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Abstract

In this article we describe an algorithm that allows us to recur-
sively construct the matching polynomials of what we call “regular
chain-type graphs”. These graphs are obtained from a fixed base
graph by linking several copies in a linear fashion, the links being
obtained by joining two consecutive copies at prescribed vertices.
Loops obtained by closing these chains are also studied. Finally, a
method to compute the growth rate of the Hosoya index is presented.
The proposed methods are applicable to chain-type molecular struc-
tures, providing insights into their chemical properties.

1 Introduction

In graph theory, a matching is formally defined as a subset of edges in

which no two edges are incident to a common vertex. Among the various

algebraic tools developed to study the structure of graphs, the matching
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polynomial stands out as a significant invariant due to its capacity to cap-

ture complex combinatorial structures [13, 14, 16]. This polynomial serves

not only as a generating function for enumerating matchings of different

sizes but also reflects deeper structural properties of the graph, such as

independence and connectivity patterns among edge subsets [11]. The

matching polynomial holds a fundamental role in both theoretical graph

theory and its diverse applications [2–4,6,9,12]. As an example in chemical

graph theory, the matching polynomial is employed to evaluate molecular

stability through resonance structures, linking combinatorial properties to

chemical phenomena [1,17]. Furthermore, a significant algebraic property

of the matching polynomial is that all its roots are real for any graph, a fact

that facilitates spectral analysis and contributes to stability assessments

in complex network models [13,21].

The Hosoya index is the total number of matchings in the graph (of any

size). It was introduced by H. Hosoya to describe the branching structures

and connectivity arrangements of chemical compounds [18].

Determining the Hosoya index in arbitrary graphs is a #P-complete

problem, a complexity class that encompasses counting problems which

are computationally at least as hard as NP-complete decision problems

and are widely regarded as intractable [25]. Due to the intrinsic computa-

tional complexity, the matching polynomial serves as an essential indirect

approach for the analysis and approximation of these quantities, thereby

enabling the examination of enumerations that are otherwise computation-

ally infeasible [21].

In this paper we study regular chain-type graphs, where an arbitrary

starting graph forms a chain by adding a new copy of the graph (in a

regular pattern) at each step. Two kinds of attachment patterns are con-

sidered; in the first two graphs attach each other at a vertex, and in the

other two vertices are joined by an edge. Such graphs are common in both

nature and mathematics because of their simple and fundamental struc-

ture. Representing linear structures, these graphs find applications across

many theoretical and practical fields. For example, in chemical graph the-

ory, chain-type graphs are frequently used to model linear alkanes and

polymers. By serving as a baseline, they enable the study of branching
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effects through comparison with more complex, branched molecular struc-

tures. This simplicity makes them invaluable for exploring how molecu-

lar connectivity influences chemical properties [24]. In this paper we use

the self-similar structure of regular chain-type graphs to develop recursive

methods for computing their matching numbers.

There have been several recent advances in the techniques that allow

the computation of the Hosoya indices (or matching numbers) of com-

plicated graphs from those of the simpler ones. In [23] a very general

theoretical framework for graphs with self-similar structure is discussed,

but one generally needs a tailored approach to get concrete results for

specific classes of graphs. For example, from a chemical point of view,

graphs formed by attaching regular n-gons along edges are of special in-

terest. In [10, 19, 20] the authors have studied the computation of Hosoya

indices in various benzenoid chains, corresponding to hexagonal blocks,

whereas in [7] matching numbers are computed for (octagonal) cyclooc-

tatetraene chains. These works make use of tools such as transfer-matrices,

Hosoya vectors and k-matching vectors. Very recently [15] has proposed a

general transfer matrix method to compute matching numbers for graphs

formed by amalgamating a sequence of graphs at one or two vertices at

a time. This setting includes the regular chain-type graphs considered in

this paper; but we have a more focused approach which produces extra

information not given in [15].

