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Abstract

Let G be a graph. The Lanzhou index, alternatively known as
the forgotten coindex, is defined as Lz(G) =

∑
u∈V (G) dud

2
u, where

du (resp. du) represents the degree of vertex u in G (resp. G).
Research findings substantiate that the Lanzhou index demon-

strates enhanced predictive capability compared to both the first
Zagreb index and the forgotten index in modeling the logarithmic
octanol-water partition coefficient for structural isomers of octane
and nonane. This review aims to systematically compiling current
extremal results and bounds related to the Lanzhou index. Finally,
we outline several open problems as directions for future research.
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1 Introduction

Let G = (V,E) be a graph with vertex set V (G), edge set E(G), order n =

|V (G)|, and size m = |E(G)|. For adjacent vertices u and v in G, we write

uv ∈ E(G). The open neighborhood NG(u) = {v | uv ∈ E(G)} determines

the degree du(G) = |NG(u)|. The complement graph G = (V,E) satisfies

E = {uv | uv /∈ E(G)}. The graph is called k-regular graph if du(G) = k

for all u ∈ V (G). If G is not a regular graph and dv(G) ∈ {a, b} for

all v ∈ V (G), then we call G is a (a, b)-regular graph. Let Kn1,n2
be a

complete 2-partite graph with n1 + n2 vertices. Let ∆(G) = max{du|u ∈
V (G)} and δ(G) = min{du|u ∈ V (G)}. The path, star, cycle with n

vertices are denoted as Pn, Sn, and Cn, respectively. For a degree sequence

π(G) = (d1, d2, . . . , dn), we assume d1 ≥ d2 ≥ · · · ≥ dn where di = dvi

corresponds to vertex vi ∈ V (G) = {v1, v2, . . . , vn}. For degree sequences

with multiplicities, the notation a(b) is used to signify that the integer a is

repeated b times throughout the sequence. The join graph G ∨H of two

graphs G and H is the graph with vertex set V (G ∨H) = V (G) ∪ V (H)

and edge set E(G ∨ H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (G)}.
The corona product G ◦H of two graphs G and H is the graph obtained

by taking one copy of G (with n1 vertices) and n1 copies of H (with n2

vertices), and then joining the i-th vertex of G to every vertex in the i-

th copy of H. Let G□H be the Cartesian product of two graphs G and

H. The vertex set of G□H is consisted of all ordered pairs (u, v) where

u ∈ V (G) and v ∈ V (H). Two distinct vertices (u1, v1) and (u2, v2) are

adjacent in G□H if and only if (1) u1 = u2 and v1v2 ∈ E(H) or (2) v1 = v2

and u1u2 ∈ E(G). A vertex subset S ⊆ V (G) is called an independent set

if the induced subgraph G[S] contains no edges. The independence number

α(G) is defined as the maximum cardinality among all independent sets in

G. Any symbols and terms utilized without prior definition are assumed

to follow the conventions outlined in Bondy and Murty [10].

Vertex-degree-based topological indices have been extensively studied

in both mathematical and chemical literature. The First Zagreb index

M1(G) [22] and second Zagreb index M2(G) [21] of a graph G are defined
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as

M1(G) =
∑

v∈V (G)

d2v =
∑

uv∈E(G)

(du + dv), (1)

M2(G) =
∑

uv∈E(G)

dudv. (2)

The Forgotten index F (G) [17] of a graph G is defined as

F (G) =
∑

v∈V (G)

d3v =
∑

uv∈E(G)

(d2u + d2v). (3)

The Lanzhou index† was introduced by Vukičević et al. [41]

Lz(G) =
∑

u∈V (G)

dud
2
u, (4)

where du represents the degree of vertex u in G.

Since du = n − 1 − du, Lanzhou index of G is a linear combination of

M1(G) and F (G). That is

Lz(G) = (n− 1)M1(G) + F (G). (5)

The forgotten coindex (F -coindex) [15,26] is defined as

F (G) =
∑

uv/∈E(G)

(d2u + d2v). (6)

Since
∑

uv/∈E(G)

(d2u + d2v) =
∑

u∈V (G)

(n− du)d
2
u, then Lz(G) = F (G).

The vertex-degree-based topological indices have the following general

form

TI(G) =
∑

uv∈E(G)

f(du, dv), (7)

where f(x, y) denotes a non-negative real-valued symmetric function of x

and y.

†The term “Lanzhou” originates from a city in China. It was chosen because the ini-
tial research and discovery of this index (see details in [41]) were conducted in Lanzhou,
China.
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In Table 1, we list some vertex-degree-based topological indices which

is used in this paper.

Table 1. Some indices considered in the present review.

