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Abstract

The Euler Sombor (EU) index of a graph G is defined as

EU(G) =
∑

xy∈E(G)

√
d2G(x) + d2G(y) + dG(x)dG(y),

where dG(x) and dG(y) denote the degrees of vertex x and y in G,
respectively. Biswaranjan Khanra, Shibsankar Das [Euler Sombor
index of trees, unicyclic and chemical graphs, MATCH Commun.
Math. Comput. Chem. 94 (2025) 525-548], posed an open prob-
lem about determining the extremal values and extremal graphs for
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the Euler Sombor index among all connected graphs with a given
diameter. In this paper, we solve this problem for maximum Euler
Sombor index of unicyclic graphs with given diameter. Additionally,
we propose a set of open problems for future research.

1 Introduction

Let G = (V,E) be a connected graph with vertex set V (G) and edge set

E(G). For x ∈ V (G), we use NG(x) = {y ∈ V (G)|xy ∈ E(G)} to denote

the neighbors of x in G. Then dG(x) = |NG(x)| is the degree of x. The

maximum degree of G, denoted by ∆, is max{dG(x) : x ∈ V (G)}. If

dG(x) = 1, then x is called a pendent vertex in G. Let PV (G) the set

of all pendent vertices in G. The distance between two vertices x and y,

denoted d(x, y), is the minimum number of edges in any path connecting x

and y. The diameter of a graphG, is define asD(G) = max{dG(x, y)|x, y ∈
V (G)}. A diametral path in G is a shortest path between two vertices u

and v such that d(u, v) = D(G).

For a graph G and a vertex x ∈ V (G) the graph G − x is obtained

from G by deleting a vertex x and all edges incident to it. Similarly, for

an edge xy, we define: G + xy the graph obtained from G by adding an

edge xy /∈ E(G) and G − xy the graph obtained from G by deleting an

edge xy ∈ E(G). A graph G is a tree if and only if m = n − 1 edges.

A graph G is a unicyclic graph if and only if m = n edges. A tree T is

called to be a caterpillar if it becomes a path after deleting all pendant

vertices. As usual, Pn, Sn and Cn, denote, respectively, the path, the star

and the cycle on n vertices. Other undefined notations and terminology

in the graph theory can be found in [3].

Graph invariants known as topological indices function as vital compo-

nents within chemical fields, pharmaceutical sciences, materials science and

engineering. The field of science and engineering uses topological indices

because they enable researchers to connect them with various properties

of molecules. Nowadays scientists use topological indices to model char-

acteristics of both chemical compounds and biological activities within

chemistry and nanotechnology. Using geometric principles, Gutman [6]

introduced a new method for designing vertex-degree-based topological
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indices. The research led to creating the Sombor index (SO) through geo-

metric methods. This index is one of the most studied topological indices

in recent years (2021-2025). It was defined by

SO(G) =
∑

xy∈E(G)

√
d2G(x) + d2G(y)

where E(G) stands for the edge set of G and dG(x) corresponds to the

degree of vertex x. For chemical applications of the SO index, see [9, 14];

for a summary of its mathematical aspects, refer to the surveys [5, 11].

Gutman, Furtula, and Oz [8] suggested a new geometric method for

constructing vertex-degree-based topological indices which leads to the

definition of the elliptic-Sombor (ESO) index. This index is defined as

ESO(G) =
∑

xy∈E(G)

(dG(x) + dG(y))
√
d2G(x) + d2G(y).

In [8], the authors investigated chemical applications of the ESO in-

dex and established various inequalities connecting it to other topological

indices. Additionally, they determined extremal graphs for the ESO in-

dex among the classes of the following graphs with given orders: (i) trees

and (ii) connected graphs. Other studies on the ESO index can be found

in [2, 4, 12,13].

The Euler Sombor index is another topological index constructed fol-

lowing the approach described in [8]. It derives from Euler’s approximation

formula for the perimeter of an ellipse. Given a graph G, its Euler Sombor

index denoted EU(G), and is defined [7, 20] as

EU(G) =
∑

xy∈E(G)

√
d2G(x) + d2G(y) + dG(x)dG(y).

Among the topological indices derived from perimeter approximation for-

mulas of an ellipse, Ivan Gutman indicates that the Euler Sombor index

represents the most significant one. For more results on EU index one

can refer [2,7,15–20]. Very recently, Khanra et al. [17] posed the following

open problem:
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Problem 1. Determine the extremal values and extremal graphs with

respect to Euler Sombor index over the class of all connected graphs with

given diameter.