In particular, we do not use matrix methods and work with what we

call “partial matching polynomials”, employing another commonly-used

idea in the literature. These are polynomials taking into account match-

ings conditioned on certain vertices being matched or not. They can be

said to be analogous to the k-matching vectors which encode matching

information of sub-graphs excluding certain vertices. For our particular

setting, this preference leads to a certain simplification that allows us to

easily compute the growth rate of the Hosoya index as a function of the

chain length. We remark that in [5] and [8] a similar style was employed to

study Sierpinski-type self-similar graphs. Finally, in Section 2.2 we explain

how our methods can be adapted to study regular chains which close into

loop-shaped graphs.
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2 The method

We first begin by introducing our terminology. A (undirected) graph is

simply a pair G = (V,E) where V is a nonempty set whose elements are

called vertices and E is a set of unordered vertex pairs {u, v}, called edges

(the vertices u and v are called the endpoints of the edge). A graph is

typically visualized by representing vertices with points and edges with

arcs joining the two associated vertices.

Matching polynomials are considered for graphs that are finite, simple

and connected. That is, (i) the sets V and E are finite, (ii) for any vertices

u, v ∈ V there is at most one edge with endpoints u and v, (iii) loops

(edges from a vertex to itself) are not allowed, (iv) for any pair of distinct

vertices u, v there is a sequence of edges ({ui, ui+1})ki=1 where u1 = u

and uk+1 = v. Since the study of matching polynomials is limited to

this context, the standing assumption in this article is that the conditions

above hold for all the graphs considered. We nevertheless remark that the

proofs given do not make use of any of these conditions.

Definition 1. A matching in a graph G = (V,E) is a collection of edges

where no two edges are adjacent (that is, where no two edges share a

common endpoint). The size of a matching is the number of edges in the

matching. By a k-matching we will mean a matching of size k. We will

say that a vertex v is matched in a matching if v belongs to some edge of

that matching.

It is evident from the definition of a matching that there can be no

matching of size greater than ⌊ |V |
2 ⌋.

Definition 2. The number of k-matchings in a graph G is denoted by

mk(G). The matching polynomial of a graph G = (V,E) is defined as

M(x) := M(G;x) =

∞∑
k=0

mk(G)xk =

⌊|V |/2⌋∑
k=0

mk(G)xk.

The number

H(G) := M(1) =

⌊|V |/2⌋∑
k=0

mk(G)
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is called the Hosoya index of G.

In a connected graph of n vertices there are at least n− 1 edges, hence

at least C(n − 1, k) edge subsets of size k. A brute-force algorithm to

calculate mk(G) would be to simply make a search through these subsets

to check whether they form a matching or not. The extremely rapid growth

of C(n, k) as n → ∞ makes this approach prohibitively expensive even for

small values of n. Therefore, methods that allow fast computations of these

numbers are desirable from both theoretical and computational points of

view.

Next we explain the graphs of interest of this study. We first define

what we mean by joining two graphs at a pair of vertices. An illustration

is in Figure 1.

v′ = v′′

G′ G′′ G̃

v′ v′′

Figure 1. Joining graphs at vertices.

Definition 3. Let G′ = (V ′, E′) and G′′ = (V ′′, E′′) be two graphs and let

v′ ∈ V ′, v′′ ∈ V ′′. The graph G̃ obtained from G′ and G′′ by joining them

at vertices v′ and v′′ is the graph whose vertex set is Ṽ := (V ′ ∪ V ′′)/ ∼
where ∼ is the equivalence relation identifying v′ and v′′, and whose edge

set is Ẽ := E′ ∪ E′′.

Next, we define chains obtained by joining several copies of a graph:

Definition 4. Let G be a graph with vertex set V = {v1, . . . , vl} and

l ≥ 2. Fix two distinct vertices vL and vR from V . For each n = 1, 2, . . .,

let G(n) be an isomorphic copy of G. Let vLn and vRn be the vertices of

G(n) corresponding to vL and vR, respectively, under this isomorphism.

Define G1 := G and for n ≥ 1 let Gn+1 be the graph obtained by joining

Gn and G(n+1) at the vertices vRn (regarded as a vertex of Gn) and vLn+1.
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We will say that Gn is a chain-type graph obtained from the generating

triple G = (G, vL, vR) with chain length n.

Any graph which is of the form above will be called a chain-type graph.

Note that a chain-type graph may have more than one generating triple.

We now define some polynomials which will serve as intermediate de-

vices to compute the matching polynomials.

