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Abstract
The Euler Sombor (EU) index of a graph G is defined as

EU(G \/d2 )+ d%(y) + da(x)da(y),

zyEE(G)

where dg(x) and de(y) denote the degrees of vertex z and y in G,
respectively. Biswaranjan Khanra, Shibsankar Das [Euler Sombor
index of trees, unicyclic and chemical graphs, MATCH Commun.
Math. Comput. Chem. 94 (2025) 525-548], posed an open prob-
lem about determining the extremal values and extremal graphs for
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the Euler Sombor index among all connected graphs with a given
diameter. In this paper, we solve this problem for maximum Euler
Sombor index of unicyclic graphs with given diameter. Additionally,
we propose a set of open problems for future research.

1 Introduction

Let G = (V, E) be a connected graph with vertex set V(G) and edge set
E(GQ). For z € V(G), we use Ng(z) = {y € V(G)|zy € E(G)} to denote
the neighbors of  in G. Then dg(z) = |Ng(z)| is the degree of x. The
maximum degree of G, denoted by A, is maz{dg(x) : x € V(G)}. If
de(z) = 1, then z is called a pendent vertex in G. Let PV(G) the set
of all pendent vertices in G. The distance between two vertices = and vy,
denoted d(x, y), is the minimum number of edges in any path connecting x
and y. The diameter of a graph G, is define as D(G) = max{dg(z,y)|z,y €
V(G)}. A diametral path in G is a shortest path between two vertices u
and v such that d(u,v) = D(G).

For a graph G and a vertex z € V(G) the graph G — x is obtained
from G by deleting a vertex x and all edges incident to it. Similarly, for
an edge xy, we define: G + xy the graph obtained from G by adding an
edge zy ¢ E(G) and G — xy the graph obtained from G by deleting an
edge vy € E(G). A graph G is a tree if and only if m = n — 1 edges.
A graph G is a unicyclic graph if and only if m = n edges. A tree T is
called to be a caterpillar if it becomes a path after deleting all pendant
vertices. As usual, P,, S, and C,,, denote, respectively, the path, the star
and the cycle on n vertices. Other undefined notations and terminology
in the graph theory can be found in [3].

Graph invariants known as topological indices function as vital compo-
nents within chemical fields, pharmaceutical sciences, materials science and
engineering. The field of science and engineering uses topological indices
because they enable researchers to connect them with various properties
of molecules. Nowadays scientists use topological indices to model char-
acteristics of both chemical compounds and biological activities within
chemistry and nanotechnology. Using geometric principles, Gutman [6]

introduced a new method for designing vertex-degree-based topological
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indices. The research led to creating the Sombor index (SO) through geo-
metric methods. This index is one of the most studied topological indices
in recent years (2021-2025). It was defined by

SO(G) = Y /dg(x)+dg(y)

zy€E(G)

where E(G) stands for the edge set of G and dg(z) corresponds to the
degree of vertex . For chemical applications of the SO index, see [9,14];
for a summary of its mathematical aspects, refer to the surveys [5,11].
Gutman, Furtula, and Oz [8] suggested a new geometric method for
constructing vertex-degree-based topological indices which leads to the
definition of the elliptic-Sombor (ESO) index. This index is defined as

ESOG)= Y (da(2) +da(y))y/dg(z) + d(y).
zycE(G)

In [8], the authors investigated chemical applications of the £SO in-
dex and established various inequalities connecting it to other topological
indices. Additionally, they determined extremal graphs for the ESO in-
dex among the classes of the following graphs with given orders: (i) trees
and (ii) connected graphs. Other studies on the ESO index can be found
in [2,4,12,13].

The Euler Sombor index is another topological index constructed fol-
lowing the approach described in [8]. It derives from Euler’s approximation
formula for the perimeter of an ellipse. Given a graph G, its Euler Sombor
index denoted EU(G), and is defined [7,20] as

EUG) = Y \Jdi() +d5(y) + de(a)da(y).
zy€E(G)

Among the topological indices derived from perimeter approximation for-
mulas of an ellipse, Ivan Gutman indicates that the Euler Sombor index
represents the most significant one. For more results on EU index one
can refer [2,7,15-20]. Very recently, Khanra et al. [17] posed the following

open problem:
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Problem 1. Determine the extremal values and extremal graphs with
respect to Fuler Sombor index over the class of all connected graphs with
given diameter.

