M A I C H MATCH Commun. Math. Comput. Chem. 95 (2026) 731-758
ISSN: 0340-6253

Communications in Mathematical .
and in Computer Chemistry doi: 10.46793/match.95-3.

Recent Progress on Lanzhou Index

Hechao Liu?, Lihua You”*, Hongbo Hua‘, Zenan Du?

@ School of Mathematics and Statistics, Hubei Normal University,
Huangshi, 435002, P. R. China

b School of Mathematical Sciences, South China Normal University,
Guangzhou, 510631, P. R. China

¢ Faculty of Mathematics and Physics, Huaiyin Institute of Technology,
Huaian, Jiangsu 223003, P. R. China
& School of Mathematics and Statistics, Shanxi University, Shanxi,
030006, P.R. China
hechaoliu@yeah.net, ylhua@scnu.edu.cn, hongbo_hua@163.com,

duzn@sxu.edu.cn

(Received April 3, 2025)

Abstract

Let G be a graph. The Lanzhou index, alternatively known as
the forgottin coindex, is defined as Lz(G) = }_,cy(q) d,dZ, where
dy, (resp. d,) represents the degree of vertex u in G (resp. G).

Research findings substantiate that the Lanzhou index demon-
strates enhanced predictive capability compared to both the first
Zagreb index and the forgotten index in modeling the logarithmic
octanol-water partition coefficient for structural isomers of octane
and nonane. This review aims to systematically compiling current
extremal results and bounds related to the Lanzhou index. Finally,
we outline several open problems as directions for future research.
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1 Introduction

Let G = (V, E) be a graph with vertex set V(G), edge set E(G), order n =
|V (G)|, and size m = |E(G)|. For adjacent vertices u and v in G, we write
uv € E(G). The open neighborhood Ng(u) = {v | uv € E(G)} determines
the degree d,(G) = |Ng(u)|. The complement graph G = (V, E) satisfies
E = {uv | uv ¢ E(G)}. The graph is called k-regular graph if d,(G) = k
for all w € V(G). If G is not a regular graph and d,(G) € {a,b} for
all v € V(G), then we call G is a (a,b)-regular graph. Let K,,, ,,, be a
complete 2-partite graph with n; + ns vertices. Let A(G) = max{d,|u €
V(G)} and §(G) = min{dy|u € V(G)}. The path, star, cycle with n
vertices are denoted as P,, S,, and C,, respectively. For a degree sequence
m(G) = (d1,da,...,d,), we assume dy > dg > -+ > d,, where d; = d,,
corresponds to vertex v; € V(G) = {v1,vs,...,v,}. For degree sequences
with multiplicities, the notation a(® is used to signify that the integer a is
repeated b times throughout the sequence. The join graph GV H of two
graphs G and H is the graph with vertex set V(GV H) = V(G) UV (H)
and edge set E(GV H) = E(G)UE(H)U{uv : v € V(G),v € V(G)}.
The corona product G o H of two graphs G and H is the graph obtained
by taking one copy of G (with ny vertices) and n; copies of H (with ng
vertices), and then joining the i-th vertex of G to every vertex in the -
th copy of H. Let GOOH be the Cartesian product of two graphs G and
H. The vertex set of GOH is consisted of all ordered pairs (u,v) where
u € V(G) and v € V(H). Two distinct vertices (u1,v1) and (ug,vy) are
adjacent in GOH if and only if (1) u; = us and viv2 € E(H) or (2) v1 = v
and ujus € E(G). A vertex subset S C V(G) is called an independent set
if the induced subgraph G[S] contains no edges. The independence number
a(@G) is defined as the maximum cardinality among all independent sets in
G. Any symbols and terms utilized without prior definition are assumed
to follow the conventions outlined in Bondy and Murty [10].
Vertex-degree-based topological indices have been extensively studied
in both mathematical and chemical literature. The First Zagreb index
M1 (G) [22] and second Zagreb index M (G) [21] of a graph G are defined
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The Forgotten index F(G) [17] of a graph G is defined as

Yoodi= ) (di+d). (3)

veV(G) weE(G)

The Lanzhou index’ was introduced by Vukicevié et al. [41]

= ) dud, (4)

ueV(QG)

where d, represents the degree of vertex u in G.
Since d, = n — 1 — d,,, Lanzhou index of G is a linear combination of
M;(G) and F(G). That is

Lz(G) = (n — 1)M1(G) + F(G). (5)
The forgotten coindex (F-coindex) [15,26] is defined as

F(G)= ) (d+d). (6)

w¢ E(G)

Since Y. (2 +d%?)= Y. (n-—d,)d3, then Lz(G) = F(G).
w¢E(GQ) ueV(G)
The vertex-degree-based topological indices have the following general

form
> f(du,dy), (7)
uveE(G)
where f(x,y) denotes a non-negative real-valued symmetric function of

and y.

fThe term “Lanzhou” originates from a city in China. It was chosen because the ini-
tial research and discovery of this index (see details in [41]) were conducted in Lanzhou,
China.
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In Table 1, we list some vertex-degree-based topological indices which

is used in this paper.

Table 1. Some indices considered in the present review.