Definition 5. Given a generating triple G = (G, vL, vR), let PB = PB(G)
be the “partial” matching polynomial of G given by

PB(x) =

⌊|V |/2⌋∑
k=0

mk,B(G)xk

where mk,B(G) is the number of k-matchings of G in which the vertices

vL and vR are both matched. We similarly define the polynomial PL

by considering the matchings which match vertex vL but not vR; the

polynomial PR for matchings that match vR but not vL; and finally the

polynomial PN for matchings which match neither vertex. The symbols

mk,R(G), mk,L(G) and mk,N (G) are defined accordingly. Finally, we define

P+
n and P−

n as the partial matching polynomials of Gn corresponding to

matchings where the vertex vRn is matched and not matched, respectively.

Finally, we define Pn as the matching polynomial of Gn.

When we want to emphasize the dependence of these polynomials on

the generating triple G = (G, vL, vR) we will write PL(G), P−
n (G), mk,N (G)

etc., but when there is no risk of confusion we will drop G from the notation.

From now on we fix our generating triple G = (G, vL, vR).

It is quite easy to see that the identities

M(G;x) = PB(x) + PL(x) + PR(x) + PN (x)

Pn = P+
n + P−

n (1)

hold. The theorem below is the main result for the computation of match-

ing polynomials:
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Theorem 1. Consider a chain-type graph sequence constructed from an

arbitrary generating triple and their partial matching polynomials as given

in Definition 4 and Definition 5. The following recursion relations hold

for each n ≥ 1:

P+
n+1 = PnPR + P−

n PB , (2)

P−
n+1 = PnPN + P−

n PL. (3)

Note that these recursive relations allow us to construct P±
n for all

n, starting from the initial polynomials PB , PL, PR and PN . From this,

using (1) we get the following immediate corollary about the matching

polynomials:

Corollary 1. For each n ≥ 1 we have

Pn+1 = Pn(PR + PN ) + P−
n (PB + PL).

Therefore, to compute the matching polynomial of a chain-type graph,

it is sufficient to compute the partial matching polynomials of its gener-

ating graph. For long chains, this method reduces the computation time

drastically compared to the brute-force approach.

Proof of Theorem 1: Since (2) and (3) have similar proofs, we are going

to prove only the former identity and leave the other to the reader.

First of all, note that using (1) we can rewrite (2) as

P+
n+1 = P+

n PR + P−
n PR + P−

n PB . (4)

Now, we make a general observation about matchings of joined graphs:

Suppose G̃ = (Ṽ , Ẽ) is obtained by joining the graphs G′ = (V ′, E′) and

G′′ = (V ′′, E′′) at their vertices v′ and v′′, respectively. Let E ⊆ Ẽ be a

k-matching of G̃. Then, E ′ := E ∩ E′ and E ′′ := E ∩ E′′ are matchings of

G′ and G′′, respectively, with the following properties:

1. |E ′|+ |E ′′| = k,

2. E ′ and E ′′ do not simultaneously match the vertices v′ and v′′, re-

spectively.
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Conversely, given any pair (E ′, E ′′) of matchings of G′ and G′′, respectively,

satisfying the conditions above, the set E = E ′ ∪ E ′′ is a k-matching of G̃.

So, let mn+
l be the number of l-matchings of Gn that match the vertex

vRn , and let mn−
l denote the number of those not matching vRn . Then, each

k-matching of Gn+1 which matches vRn+1 arises from a pair of matchings

which belongs to one of the following three mutually exclusive categories,

and there is a bijective correspondence with the union of these three sets:

• An l-matching of Gn which matches vRn and a (k − l)-matching of

G(n+1) which matches vRn+1 but not vLn+1, l = 0, 1, . . . , k,

• An l-matching of Gn which does not match vRn and a (k−l)-matching

of G(n+1) which matches vRn+1 but not vLn+1, l = 0, 1, . . . , k,

• An l-matching of Gn which does not match vRn and a (k−l)-matching

of G(n+1) which matches both vLn+1 and vRn+1, l = 0, 1, . . . , k.

Since G(n+1) is isomorphic to G with vLn+1 ↔ vL and vRn+1 ↔ vR, the

number of pairs in the first case is

k∑
l=0

mn+
l ·mk−l,R. (5)

But since

P+
n (x) =

∞∑
i=0

mn+
i xi and PR(x) =

∞∑
j=0

mj,Rx
j ,

it is readily seen that (5) is the coefficient of the degree k term of the

product polynomial P+
n PR. Similarly, the number of pairs in the second

category is the degree k coefficient in P−
n PR, and the same holds for the

polynomial P−
n PB in the third case. Therefore, m

(n+1)+
k is the sum of

these three numbers, proving the identity (4).