Concurrently, Ren et al. [15] established sharp upper bounds for the
Fuler Sombor index in trees, considering parameters such as matching
number, pendent vertices, and diameter. In a similar direction, Kizilirmak
[19] derived the minimum Euler Sombor index for unicyclic graphs with
a fixed diameter, which provides partial progress on the open problem in
the context of trees and unicyclic graphs.

Motivated by these studies, as well as by the related works of Alfu-
raidan [1] and Liu [10], in this article, we determine the maximum Euler

Sombor index among all unicyclic graphs with a given diameter.

2 Preliminaries

We start with the following lemmas, which are used frequently in the proofs

of main theorems.

Lemma 1. Let g(z,y) = /22 +y2+ay — /(v — )2+ 32+ (z — 1)y,
where x > 1 and y > 0, then the function f(x,y) is strictly increasing with

x and strictly decreasing with y.

Proof. Note that (2z+y)?[4((z—1)*+y?+(z—1)y)] — (2(z—1)+y)*[4(=* +
y? +zy)] = 12y°(2z +y — 1) > 0 for z > 1 and y > 0, which means
20+ 9)2v/(@ — 12+ 52 + (2 = Dyl - 2o — 1) +y)2v/aZ + 42 + a9] > 0
for x > 1 and y > 0, then we have

99 _ 2z +y B 20@—-1)+y

9z 2/t twy 2/ 12+ 2+ (z -1y

2z +y)2y/(x =12+ % + (x — Dy] — (2(z — 1) + 9)[2¢/2% + 3% + a] -
[2¢/22 +y? + 2y][2¢/(z — 1) + y* + (z — 1)y]

dg _ 2y + =z 2y+x—1
Oy 22 +y2+ay 2/ (e —1)2+y2+(z—1)y

<0

for x > 1 and y > 0 the lemma holds. |
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Lemma 2. [17] Let G € U, (n > 3). Then EU(G) > 2nv/3 = EU(C,,),
with equality if and only if G = C,.

Lemma 3. [16] Among all unicyclic graphs of order n > 4, the graph S},

has the maximum EU indezx, equal to

(n=3)vn?2—n+14+2vn?+3+V12.

3 The maximum Euler-Sombor index of
unicyclic graphs with given diameter

Let U, p be the set of unicyclic graphs with n vertices and diameter D.
For 4 < D < n — 2, we construct a new unicyclic graph U, p € U, p, as

shown in Figure 1.

EU(U,p)=n—-D—-1)y/(n—=D+1)24+1+(n—D+1)
+2¢/(n—=D+1)2+4+2(n—D+1)+ Ry,

where Ry = 2V19++13if D = 4; Ry = 2(D —5)v/3+3vV19+/T7if D > 5.

Figure 1. Graph U, p for4 < D <n -2

In this article, we assume that C' = y1y2 ... yjv(¢)| is the unique cycle and
P = z129...2pxp41 is the diametral path of the unicyclic graph under

consideration. Let PV (G) represent the set of pendent vertices of G.
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We denote by U;"5" the graph in U, p with maximum Euler Sombor
index. According to Lemma 2, U must contain at least one pendent
vertex. We know that n > D + 2, we begin by examining the case where

n=D+2.

Theorem 3.1. Let G € U, p with diameter D = 2 and n > 4, then
EUG)<(n=3)y/(n—12+1+n-1)+2/(n—1)2+224+2(n—1)+
2V/3.

Proof. Given a graph G € U, p for D = 2, there are three structures as
follows. If G = C; or G = Cs, then EU(Cy) = 8v/3 and EU(Cs) = 10/3,
respectively. For the remaining case, if G be a unicyclic graph obtained
from C3 by attaching n — 3 pendant edges to one of its vertices, then
EUG)=(n-3)y/(n—12+1+n—-1)+2/(n—1)2+22+2(n—1)+
2v/3. Above all, the result holds. [ |

Theorem 3.2. Let G € U,,p with diameter D = 3 and n > 5, then
EUG) < (n—4)y/(n—22+1+Mn—-2)++/(n—2)2+32+3(n—2)+
Vi —2)2 1224 2(n — 2) + /13 + V19.