Concurrently, Ren et al. [15] established sharp upper bounds for the

Euler Sombor index in trees, considering parameters such as matching

number, pendent vertices, and diameter. In a similar direction, Kizilirmak

[19] derived the minimum Euler Sombor index for unicyclic graphs with

a fixed diameter, which provides partial progress on the open problem in

the context of trees and unicyclic graphs.

Motivated by these studies, as well as by the related works of Alfu-

raidan [1] and Liu [10], in this article, we determine the maximum Euler

Sombor index among all unicyclic graphs with a given diameter.

2 Preliminaries

We start with the following lemmas, which are used frequently in the proofs

of main theorems.

Lemma 1. Let g(x, y) =
√
x2 + y2 + xy −

√
(x− 1)2 + y2 + (x− 1)y,

where x > 1 and y > 0, then the function f(x, y) is strictly increasing with

x and strictly decreasing with y.

Proof. Note that (2x+y)2[4((x−1)2+y2+(x−1)y)]−(2(x−1)+y)2[4(x2+

y2 + xy)] = 12y2(2x + y − 1) > 0 for x > 1 and y > 0, which means

(2x+y)[2
√
(x− 1)2 + y2 + (x− 1)y]− (2(x−1)+y)[2

√
x2 + y2 + xy] > 0

for x > 1 and y > 0, then we have

∂g

∂x
=

2x+ y

2
√

x2 + y2 + xy
− 2(x− 1) + y

2
√

(x− 1)2 + y2 + (x− 1)y

=
(2x+ y)[2

√
(x− 1)2 + y2 + (x− 1)y]− (2(x− 1) + y)[2

√
x2 + y2 + xy]

[2
√

x2 + y2 + xy][2
√

(x− 1)2 + y2 + (x− 1)y]
> 0

∂g

∂y
=

2y + x

2
√
x2 + y2 + xy

− 2y + x− 1

2
√
(x− 1)2 + y2 + (x− 1)y

< 0

for x > 1 and y > 0 the lemma holds.
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Lemma 2. [17] Let G ∈ Un (n ≥ 3). Then EU(G) ≥ 2n
√
3 = EU(Cn),

with equality if and only if G ∼= Cn.

Lemma 3. [16] Among all unicyclic graphs of order n ≥ 4, the graph S∗
n

has the maximum EU index, equal to

(n− 3)
√

n2 − n+ 1 + 2
√

n2 + 3 +
√
12.

3 The maximum Euler-Sombor index of

unicyclic graphs with given diameter

Let Un,D be the set of unicyclic graphs with n vertices and diameter D.

For 4 ≤ D ≤ n − 2, we construct a new unicyclic graph Un,D ∈ Un,D, as

shown in Figure 1.

EU(Un,D) = (n−D − 1)
√
(n−D + 1)2 + 1 + (n−D + 1)

+ 2
√
(n−D + 1)2 + 4 + 2(n−D + 1) +R1,

where R1 = 2
√
19+

√
13 if D = 4; R1 = 2(D−5)

√
3+3

√
19+

√
7 if D ≥ 5.

z

x1 x2

x3

x4 x5 xD+1xDxD−1x6

n−D − 2

Figure 1. Graph Un,D for 4 ≤ D ≤ n− 2

In this article, we assume that C = y1y2 . . . y|V (C)| is the unique cycle and

P = x1x2 . . . xDxD+1 is the diametral path of the unicyclic graph under

consideration. Let PV (G) represent the set of pendent vertices of G.
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We denote by Umax
n,D the graph in Un,D with maximum Euler Sombor

index. According to Lemma 2, Umax
n,D must contain at least one pendent

vertex. We know that n ≥ D + 2, we begin by examining the case where

n = D + 2.

Theorem 3.1. Let G ∈ Un,D with diameter D = 2 and n ≥ 4, then

EU(G) ≤ (n− 3)
√

(n− 1)2 + 1 + (n− 1)+2
√
(n− 1)2 + 22 + 2(n− 1)+

2
√
3.

Proof. Given a graph G ∈ Un,D for D = 2, there are three structures as

follows. If G = C4 or G = C5, then EU(C4) = 8
√
3 and EU(C5) = 10

√
3,

respectively. For the remaining case, if G be a unicyclic graph obtained

from C3 by attaching n − 3 pendant edges to one of its vertices, then

EU(G) = (n− 3)
√

(n− 1)2 + 1 + (n− 1)+2
√
(n− 1)2 + 22 + 2(n− 1)+

2
√
3. Above all, the result holds.

