), C(t), Q(t), E(t), and
P (t), with fixed kinetic constants α = 0.1, β = 0.05, γ =
0.03, ω = 0.2.
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Two-dimensional plots of the concentrations for the model under con-

sideration are presented in Fig. 6. These solutions are calculated through

LADM for a few terms, and the accuracy of these solutions can be in-

creased. This is the reason that the solution attained through Euler

method are better in comparison. Additionally, it can be seen that at

lower fractional-orders, the curves show more stable trends, reflecting the

memory effect in fractional-order models. The graphical analysis presents

generalized framework for modeling biochemical processes in reality, point-

ing out the significance of FC in chemical reaction modeling.
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Figure 7. Three-dimensional visualization of S, C, Q, E, and P against
fractional order θ and binding rate α, for β = 0.05, t = 1,
γ = 0.03, ω = 0.2.

Figure 7 shows the three-dimensional representation of the solutions

calculated through LADM against the fractional order θ and reaction pa-

rameter α. These plots give further information about how these two pa-

rameters can affect the dynamics of the biochemical system. The surface

plots demonstrate that the substrate and enzyme concentrations typically

diminish with growing θ and α, while the product and complex concentra-

tions grow, which serves to reflect the enzyme kinetics.
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3.3 Neural network approximation

To assess the accuracy of the suggested approach utilizing a Levenberg-

Marquardt neural network environment backed by regression analysis and

error distribution statistics, data is segregated into training (70%), vali-

dation (15%), and testing (15%) sets. In this section, we consider data

similar to that in Fig. 1 to perform simulations.
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all datasets.
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Figure 12. Comparison of numerical solutions and neural network pre-
dictions for S(t), C(t), Q(t), E(t), and P (t) at θ = 0.50
after 12 training epochs.

Figures 8–12 provide illustrations of the MSE performance and training

tests of the model (2) for θ = 0.5.

3.4 Comparison of LADM and Euler method solu-

tions
The following tables present a comparative analysis of the solutions for
the variables S(t), E(t), C(t), Q(t), and P (t) obtained using both the
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Euler and LADM methods. In order to demonstrate the effect of varying
fractional-orders, three separate tables for three different fractional-orders
are provided. The results in these tables signify how the result changes
with the change in fractional-order.

Time S LADM S Euler E LADM E Euler C LADM C Euler Q LADM Q Euler P LADM P Euler

0.0 0.6000 0.6000 0.4000 0.4000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.1 0.5976 0.59758 0.3976 0.39773 0.0024000 0.0022848 0.0000000 0.0000144 0.0000000 0.0000036

0.2 0.59521 0.59513 0.39524 0.39572 0.0047282 0.0043392 0.0000287 0.0000576 0.0000072 0.0000144

0.3 0.59282 0.59264 0.39293 0.39397 0.0069868 0.0061632 0.0000848 0.0001296 0.0000215 0.0000324

0.4 0.59044 0.59011 0.39065 0.39247 0.0091779 0.0077568 0.0001671 0.0002304 0.0000429 0.0000576

0.5 0.58808 0.58755 0.38842 0.39124 0.0113040 0.0091200 0.0002745 0.0003600 0.0000713 0.0000900

0.6 0.58572 0.58495 0.38623 0.39027 0.0133660 0.0102530 0.0004058 0.0005184 0.0001066 0.0001296

0.7 0.58336 0.58232 0.38407 0.38955 0.0153670 0.0111550 0.0005600 0.0007056 0.0001487 0.0001764

0.8 0.58102 0.57965 0.38196 0.38909 0.0173090 0.0118270 0.0007359 0.0009216 0.0001976 0.0002304

0.9 0.57869 0.57694 0.37987 0.38890 0.0191930 0.0122690 0.0009326 0.0011664 0.0002532 0.0002916

1.0 0.57637 0.57420 0.37783 0.38896 0.0210210 0.0124800 0.0011491 0.0014400 0.0003154 0.0003600

1.1 0.57405 0.57142 0.37582 0.38928 0.0227950 0.0124610 0.0013846 0.0017424 0.0003842 0.0004356

1.2 0.57175 0.56861 0.37385 0.38986 0.0245170 0.0122110 0.0016380 0.0020736 0.0004596 0.0005184

1.3 0.56945 0.56576 0.37190 0.39070 0.0261880 0.0117310 0.0019085 0.0024336 0.0005413 0.0006084