Example 1. Let T be a triangle, that is, a complete graph with 3 vertices.

One can form a generating triple T from T by selecting any two vertices

(ant the choice does not matter by symmetry). In [22], chain-type graphs

constructed from T were considered and it was claimed that the Hosoya
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index of the chain Tn is given byH(Tn) = 4·3n−1 for all n ≥ 1. The proof in

the given article leaves some details unexplained, but a direct computation

of mk(Tn) is plausible since any k-matching of Tn can contain at most one

edge from each triangular copy. We can nevertheless confirm the claim

easily with our method presented above. Indeed, fixing any two vertices

in T as vL and vR, it is easily seen that the partial matching polynomials

for T are

PB(x) = PL(x) = PR(x) = x, PN (x) = 1. (6)

We now make the claim that P+
n (1) = P−

n (1) = 2 ·3n−1 and hence Pn(1) =

P+
n (1) + P−

n (1) = 4 · 3n−1 for all n ≥ 1. This is easily verified for n = 1.

Now, using the inductive assumption for n, the relations (2), (3) and the

polynomials in (6), we get that

P+
n+1(1) = P−

n+1(1) = Pn(1) + P−
n (1) = 4 · 3n−1 + 2 · 3n−1 = 2 · 3n.

This proves our claim.

The computation of the Hosoya index for chains can also be made

using a matrix representation as explained in the following theorem. As a

consequence, the asymptotic growth rate of H(Gn) can be derived.

Theorem 2. Define the 2× 2 matrix A by

A =

[
(PN + PL)(1) PN (1)

(PR + PB)(1) PR(1)

]

and let r =

[
(PN + PL)(1)

(PR + PB)(1)

]
. Then

H(Gn) = s− + s+

where [
s−

s+

]
= An−1r.
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Proof. We observe that (3) and (2) are equivalent to

P−
n+1 = P−

n PN + P+
n PN + P−

n PL = (PN + PL)P
−
n + PNP+

n ,

P+
n+1 = P+

n PR + P−
n PR + P−

n PB = (PR + PB)P
−
n + PRP

+
n .

Using matrices with polynomial entries, this can be formulated as[
P−
n+1

P+
n+1

]
=

[
PN + PL PN

PR + PB PR

][
P−
n

P+
n

]
, (7)

immediately implying that[
P−
n+1

P+
n+1

]
=

[
PN + PL PN

PR + PB PR

]n [
P−
1

P+
1

]
. (8)

Now simply observe that P−
1 = PN +PL and P+

1 = PR +PB . Computing

all polynomials at x = 1, we get the desired result.

Corollary 2. The Hosoya index H(Gn) of a regular chain-type graph

grows asymptotically with exponential speed. More precisely,

lim
n→∞

lnH(Gn)

n
= λ

where λ is the leading eigenvalue of the matrix A above. The same growth

law also holds for P−
n (1) and P+

n (1).

Proof. First, observe that PN (1) > 0 since the polynomial PN has constant

term 1 (for the unique 0-matching in G). But PR(1) + PB(1) > 0 as well,

because either G contains the edge {vL, vR} (a 1-matching by itself), thus

contributing a linear term to PB , else any single edge attached to vR

contributes a linear term to PR. Therefore, A is a 2 × 2 matrix whose

off-diagonal entries are strictly positive. This means that A has distinct

real eigenvalues (see Lemma 1 below), say λ and γ, where λ > γ. Since A

has positive trace, we must have λ > |γ| ≥ 0. Now, A can be diagonalized



839

into the form J =

[
λ 0

0 γ

]
via some conjugation A = PJP−1. Suppose

P =

[
a b

c d

]
.

With a little computation, we can see that

An = PJnP−1 =
1

detP

[
adλn − bcγn ab(γn − λn)

cd(λn − γn) adγn − bcλn

]
. (9)

Considering the case n = 1 and the strict positivity of the off-diagonal

entries, we get that ab ̸= 0 and cd ̸= 0. Hence, all entries of P must be

nonzero. From what was said above, the entries of the column matrix r

in Theorem 2 are strictly positive as well. Then, since each entry in (9) is

positive and has a dominant term of magnitude Cλn (C > 0), the same

applies to the two entries of the column vector Anr.