Function f(z,y) Equation (7) corresponds to Symbol

x4y first Zagreb index [22] M,
xy second Zagreb index [21] M,
1/\/xy Randié¢ index [32] R
VZY reciprocal Randi¢ index [20] RR
Vv +y? Sombor index [19] SO
2% 4+ y? forgotten topological index [17] F
2zy/(z +y) inverse sum indeg index [40] IS1
|z — y| irregularity index [1] irr

y/r+x/y symmetric division deg index [39] SDD

(x +y)? hyper-Zagreb index (8] HM
\/;Ty sum-connectivity index [46] SC

T +y reciprocal sum-connectivity index [46] RSC

The structure of this paper is as follows: Section 2 provides a sum-
mary of the extremal results and bounds related to the Lanzhou index.
Section 3 explores the connections between the Lanzhou index and other
indices. Section 4 examines Nordhaus-Gaddum-type results concerning
the Lanzhou index. Section 5 proposes several open problems for future

research on the Lanzhou index.

2 Extremal results and bounds

In this section, we present the extremal results concerning the Lanzhou
index for graphs. Let G, be a class of graphs with n vertices. Let G, ,,, be

a class of graphs with n vertices and m edges.

2.1 Simple graphs

Vukicevié [41] gave the upper and lower bounds for Lz(G) of a graph.
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Theorem 2.1. [41] Let G € G,,. Then
0 < L(G) < —p(n — 1)}
< Lz(G) < 5on(n .

The equality on the left is satisfied if and only if G = K,, or nKy. The
equality on the right is satisfied if and only if G is k-reqular with k =
2(n—1) and n =1 (mod 3).

Theorem 2.2. [18] Let G € Gy, be a triangle-free graph. Then
Lz(G) < (n—1—4§)nm,

with equality if and only if G is a 5-regular graph.

Theorem 2.3. [44] Let K,,, », be a complete 2-partite graph with n(=

ny + ng) vertices. Then

n3(n—1), if nis even
L2(Kn, ny) < ;
1(n?=1)(n—2), if nisodd
with equality if and only if ny = [§] and ny = | 5].

Yang et al. [44] gave the upper and lower bounds for the Lanzhou index
Lz(@) with respect to the number of vertices n, maximum degree A and

minimum degree §.
Theorem 2.4. [44] Let G € G,, with mazimum degree A and minimum
degree §. Then

nd*(n —1—A) < Lz(G) < nA?(n—1-9),

with both equalities if and only if G is a regular graph.

Theorem 2.5. [44] Let G € G,, with maxzimum degree A, minimum degree
0 andn —1=2A. Then

A2 4 (n—1-16)2), ifd+A<n-—1
Lz(G) < ( ( ") ;
BAANZ 4 (n—1-A)?), ifs+A>n—1
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with equality if and only if G is a A-reqular graph.

Theorem 2.6. [44] Let G € G, , with mazimum degree A and minimum

degree §. Then

2m(3(n — 1) A%) < 12(6) < 201

with both equalities if and only if n is even and d,(G) = dy(G) for all
u e V(G).

Theorem 2.7. [44] Let G € G,, and dy(G) = A or ¢ for any u € V(G).
Then
n(n —1) —nA®* < Lz(G) < n(n — 1) — né,

with both equalities if and only if G is a regular graph.

Theorem 2.8. [9] Let G € G, be a connected graph with mazimum

degree A and minimum degree §. Then

Lz(G)

2m

(n—1)0 —A? < < (n—1)A -6

with both equalities if and only if G is a regular graph.

2.2 Trees

Let T, be a class of trees with n vertices. Let S, n, be the double star

graph with n = ny + no vertices.
Theorem 2.9. [41] Let n > 15 and T € T,,. Then

3 2
n n o N
TS —dn+4, if nis even

a %3 %—%n—i—%, if nis odd
The left equality holds if and only if T = S,,. The right equality holds if

ESE if nis even
and only if T =

Sn—1)/2,(n+1)/2, 1f nis odd
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In [41], authors also investigate the extremal values of the Lanzhou
index for 7, when 4 < n < 14.

The broom graph Y, j, constructed from the star Sy, is formed by
replacing one of its pendent edges with a path of length n — k. Subsequent
research by Amin et al. [5] determined the trees with the smallest, second-

smallest, and third-smallest Lanzhou index.

Theorem 2.10. [5] Let T € T,,. Then

(i) If n > 3, then the star S, achieves the smallest Lanzhou index.

(i) If n > 5, then the broom graph (also called comet) Yy, n—o achieves
second smallest Lanzhou index.

(iii) Ifn > 9, then the broom graph (also called comet) Y, ,—_3 achieves

third smallest Lanzhou index.
Liu et al. [31] establish some bounds for Lanzhou index of trees.

Theorem 2.11. [31] Let T € T,,. Then

(i) If n > 4, then F(T) + Lz(T) > (n — 1)(A% 4 2 4 =220,

(i) If n > 2, then F(T)+ Lz(T) < (n—1)(2(n — 1) 4+ (n — 2)A),
with equality of (i) if and only if T is a tree such that A =dy > ds = -+ =
dp—o > dn_1 =dn, =6 =1, equality of (1) if and only if A =dy = --- =
dy>diy1=--=d,=86=1 for somet,2<t<n-1.