1.4 0.56717 0.56287 0.37000 0.39180 0.0278090 0.0110210 0.0021953 0.0028224 0.0006294 0.0007056

1.5 0.56490 0.55995 0.36812 0.39316 0.0293830 0.0100800 0.0024976 0.0032400 0.0007238 0.0008100

1.6 0.56264 0.55699 0.36627 0.39478 0.0309100 0.0089088 0.0028146 0.0036864 0.0008244 0.0009216

1.7 0.56038 0.55400 0.36446 0.39665 0.0323930 0.0075072 0.0031455 0.0041616 0.0009313 0.0010404

1.8 0.55814 0.55097 0.36268 0.39879 0.0338320 0.0058752 0.0034897 0.0046656 0.0010442 0.0011664

1.9 0.55592 0.54790 0.36092 0.40119 0.0352290 0.0040128 0.0038464 0.0051984 0.0011631 0.0012996

2.0 0.55370 0.54480 0.35920 0.40384 0.0365850 0.0019200 0.0042150 0.0057600 0.0012880 0.0014400

Table 1. Comparison of both methods at θ = 1.0, α = 0.1, β = 0.05,
γ = 0.03, ω = 0.2, η = 0.01, and σ = 0.05.

Time S LADM S Euler E LADM E Euler C LADM C Euler Q LADM Q Euler P LADM P Euler

0.0 0.60000 0.60000 0.40000 0.40000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.1 0.59725 0.59723 0.39725 0.39743 0.0027481 0.0025894 0.00000 0.000019841 0.00000 0.0000049603

0.2 0.59451 0.5946 0.39456 0.39536 0.0054021 0.0047166 0.000037588 0.00007405 0.0000094403 0.000018513

0.3 0.59178 0.592 0.39192 0.39364 0.0079653 0.0065238 0.00011088 0.00015999 0.000028213 0.000039998

0.4 0.58907 0.5894 0.38934 0.39223 0.010441 0.0080455 0.00021807 0.00027637 0.00005621 0.000069091

0.5 0.58636 0.58679 0.38681 0.39112 0.012832 0.0092999 0.00035742 0.00042229 0.000093325 0.00010557

0.6 0.58366 0.58418 0.38433 0.3903 0.015142 0.010299 0.00052728 0.00059711 0.00013945 0.00014928

0.7 0.58098 0.58155 0.3819 0.38975 0.017373 0.011051 0.00072605 0.00080031 0.00019449 0.00020008

0.8 0.57831 0.5789 0.37952 0.38947 0.019528 0.011563 0.00095221 0.0010314 0.00025832 0.00025786

0.9 0.57565 0.57623 0.37719 0.38945 0.02161 0.011839 0.0012043 0.0012901 0.00033086 0.00032253

1.0 0.573 0.57354 0.3749 0.38969 0.023622 0.011884 0.0014809 0.001576 0.00041199 0.00039401

1.1 0.57037 0.57082 0.37265 0.39019 0.025566 0.011703 0.0017807 0.0018889 0.00050161 0.00047223

1.2 0.56775 0.56809 0.37045 0.39093 0.027444 0.011297 0.0021024 0.0022285 0.00059963 0.00055713

1.3 0.56515 0.56533 0.3683 0.39193 0.029258 0.010669 0.0024448 0.0025945 0.00070594 0.00064864

1.4 0.56255 0.56255 0.36618 0.39316 0.031012 0.0098231 0.0028067 0.0029868 0.00082044 0.00074671

1.5 0.55998 0.55974 0.36411 0.39464 0.032706 0.0087602 0.0031869 0.0034052 0.00094304 0.0008513

1.6 0.55741 0.55691 0.36207 0.39637 0.034344 0.0074827 0.0035845 0.0038494 0.0010736 0.00096236

1.7 0.55487 0.55405 0.36008 0.39833 0.035926 0.0059924 0.0039982 0.0043194 0.0012121 0.0010798

1.8 0.55233 0.55117 0.35812 0.40052 0.037456 0.004291 0.0044273 0.0048149 0.0013584 0.0012037

1.9 0.54981 0.54826 0.3562 0.40296 0.038934 0.0023799 0.0048707 0.0053358 0.0015125 0.001334

2.0 0.54731 0.54533 0.35431 0.40562 0.040363 0.00026077 0.0053274 0.005882 0.0016741 0.0014705