Proof. By Lemma 3, we know the graph S} has the maximum EU index
in the class of all unicyclic graphs. When nq,ne > 1 and n3 > 0, we obtain
D(S}) =3 and n =mny + ng + ng + 3 > 5. Thus, the result is true. |

Theorem 3.3. Let G € Upia,p with D > 4, then EU(G) < EU(Up+2,p),
with equality if and only if G = Upio p.

Proof. Let G" € UBY5 . Since n = D + 2, there exists one vertex, de-
noted by z, that does not lie on the diametral path P = z122 ... 2pzp41.
Consequently, the unique cycle C must be either C = z;x;412zx;, where
1<i<DorC=uxxi1x;10zx; where 1 <i< D —1.

Claim 1. The vertices z; and xpy;1 are not contained in V(C).

Assume to the contrary that either 21 or xp11 belongs to V(C). With-
out loss of generality, assume 21 € V(C). Then the cycle C must be either
C = x1w9221 or C' = w12913271. Define a new graph G” with vertex set
V(G") = V(G') and edge set E(G") = E(P) U {zxq, zx3}. This construc-

tion ensures G’ € Up42 p and
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EUG)—EBU(G") =222 +22 +4—/1+32+3—/32+3249
—4v3-V13-3V3<0.

This contradicts the maximality of G’. Therefore, z; ¢ V(C). By
similarly argument, we also conclude that xp 1 ¢ V(C).

Claim 2. |E(C)| =4.

Suppose |E(C)| > 5. This leads to a contradiction with the selection
of the path P = 122 ... 2pxpy1. Thus |[E(C)| =3 or |[E(C)| = 4.

Case 1. |E(C)| = 3.

If |[E(C)| = 3, then C = z;x;4122z;. According to Claim 1, we know
that 2 <4< D —1. Since D > 4, x;,_1 ¢ PV(G’) or z,12 ¢ PV(G'), say
2;—1 ¢ PV(G’). Thus i < D — 2 and dg/(x;—2) = ¢ which is 1 or 2. Let
G'=G —{ziz} +{x;—12}, then G” € Up42,p, we have

EU(G")—EU(G") = @3 + 22 +2q1—/q} + 3% + 3q1 +V32 + 3% + 90—
V22 1+ 3246 <0.

Case 2. |E(C)| =4.

If |[E(C)| = 4, then C = z;z;12;4222;. According to Claim 1 and
Claim 2, we know that 2 <i < D —2. If i # 2 and i # D — 2, we have

EU(G") — EU(Up+2.p)
V2R 46-V124+3243+V1+22 42— /22 42214
= V19 - V13 4+ V7 -2V3 <.

Thusi:20ri:D—2, i.e., GlgUD+27D. .
Next, we consider n > D + 3.

Lemma 4. Let G' € Uy with3 <D <n—3 and PP =gi29-- Jxpy
be a diametral path. If x € PV(G') and zxo € E(G') or xzp € E(G'),
then |[V(C)NV(P)| > 1.

Proof. Suppose, for contradiction that [V (C)NV(P)| < 1.
Case 1. |[V(C)NV(P)| =0.
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Since |[V(C)NV(P)| = 0, there exists a path, say z;wiws ... w; (where
I > 1) joining cycle C' and path P in G’. Then 3 < i < d — 1, and
xi—1 ¢ PV(G'), ziy1 ¢ PV(G') (otherwise the diameter of G’ would be
greater than D).

Ifl > 2, let G’ =G — {wywa} + {zjwa}; if L =1, let G” be the graph
obtained from G’ by deleting edge x;w1, identifying x; and w;, then adding
anew pendant edge to vertex x;. Then, G” € U, 4. Let dg/ (z;-1) = q1 > 2
and dg'(zi41) = g2 > 2. Note that deg (z;) = dgr(w;) = 3.

Subcase 1.1. [ = 1.