Function f(x, y) Equation (7) corresponds to Symbol
x+ y first Zagreb index [22] M1

xy second Zagreb index [21] M2

1/
√
xy Randić index [32] R√
xy reciprocal Randić index [20] RR√

x2 + y2 Sombor index [19] SO
x2 + y2 forgotten topological index [17] F

2xy/(x+ y) inverse sum indeg index [40] ISI
|x− y| irregularity index [1] irr

y/x+ x/y symmetric division deg index [39] SDD
(x+ y)2 hyper-Zagreb index [8] HM

1√
x+y

sum-connectivity index [46] SC√
x+ y reciprocal sum-connectivity index [46] RSC

The structure of this paper is as follows: Section 2 provides a sum-

mary of the extremal results and bounds related to the Lanzhou index.

Section 3 explores the connections between the Lanzhou index and other

indices. Section 4 examines Nordhaus-Gaddum-type results concerning

the Lanzhou index. Section 5 proposes several open problems for future

research on the Lanzhou index.

2 Extremal results and bounds

In this section, we present the extremal results concerning the Lanzhou

index for graphs. Let Gn be a class of graphs with n vertices. Let Gn,m be

a class of graphs with n vertices and m edges.

2.1 Simple graphs

Vukičević [41] gave the upper and lower bounds for Lz(G) of a graph.
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Theorem 2.1. [41] Let G ∈ Gn. Then

0 ≤ Lz(G) ≤ 4

27
n(n− 1)3.

The equality on the left is satisfied if and only if G ∼= Kn or nK1. The

equality on the right is satisfied if and only if G is k-regular with k =
2
3 (n− 1) and n ≡ 1 (mod 3).

Theorem 2.2. [18] Let G ∈ Gn,m be a triangle-free graph. Then

Lz(G) ≤ (n− 1− δ)nm,

with equality if and only if G is a n
2 -regular graph.

Theorem 2.3. [44] Let Kn1,n2
be a complete 2-partite graph with n(=

n1 + n2) vertices. Then

Lz(Kn1,n2
) ≤

n3(n− 1), if n is even

1
4 (n

2 − 1)(n− 2), if n is odd
,

with equality if and only if n1 = ⌈n
2 ⌉ and n2 = ⌊n

2 ⌋.

Yang et al. [44] gave the upper and lower bounds for the Lanzhou index

Lz(G) with respect to the number of vertices n, maximum degree ∆ and

minimum degree δ.

Theorem 2.4. [44] Let G ∈ Gn with maximum degree ∆ and minimum

degree δ. Then

nδ2(n− 1−∆) ≤ Lz(G) ≤ n∆2(n− 1− δ),

with both equalities if and only if G is a regular graph.

Theorem 2.5. [44] Let G ∈ Gn with maximum degree ∆, minimum degree

δ and n− 1 = 2∆. Then

Lz(G) ≤


n∆
2 (δ2 + (n− 1− δ)2), if δ +∆ ≤ n− 1

n∆
2 (∆2 + (n− 1−∆)2), if δ +∆ ≥ n− 1

,
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with equality if and only if G is a ∆-regular graph.

Theorem 2.6. [44] Let G ∈ Gn,m with maximum degree ∆ and minimum

degree δ. Then

2m(δ(n− 1)−∆2) ≤ Lz(G) ≤ m(n− 1)2

2
,

with both equalities if and only if n is even and du(G) = du(G) for all

u ∈ V (G).

Theorem 2.7. [44] Let G ∈ Gn and du(G) = ∆ or δ for any u ∈ V (G).

Then

n(n− 1)− n∆3 ≤ Lz(G) ≤ n(n− 1)− nδ3,

with both equalities if and only if G is a regular graph.

Theorem 2.8. [9] Let G ∈ Gn,m be a connected graph with maximum

degree ∆ and minimum degree δ. Then

(n− 1)δ −∆2 ≤ Lz(G)

2m
≤ (n− 1)∆− δ2,

with both equalities if and only if G is a regular graph.

2.2 Trees

Let Tn be a class of trees with n vertices. Let Sn1,n2 be the double star

graph with n = n1 + n2 vertices.

Theorem 2.9. [41] Let n ≥ 15 and T ∈ Tn. Then

(n− 1)(n− 2) ≤ Lz(T ) ≤


n3

4 + n2

2 − 4n+ 4, if n is even

n3

4 + n2

2 − 17
4 n+ 7

2 , if n is odd
.

The left equality holds if and only if T ∼= Sn. The right equality holds if

and only if T ∼=

Sn
2 ,n2

, if n is even

S(n−1)/2,(n+1)/2, if n is odd
.
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In [41], authors also investigate the extremal values of the Lanzhou

index for Tn when 4 ≤ n ≤ 14.