For completeness, we prove the following easy fact used above:

Lemma 1. If A is a real 2 × 2 matrix whose off-diagonal entries have a

positive product, then A has two distinct real eigenvalues.

Proof. Let A =

[
a b

c d

]
. Then the characteristic polynomial is p(λ) =

(λ − a)(λ − d) − bc = λ2 − (a + d)λ + ad − bc. The discriminant of this

polynomial is

∆ = (a+ d)2 − 4(ad− bc) = (a− d)2 + 4bc > 0

since we assume bc > 0.

2.1 Edge-linked chains

The initial motivation for studying matching polynomials was related to

the study of chemical compounds [18]. In this context, vertices correspond

to the atoms in the compound and the edges represent bonds. Our linking

procedure above identifies vertices from two given graphs, but this form of
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connection does not correspond to chemical bonding in the sense described

above. To keep the analogy, we now link two graphs by drawing an edge

between the selected vertices, rather than collapsing them into a single

vertex. This could simulate certain cases of polymer formation where a

base molecule forms chains by bonding to one or two other molecules at

specified locations. The formal definition is below.

Definition 6. Let G = (V ′, E′) and G′′ = (V ′′, E′′) be two graphs and

let v′ ∈ V ′, v′′ ∈ V ′′. The graph G̃ obtained from G′ and G′′ by linking

the vertices v′ and v′′ is the graph G̃ = (Ṽ , Ẽ) where Ṽ = V ′ ∪ V ′′ and

Ẽ = E′ ∪ E′′ ∪ {{v′, v′′}}.

Since the construction procedure below is similar to the chain-type

graphs introduced above, we will avoid repeating the formalism there for

sake of brevity. We again start with a generating triple G = (G, vL, vR)

where G = (V,E) and vL, vR ∈ V are two distinct vertices. Given the

isomorphic copies G(n), n ≥ 1, we define GL1 := G(1) and we form GLn+1

by linking vertex vRn of GLn to vertex vLn+1 of G(n+1). Our purpose is to

compute the matching polynomial PLn of GLn+1.

To this end, we consider a new base graph B = (VB , EB) obtained by

extending G from vertex vR by a single new edge. Formally, let vRR be an

element not in V , and set VB = V ∪ {vRR}, EB = E ∪ {{vR, vRR}}. Let

Bn be the chain-type graph generated by B = (B, vL, vRR) and for n ≥ 1

define the polynomials

Q−
n := P−

n (B) and Q+
n := P+

n (B),

as well as QN := PL(B), QL := PL(B), QR := PR(B) and QB := PB(B).
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vRR
n

Bn

GLn

...

...

G B

vL vR vL vR vRR

Figure 2. The chain graphs Bn and GLn.

Theorem 3. We have for all n ≥ 1

M(GLn, x) = Q−
n (x).

Proof. The vertex set of Bn is that of GLn, plus the extra vertex vRR
n .

Similarly, the edge set of Bn is precisely the edge set of GLn plus the single

edge {vRn , vRR
n } (cf. Figure 2). Since this is the only edge in Bn connected

to vRR
n , for each k ≥ 0 there is a bijection between the k-matchings of

GLn and the k-matchings of Bn which do not match the vertex vRR
n . The

cardinality of the former is the coefficient of xk in M(GLn, x), whereas

that of the latter is the same in Q−
n (x).

Since we are able to compute Q−
n and Q+

n recursively, we have also

solved the problem for edge-linked chains. Also, for the base-case polyno-

mials, we have the following relations between those of B and G:

Lemma 2. We have the relations

QN = PN (G) + PR(G), QL = PL(G) + PB(G),

QR = xPN (G), QB = xPR(G).

Proof. Since {vR, vRR} is the only edge in B attached to vRR, the k-

matchings of B which match neither vL nor vRR are in bijection with the

k-matchings of G not matching vL (with no restriction on the matching
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status of vR). This proves the first equality. For the second, note that

k-matchings of B which match vL but not vRR are in bijection with the

k-matchings of G that match vL (with no restriction on the matching

status of vR). Next, each k-matching of B that matches vRR but not

vL contains the edge {vR, vRR}, therefore these are in bijection with the

(k − 1)-matchings of G which match neither vL nor vR. This justifies the

third equality and the last one is dealt with similarly.