Theorem 2.12. [31] Let T € T,,. Then
2(n —1)(2n — 3) < F(T) + Lz(T) < n(n —1)?,

with left equality if and only if T = P, , right equality if and only if T = S,,.

Theorem 2.13. [31] Let T € T,,. Then

(i) If n >4, then F(T) + Lz(T) > (n —1)(n —1)2(n —4) + A2+ 2+
(2n-2-8)%)

n—3

(ii) If n > 2, then F(T)+ Lz(T) < (n—1)((n—1)?(n—4) +2(n—1) +
(n—2)A),
with equality of (i) if and only if T is a tree such that A=dy > dy = -+ =
dp—o > dn_1 =d, =9 =1, equality of (i) if and only if A=dy =--- =
dy>diy1=-=d,=6=1 for somet,2<t<n-1.
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Corollary 2.1. [31] Let T € T,,. Then

(n—1)(n—2)(n? —4n+5) < F(T) + Lz(T) < (n — 1)*(n — 2)?,

with left equality if and only if T = P,, right equality if and only if T = S,,.

Wang et al. [42] established exact expressions for the Lz(G) of trees

with given some specified diameters.

Theorem 2.14. [42] Let P;(mq, ma,--- ,my) be as the graph constructed
from the path Py by attaching m; pendent edges to the i-th vertex of Py for
1€{1,2,---,¢}. Then

Lz(Py(my,ma,--- ,mg)) =m(n —2) + Z (n —m; —2)(m; +1)2

=1,
r—1
+ Z(n —my — 3)(my +2)2,
i=2

¢
where m = Y mj andn=m+r.
i=1

By majorization techniques, Wei et al [43] subsequently determined the

maximum Lanzhou index among trees with given diameter d > 8.

Theorem 2.15. [43] Let T € T, with diameter d > 8 and mazimal
Lanzhou index.
(i) If 8 <d < "4, then n(T) = ([245=19], [ 245=4 ], 2(4=%) 1 (n+1=d));
(i) If d = 2 then n(T) = (di,n+ 3 — d — dy,2(@=3) 1 (n+1=d));
(iti) If 12 <d <n—1, then 7(T) = (n+ 1 — d, 202 1(n+1=d)),

Let 7,2 denote the family of all n-vertex trees with maximum degree
at most A.
Theorem 2.16. [41] Let n > 8 and T € T;?. Then

1—(=1)"
4n® —18n 420 < Lz(T) < 5n% —2Tn + 34 — (n — 7)%.

The left equality holds if and only if T' = P,,. The right equality holds by
any tree that without vertices of degree 2 if n is even, and for any tree

featuring exactly one vertex of degree 2 if n is odd.



739

Theorem 2.17. [41] Let n > 8 and T € T,*. Then
4n? —18n + 20 < Lz(T) < 6n% + O(n).
The left equality holds if and only if T = P,,. The greatest value of Lz(T)

18 attained by trees with the most possible vertices of degree 4.

Let 7(n,A) denote the family of all n-vertex trees with maximum
degree A. A spider is formally characterized as a tree containing at most
one vertex of degree greater than 2, which is designated as the spider’s
center [14].

Theorem 2.18. [14] Let n > 11 and T € T (n,A). Then
Lz(T) > (n— A —1)(4n+ A% — 12) + A(n — 2),

with equality if and only if T is a spider.

Theorem 2.19. [37] Let n >4 and T € T(n,A). Then

2(n —2)% — (2n — 3 — A)A)?
n2—6n+7+A

Lz(T)22(n—2)+(n—1—A)A2+(

with equality if and only if T = S,, or P,.
Theorem 2.20. [37] Letn >4 and T € T(n,A). Then

(2(n—2)2 — (2n — 3 — A)A)?
2(n—2)—A ’

Lz(T) 2 2(n = 2)* + A(n — 1 - A)* +

with equality if and only if T = S, or P,.
Li et al. [29] obtained the upper bounds on Lz(T) for T € T (n, A).

Theorem 2.21. [29] Let T € T(n, A).
(I) For2< A< ™2 andn=1i+1 (mod A —1), where 1 <i <A -1,
Lx(T) < !
A-1
+ (P 4ni? =2 =i = 3n+2)A - (n—2)(n—1)
—(n—1-1i)(i* +n—2)].