The broom graph Yn,k, constructed from the star Sk, is formed by

replacing one of its pendent edges with a path of length n−k. Subsequent

research by Amin et al. [5] determined the trees with the smallest, second-

smallest, and third-smallest Lanzhou index.

Theorem 2.10. [5] Let T ∈ Tn. Then

(i) If n > 3, then the star Sn achieves the smallest Lanzhou index.

(ii) If n > 5, then the broom graph (also called comet) Yn,n−2 achieves

second smallest Lanzhou index.

(iii) If n > 9, then the broom graph (also called comet) Yn,n−3 achieves

third smallest Lanzhou index.

Liu et al. [31] establish some bounds for Lanzhou index of trees.

Theorem 2.11. [31] Let T ∈ Tn. Then

(i) If n ≥ 4, then F (T ) + Lz(T ) ≥ (n− 1)(∆2 + 2 + (2(n−2)−∆)2

n−3 );

(ii) If n ≥ 2, then F (T ) + Lz(T ) ≤ (n− 1)(2(n− 1) + (n− 2)∆),

with equality of (i) if and only if T is a tree such that ∆ = d1 ≥ d2 = · · · =
dn−2 ≥ dn−1 = dn = δ = 1, equality of (ii) if and only if ∆ = d1 = · · · =
dt ≥ dt+1 = · · · = dn = δ = 1 for some t, 2 ≤ t ≤ n− 1.

Theorem 2.12. [31] Let T ∈ Tn. Then

2(n− 1)(2n− 3) ≤ F (T ) + Lz(T ) ≤ n(n− 1)2,

with left equality if and only if T ∼= Pn, right equality if and only if T ∼= Sn.

Theorem 2.13. [31] Let T ∈ Tn. Then

(i) If n ≥ 4, then F (T ) + Lz(T ) ≥ (n− 1)((n− 1)2(n− 4) + ∆2 + 2 +
(2(n−2)−∆)2

n−3 );

(ii) If n ≥ 2, then F (T )+Lz(T ) ≤ (n− 1)((n− 1)2(n− 4)+2(n− 1)+

(n− 2)∆),

with equality of (i) if and only if T is a tree such that ∆ = d1 ≥ d2 = · · · =
dn−2 ≥ dn−1 = dn = δ = 1, equality of (ii) if and only if ∆ = d1 = · · · =
dt ≥ dt+1 = · · · = dn = δ = 1 for some t, 2 ≤ t ≤ n− 1.
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Corollary 2.1. [31] Let T ∈ Tn. Then

(n− 1)(n− 2)(n2 − 4n+ 5) ≤ F (T ) + Lz(T ) ≤ (n− 1)2(n− 2)2,

with left equality if and only if T ∼= Pn, right equality if and only if T ∼= Sn.

Wang et al. [42] established exact expressions for the Lz(G) of trees

with given some specified diameters.

Theorem 2.14. [42] Let Pℓ(m1,m2, · · · ,mℓ) be as the graph constructed

from the path Pℓ by attaching mi pendent edges to the i-th vertex of Pℓ for

i ∈ {1, 2, · · · , ℓ}. Then

Lz(Pℓ(m1,m2, · · · ,mℓ)) =m(n− 2) +
∑
i=1,ℓ

(n−mi − 2)(mi + 1)2

+

r−1∑
i=2

(n−m1 − 3)(m1 + 2)2,

where m =
ℓ∑

j=1

mj and n = m+ r.

By majorization techniques, Wei et al [43] subsequently determined the

maximum Lanzhou index among trees with given diameter d ≥ 8.

Theorem 2.15. [43] Let T ∈ Tn with diameter d ≥ 8 and maximal

Lanzhou index.

(i) If 8 ≤ d ≤ n+10
3 , then π(T ) = (⌈n+3−d

2 ⌉, ⌊n+3−d
2 ⌋, 2(d−3), 1(n+1−d));

(ii) If d = n+11
3 , then π(T ) = (d1, n+ 3− d− d1, 2

(d−3), 1(n+1−d));

(iii) If n+12
3 ≤ d ≤ n− 1, then π(T ) = (n+ 1− d, 2(d−2), 1(n+1−d)).

Let T ∆
n denote the family of all n-vertex trees with maximum degree

at most ∆.

Theorem 2.16. [41] Let n ≥ 8 and T ∈ T 3
n . Then

4n2 − 18n+ 20 ≤ Lz(T ) ≤ 5n2 − 27n+ 34− (n− 7)
1− (−1)n

2
.

The left equality holds if and only if T ∼= Pn. The right equality holds by

any tree that without vertices of degree 2 if n is even, and for any tree

featuring exactly one vertex of degree 2 if n is odd.



