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Abstract

In this article we describe an algorithm that allows us to recur-
sively construct the matching polynomials of what we call “regular
chain-type graphs”. These graphs are obtained from a fixed base
graph by linking several copies in a linear fashion, the links being
obtained by joining two consecutive copies at prescribed vertices.
Loops obtained by closing these chains are also studied. Finally, a
method to compute the growth rate of the Hosoya index is presented.
The proposed methods are applicable to chain-type molecular struc-
tures, providing insights into their chemical properties.

1 Introduction

In graph theory, a matching is formally defined as a subset of edges in
which no two edges are incident to a common vertex. Among the various

algebraic tools developed to study the structure of graphs, the matching
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polynomial stands out as a significant invariant due to its capacity to cap-
ture complex combinatorial structures [13,14,16]. This polynomial serves
not only as a generating function for enumerating matchings of different
sizes but also reflects deeper structural properties of the graph, such as
independence and connectivity patterns among edge subsets [11]. The
matching polynomial holds a fundamental role in both theoretical graph
theory and its diverse applications [2-4,6,9,12]. As an example in chemical
graph theory, the matching polynomial is employed to evaluate molecular
stability through resonance structures, linking combinatorial properties to
chemical phenomena [1,17]. Furthermore, a significant algebraic property
of the matching polynomial is that all its roots are real for any graph, a fact
that facilitates spectral analysis and contributes to stability assessments
in complex network models [13,21].

The Hosoya index is the total number of matchings in the graph (of any
size). It was introduced by H. Hosoya to describe the branching structures
and connectivity arrangements of chemical compounds [18].

Determining the Hosoya index in arbitrary graphs is a #P-complete
problem, a complexity class that encompasses counting problems which
are computationally at least as hard as NP-complete decision problems
and are widely regarded as intractable [25]. Due to the intrinsic computa-
tional complexity, the matching polynomial serves as an essential indirect
approach for the analysis and approximation of these quantities, thereby
enabling the examination of enumerations that are otherwise computation-
ally infeasible [21].

In this paper we study regular chain-type graphs, where an arbitrary
starting graph forms a chain by adding a new copy of the graph (in a
regular pattern) at each step. Two kinds of attachment patterns are con-
sidered; in the first two graphs attach each other at a vertex, and in the
other two vertices are joined by an edge. Such graphs are common in both
nature and mathematics because of their simple and fundamental struc-
ture. Representing linear structures, these graphs find applications across
many theoretical and practical fields. For example, in chemical graph the-
ory, chain-type graphs are frequently used to model linear alkanes and

polymers. By serving as a baseline, they enable the study of branching
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effects through comparison with more complex, branched molecular struc-
tures. This simplicity makes them invaluable for exploring how molecu-
lar connectivity influences chemical properties [24]. In this paper we use
the self-similar structure of regular chain-type graphs to develop recursive
methods for computing their matching numbers.

There have been several recent advances in the techniques that allow
the computation of the Hosoya indices (or matching numbers) of com-
plicated graphs from those of the simpler ones. In [23] a very general
theoretical framework for graphs with self-similar structure is discussed,
but one generally needs a tailored approach to get concrete results for
specific classes of graphs. For example, from a chemical point of view,
graphs formed by attaching regular n-gons along edges are of special in-
terest. In [10,19,20] the authors have studied the computation of Hosoya
indices in various benzenoid chains, corresponding to hexagonal blocks,
whereas in [7] matching numbers are computed for (octagonal) cyclooc-
tatetraene chains. These works make use of tools such as transfer-matrices,
Hosoya vectors and k-matching vectors. Very recently [15] has proposed a
general transfer matrix method to compute matching numbers for graphs
formed by amalgamating a sequence of graphs at one or two vertices at
a time. This setting includes the regular chain-type graphs considered in
this paper; but we have a more focused approach which produces extra
information not given in [15].