UG - EU(G") = \/q + 3%+ 3¢, — \/q1+52+5q1+\/q2+32+3Q2

—\/@E+52+5gs+ V32 +32+ 94232+ 2246

—2v/22 +524+10—/1+52+5<0.

Subcase 1.2. [ = 2.

EU(G") - EU(G") = \/q +32+ 3¢ — \/q1+42+4q1+\/q2+32+3q2

— B+ 42+ 4g +2V/22 432 46— /32 + 42+ 12

—V124+42+4<0.

Subcase 1.3. [ > 3.

UG - EU(G") = \/q + 32+ 3q1 — \/q1+42+4q1+\/q2+32+3q2

— B g+ V2 B 6+ 1/22 422 4

VA2 1+4—V/22+424+8<0.

Case 2. |[V(C)NV(P)| =1.

Let V(C)NV(P) = xi(y1). Let C = y1y2y3- - yjv(cyy1 be the unique
cycle.

Subcase 2.1 |[V(C)| = 3.

As D > 2, then dg/(z;—1) > 2 or dgr(2;41) > 2. We may assume, without
loss of generality, that dg/ (z;+1) = g2 > 2. We know that dg/ (x;) = ¢1 > 4,
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der(Tit2) = g3 > 1.
Let G" = G' — {y2y3} + {y2xi41}, then G” € U,, 4. Using Lemma 1
and dg(z;) = ¢1 > 4, we obtain

EU(G') — EU(G")

V22 44— o+ 12+ 24 2(g + 1)+ /2 + 22+ 2,

*\/Q%+12+Q1+\/Q%+Q%+Q1Q2*\/Q%+(Q2+1)2+Q1((J2+1)

+\/(J%HJ?Jrqws*\/(qQ+1)2+q§+q:s(qz+1)
<2\f7\/19+\/q%+22+2q1—\/qf+1+q1
<2v3-V19+2V7-V21 <0.

Subcase 2.2. |V(C)| > 4.

Then 3 < ¢ < D —1. Let dg/(zi—1) = q1 > 2 and dg/(zi+1) = g2 > 2.
Let C = y1y2 ...y v(c) be the unique cycle, (y1 = x;). Let G = G' —
{y2ys} + {zsy3}, then G” € Uy, p.

EU(G') — EU(G")

= <\/qf+42+4q1—\/qf+52+5ql) +( a3 +4% + 4go
—\/q%+52+5q2)+2\/22+42+8—2\/22+52+10

+v22+2244—\/1+52+5<0.

All cases above contradict G’ € U;'f", we conclude that [V/(C)NV(P)| > 1
must hold. ]

Lemma 5. Let G' € U,ff}“)" with 3 < D <n —3. Then there exist a vertex
xo € VP(G"), such that G' — xp € Up—1.,4-

Proof. Suppose, to the contrary, that for every pendant vertex x € V(G’),
we have G' — 2z € Up,—1 p—1.

Let P = z1x2...zpxpy1 be a diameter path of G'. By Lemma 2, G’
has atleast one pendant vertex, so we can assume that z; is a pendant

vertex. Since G’ —x € U,,—1 p—1 hold for every pendant vertex x € V(G'),
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we have G’ contains two pendant vertices x; and xp+1. By Lemma 4, we
have [V(C)NV(P)| > 1. Let C = z;wi41 -+ TigkWiYi—1 - - Y3Y2y1, where
n=z;and2<i<i+k<D+1(sok>1). Clearly, k <[ (otherwise
if k > [, then the distance between z; and zp4q is less than D in G').
Since n > D + 3, then | > 2. Note that dg:(x;—1) = q1 > 1, dg/(z;) = 3,
de(y2) = der (y3) = 2. We examine two cases: [ >k and | = k.

Case 1. [ > k.

Let G" = G' — {y2ys} + {ziy3}. Then G” € U, p. We have dg'(zi+1) =
der (Tig1) = q2 > 2, dgr(x;) =4, dgr (y2) = 1 and dgv (y3) = 2. Then

EU(G") - EU(G") = \/q% +3243q — \/q% +42+4q1 + \/q§ +32 4+ 3q2

B A2 A+ 22+ 22 44+ /22 43246

— V2442481442 +4
< 2V3+ V19— V28 — V21 < 0.