Theorem 3.2. Let G ∈ Un,D with diameter D = 3 and n ≥ 5, then

EU(G) ≤ (n − 4)
√
(n− 2)2 + 1 + (n− 2) +

√
(n− 2)2 + 32 + 3(n− 2) +√

(n− 2)2 + 22 + 2(n− 2) +
√
13 +

√
19.

Proof. By Lemma 3, we know the graph S∗
n has the maximum EU index

in the class of all unicyclic graphs. When n1, n2 ≥ 1 and n3 ≥ 0, we obtain

D(S∗
n) = 3 and n = n1 + n2 + n3 + 3 ≥ 5. Thus, the result is true.

Theorem 3.3. Let G ∈ UD+2,D with D ≥ 4, then EU(G) ≤ EU(UD+2,D),

with equality if and only if G ∼= UD+2,D.

Proof. Let G′ ∈ Umax
D+2,D. Since n = D + 2, there exists one vertex, de-

noted by z, that does not lie on the diametral path P = x1x2 . . . xDxD+1.

Consequently, the unique cycle C must be either C = xixi+1zxi, where

1 ≤ i ≤ D or C = xixi+1xi+2zxi where 1 ≤ i ≤ D − 1.

Claim 1. The vertices x1 and xD+1 are not contained in V (C).

Assume to the contrary that either x1 or xD+1 belongs to V (C). With-

out loss of generality, assume x1 ∈ V (C). Then the cycle C must be either

C = x1x2zx1 or C = x1x2x3zx1. Define a new graph G′′ with vertex set

V (G′′) = V (G′) and edge set E(G′′) = E(P ) ∪ {zx2, zx3}. This construc-
tion ensures G′′ ∈ UD+2,D and
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EU(G′)− EU(G′′) = 2
√

22 + 22 + 4−
√
1 + 32 + 3−

√
32 + 32 + 9

= 4
√
3−

√
13− 3

√
3 < 0.

This contradicts the maximality of G′. Therefore, x1 /∈ V (C). By

similarly argument, we also conclude that xD+1 /∈ V (C).

Claim 2. |E(C)| = 4.

Suppose |E(C)| ≥ 5. This leads to a contradiction with the selection

of the path P = x1x2 . . . xDxD+1. Thus |E(C)| = 3 or |E(C)| = 4.

Case 1. |E(C)| = 3.

If |E(C)| = 3, then C = xixi+1zxi. According to Claim 1, we know

that 2 ≤ i ≤ D − 1. Since D ≥ 4, xi−1 /∈ PV (G′) or xi+2 /∈ PV (G′), say

xi−1 /∈ PV (G′). Thus i ≤ D − 2 and dG′(xi−2) = q1 which is 1 or 2. Let

G′′ = G′ − {xiz}+ {xi−1z}, then G′′ ∈ UD+2,D, we have

EU(G′)−EU(G′′) =
√
q21 + 22 + 2q1−

√
q21 + 32 + 3q1+

√
32 + 32 + 9−√

22 + 32 + 6 < 0.

Case 2. |E(C)| = 4.

If |E(C)| = 4, then C = xixi+1xi+2zxi. According to Claim 1 and

Claim 2, we know that 2 ≤ i ≤ D − 2. If i ̸= 2 and i ̸= D − 2, we have

EU(G′)− EU(UD+2,D)

=
√
22 + 32 + 6−

√
12 + 32 + 3 +

√
1 + 22 + 2−

√
22 + 22 + 4

=
√
19−

√
13 +

√
7− 2

√
3 < 0.

Thus i = 2 or i = D − 2, i.e., G′ ∼= UD+2,D.

Next, we consider n ≥ D + 3.

Lemma 4. Let G′ ∈ Umax
n,D with 3 ≤ D ≤ n− 3 and PD = x1x2 · · · , xD+1

be a diametral path. If x ∈ PV (G′) and xx2 ∈ E(G′) or xxD ∈ E(G′),

then |V (C) ∩ V (P )| > 1.

Proof. Suppose, for contradiction that |V (C) ∩ V (P )| ≤ 1.

Case 1. |V (C) ∩ V (P )| = 0.
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Since |V (C)∩V (P )| = 0, there exists a path, say xiw1w2 . . . wl (where

l ≥ 1) joining cycle C and path P in G′. Then 3 ≤ i ≤ d − 1, and

xi−1 /∈ PV (G′), xi+1 /∈ PV (G′) (otherwise the diameter of G′ would be

greater than D).