[(—n4+1+i)A% 4+ (n—1)(n — 1 —i)A?
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with equality if and only if m#(T) = (A, A+ [ Ayi, 1,1+ 1).
—_—
n—1—i n_n=l=i_q
A—1 A—1

(II) For ™2 < A < 245,
(i) If n =0 (mod 3), then

Lz(T) < —3A% + (3n + 3)A% — (4n + 2)A +n? — 3n + 6,

with equality if and only if #(T) = (A, A —1,A—1,1,1,---,1).
——

n—3
(ii) Ifn=1 (mod 3) and A = 22(n #7), then

Lz(T) < —3A3 +3nA? — (2n + 1)A 4+ n? — 4n + 6,

with equality if and only if #(T) = (A, A, A —1,1,1,--- | 1).
—_——

n—3
Ifn =17, then Lz(T) < 90 with equality if and only if 7(T) = (3,3,2,1,

1,1,1) or o(T) = (3,2,2,2,1,1,1).
(iii) Ifn =1 (mod 3) and A = 255 then

L2(T) < —3A% + (3n 4 9)A% — (8n + 40)A + n? + 11n + 54,

with equality if and only if 71(T) = (A, AJA —4,1,1,---,1) or n(T) =
—_———

n—3
(AL A—1,A—-3,1,1,---,1) orn(T) = (A, A—2,A—2,1,1,--- ,1).
N——— ——

n—3 n—3
(iv) If n = 2 (mod 3), then

Lz(T) < —=3A% 4 (3n + 6)A% — (6n + 9)A +n? + 10,
with equality if and only if 7(T) = (A, A—-1,A—2,1,1,--- ,1).

—_———

n—3
(I11) If "T% <A <G, then
Lz(T) < 6A% —6(n + 3)A% +2(n? +6n + 5)A — n? — 9n + 4,

with equality if and only if #(T) = (A, A,n+1—2A,1,1,--- 1).
——

n—3
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V) If L <A <n—1, then
Lz(T) < —(n+2)A% + (n® + 2n)A — 4n + 4,
with equality if and only if 7(T) = (A,n— A, 1,1,---,1).
—_——

n—2

Let T(n, A, A’) denote the set of n-vertex trees with maximum degree
A and second maximum degree A’. A vertex v is called as a branching
vertex if d, > 3. A double spider is formally defined as a tree containing
precisely two branching vertices. Saha [33] established an extension of the

results originally presented by Dehgardi and Liu [14].

Theorem 2.22. [33] Let n > 11 and T € T(n,A,A’). Then

Lz(T) > (n—1)(A* +(A")?) = (A® +(A)?) = (3n—10) (A + A') + (4n* — 14n +4).
The equality holds if and only if T is a double spider with the degrees of
two branching vertices A and A’.

2.3 Unicyclic graphs and c-cyclic graphs

Let U, be a class of unicyclic graphs with n vertices. The authors of
[24,29,30] independently determined the minimum Lanzhou index among
U,.

Theorem 2.23. [24,29,30] Let G € U,, with n > 3. Then
Lz(G) > n? +3n — 18,

with equality if and only if G = S, where S;¥ is the graph obtained from

Sy by adding one edge between its two pendent vertices.

Let U,(a,b,c) denote the unicyclic graph constructed from a triangle
C3 by appending a, b, and ¢ pendent vertices to its three distinct vertices

respectively, where a + b+ c+ 3 = n.

Theorem 2.24. [30] Among the unicyclic graphs with n vertices.
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(i) If 11 < n < 26, the mazimal Lanzhou index is achieved by the

unicyclic graph Uy (a1, az,a3) with a; + as + a3+ 3 =n and max |a; —
1<i<j<3

a;| <1.

(ii) If n = 27, the mazimal Lanzhou index is achieved by Us7(12,12,0)
or Usz7(8,8,8).

(iii) If n > 28, the mazimal Lanzhou index is achieved by the graph
U (%571 =1 3] =1, 0).

Through distinct methodological approaches, Li et al. [29] and Imran
et al. [24] independently established rigorous characterizations of maximal
Lanzhou index for unicyclic graphs with n > 28 vertices. Complementing
these results, Liu et al. [30] conducted a complete characterization of ex-
tremal unicyclic graphs attaining maximal Lanzhou index for 3 < n < 10.

Let G’ € U,, be the unicyclic graphs obtained from C,,_j by attaching
k pendent vertices to one vertex of C,_;. Let G’ € U,, be the unicyclic
graphs obtained from C),_; by attaching k pendent vertices to different k
vertex of Cp,_k. In [7], Alrowaili et al. established a complete characteri-
zation of maximal and minimal Lanzhou indices among U,, with k pendent

vertices.

Theorem 2.25. [7] Let G € U,, with k pendent vertices. Then
dn(n—3) — k*(k +7) — k(6 — nk) +nk < Lz(G) < 2(nk +2n* — Tk — 6n),

with left equality if and only if G =2 G’, right equality if and only if G = G".

By majorization techniques, Wei et al. [43] subsequently established the
maximal Lanzhou index for unicyclic graphs with given diameter d > 9
and n > 3d — 8. Let C5(n,d,7) be the graph obtained from C3 = 21202321
by attaching the path P; and (”*TH] isolated vertices to vertex z;, and
then attaching the path Py;_; 1 and L”_THJ isolated vertices to vertex zs.
Let C4(n,d,i) be the graph obtained from Cy = 2129232421 by attaching
the path P; and [2=2=2] isolated vertices to vertex z;, and then attaching

2

the path P;_;_» and L”*S*QJ isolated vertices to vertex zs.