Table 2. Comparison of both methods at θ = 0.95, α = 0.1, β = 0.05,
γ = 0.03, ω = 0.2, η = 0.01, and σ = 0.05.
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Time S LADM S Euler E LADM E Euler C LADM C Euler Q LADM Q Euler P LADM P Euler

0.0 0.60000 0.60000 0.40000 0.40000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.1 0.59686 0.59682 0.39686 0.3971 0.0031415 0.0029237 0.00000 0.000027226 0.00000 0.0000068066

0.2 0.59373 0.59402 0.39379 0.39499 0.0061601 0.0051038 0.000049088 0.000094808 0.000012337 0.000023702

0.3 0.59061 0.59131 0.39079 0.39333 0.0090607 0.0068704 0.00014445 0.0001967 0.000036848 0.000049176

0.4 0.58751 0.58865 0.38787 0.39203 0.011848 0.0082983 0.00028341 0.00033014 0.000073374 0.000082535

0.5 0.58442 0.58601 0.38501 0.39107 0.014527 0.0094259 0.00046342 0.00049333 0.00012176 0.00012333

0.6 0.58135 0.58339 0.38222 0.39041 0.017101 0.010278 0.00068204 0.00068496 0.00018183 0.00017124

0.7 0.5783 0.58077 0.37949 0.39003 0.019576 0.01087 0.00093696 0.000904 0.00025345 0.000226

0.8 0.57526 0.57815 0.37682 0.38993 0.021955 0.011217 0.001226 0.0011496 0.00033646 0.0002874

0.9 0.57223 0.57553 0.37421 0.39009 0.024241 0.011328 0.001547 0.0014211 0.0004307 0.00035528

1.0 0.56923 0.5729 0.37166 0.39051 0.026439 0.011211 0.001898 0.0017179 0.00053601 0.00042947

1.1 0.56624 0.57026 0.36917 0.39117 0.028553 0.010874 0.0022771 0.0020394 0.00065226 0.00050984

1.2 0.56327 0.56761 0.36673 0.39206 0.030584 0.010323 0.0026824 0.0023852 0.00077929 0.00059629

1.3 0.56032 0.56496 0.36435 0.39319 0.032538 0.0095619 0.0031124 0.0027548 0.00091695 0.0006887

1.4 0.55739 0.56229 0.36202 0.39455 0.034417 0.0085966 0.0035652 0.0031479 0.0010651 0.00078698

1.5 0.55447 0.5596 0.35974 0.39613 0.036224 0.0074306 0.0040394 0.0035641 0.0012236 0.00089104

1.6 0.55158 0.5569 0.35751 0.39794 0.037961 0.0060678 0.0045335 0.0040032 0.0013923 0.0010008

1.7 0.5487 0.55419 0.35532 0.39995 0.039632 0.0045114 0.0050461 0.0044648 0.001571 0.0011162

1.8 0.54585 0.55146 0.35318 0.40218 0.04124 0.0027645 0.0055758 0.0049486 0.0017597 0.0012371

1.9 0.54301 0.54872 0.35109 0.40462 0.042786 0.00082991 0.0061213 0.0054544 0.0019581 0.0013636

2.0 0.5402 0.54596 0.34905 0.40727 0.044273 0.00082990 0.0066815 0.005982 0.0021662 0.0014955

Table 3. Comparison of both methods at θ = 0.90, α = 0.1, β = 0.05,
γ = 0.03, ω = 0.2, η = 0.01, and σ = 0.05.

Tables 1, 2, and 3 present a comparative analysis of the LADM and

Euler solutions for different fractional orders θ. In Table 1, where θ = 1,

both methods yield nearly identical results, demonstrating that LADM and

the Euler scheme perform well in the classical integer-order case. However,

one can see in Table 2 and Table 3 that for θ = 0.90 and θ = 0.95, a great

variation occurs.
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Figure 13. Investigating S(t), C(t), Q(t), E(t), P (t) visually for fixed
value of θ = 0.9 and parameter values α = 0.1, β = 0.05,
γ = 0.03, ω = 0.2, η = 0.01, σ = 0.05, h = 0.1.
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Figure 13 presents a comparison between the solutions to system (2)

obtained through the Euler scheme and LADM.