Example 2. Let T be the triangular graph as in Example 1 and let TLn

be the edge-linked chain of length n constructed from T . In [22], it was

claimed that H(GLn) = 4 · 5n−1, but the proof again has gaps. Here we

provide a proof with our method. For this case, we claim that

Q−
n (1) = 4 · 5n−1, Q+

n (1) = 2 · 5n−1

for all n ≥ 1. The result will follow from Theorem 3. The base-case

polynomials are QN (x) = 1+x, QL(x) = 2x, QR(x) = x and QB(x) = x2.

Evaluating the polynomials at x = 1, from (7) we get

Q−
n+1(1) = 4Q−

n (1) + 2Q+
n (1),

Q+
n+1(1) = 2Q−

n (1) +Q+
n (1).

Combining this with Q−
1 (1) = QN (1) +QL(1) = 4 and Q+

1 (1) = QR(1) +

QB(1) = 2, we get the result by induction on n.

Corollary 3. H(GLn) has asymptotic exponential growth as n → ∞.

Proof. This directly follows from Corollary 2 and Theorem 3. Note that

the exponent is related to the dominant eigenvalue of the matrix A corre-

sponding to B, rather than to G.

2.2 Loops from chains

In this subsection we briefly consider the variant where the chain graphs

are closed onto loops by identifying vertices from the first and last copies.

Definition 7. Consider the construction given in Definition 4. We define
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LGn to be the graph obtained from Gn by identifying the vertices vL1 and

vRn .

Clearly, a k-matching of Gn remains a matching for LGn if and only if

the two identified vertices are not both matched in that matching. Con-

versely, any k-matching of LGn is converted into a k-matching of Gn when

we “cut” the graph at the identified vertices, and the resulting matching

does not match the two vertices simultaneously. This correspondence is

clearly a bijection.

Therefore, counting the matchings of LGn amount to counting the

matchings of Gn which do not match vL1 and vRn simultaneously. The

construction above, via the polynomials P+
n and P−

n , has kept track of

the matchings that matches (or not) the vertex vRn . If we also wish to

categorize according to the matching status of vL1 then we must consider

the cases at the start of the construction.

Indeed, if we want to count the matchings where vL1 is not matched,

then we must only allow matchings of G1 in which vL1 are unused. But it

is evident that once started from this base case, generation of the next-

generation matching polynomials follows the same recursive scheme, since

they depend only on the configuration schemes at the identified vertex

pairs. Therefore, equation (8) is still valid, but the base case is different.

Thus, if we want to count the matchings of GL1 where both vL1 and

vRn are matched, the base case is given by

[
PL

PB

]
instead of

[
PN + PL

PR + PB

]
.

Therefore, the partial matching polynomial counting these matchings is

the second entry of [
PN + PL PN

PR + PB PR

]n−1 [
PL

PB

]
.

Excluding these from all the matchings of GLn, we arrive at the cases

which correspond to the matchings of LGn. We can summarize the result

in the following statement.

Theorem 4. Consider the polynomial matrix M =

[
PN + PL PN

PR + PB PR

]
.
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Then, the matching polynomial of LGn is

Pn −
[
0 1

]
Mn−1

[
PL

PB

]
=

[
1 1

]
Mn−1

[
PN + PL

PR + PB

]
−

[
0 1

]
Mn−1

[
PL

PB

]
.

We finally remark that the same reasoning can be applied to loops

obtained from GLn by identifying vL1 and vRR
n (this would amount to

combining n copies of G into a loop by joining them by edges). Using the

notation of the previous subsection, one just applies the theorem above to

the chain Bn (instead of Gn).

3 Conclusion

In this paper, we present a recursive formula for computing the matching

polynomials and the Hosoya indices of regular chain-type graphs. We

present a novel method to compute the precise rate of growth of the Hosoya

index as a function of the chain length, given that the matching numbers of

the basic chain element are known. The proposed methods extend to the

analysis of loop-shaped graphs obtained by closing the regular chains at

the two ends. These results contribute to the mathematical understanding

of chain-type molecular structures, which are common in chemical and

biological systems.
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