In particular, we do not use matrix methods and work with what we
call “partial matching polynomials”, employing another commonly-used
idea in the literature. These are polynomials taking into account match-
ings conditioned on certain vertices being matched or not. They can be
said to be analogous to the k-matching vectors which encode matching
information of sub-graphs excluding certain vertices. For our particular
setting, this preference leads to a certain simplification that allows us to
easily compute the growth rate of the Hosoya index as a function of the
chain length. We remark that in [5] and [8] a similar style was employed to
study Sierpinski-type self-similar graphs. Finally, in Section 2.2 we explain
how our methods can be adapted to study regular chains which close into

loop-shaped graphs.
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2 The method

We first begin by introducing our terminology. A (undirected) graph is
simply a pair G = (V| E) where V is a nonempty set whose elements are
called vertices and E is a set of unordered vertex pairs {u, v}, called edges
(the vertices u and v are called the endpoints of the edge). A graph is
typically visualized by representing vertices with points and edges with
arcs joining the two associated vertices.

Matching polynomials are considered for graphs that are finite, simple
and connected. That is, (i) the sets V and E are finite, (ii) for any vertices
u,v € V there is at most one edge with endpoints u and v, (iii) loops
(edges from a vertex to itself) are not allowed, (iv) for any pair of distinct
vertices u,v there is a sequence of edges ({u;,u;11})%, where u; = u
and ug41 = v. Since the study of matching polynomials is limited to
this context, the standing assumption in this article is that the conditions
above hold for all the graphs considered. We nevertheless remark that the

proofs given do not make use of any of these conditions.

Definition 1. A matching in a graph G = (V, E) is a collection of edges
where no two edges are adjacent (that is, where no two edges share a
common endpoint). The size of a matching is the number of edges in the
matching. By a k-matching we will mean a matching of size k. We will
say that a vertex v is matched in a matching if v belongs to some edge of

that matching.

It is evident from the definition of a matching that there can be no

matching of size greater than L%J

Definition 2. The number of k-matchings in a graph G is denoted by
mi(G). The matching polynomial of a graph G = (V, E) is defined as

oo LIVI/2)
M(z) = M(Giz) =Y mp(G)a* = Y my(G)z".
k=0

k=0
The number
LIV1/2]
HG) =M1 = > mi(@)

k=0
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is called the Hosoya indez of G.

In a connected graph of n vertices there are at least n — 1 edges, hence
at least C(n — 1,k) edge subsets of size k. A brute-force algorithm to
calculate my(G) would be to simply make a search through these subsets
to check whether they form a matching or not. The extremely rapid growth
of C(n, k) as n — oo makes this approach prohibitively expensive even for
small values of n. Therefore, methods that allow fast computations of these
numbers are desirable from both theoretical and computational points of
view.

Next we explain the graphs of interest of this study. We first define
what we mean by joining two graphs at a pair of vertices. An illustration
is in Figure 1.

&4 G" G
%\UI v v = " )

Figure 1. Joining graphs at vertices.

Definition 3. Let G’ = (V', E’) and G” = (V”, E") be two graphs and let
v € V', v" € V". The graph G obtained from G’ and G” by joining them
at vertices v/ and v is the graph whose vertex set is V := (V' UV")/ ~
where ~ is the equivalence relation identifying v' and v”, and whose edge
set is B := ' UE".

Next, we define chains obtained by joining several copies of a graph:

Definition 4. Let G be a graph with vertex set V' = {v1,...,v} and
1 > 2. Fix two distinct vertices v* and v from V. For each n = 1,2, ...,
let G(™) be an isomorphic copy of G. Let vE and v be the vertices of
G corresponding to v and v®, respectively, under this isomorphism.
Define G := G and for n > 1 let G,, 1 be the graph obtained by joining

G and G"*Y at the vertices vf? (regarded as a vertex of G,,) and vk, ;.
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We will say that GG, is a chain-type graph obtained from the generating
triple G = (G, v%, vf) with chain length n.

Any graph which is of the form above will be called a chain-type graph.
Note that a chain-type graph may have more than one generating triple.
We now define some polynomials which will serve as intermediate de-

vices to compute the matching polynomials.