Case 2. [ =k.

Let G" = G' —{z;y2} —{y2ys} +{Zit1y2} +{zit1y3}. Then G” € Uy, p, we
have dg (x;) = 2, der (Tit1) = 2,dgr (Tiv1) =4, dgr (Tip2) = dar(xi42) =
2, dgv(y2) =1 and dg (y3) = 2. We obtain

EU(G') ~ EU(G") = \/a? + 3% +3q1 —\/q? + 22 + 201 +2V/22 + 22 1 4
1 oV/2 132+ 6-3V2+42+8—/1+42+4.

Subcase 2.1. ¢; = 1.

EU(G') — EU(G") = V13 — VT +4V3 +2V19 — 6V7 — V21 < 0.

Subcase 2.2. ¢; > 2.

EU(G")—EU(G") < /22 +32 46— /22 + 22 + 4+ 2/22 + 22 +4
+2/22 43246322 +42+8—/1+42+4
= 3v19 4+ 2v3 — 67— V21 < 0.
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This contradicts the assumption that G’ € U'p", thus the result holds. W

Lemma 6. Let G’ € Z/Iﬁ%" with 4 < D < n—3. Then there exist a pendant
vertex xg € V(G') such that G' — xg € Up—1,p and the neighbor of zg is

adjacent to at least two non-pendant vertices.

Proof. Let G’ € mp - By Lemma 5, there exists a pendant vertex z €
V(G') such that G’ —z € 4,1 p. Let

"= {I € V(G/)|dG1(CC) = I,G/ —Tc LLn—l,D}-

We have $* # (). Define Ig/(y) = {z € Ng/(y)|dg/(z) > 2}, for all y €
Useu Nor(x). Note that, [Ig(y)| > 1. We prove that there exists a vertex
Yy € Ugey Nor(x), such that |Ig/(y)| > 2. Suppose, for contradiction,
that [Ig(y)| =1 for all y € J, ¢y~ Nor(2). Let C = y1y2...yjv () be the
unique cycle in G’ and P = z1xs ... zpxpy1 be a diametral path in G'.

Claim 1. U* C Ng/(22) U Ng (2p).

On the contrary, we suppose that there exist a vertex y € J, ¢y~ Nav ()
such that y ¢ {x2,xp}, Note that y ¢ {z1,zp4+1}. Since |l (y)| = 1, we
have y ¢ V(P)UV(C). Let G” be the graph obtained from G’ by deleting
the unique non-pendant edge (say yz) incident with y, identifying y and
z, and attaching a new pendant edge incident with y, then G” € U, p.
Let da/(y) = q1 > 2, dg/(2) = g2 > 2. Then dg»(y) = ¢1 + g2 — 1. Since
[Icr (y)| = 1, any vertex z* € Ng/(y)\{z} has degree 1, we get

Ve ) + dar (@ )2 + dor (9)der (%) — /o ()2 + dor (@2 + dor (y)der (@)

=@ +1+a -V +e—12+1+(q+g—1)<0.

For any vertex z* € Ngv(2)\{y}, we have

\/dgl Z 2 4 dG/ (Z*)2 =+ dgl(z dg// \/dg// 2 4 dG”( )2 + dgu (Z)dGn(z*)
= \/q2 +dgr (2)% + gadar (2*)

=g+ —1)2+de (z%)* + (@1 + q2 — Dder (2*) < 0.

Using Equations above, we have

EU(G") — EU(G")
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— (2= ) (/8 + @ (o) + (=)

@ e D)+ @ D))
ta-0(Va e -V te- 0 @ e D)
+ (\/qg-i-q%-i-qlch V(g +e-1)2+1+(q +Q2—1)) <0.

Thus, Claim 1 holds.
As 4* # 0 and by Claim 1, 44* C Ng/(z2)J Ng/(zp), we assume
that there exists a vertex z € U* and ¢ € Ng/(x2), then |Ig/ (z2)| = 1.