Theorem 2.26. [43] Let G be a unicyclic graph with maximum Lanzhou

index among unicyclic graphs with n vertices and diameter d > 8. If
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d>9 andn > 3d— 8, then G € {C5(n,d,1),C3(n,d,2),---,Cs(n,d,
d— 2),04(n,d,1),04(n,d, 2),"' ,C4(’Il,d,d— 3)}

Let U,, A be the class of unicyclic graphs with maximum A. Let G €
Un,a and C be the unique cycle of G. If G — E(C) is some independent
vertices and a spider, which center is on cycle C' and has A — 2 legs, then

such graph is denoted by L{,ﬁ A-
Theorem 2.27. [11] Let G € U, A with mazimum Lanzhou index and
n > 11. Then

Lz2(G) >4(n—3)(n—A+1)+ A%(n—A—1)+ (n—2)(A - 2),

with equality if and only if G € L{;ZA,

Theorem 2.28. [9] Let G € Uy, a with A(G) =4 and n > 8. Then
Lz(G) < 6n* + O(n).

Let F. denote the graph constructed by merging c triangles at a com-
mon vertex, known as Dutch windmill graphs. Lan et al. [28] subsequently
characterized maximal and minimal Lanzhou indices for c-cyclic graphs

with n vertices.

Theorem 2.29. [28] Let G be a c-cyclic graph with n vertices. Ifn > 3c+4
and ¢ > 1, then

Lz2(G) > (n—1)(n — 2) + 2¢(3n — 10),

with equality if and only if G = Hy, where Hy denotes the graph constructed
from F. by appending n — 2c — 1 pendent vertices to the unique vertex of

degree 2c.

Theorem 2.30. [28] Let G be a c-cyclic graph with n vertices. If 3 <
¢ < & then Lz(G) < Lz(Gy), with equality if and only if G = Gy, where

137
Gy is the graph constructed from Wy (see Figure 1) by appending L”*THJ

n—c—2
2

pendent vertices to vertexr vi and [ —‘ pendent vertices to vertex vs.
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U2

U1

Wo

Figure 1. The graph Wy [28].

2.4 Chemical graphs

Let GH(m, ky, ka, k3, k4) (see Figure 2) be a general hexagonal system [27],
where m > 1 is the number of benzenoids in the lowest layer, 0 < &k <
ks <m, 0 < ky <ky<mand k) + ko = ks + ky4. In [42], Wang et al.
calculated Lanzhou index of GH (m, k1, ko, k3, kq).

ky

)

m

Figure 2. A general hexagonal system GH(m, k1, k2, k3, k) [27].

Theorem 2.31. [42] Let m > 1, 0< ky; < ks <m, 0 <ky <ks <m and
k’l + k’g = k3 + k}4. Then

Lz(GH(m, ki, ko, ks, /4}4)) = 9’/’),3(’(12 +ns — 4) + 4n2(n2 +ng — 3),

where n3 = 2m(k1 + ko + 1) + k‘l(k‘l + 2ko + 1) — k4(k‘4 + 1) — 2 and
no = 2m + 3k1 + 2ky — k4 + 4.
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In hexagonal systems, a vertex is called an internal vertex if the vertex
shared by three hexagons. The hexagonal system without internal vertices

is called a catacondensed hexagonal system.

Theorem 2.32. [42] Let HS,, be a catacondensed hexagonal system with
n heragons. Then Lz(HS,,) = 104n? — 52n + 20.

In [18], Ghalavand et al. ordered the chemical graphs with respect
to Lanzhou index. They determined the first twenty-six chemical trees
for n > 22, the first thirty-five chemical unicyclic graphs for n > 24,
the first thirty-three chemical bicyclic graphs for n > 22, the first thirty-
nine chemical tricyclic graphs for n > 24, the first thirty-three chemical
tetracyclic graphs for n > 22, the first thirty-seven chemical pentacyclic
graphs for n > 24. Further, they determined the first forty-two chemical
graphs for n > 22.

Ali et al. [3] determined the graphs with minimum Lanzhou index
among connected chemical (n, m)-graphs, where n and m satisfy the con-
ditions 3n > 2m,n > 4,m > n+ 1.

Theorem 2.33. [3] Let n and m be fized integers satisfying the conditions
3n > 2m,n > 4,m > n-+ 1. Then among all connected chemical (n,m)-
graphs, those with mazimum degree 3 and minimum degree at least 2 attain

the minimum Lanzhou index.

2.5 Graph operations

Bera and Das [9] computed the Lanzhou index of corona and joined graphs.

Theorem 2.34. [9] Let G and H be two graphs with |V (G)| = nq, |V (H)|
=ng, |E(G)| =my and |E(H)| = ma. Then

Lz(GV H) =Lz(G) + Lz(H) + 4na(ny — 1)mq + 4n1(ny — 1)may
— 2n2M1(G) — 2711M1(H) + n1n2(2n1n2 —ny — ’I’LQ)

— 2n3my — 2n3my.
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Theorem 2.35. [9] Let G and H be two graphs with |V (G)| =nq, |V (H)]
=ng, |[E(G)| =my and |E(H)| = ma. Then

Lz(Go H) =Lz(G) + n1Lz(H) 4 2n3(2nins + 2n; — 3ng — 2)my
— 3’1’1,2M1(G) + n1n§(n1 — 1)(7’12 + 1) — 37?,1M1(H)
+ 2n1(2n1n2 + 2n1 - 5)m2 + nlng(nlng +ny — 2)

Denote by R(G) the graph obtained from G by adding a new vertex
corresponding to each edge of G and connecting every new vertex to the
end vertices of corresponding edge [12]. The balanced double star with n
vertices is either S%% when n is even or S%H’anl when n is odd. Let BS,
be the balanced double star with n vertices. Let n be odd and T# be a
"TH vertices. Zeng et al. [45] obtained the sharp upper bound of

Lanzhou index of R (TnT-I—l )

tree with

Theorem 2.36. [45] Let n be odd and R (TWTH) a graph with n > 27

vertices. Then

Lz (R(Sup)) <L2(R(Tup ) < L2 (R (BSas ).