Definition 5. Given a generating triple G = (G,v%,v%), let Pg = Pp(G)
be the “partial” matching polynomial of G given by

LIV1/2]
Pp(z)= Y mp(G)a

k=0

where my, p(G) is the number of k-matchings of G in which the vertices
vl and v® are both matched. We similarly define the polynomial Pj,
by considering the matchings which match vertex v* but not v; the
polynomial Pg for matchings that match v but not v*; and finally the
polynomial Py for matchings which match neither vertex. The symbols
my,r(G), mi,.(G) and my n(G) are defined accordingly. Finally, we define

Pt and P, as the partial matching polynomials of G,, corresponding to
R

. is matched and not matched, respectively.

matchings where the vertex v
Finally, we define P, as the matching polynomial of G,,.

When we want to emphasize the dependence of these polynomials on
the generating triple G = (G, v%, v!t) we will write PL(G), P, (G), mk.n(G)
etc., but when there is no risk of confusion we will drop G from the notation.

From now on we fix our generating triple G = (G, vl v%).

It is quite easy to see that the identities

M(G;z) = Pp(x) + Pr(z) + Pr(z) + Pn(2)
P,=Pf+P; (1)

hold. The theorem below is the main result for the computation of match-

ing polynomials:
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Theorem 1. Consider a chain-type graph sequence constructed from an
arbitrary generating triple and their partial matching polynomials as given
in Definition 4 and Definition 5. The following recursion relations hold
for each n > 1:

Pr—;-l:PnPR“‘Pv:PBv (2)
P ,=P,Pyv+P, P (3)

n

Note that these recursive relations allow us to construct PF for all
n, starting from the initial polynomials Pg, P, Pr and Py. From this,
using (1) we get the following immediate corollary about the matching

polynomials:

Corollary 1. For each n > 1 we have
P,+1=P,(Pr+ Pn)+ P, (Pg+ Pr).

Therefore, to compute the matching polynomial of a chain-type graph,
it is sufficient to compute the partial matching polynomials of its gener-
ating graph. For long chains, this method reduces the computation time
drastically compared to the brute-force approach.

Proof of Theorem 1: Since (2) and (3) have similar proofs, we are going
to prove only the former identity and leave the other to the reader.

First of all, note that using (1) we can rewrite (2) as
P;L"_H :P;'PR—FPH_PR—FP;PB. (4)

Now, we make a general observation about matchings of joined graphs:
Suppose G = (V, E) is obtained by joining the graphs G’ = (V’, E’) and
G" = (V" E") at their vertices v’ and v”, respectively. Let £ C F be a
k-matching of G. Then, & := £NE’ and £” := £N E” are matchings of
G’ and G”, respectively, with the following properties:

1 |&) + || =k,

2. £ and £” do not simultaneously match the vertices v’ and v”, re-

spectively.
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Conversely, given any pair (£, £"”) of matchings of G’ and G”, respectively,
satisfying the conditions above, the set & = & U E” is a k-matching of G.

So, let m}” be the number of l-matchings of G,, that match the vertex
vl and let m;"~ denote the number of those not matching vE. Then, each
k-matching of G,,4+1 which matches vfﬂ arises from a pair of matchings
which belongs to one of the following three mutually exclusive categories,

and there is a bijective correspondence with the union of these three sets:

e An [-matching of G,, which matches vZ and a (k — [)-matching of

G+ which matches v%, | but not vX, ,,1=0,1,....k,

e An [-matching of G,, which does not match v/* and a (k—1)-matching
of G+ which matches vf, | but not vX ,,1=0,1,....k,

e An [-matching of G,, which does not match v* and a (k—1)-matching
of GV which matches both vl | and vf, |, 1=0,1,... k.