Thus, z; and x2 is not in C (otherwise |[Ig/(z2)| > 2), and by Claim 1,
we have dg/(z2) = ¢ > 3 (otherwise G’ — 1 € 4,1 p_1). By Lemma 4,
[V(C)NV(P)| > 1. Let C = &1 - - TighiYi—1 - - - Y3y2y1 Where y; = x5,
3<i<i+k<D+1(sok>1),1>2and the vertices yoysys - yi—1u
are not in P. Clearly, k <1 (otherwise if k > [, then the distance between
21 and xpyq is less than D in G').

Claim 2. |V(C)\V(P)| =1

On the contrary, we suppose that |V (C)\V(P)| > 2, then [ > 3. we
have dg/(z;—1) = q1 > 2. Note that dg/(z;) = 3 and dg/(y2) = de (y3) =
2. We examine two cases: [ > k and [ = k.

Case 1. [ > k.

Let G = G’ —{y2ys} +{x;y3}. Then G’ € U, p. We have dg'(z;11) =
der (Tig1) = q2 > 2, dg(x;) = 4 and dgr (y2) = 1 and dgr(y3) = 2. We
obtain

EU(G" — EU(G")

= (\/q%+32 +3q1 — \/q% +42+4q1) + (\/q§+32 +3¢2 — \/q§+42 +4q2>

V2R 464+ V22 422 +4-/22 44248 1/1+42+4<0.

Case 2. | = k.
Let G" = G’ — {z;y2} — {y2ys} + {xiv1y2} + {zit1y3}. Then G’ €
un,D- We have dG// (.’El) = 2, dG/ (l‘iJrl) = 2, dG// (.’L'7;+1) = 4, dG/(l‘i+2) =
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dei(xiq2) = q3 > 2, dg(y2) = 1 and dg (y2) = 2. Then

EU(G') — EU(G")

= (\/qg +22 4 2¢3 — \/qg +42+4q3) + <\/qf+32 +3q1 — \/q% + 22 +2q1>

V22 432+ 64+/22 122 +4-2/22 442 18— /1 +42+4
<V22 43246V 4244 +2V2R2 4R 46+ V2242244
— 222 442 4+ 8 — /1 +42 44 =3V19 — 4V7 — V21 < 0.

Thus, Claim 2 holds.

Claim 3. dg/(zp41) = 1.

On the contrary, we suppose dg/(xp+1) = 2. Then xp is not adjacent
to a pendant vertex, otherwise |I(zp)| > 2. As d > 4, then dg/(zp—2) =
q1 > 2. Since |V(C)\V(P)| =1 (by Claim 2), then |V(C)| =3 or 4.

Case 1. |V(C)| = 3.

So C =zprpyi1zep. Let G = G — {zxpy1z} + {&p-12}, then G €
Un D-

EU(G') — EU(G")

:\/q%+22+2q1—\/q%+32+3q1+2\/22+32+6+\/22+22+4
~ V124324322433 +6-+/32+32+9
<V19+2vV3-V13-3V3 <.

Case 2. |V(C)| =4.
So C =xp_12prpy122p—1. Let G’ = G' —{xps1z} + {xpz}, then
G"elU
n,D-

EU(G')—EU(G") =222+ 22 +4— /12432 +3 /32 +32 49
=4v/3-V13-3V3 <.

Thus, Claim 3 holds.

Claim 4. |V (C)| = 4.

On the contrary, we suppose that |V(C)| = 3, the unique cycle C =
ixir122,(3 < i < D —1). Since U* = {z € V(G')|de/(z) = 1,G' —z €
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Up-1.p} # 0, then dgr(z2) = ¢ > 3.
Case 1. i = 3.
Let G" = G' — {232} + {x22}, then G"” € U,, p.

EU(G') — EU(G")
~ -1 (VPP ra- Vg + )P+ 1P g+ 1))
+VE+3+3¢-2/(g+1)2+22+2(+ )+ VB +32+9

< 0.

Case 2. i > 4.
Let G" = G' —{wiz} — {xiy12} + {x22} + {zaz}. We have dg/ (z;42) =
q1 > 1. Then

EU(G') — EU(G")

(- 1) (VPP Ha— Vg + P (g + ) + V@ + 2 + 2
+\/M+\/M—2\/(q+1)2+22+2(q+1)
B2 2 VR R 6 VR 214

<2(V32H12+3 - VA2 +12+4) + /@2 + 22+ 2
— /@ 12+ 22+ 2+ D)+ (V124324312422 12)+3V3

+v19-2V3
< 3vV13—2v21 +2vV19 — 5V7+ V3 < 0.