If l ≥ 2, let G′′ = G′ − {w1w2}+ {xiw2}; if l = 1, let G′′ be the graph

obtained from G′ by deleting edge xiw1, identifying xi and w1, then adding

a new pendant edge to vertex xi. Then, G
′′ ∈ Un,d. Let dG′(xi−1) = q1 ≥ 2

and dG′(xi+1) = q2 ≥ 2. Note that dG′(xi) = dG′(wl) = 3.

Subcase 1.1. l = 1.

EU(G′)− EU(G′′) =
√

q21 + 32 + 3q1 −
√
q21 + 52 + 5q1 +

√
q22 + 32 + 3q2

−
√

q22 + 52 + 5q2 +
√

32 + 32 + 9 + 2
√
32 + 22 + 6

− 2
√
22 + 52 + 10−

√
1 + 52 + 5 < 0.

Subcase 1.2. l = 2.

EU(G′)− EU(G′′) =
√

q21 + 32 + 3q1 −
√
q21 + 42 + 4q1 +

√
q22 + 32 + 3q2

−
√

q22 + 42 + 4q2 + 2
√
22 + 32 + 6−

√
32 + 42 + 12

−
√
12 + 42 + 4 < 0.

Subcase 1.3. l ≥ 3.

EU(G′)− EU(G′′) =
√
q21 + 32 + 3q1 −

√
q21 + 42 + 4q1 +

√
q22 + 32 + 3q2

−
√

q22 + 42 + 4q2 +
√

22 + 32 + 6 +
√
22 + 22 + 4

−
√

42 + 1 + 4−
√
22 + 42 + 8 < 0.

Case 2. |V (C) ∩ V (P )| = 1.

Let V (C) ∩ V (P ) = xi(y1). Let C = y1y2y3 · · · y|V (C)|y1 be the unique

cycle.

Subcase 2.1 |V (C)| = 3.

As D > 2, then dG′(xi−1) ≥ 2 or dG′(xi+1) ≥ 2. We may assume, without

loss of generality, that dG′(xi+1) = q2 ≥ 2. We know that dG′(xi) = q1 ≥ 4,
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dG′(xi+2) = q3 ≥ 1.

Let G′′ = G′ − {y2y3} + {y2xi+1}, then G′′ ∈ Un,d. Using Lemma 1

and dG(xi) = q1 ≥ 4, we obtain

EU(G′)− EU(G′′)

=
√
22 + 22 + 4−

√
(q2 + 1)2 + 22 + 2(q2 + 1) +

√
q21 + 22 + 2q1

−
√
q21 + 12 + q1 +

√
q21 + q22 + q1q2 −

√
q21 + (q2 + 1)2 + q1(q2 + 1)

+
√
q22 + q33 + q2q3 −

√
(q2 + 1)2 + q23 + q3(q2 + 1)

< 2
√
3−

√
19 +

√
q21 + 22 + 2q1 −

√
q21 + 1 + q1

≤ 2
√
3−

√
19 + 2

√
7−

√
21 < 0.

Subcase 2.2. |V (C)| ≥ 4.

Then 3 ≤ i ≤ D − 1. Let dG′(xi−1) = q1 ≥ 2 and dG′(xi+1) = q2 ≥ 2.

Let C = y1y2 . . . y|V (C)| be the unique cycle, (y1 = xi). Let G′′ = G′ −
{y2y3}+ {xiy3}, then G′′ ∈ Un,D.

EU(G′)− EU(G′′)

=

(√
q21 + 42 + 4q1 −

√
q21 + 52 + 5q1

)
+

(√
q22 + 42 + 4q2

−
√
q22 + 52 + 5q2

)
+ 2

√
22 + 42 + 8− 2

√
22 + 52 + 10

+
√
22 + 22 + 4−

√
1 + 52 + 5 < 0.

All cases above contradict G′ ∈ Umax
n,D , we conclude that |V (C)∩V (P )| > 1

must hold.

Lemma 5. Let G′ ∈ Umax
n,D with 3 ≤ D ≤ n− 3. Then there exist a vertex

x0 ∈ V P (G′), such that G′ − x0 ∈ Un−1,d.

Proof. Suppose, to the contrary, that for every pendant vertex x ∈ V (G′),

we have G′ − x ∈ Un−1,D−1.