It was also shown that the result of Theorem 2.36 is not true for n < 26.
The Cartesian product [10] is a widely studied operation in graph theory.
Wang et al. [42] calculated Lanzhou index of Cartesian product graphs.

k

Theorem 2.37. [42] Let [] P42 = Py 420Pn, o0 -0OPy,, 12 be the
j=1

Cartesian product of paths {ij+2}§:1, where k is a positive integer and

m; is a non-negative integer for j =1,2,--- k. Then

k
11 P, +2 :Z(n—l—k d)(k+d)*2"4 " T m,
j=1

d=0 Jelk]d jet

E
where (k]9 = {S:S C{1,2,--- ,k} and |S| =d} and n = [ (m; + 2).
j=1
Especially, if mj =0 for j =1,2,--- |k, hence A =k, then the Carte-

sian product is a k-dimension cube, and Lanzhou index is 28k%(2F —k —1);
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ifmj=m>0 forj=1,2,--- ,k, hence A = 2k, then Lanzhou index is
u k
D ((m+2)F —1—k—d)(k+ d)22""d<d> m?.

d=0

De et al. [15] investigated Lanzhou index under several graph opera-
tions such as union, join, Cartesian product, composition, tensor product,
strong product, corona product, symmetric difference of graphs. Other
results about Lanzhou index of the operations on graphs can be found
in [6,36]. Jahanbani et al. [25] also obtained some bounds for Lanzhou
index, most of the bounds are not sharp. The chemical applications of
Lanzhou index can be found in [2, 15, 30].

3 Relations between Lanzhou index

and other indices

In this section, we present the relations between Lanzhou index and other
indices. Hua et al. [23] systematically investigated the interrelations among
three degree-based topological indices, namely, the Lanzhou index Lz(G),
the second Zagreb index M3(G), and the forgotten index F(G).

Theorem 3.1. [23] Let G € G,, with independence number o(G). Then
Lz(G) > F(G) — 2aM>(G),

with equality if and only if G = K,, or K,,.

Theorem 3.2. [23] Let G € G,,. Then
L2(G) > 2M(G) — F(G).

with equality if and only if G =2 K,, or K,.

Theorem 3.3. [23] Let T € T,, with n > 3. Then

LA(T) > 3My(T) — F(T),
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with equality if and only if T = Ps.

The eccentricity of a vertex v is defined as ecce(v) = max{dg(u,v)|u €
V(G)}. The radius of a graph is defined as r(G) = min{eccg(v)|v €
V(G)}. The eccentric connectivity index [35] of a graph G is defined as

E(G)= > dyeceg(u). The Schultz index [34] of a graph G is defined
ueV(QG)

as SI(G) =1 > (du+dy)de(u,v). Bera et al. [9] gave some bounds
{u,v}CV(G)
for Lanzhou index by M1(G), M2(G), £°(G), irr(GQ), SI(G), F(G), ISI(G)

and SDD(G).

Theorem 3.4. [9] Let G € G,,. Then
Lz(G) = (r(G) = 1)My(G),

with equality if and only if G = K,, or G = K,, — §K3 (n is even).

Theorem 3.5. [9] Let G € G,. If d,, + d, > n for any uv € E(G), then
Lz(G) < 2M>(G) — Mi(G).

Theorem 3.6. [9] Let G € G, with maximum degree A and minimum
degree §. Then

with equality if and only if every connected component of G is reqular.

Moreover,
(n—1-A)M(G) < Lz(G) < (n—1-0)M(G),

with equality if and only if G is a regular graph.

Theorem 3.7. [9] Let G € G,, with minimum degree §. Then
L2(G) = 6¢°(G) — My (G),

with equality if and only if G = K,, or G = K, — K3 (n is even).
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Theorem 3.8. [9] Let G € G, be a connected graph with minimum degree
6. Then

with equality if and only if G is a regular graph.

Theorem 3.9. [9] Let G € G, be a connected graph with mazimum
degree A and minimum degree §. Then

(n —1)M:1(G) < irr(G)* + Lz(G) + 2M2(G) < (n — 1) M1 (G) + 2 <T§> (A —6),

with left equality if and only if G is a reqular graph, right equality if and

only if G is a regular graph or a bipartite semiregular graph.

Theorem 3.10. [9] Let G € G, be a connected graph with minimum
degree §. Then

> ——(Lz(G) + F(G)) + (n(n — 1) — 2m)4,

with equality if and only if G 2 K,, or G2 KsV (n—0)K1(6 <n—1) or

G is a regular graph with diameter 2.