Thus, Claim 4 holds, then the unique cycle C' = z;z;412422x; (3 <
i <D —2),da(vay1) =1, der(z2) = ¢ > 3 and dgr (zi43) = 2 > 1.
Case 1. i = 3.
EU(G")— EU(U,,p)

(ql)(\/q2+1+q\/(Q+1)2+1+(q+1)>+\/q2+32+3q

+\/q§+32+3q2—\/q§+22+2q2—2\/(Q+1)2+22+2(q+1)

+V224+32+6
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<2(V13 - v21) +3V3+ V13 - V7 -2V28 + V19 < 0.
Case 2. 4<i<D-—2.
EU(G") — EU(U,,p)

(ql)(\/q2+12+q\/(q+1)2+1+(q+1)>

— 2/ g+ 12+ 22+ 20+ D)+ V2 + 22 +2¢+ 222+ 32 +6

VLR A3+ 3 30—\ + 22 4 20
< V19— 2v28 +2v/19 — 2v3 + V13 — V7 < 0.

This is a contradiction with the assumption G’ € Uy’ Thus, there
must exists a pendant vertex z¢ € V(G') such that G’ — x¢ € U,—1,p and
|[Icr(Ngs(x0))| > 2. This completes the proof. |

Theorem 3.4. Let G € U, p with 4 < D < n—2. Then EU(G) <
EU(U,.p), with equality if and only if G = U, p.

Proof. We prove the theorem by induction on n. If n = D + 2, conclusion
hold (Theorem 3.3). Suppose the conclusion holds for n — 1. Let G’ €
Uy, 4 < D <n—3. By Lemma 6, there exist a pendant vertex z € V(G”)
such that G' — xz € U,,_1 p and y = Ng/(z) attached to at least two non-
pendent vertices, say z1,22. Let Ng/(y) = {z,y1,¥2,...,41-1}- Then
[Ne/(y)| =1,and 3 <1 <n—D+1. Denote dg/(y;) =1; for 1 <i <1—1.
Let G = G' — z, then G” € Up,_1 p.

-1
EUG)=BUG") + VI +12+1+) <\/12 + 12415 - \/(l 1242+ (- 1)&-)
i=1

SBEUWUp 1p)+ V2 +12 414212 +22+20—/(I—1)2+22+2(— 1))
F(1=3)VP+124+1—/(I—-1)2+12+(1—1))

=m-D-2y/(n—D)2414+(n—-D)+2y/(n—D)2+4+2(n—D)+ Ry

+2vi2 422120+ (1—2Vi2+ 12412/ —1)2+224+2(—1)
— (=3I —-1)24+12+(1-1)

<(m=D-=2)y/(n—D)2+1+(n—-D)+2y/(n—D)2+4+2(n—D)+ Ry
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+vV@n—-D+1)2+1+(n—D+1)

+2(\/(n—D+1)2+22+2(n—D+1)—\/(n—D)2+22+2(n—D))

+(n—D—2)(\/(n—D+1)2+1+(n—D+1)—\/(n—D)2+1+(n—D))

=n-D-1)y/(n-D+1)2+1+(n—D+1)

+2¢/(n=D+1)2+4+2(n—D+1)+ Ry = EU(U, p)

with equalities if and only if G” =2 U,,_1 p, l =n — D + 1, exactly two
vertices in N/ (y) have degree 2 and the remaining [ — 2 vertices in N¢ (y)
have degree 1, which implies that G’ =2 U, p. ]

4 Conclusion

In this paper, we determined the maximum Euler-Sombor index of
unicyclic graphs with a given diameter. This work raises several open
problems, which are outlined below:

Open problem 1. Determine the first, second, third, and fourth mini-
mum values of the Euler Sombor index among trees with a given diameter,
as well as the second, third, and fourth maximum values.

Open problem 2. Determine the second, third, and fourth maximum as
well as the second, third, and fourth minimum values of the Euler Sombor

index among unicyclic graphs of a given diameter.
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