Let P = x1x2 . . . xDxD+1 be a diameter path of G′. By Lemma 2, G′

has atleast one pendant vertex, so we can assume that x1 is a pendant

vertex. Since G′−x ∈ Un−1,D−1 hold for every pendant vertex x ∈ V (G′),
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we have G′ contains two pendant vertices x1 and xD+1. By Lemma 4, we

have |V (C) ∩ V (P )| > 1. Let C = xixi+1 · · · xi+kylyl−1 · · · y3y2y1, where
y1 = xi and 2 ≤ i < i + k ≤ D + 1 (so k ≥ 1). Clearly, k ≤ l (otherwise

if k > l, then the distance between x1 and xD+1 is less than D in G′).

Since n ≥ D + 3, then l > 2. Note that dG′(xi−1) = q1 ≥ 1, dG′(xi) = 3,

dG′(y2) = dG′(y3) = 2. We examine two cases: l > k and l = k.

Case 1. l > k.

Let G′′ = G′ − {y2y3} + {xiy3}. Then G′′ ∈ Un,D. We have dG′(xi+1) =

dG′′(xi+1) = q2 ≥ 2, dG′′(xi) = 4, dG′′(y2) = 1 and dG′′(y3) = 2. Then

EU(G′)− EU(G′′) =
√
q21 + 32 + 3q1 −

√
q21 + 42 + 4q1 +

√
q22 + 32 + 3q2

−
√

q22 + 42 + 4q2 +
√

22 + 22 + 4 +
√
22 + 32 + 6

−
√

22 + 42 + 8−
√
1 + 42 + 4

< 2
√
3 +

√
19−

√
28−

√
21 < 0.

Case 2. l = k.

Let G′′ = G′−{xiy2}−{y2y3}+{xi+1y2}+{xi+1y3}. Then G′′ ∈ Un,D, we

have dG′′(xi) = 2, dG′(xi+1) = 2, dG′′(xi+1) = 4, dG′(xi+2) = dG′′(xi+2) =

2, dG′′(y2) = 1 and dG′′(y3) = 2. We obtain

EU(G′)− EU(G′′) =
√
q21 + 32 + 3q1 −

√
q21 + 22 + 2q1 + 2

√
22 + 22 + 4

+ 2
√

22 + 32 + 6− 3
√
22 + 42 + 8−

√
1 + 42 + 4.

Subcase 2.1. q1 = 1.

EU(G′)− EU(G′′) =
√
13−

√
7 + 4

√
3 + 2

√
19− 6

√
7−

√
21 < 0.

Subcase 2.2. q1 ≥ 2.

EU(G′)− EU(G′′) ≤
√

22 + 32 + 6−
√
22 + 22 + 4 + 2

√
22 + 22 + 4

+ 2
√
22 + 32 + 6− 3

√
22 + 42 + 8−

√
1 + 42 + 4

= 3
√
19 + 2

√
3− 6

√
7−

√
21 < 0.
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This contradicts the assumption that G′ ∈ Umax
n,D , thus the result holds.

Lemma 6. Let G′ ∈ Umax
n,D with 4 ≤ D ≤ n−3. Then there exist a pendant

vertex x0 ∈ V (G′) such that G′ − x0 ∈ Un−1,D and the neighbor of x0 is

adjacent to at least two non-pendant vertices.

Proof. Let G′ ∈ Umax
n,D . By Lemma 5, there exists a pendant vertex x ∈

V (G′) such that G′ − x ∈ Un−1,D. Let

U∗ = {x ∈ V (G′)|dG′(x) = 1, G′ − x ∈ Un−1,D}.

We have U∗ ̸= ∅. Define IG′(y) = {z ∈ NG′(y)|dG′(z) ≥ 2}, for all y ∈⋃
x∈U∗ NG′(x). Note that, |IG′(y)| ≥ 1. We prove that there exists a vertex

y ∈
⋃

x∈U∗ NG′(x), such that |IG′(y)| ≥ 2. Suppose, for contradiction,

that |IG′(y)| = 1 for all y ∈
⋃

x∈U∗ NG′(x). Let C = y1y2 . . . y|V (C)| be the

unique cycle in G′ and P = x1x2 . . . xDxD+1 be a diametral path in G′.

Claim 1. U∗ ⊆ NG′(x2) ∪NG′(xD).