L

Since G™*1) is isomorphic to G with vt ; < oL and vf; < v the

number of pairs in the first case is

k
> mpt mi_ g (5)
=0
But since
oo oo
Pl(z) = Zm;”gcZ and Pg(z) = ij’ij,
i=0 3=0

it is readily seen that (5) is the coefficient of the degree k term of the
product polynomial P; Pg. Similarly, the number of pairs in the second
category is the degree k coefficient in P, Pr, and the same holds for the
polynomial P, Pp in the third case. Therefore, m](€n+1)+ is the sum of

these three numbers, proving the identity (4).

Example 1. Let T be a triangle, that is, a complete graph with 3 vertices.
One can form a generating triple 7 from T by selecting any two vertices
(ant the choice does not matter by symmetry). In [22], chain-type graphs

constructed from T were considered and it was claimed that the Hosoya
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index of the chain T;, is given by H(T},,) = 4-3"~! for alln > 1. The proof in

the given article leaves some details unexplained, but a direct computation

of my(T,,) is plausible since any k-matching of T;, can contain at most one
edge from each triangular copy. We can nevertheless confirm the claim
easily with our method presented above. Indeed, fixing any two vertices
in T as v* and v’ it is easily seen that the partial matching polynomials
for T are

Pp(x) = Pr(x) = Pg(z) =z, Pn(z)=1. (6)

We now make the claim that P (1) = P, (1) = 2-3""! and hence P, (1) =
PF(1)+ P;(1) =4-3""! for all n > 1. This is easily verified for n = 1.
Now, using the inductive assumption for n, the relations (2), (3) and the
polynomials in (6), we get that

P-‘r

n+1(1) =P,

1 (1) = Pu(1) + Py (1) = 43" 2.3 —2.3",
This proves our claim.

The computation of the Hosoya index for chains can also be made
using a matrix representation as explained in the following theorem. As a

consequence, the asymptotic growth rate of H(G,,) can be derived.

Theorem 2. Define the 2 X 2 matriz A by

(Pv + P)(1) Py(1)
(Pr+ Pg)(1) Pr(1)

(Pn + Pr)(1)
(Pr+ Pp)(1)

and let r = . Then

H(G,)=s +sT

where
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Proof. We observe that (3) and (2) are equivalent to

P =P, Py+PiPy+P, PL=(Py+PL)P, +PyP],

Pr., =P Pr+ P, Pr+ P, Pg = (Pr+Pp)P, +PrP,.

Using matrices with polynomial entries, this can be formulated as

Pn_Jrl _ Py + Pr, Py PE (7)
Pl Pr+Pp Pg| |PH|’
immediately implying that
n
P,:+1 _ Py + P, Py Pf (8)
P;+1 Pr+Pg Pgr P1+

Now simply observe that P, = Py + P, and Pt = Pg + Pg. Computing

all polynomials at z = 1, we get the desired result. |

Corollary 2. The Hosoya index H(G,) of a regular chain-type graph

grows asymptotically with exponential speed. More precisely,

lim In H(G,)

n—00 n

=A

where X is the leading eigenvalue of the matriz A above. The same growth
law also holds for P, (1) and P} (1).

Proof. First, observe that Py (1) > 0 since the polynomial Py has constant
term 1 (for the unique O-matching in G). But Pg(1) + Pg(1) > 0 as well,
because either G contains the edge {v”, v} (a 1-matching by itself), thus
contributing a linear term to Pp, else any single edge attached to v
contributes a linear term to Pg. Therefore, A is a 2 x 2 matrix whose
off-diagonal entries are strictly positive. This means that A has distinct
real eigenvalues (see Lemma 1 below), say A and ~, where A\ > 7. Since A

has positive trace, we must have A > |y| > 0. Now, A can be diagonalized
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A0
into the form J = [0 ] via some conjugation A = PJP~!. Suppose

v
a b
c d|’

With a little computation, we can see that

P =

1
A" = pJjrp~l =

"~ detP )

ad\™ — bey™  ab(y™ — A™)
cd(N" — ™) ady™ — beA™|

Considering the case n = 1 and the strict positivity of the off-diagonal
entries, we get that ab # 0 and c¢d # 0. Hence, all entries of P must be
nonzero. From what was said above, the entries of the column matrix r
in Theorem 2 are strictly positive as well. Then, since each entry in (9) is
positive and has a dominant term of magnitude CA™ (C' > 0), the same

applies to the two entries of the column vector A™r. |
For completeness, we prove the following easy fact used above:

Lemma 1. If A is a real 2 X 2 matrix whose off-diagonal entries have a

positive product, then A has two distinct real eigenvalues.