Theorem 3.11. [9] Let G € G,, with mazimum degree A. Then
Lz(G) > 4(n— 1 - A)ISI(G),

with equality if and only if G is a regular graph.
Theorem 3.12. [9] Let G € G,, with mazimum degree A. Then

Lz(G) < A2(n(n — 1) — SDD(G)),

with equality if and only if G is a regular graph.

Ghalavand et al. [18] gave some bounds for Lanzhou index by M;(G),

F(G), minimum degree § and maximum degree A.

Theorem 3.13. [18] Let G € G, 1. Then

L2(G) < /[0~ D)(n? — n— dm) + My(G)M{(G),
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with equality if and only if G is a regular graph.
Theorem 3.14. [18] Let G € G,,. Then

[(n — DM (G)]?

Lz(G) < AF(G)

”51 -reqular graph.

with equality if and only if G is a

Theorem 3.15. [18] Let G € Gy, 1, and G 2 K,,. Then

(n—1)2M1(GQ) + MXG) —2(n — 1)F(GQ) +2m(n — 1 — A)(n — 1 — §)
2(n—1) — (A+9) '

If G is not a regular graph and d,(G) € {a,b} for all v € V(G), then
we call G is a (a, b)-regular graph.

Lz(G) >

Theorem 3.16. [18] Let G € Gy, 1. Then

(i) Lz(G) Z2m((n —1)(26 + 1) +6(d + 1)) — (20 + 1) M1(G) — n(n —
1)6(0 +1);

(ii)) Lz(G) 2 2m((n—1)2A-1)+A(A—-1)) — (2A-1)M1(G) —n(n—
DAA+1);

(iii) Lz(G) <2m((n —1)(6 + A) +0A) — (6 + A)M1(G) — n(n — 1)JA.

With equalities if and only if G is a regular graph or (a,b)-regular graph.

Yang et al. [44] gave some bounds for Lanzhou index by HM (G), F(G),
SO(G), R(G), RR(G), SDD(G), SC(G) and RSC(G).
Theorem 3.17. [44] Let G € Gy, . Then

4<n_1>m2—HM(G)§Lz(G)§ (n—1)m n-3

- 5 + 5 HM(G),

with equalities if and only if G = K.

Theorem 3.18. [44] Let G € G,, 1, with mazimum degree A and minimum

degree §. Then

2
Lz(G)z(n1)m(g+Nﬁ+4ﬂA)+(n1)(1\6)50(@),

with equality if and only if G is a regular graph.
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Theorem 3.19. [44] Let G € G,, with minimum degree §. Then
Lz(G) < (n—1—V§)V250(G),

with equality if and only if G is an empty (edgeless) graph.

Theorem 3.20. [44] Let G € Gy, 1, with mazimum degree A and minimum
degree §. Then

2(6%(n — 1) = AHR(G) < Lz(G) < (A(m — 1)(n — 1) = *)R(Q),
with equalities if and only if G is a reqular graph and d,,(G)+d,(G) = m+1
for wv € E(G).

Theorem 3.21. [44] Let G € G, be a connected graph with mazimum
degree A and minimum degree §. Then

2A2

(2(n —1) = =—)RR(G) < Lz(G) < (V2(n - 1)(% + X))~ 2DRR(G),

D] e

1
with equalities if and only if G is a regular graph.

Theorem 3.22. [44] Let G € G, be a connected graph with mazimum

degree A and minimum degree §. Then

2(n — 1)As?

( n—1)(m+1)A
A% 462

20

~A?)SDD(G) < Lz(G) < (( —6%)SDD(G),

with equalities if and only if G is a regular graph and d,,(G)+d,(G) = m+1
for uwv € E(G).

Theorem 3.23. [44] Let G € Gy, be a connected graph with mazimum

degree A and minimum degree §. Then

V242
5

V24

(V2(n—1)5— A

JRSC(G) < Lz(G) < (V2(n—1)A—

JRSC(G),

with equalities if and only if G is a reqular graph.

Theorem 3.24. [44] Let G € G, ., be a connected graph with mazimum
degree A and minimum degree 5. Then (2v/2(n—1)82 —2A2,/2(m + 1))SC
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(@) < Lz(G) < ((n—1)(m + 1)2 — 2/263)SC(G), with equalities if and
only if G is a reqular graph and d,(G) + d,(G) = m+ 1 for wv € E(G).

Let G be a graph with n vertices and d,,;, = d;, then d; > dy > --- > d,,
denotes the degree sequence of G. The first Zagreb coindex M;(G) [13] of
a graph G is defined as M;(G) = Y. (dy + d,). Inverse degree index

w¢ E(G)
ID(G) [16] of a graph G is defined as ID(G) = Y. 4. Inverse degree
vev(a)
coindex ID(G) of a graph G is defined as ID(G) = Y. (3 + 2x)-
weV(G) v

Theorem 3.25. [31] Let G € Gy, withn > 2,6 > 1. Then
Lz(G) < (A+26)M,(G)+A8?*[(n—1)ID(G)—n]—6(2A+8)[n(n—1)—2m)],
with equality if and only if A=dy =+ =dy > diy1 =+ =dp, =96 for

somet, 1 <t<n-—1.