On the contrary, we suppose that there exist a vertex y ∈
⋃

x∈U∗ NG′(x)

such that y /∈ {x2, xD}, Note that y /∈ {x1, xD+1}. Since |IG′(y)| = 1, we

have y /∈ V (P )∪V (C). Let G′′ be the graph obtained from G′ by deleting

the unique non-pendant edge (say yz) incident with y, identifying y and

z, and attaching a new pendant edge incident with y, then G′′ ∈ Un,D.

Let dG′(y) = q1 ≥ 2, dG′(z) = q2 ≥ 2. Then dG′′(y) = q1 + q2 − 1. Since

|IG′(y)| = 1, any vertex x∗ ∈ NG′(y)\{z} has degree 1, we get√
dG′(y)2 + dG′(x∗)2 + dG′(y)dG′(x∗)−

√
dG′′(y)2 + dG′′(x∗)2 + dG′′(y)dG′′(x∗)

=
√

q21 + 1 + q1 −
√

(q1 + q2 − 1)2 + 1 + (q1 + q2 − 1) < 0.

For any vertex z∗ ∈ NG′(z)\{y}, we have√
dG′(z)2 + dG′(z∗)2 + dG′(z)dG′′(z∗)−

√
dG′′(z)2 + dG′′(z∗)2 + dG′′(z)dG′′(z∗)

=
√

q22 + dG′(z∗)2 + q2dG′(z∗)

−
√

(q1 + q2 − 1)2 + dG′(z∗)2 + (q1 + q2 − 1)dG′(z∗) < 0.

Using Equations above, we have

EU(G′)− EU(G′′)
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= (q2 − 1)

(√
q22 + d2G′(z∗) + q2dG′(z∗)

−
√

(q1 + q2 − 1)2 + d2G′(z∗) + (q1 + q2 − 1)dG′(z∗)

)
+ (q1 − 1)

(√
q21 + 1 + q1 −

√
(q1 + q2 − 1)2 + 1 + (q1 + q2 − 1)

)
+

(√
q22 + q21 + q1q2 −

√
(q1 + q2 − 1)2 + 1 + (q1 + q2 − 1)

)
< 0.

Thus, Claim 1 holds.

As U∗ ̸= ∅ and by Claim 1, U∗ ⊆ NG′(x2)
⋃
NG′(xD), we assume

that there exists a vertex x ∈ U∗ and x ∈ NG′(x2), then |IG′(x2)| = 1.

Thus, x1 and x2 is not in C (otherwise |IG′(x2)| ≥ 2), and by Claim 1,

we have dG′(x2) = q ≥ 3 (otherwise G′ − x1 ∈ Un−1,D−1). By Lemma 4,

|V (C)∩V (P )| > 1. Let C = xixi+1 · · ·xi+kylyl−1 · · · y3y2y1 where y1 = xi,

3 ≤ i < i + k ≤ D + 1 (so k ≥ 1), l ≥ 2 and the vertices y2y3y4 · · · yl−1yl

are not in P . Clearly, k ≤ l (otherwise if k > l, then the distance between

x1 and xD+1 is less than D in G′).

Claim 2. |V (C)\V (P )| = 1

On the contrary, we suppose that |V (C)\V (P )| ≥ 2, then l ≥ 3. we

have dG′(xi−1) = q1 ≥ 2. Note that dG′(xi) = 3 and dG′(y2) = dG′(y3) =

2. We examine two cases: l > k and l = k.

Case 1. l > k.

Let G′′ = G′−{y2y3}+{xiy3}. Then G′′ ∈ Un,D. We have dG′(xi+1) =

dG′′(xi+1) = q2 ≥ 2, dG′′(xi) = 4 and dG′′(y2) = 1 and dG′′(y3) = 2. We

obtain

EU(G′)− EU(G′′)

=

(√
q21 + 32 + 3q1 −

√
q21 + 42 + 4q1

)
+

(√
q22 + 32 + 3q2 −

√
q22 + 42 + 4q2

)
+

√
22 + 32 + 6 +

√
22 + 22 + 4−

√
22 + 42 + 8−

√
1 + 42 + 4 < 0.

Case 2. l = k.