Proof. Let A = “ e Then the characteristic polynomial is p(A) =
c

(A —a)(A—d) —bc =\ — (a+ d)\ + ad — bc. The discriminant of this

polynomial is
A = (a+d)* — 4(ad — be) = (a — d)* + 4bc > 0

since we assume bc > 0. [ |

2.1 Edge-linked chains

The initial motivation for studying matching polynomials was related to
the study of chemical compounds [18]. In this context, vertices correspond
to the atoms in the compound and the edges represent bonds. Our linking

procedure above identifies vertices from two given graphs, but this form of
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connection does not correspond to chemical bonding in the sense described
above. To keep the analogy, we now link two graphs by drawing an edge
between the selected vertices, rather than collapsing them into a single
vertex. This could simulate certain cases of polymer formation where a
base molecule forms chains by bonding to one or two other molecules at

specified locations. The formal definition is below.

Definition 6. Let G = (V/,E’) and G” = (V”,E") be two graphs and
let v/ € V', v € V". The graph G obtained from G’ and G by linking
the vertices v’ and v is the graph G = (V,E) where V. = V' UV” and
E=FE UE"U{{v, v"}}.

Since the construction procedure below is similar to the chain-type
graphs introduced above, we will avoid repeating the formalism there for
sake of brevity. We again start with a generating triple G = (G,v*,v%)
where G = (V, E) and vL, v € V are two distinct vertices. Given the
isomorphic copies G, n > 1, we define GL; := G and we form GL, 11
by linking vertex v of GL, to vertex UTLLH of G+t Our purpose is to
compute the matching polynomial PL,, of GL, 1.

To this end, we consider a new base graph B = (Vg, Ep) obtained by
extending G from vertex v by a single new edge. Formally, let v*# be an
element not in V, and set Vg = V U {v2E} Ep = EU {{vE vEE}}. Let
B,, be the chain-type graph generated by B = (B,v*, vf*) and for n > 1
define the polynomials

Q, =P, (B) and Q;:= P/ (B),

as well as Qn = Pr(B), Qr := Pr(B), Qr := Pr(B) and Qp := Pp(B).
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Figure 2. The chain graphs B, and GL,,.

Theorem 3. We have for alln > 1

RR

n -

Proof. The vertex set of B, is that of GL,, plus the extra vertex v
Similarly, the edge set of B, is precisely the edge set of GL,, plus the single
edge {v, vI*®} (cf. Figure 2). Since this is the only edge in B,, connected
to vEE for each k > 0 there is a bijection between the k-matchings of
GL,, and the k-matchings of B,, which do not match the vertex v*¥. The
cardinality of the former is the coefficient of 2% in M(GL,, ), whereas

that of the latter is the same in Q;, (z). |

Since we are able to compute @, and Q; recursively, we have also
solved the problem for edge-linked chains. Also, for the base-case polyno-

mials, we have the following relations between those of B and G:

Lemma 2. We have the relations

Qn = Pn(G) + Pr(G), QL = P(G) + Pp(9),
Qr=2Py(G), @B = 2Pr(9).