Theorem 3.26. [31] Let G € Gy 1y, with § > 1. Then
Lz(G) < (A +0)Mi(G) — Ad[(n — 1)?ID(G) — 2n(n — 1) + 2m],
with equality if and only if A =dy = -+ =dy > dpy1 =--- =d, =9 for

somet, 1 <t<n-—1.

Theorem 3.27. [31] Let G € Gy, ., with n > 3 vertices, 6 > 1. Then

A+§
AS
>((n—1)(n—2)—2m+35+A)>,

((n—1)(ID(G) — ) —n+2)2(Lz(Q) — (n— 1)(A% 4+ 6°) + A® 4+ 6°)

with equality if and only if A = dy > dy = -+ = dp—y > dy, = 6 or
TL*l:A:dlzzdt ZdH_l:"':dn—l
1<t<n—-2.

\%

d, = 6 for some t,

Theorem 3.28. [31] Let G € G, ,,, withn > 3, § > 1. The complement
graph G has ™ edges. Then

— n—1-A n—-1-9§

(ID(G) — I R J(Lz(G) — (n—1—A)A* — (n—1—6)
6%) > (2m —2(n — 1) + A +0)?,
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with equality if and only if A = dy > dy = -+ = dp_1 > d,, = 6 or
n—1=A=dy=---=dy >2diy1 = =dp-1>d, =0 for somet,
1<t<n-1.

Note that Lz(G) = F(G).

Theorem 3.29. [31] Let G € Gy, 4y, with § > 1. Then

VID(G)F(G) +1/ID(G)Lz(G) > n(n — 1),

with equality if and only if G is a regular graph.
Let § be the minimum degree of G.

Theorem 3.30. [31] Let G € Gy, with § > 1, 6>1. Then

VID(G)F(G) +\/ID(G)F(G) > n(n — 1),

VID(@)L(G) + \/ID@)L=(G) = n(n —1),

with equalities if and only if G is a regular graph.

4 Nordhaus-Gaddum-type results

In this section, we collect some Nordhaus-Gaddum-type results of Lanzhou

index.

Theorem 4.1. [42] Let G € G,,. Then

0 < Lz(G) 4 Lz(G) < ~n(n — 1)3,

»Jk\'—‘

with left equality if and only if G =2 K, or K,, with right equality if and
only if n is odd and G is a

-regular graph.
Theorem 4.2. [44] Let G € Gy . Then

0< L:(G) + L2(@) < 2m(n — 1)2 — T =1

n
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with left equality if and only if G =& K,,, with right equality if and only if
G is a regular graph.

Corollary 4.1. [44] Let G € G, . Then

m2(n—1)>2%n—-1- 2m)2.

0< Lz(G)Lz(G) < g

Liu et al. [31] obtained the Nordhaus-Gaddum type results [38] for

Lanzhou index of trees.

Theorem 4.3. [31] Let T € T,,. Then

(i) If n > 2, then Lz(T) 4+ Lz(T) > (n—1)(n —2)(2n — 2 — A);

(i) If n > 4, then Lz(T) + Lz(T) < (n — 1)(2(n — 1)2 — A2 — 2 —
(2(71*2)*5‘)2)}

n—3
with equality of (i) if and only if A=dy =+ =dy > dpy1 =+ =dy =
0 =1 for somet, 1 <t <n-—2, equality of (ii) if and only if T is a tree
suchthatA:dl ngi"':dn_gzdn_lidn:(sil.

Corollary 4.2. [31] Let T € T,, withn > 2. Then
(n—1)*(n —2) < Lz(T) + Lz(T) < 2(n—1)(n — 2)?,

with left equality if and only if T = S,,, right equality if and only if T = P, .

Further, Milovanovié et al. [37] also gave the Nordhaus-Gaddum results

of trees with respect to Lanzhou index.

Theorem 4.4. [37] Let T € T (n,A) with n > 4. Then

Lz(T) + Lz(T) >

(n—3)2(n—2)% = (2n — 3 — A)A)?

(n=Dn=2) + Al — 1= A) 4 S e e T A)

)7

with equality if and only if T = P, or S,.

5 Open problems

In [7], Alrowaili et al. determined the maximum and minimum the Lanzhou

index among all unicyclic graphs n vertices and k£ pendent vertices. This
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naturally motivates the investigation of extremal graphs with other given

parameters, which leads to the following open problems.

Problem 5.1. Characterize the extremal graphs with respect to the Lan-
zhou index among all unicyclic graphs with several given parameters, such

as matching number, domination number, and other graph invariants.

Problem 5.2. Determine the extremal values of the Lanzhou index among
all trees with several given parameters, such as matching number, domi-

nation number, branching number, and other graph invariants.

If TI(G) is the topological index of graph G, then TI(() is called the
ad-hoc version of TI(G). Based on this , Ali et al. [4] defined the ad-hoc
Lanzhou index, Lz(G) = 2 uev(G) du (d.)? = Lz(G). Tt is also interesting

to consider the properties of the ad-hoc Lanzhou index.
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