Let G′′ = G′ − {xiy2} − {y2y3} + {xi+1y2} + {xi+1y3}. Then G′′ ∈
Un,D. We have dG′′(xi) = 2, dG′(xi+1) = 2, dG′′(xi+1) = 4, dG′(xi+2) =
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dG′′(xi+2) = q3 ≥ 2, dG′′(y2) = 1 and dG′′(y2) = 2. Then

EU(G′)− EU(G′′)

=

(√
q23 + 22 + 2q3 −

√
q23 + 42 + 4q3

)
+

(√
q21 + 32 + 3q1 −

√
q21 + 22 + 2q1

)
+ 2

√
22 + 32 + 6 +

√
22 + 22 + 4− 2

√
22 + 42 + 8−

√
1 + 42 + 4

<
√

22 + 32 + 6−
√

22 + 22 + 4 + 2
√

22 + 32 + 6 +
√

22 + 22 + 4

− 2
√

22 + 42 + 8−
√

1 + 42 + 4 = 3
√
19− 4

√
7−

√
21 < 0.

Thus, Claim 2 holds.

Claim 3. dG′(xD+1) = 1.

On the contrary, we suppose dG′(xD+1) = 2. Then xD is not adjacent

to a pendant vertex, otherwise |I(xD)| ≥ 2. As d ≥ 4, then dG′(xD−2) =

q1 ≥ 2. Since |V (C)\V (P )| = 1 (by Claim 2), then |V (C)| = 3 or 4.

Case 1. |V (C)| = 3.

So C = xDxD+1zxD. Let G′′ = G′ − {xD+1z}+ {xD−1z}, then G′′ ∈
Un,D.

EU(G′)− EU(G′′)

=
√
q21 + 22 + 2q1 −

√
q21 + 32 + 3q1 + 2

√
22 + 32 + 6 +

√
22 + 22 + 4

−
√

12 + 32 + 3−
√
22 + 33 + 6−

√
32 + 32 + 9

<
√
19 + 2

√
3−

√
13− 3

√
3 < 0.

Case 2. |V (C)| = 4.

So C = xD−1xDxD+1zxD−1. Let G′′ = G′ − {xD+1z} + {xDz}, then
G′′ ∈ Un,D.

EU(G′)− EU(G′′) = 2
√

22 + 22 + 4−
√
12 + 32 + 3−

√
32 + 32 + 9

= 4
√
3−

√
13− 3

√
3 < 0.

Thus, Claim 3 holds.

Claim 4. |V (C)| = 4.

On the contrary, we suppose that |V (C)| = 3, the unique cycle C =

xixi+1zxi(3 ≤ i ≤ D − 1). Since U∗ = {x ∈ V (G′)|dG′(x) = 1, G′ − x ∈



772

Un−1,D} ≠ ∅, then dG′(x2) = q ≥ 3.

Case 1. i = 3.

Let G′′ = G′ − {x3z}+ {x2z}, then G′′ ∈ Un,D.

EU(G′)− EU(G′′)

= (q − 1)
(√

q2 + 12 + q −
√
(q + 1)2 + 12 + (q + 1)

)
+
√
q2 + 32 + 3q − 2

√
(q + 1)2 + 22 + 2(q + 1) +

√
32 + 32 + 9

< 0.

Case 2. i ≥ 4.

Let G′′ = G′−{xiz}−{xi+1z}+ {x2z}+ {x4z}. We have dG′(xi+2) =

q1 ≥ 1. Then

EU(G′)− EU(G′′)

= (q − 1)
(√

q2 + 12 + q −
√

(q + 1)2 + 12 + (q + 1)
)
+
√
q2 + 22 + 2q

+
√
q21 + 32 + 3q1 +

√
32 + 32 + 9− 2

√
(q + 1)2 + 22 + 2(q + 1)

−
√
q21 + 22 + 2q1 +

√
22 + 32 + 6−

√
22 + 22 + 4

≤ 2(
√

32 + 12 + 3−
√
42 + 12 + 4) +

√
q2 + 22 + 2q

− 2
√
(q + 1)2 + 22 + 2(q + 1) + (

√
12 + 32 + 3−

√
12 + 22 + 2) + 3

√
3

+
√
19− 2

√
3

≤ 3
√
13− 2

√
21 + 2

√
19− 5

√
7 +

√
3 < 0.

Thus, Claim 4 holds, then the unique cycle C = xixi+1xi+2zxi (3 ≤
i ≤ D − 2), dG′(xd+1) = 1, dG′(x2) = q ≥ 3 and dG′(xi+3) = q2 ≥ 1.

Case 1. i = 3.