Proof. Since {v® v%R} is the only edge in B attached to v?f, the k-

RR

matchings of B which match neither v* nor v"*# are in bijection with the

k-matchings of G' not matching v% (with no restriction on the matching
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status of vf!). This proves the first equality. For the second, note that
k-matchings of B which match v but not v are in bijection with the
k-matchings of G that match v* (with no restriction on the matching
status of v%). Next, each k-matching of B that matches v*® but not
vE contains the edge {vft, vf*%}, therefore these are in bijection with the
(k — 1)-matchings of G’ which match neither v* nor v®. This justifies the

third equality and the last one is dealt with similarly. |

Example 2. Let T be the triangular graph as in Example 1 and let T'L,,
be the edge-linked chain of length n constructed from T. In [22], it was
claimed that H(GL,) = 4-5"!, but the proof again has gaps. Here we

provide a proof with our method. For this case, we claim that
Qr()=4.5"1, QF(1)=2.5""

for all n > 1. The result will follow from Theorem 3. The base-case

polynomials are Qn(z) = 1+z, Qr(x) = 22, Qr(z) =  and Qp(z) = 22.

Evaluating the polynomials at = 1, from (7) we get

Qui1(1) =4Q (1) +2Q;7 (1),
wr (1) =20, (1) + @ (1)

Combining this with Q7 (1) = Qn(1) + QL(1) = 4 and Q7 (1) = Qr(1) +
®p(1) =2, we get the result by induction on n.

Corollary 3. H(GL,) has asymptotic exponential growth as n — oo.

Proof. This directly follows from Corollary 2 and Theorem 3. Note that
the exponent is related to the dominant eigenvalue of the matrix A corre-
sponding to B, rather than to G. |

2.2 Loops from chains

In this subsection we briefly consider the variant where the chain graphs

are closed onto loops by identifying vertices from the first and last copies.

Definition 7. Consider the construction given in Definition 4. We define
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LG, to be the graph obtained from G,, by identifying the vertices v¥ and
R

Uy

Clearly, a k-matching of GG,, remains a matching for LG, if and only if
the two identified vertices are not both matched in that matching. Con-
versely, any k-matching of LG, is converted into a k-matching of G,, when
we “cut” the graph at the identified vertices, and the resulting matching
does not match the two vertices simultaneously. This correspondence is
clearly a bijection.

Therefore, counting the matchings of LG, amount to counting the
matchings of G,, which do not match v{ and v simultaneously. The
construction above, via the polynomials P, and P, , has kept track of
the matchings that matches (or not) the vertex v®. If we also wish to
categorize according to the matching status of v{ then we must consider
the cases at the start of the construction.

Indeed, if we want to count the matchings where v{ is not matched,
then we must only allow matchings of G in which v{ are unused. But it
is evident that once started from this base case, generation of the next-
generation matching polynomials follows the same recursive scheme, since
they depend only on the configuration schemes at the identified vertex
pairs. Therefore, equation (8) is still valid, but the base case is different.

Thus, if we want to count the matchings of GL; where both v! and

P P, P,
are matched, the base case is given by U instead of |~ T
Pgp Pr + Pp

Therefore, the partial matching polynomial counting these matchings is

R

Un,

the second entry of

n—1

Py + P, Py
Pr+ Pg Pg

Py,
Pp

Excluding these from all the matchings of GL,,, we arrive at the cases
which correspond to the matchings of LG,,. We can summarize the result

in the following statement.

Py + P, Py

Theorem 4. Consider the polynomial matric M =
Pr+ Pg Pg
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Then, the matching polynomial of LG, is

Py
Pp

Py + Pr,
Pr + Pp

Pr,

P — [0 1] M .

=[] m

~[o o] arm

We finally remark that the same reasoning can be applied to loops

RR
n

obtained from GL, by identifying v¥ and v (this would amount to
combining n copies of G into a loop by joining them by edges). Using the
notation of the previous subsection, one just applies the theorem above to

the chain B, (instead of G,,).

3 Conclusion

In this paper, we present a recursive formula for computing the matching
polynomials and the Hosoya indices of regular chain-type graphs. We
present a novel method to compute the precise rate of growth of the Hosoya
index as a function of the chain length, given that the matching numbers of
the basic chain element are known. The proposed methods extend to the
analysis of loop-shaped graphs obtained by closing the regular chains at
the two ends. These results contribute to the mathematical understanding
of chain-type molecular structures, which are common in chemical and

biological systems.
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