The LADM presents the approximate solutions which is valuable for ini-

tial validation and short-time insight. For detailed long time dynamical

simulations, the Euler scheme is used as primary tool in our analysis. The

Euler scheme is better suited for this analysis because of its straightfor-

ward implementation and efficiency of computation, as it avoids the com-

plexity involved in obtaining high-order Adomian polynomials as required

in LADM. The main point in our analysis at this time is the impact of

fractional order on the solutions and how this will be beneficial for fu-

ture work. This shows that fractional-order dynamics are more effective,

making it more reliable for enzymatic reaction models.

4 Conclusion

We have developed a fractional-order cooperative enzymatic reaction mo-

del using the Liouville–Caputo derivative to extend classical enzymatic

kinetics. We have investigated the existence and uniqueness of solutions

through the theory of non-linear functional analysis. Numerical solutions

of the proposed model have been obtained using the Euler method and the

LADM. The accuracy of the proposed approach has been evaluated using

a Levenberg-Marquardt neural network platform, supplemented with re-

gression analysis and error distribution statistics. The data are split into

training (70%), validation (15%), and testing (15%) sets. The approxi-

mate solutions have been analyzed graphically in detail using 2D and 3D

plots under different fractional orders and reaction parameters. Moreover,

a tabular presentation of a comparative analysis of numerical solutions for

both integer and fractional orders has been provided, focusing on the in-

fluence of fractional differentiation over reaction kinetics. This creates an

entirely new perspective on chemical reaction modeling where fractional

derivatives are introduced to understand the dynamics of a reaction bet-

ter. The results have deeper insight into enzyme kinetics, which can be

further developed for pharmaceutical research, metabolic engineering, and

optimization of biochemical processes. This study would therefore further
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emphasis the precise optimization of reaction dynamics in biochemistry by

FC. This would create a framework for future investigations into enzyme-

substrate interaction, catalysis, and other complex biochemical networks,

eventually advancing it in biomedical sciences and industrial applications.

Acknowledgment : The authors extend their appreciation to the Dean-
ship of Research and Graduate Studies at King Khalid University for fund-
ing this work through Large Group Project under grant number RGP
2/156/46.

References

[1] H. Alrabaiah, I. Ahmad, R. Amin, K. Shah, A numerical method for
fractional variable order pantograph differential equations based on
Haar wavelet, Eng. Comput. 38 (2022) 2655–2668.

[2] I. Ahmad, T. Abdeljawad, I. Mahariq, K. Shah, N. Mlaiki, G.U. Rah-
man, Iterative analysis of non-linear Swift–Hohenberg equations un-
der non-singular fractional order derivative, Results Phys. 23 (2021)
#104080.

[3] I. Ahmad, Z. Ali, B. Khan, K. Shah, T. Abdeljawad, Exploring the
dynamics of Gumboro-Salmonella co-infection with fractal fractional
analysis, Alexandria Eng. J. 117 (2025) 472–489.

[4] I. Ahmad, N. Ahmad, K. Shah, T. Abdeljawad, Some appropri-
ate results for the existence theory and numerical solutions of frac-
tals–fractional order malaria disease mathematical model, Res. Con-
trol Optim. 14 (2024) #100386.
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Renteŕıa-Vargas, M. De-la-Torre, R. Osorio-Sánchez, Experimental
validation of fractional PID controllers applied to a two-tank system,
Mathematics 11 (2023) #2651.

[38] J. Duan, X. Cheng, T. Deng, Topological isomers of DNA dodec-
ahedral links, MATCH Commun. Math. Comput. Chem. 94 (2025)
135–155.

[39] X. Wang, Y. Jiang, H. Liu, H. Yuan, D. Huang, T. Wang, Research
progress of multi-enzyme complexes based on the design of scaffold
protein, Bioresour. Bioprocess. 10 (2023) #72.

[40] J. Yang, Y. Zhang, T. Yildirim, J. Zhang, A model predictive control
algorithm based on biological regulatory mechanism and operational
research, IEEE/CAA J. Autom. Sin. 10 (2023) 2174–2176.

[41] E. Zeidler, Nonlinear Functional Analysis and Its Applications: II/B:
Nonlinear Monotone Operators, Springer, New York, 2013.


	Preliminaries
	Qualitative study of the specified model
	Results and discussion
	Solutions with Euler method
	LADM solutions
	Neural network approximation
	Comparison of LADM and Euler method solutions

	Conclusion