EU(G′)− EU(Un,D)

= (q − 1)

(√
q2 + 1 + q −

√
(q + 1)2 + 1 + (q + 1)

)
+

√
q2 + 32 + 3q

+
√

q22 + 32 + 3q2 −
√
q22 + 22 + 2q2 − 2

√
(q + 1)2 + 22 + 2(q + 1)

+
√
22 + 32 + 6
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≤ 2(
√
13−

√
21) + 3

√
3 +

√
13−

√
7− 2

√
28 +

√
19 < 0.

Case 2. 4 ≤ i ≤ D − 2.

EU(G′)− EU(Un,D)

= (q − 1)

(√
q2 + 12 + q −

√
(q + 1)2 + 1 + (q + 1)

)
− 2

√
(q + 1)2 + 22 + 2(q + 1) +

√
q2 + 22 + 2q + 2

√
22 + 32 + 6

−
√
22 + 22 + 4 +

√
q22 + 32 + 3q2 −

√
q22 + 22 + 2q2

<
√
19− 2

√
28 + 2

√
19− 2

√
3 +

√
13−

√
7 < 0.

This is a contradiction with the assumption G′ ∈ Umax
n,D . Thus, there

must exists a pendant vertex x0 ∈ V (G′) such that G′ − x0 ∈ Un−1,D and

|IG′(NG′(x0))| ≥ 2. This completes the proof.

Theorem 3.4. Let G ∈ Un,D with 4 ≤ D ≤ n − 2. Then EU(G) ≤
EU(Un,D), with equality if and only if G ∼= Un,D.

Proof. We prove the theorem by induction on n. If n = D+ 2, conclusion

hold (Theorem 3.3). Suppose the conclusion holds for n − 1. Let G′ ∈
Umax
n,D , 4 ≤ D ≤ n−3. By Lemma 6, there exist a pendant vertex x ∈ V (G′)

such that G′ − x ∈ Un−1,D and y = NG′(x) attached to at least two non-

pendent vertices, say z1, z2. Let NG′(y) = {x, y1, y2, . . . , yl−1}. Then

|NG′(y)| = l, and 3 ≤ l ≤ n−D+1. Denote dG′(yi) = li for 1 ≤ i ≤ l− 1.

Let G′′ = G′ − x, then G′′ ∈ Un−1,D.

EU(G′) = EU(G′′) +
√

l2 + 12 + l +

l−1∑
i=1

(√
l2 + l2i + lli −

√
(l − 1)2 + l2i + (l − 1)li

)
≤ EU(Un−1,D) +

√
l2 + 12 + l + 2(

√
l2 + 22 + 2l −

√
(l − 1)2 + 22 + 2(l − 1))

+ (l − 3)(
√

l2 + 12 + l −
√

(l − 1)2 + 12 + (l − 1))

= (n−D − 2)
√

(n−D)2 + 1 + (n−D) + 2
√

(n−D)2 + 4 + 2(n−D) +R1

+ 2
√

l2 + 22 + 2l + (l − 2)
√

l2 + 12 + l − 2
√

(l − 1)2 + 22 + 2(l − 1)

− (l − 3)
√

(l − 1)2 + 12 + (l − 1)

≤ (n−D − 2)
√

(n−D)2 + 1 + (n−D) + 2
√

(n−D)2 + 4 + 2(n−D) +R1
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+
√

(n−D + 1)2 + 1 + (n−D + 1)

+ 2

(√
(n−D + 1)2 + 22 + 2(n−D + 1)−

√
(n−D)2 + 22 + 2(n−D)

)
+ (n−D − 2)

(√
(n−D + 1)2 + 1 + (n−D + 1)−

√
(n−D)2 + 1 + (n−D)

)
= (n−D − 1)

√
(n−D + 1)2 + 1 + (n−D + 1)

+ 2
√

(n−D + 1)2 + 4 + 2(n−D + 1) +R1 = EU(Un,D)

with equalities if and only if G′′ ∼= Un−1,D, l = n − D + 1, exactly two

vertices in NG′(y) have degree 2 and the remaining l−2 vertices in NG′(y)

have degree 1, which implies that G′ ∼= Un,D.

4 Conclusion

In this paper, we determined the maximum Euler-Sombor index of

unicyclic graphs with a given diameter. This work raises several open

problems, which are outlined below:

Open problem 1. Determine the first, second, third, and fourth mini-

mum values of the Euler Sombor index among trees with a given diameter,

as well as the second, third, and fourth maximum values.

Open problem 2. Determine the second, third, and fourth maximum as

well as the second, third, and fourth minimum values of the Euler Sombor

index among unicyclic graphs of a given diameter.
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