739

Theorem 2.17. [41] Let n ≥ 8 and T ∈ T 4
n . Then

4n2 − 18n+ 20 ≤ Lz(T ) ≤ 6n2 +O(n).

The left equality holds if and only if T ∼= Pn. The greatest value of Lz(T )

is attained by trees with the most possible vertices of degree 4.

Let T (n,∆) denote the family of all n-vertex trees with maximum

degree ∆. A spider is formally characterized as a tree containing at most

one vertex of degree greater than 2, which is designated as the spider’s

center [14].

Theorem 2.18. [14] Let n ≥ 11 and T ∈ T (n,∆). Then

Lz(T ) ≥ (n−∆− 1)(4n+∆2 − 12) + ∆(n− 2),

with equality if and only if T is a spider.

Theorem 2.19. [37] Let n ≥ 4 and T ∈ T (n,∆). Then

Lz(T ) ≥ 2(n− 2) + (n− 1−∆)∆2 +
(2(n− 2)2 − (2n− 3−∆)∆)2

n2 − 6n+ 7 +∆
,

with equality if and only if T ∼= Sn or Pn.

Theorem 2.20. [37] Let n ≥ 4 and T ∈ T (n,∆). Then

Lz(T ) ≥ 2(n− 2)2 +∆(n− 1−∆)2 +
(2(n− 2)2 − (2n− 3−∆)∆)2

2(n− 2)−∆
,

with equality if and only if T ∼= Sn or Pn.

Li et al. [29] obtained the upper bounds on Lz(T ) for T ∈ T (n,∆).

Theorem 2.21. [29] Let T ∈ T (n,∆).

(I) For 2 ≤ ∆ < n+2
3 and n ≡ i+ 1 (mod ∆− 1), where 1 ≤ i ≤ ∆− 1,

Lz(T ) ≤ 1

∆− 1
[(−n+ 1 + i)∆3 + (n− 1)(n− 1− i)∆2

+ (n2 + ni2 − i2 − i3 − 3n+ 2)∆− (n− 2)(n− 1)

− (n− 1− i)(i2 + n− 2)].
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with equality if and only if π(T ) = (∆,∆, · · · ,∆︸ ︷︷ ︸
n−1−i
∆−1

, i, 1, 1, · · · , 1︸ ︷︷ ︸
n−n−1−i

∆−1 −1

).

(II) For n+2
3 ≤ ∆ ≤ n+5

3 .

(i) If n ≡ 0 (mod 3), then

Lz(T ) ≤ −3∆2 + (3n+ 3)∆2 − (4n+ 2)∆ + n2 − 3n+ 6,

with equality if and only if π(T ) = (∆,∆− 1,∆− 1, 1, 1, · · · , 1︸ ︷︷ ︸
n−3

).

(ii) If n ≡ 1 (mod 3) and ∆ = n+2
3 (n ̸= 7), then

Lz(T ) ≤ −3∆3 + 3n∆2 − (2n+ 1)∆ + n2 − 4n+ 6,

with equality if and only if π(T ) = (∆,∆,∆− 1, 1, 1, · · · , 1︸ ︷︷ ︸
n−3

).

If n = 7, then Lz(T ) ≤ 90 with equality if and only if π(T ) = (3, 3, 2, 1,

1, 1, 1) or π(T ) = (3, 2, 2, 2, 1, 1, 1).

(iii) If n ≡ 1 (mod 3) and ∆ = n+5
3 , then

Lz(T ) ≤ −3∆3 + (3n+ 9)∆2 − (8n+ 40)∆ + n2 + 11n+ 54,

with equality if and only if π(T ) = (∆,∆,∆ − 4, 1, 1, · · · , 1︸ ︷︷ ︸
n−3

) or π(T ) =

(∆,∆− 1,∆− 3, 1, 1, · · · , 1︸ ︷︷ ︸
n−3

) or π(T ) = (∆,∆− 2,∆− 2, 1, 1, · · · , 1︸ ︷︷ ︸
n−3

).

(iv) If n ≡ 2 (mod 3), then

Lz(T ) ≤ −3∆3 + (3n+ 6)∆2 − (6n+ 9)∆ + n2 + 10,

with equality if and only if π(T ) = (∆,∆− 1,∆− 2, 1, 1, · · · , 1︸ ︷︷ ︸
n−3

).

(III) If n+5
3 < ∆ ≤ n

2 , then

Lz(T ) ≤ 6∆3 − 6(n+ 3)∆2 + 2(n2 + 6n+ 5)∆− n2 − 9n+ 4,

with equality if and only if π(T ) = (∆,∆, n+ 1− 2∆, 1, 1, · · · , 1︸ ︷︷ ︸
n−3

).
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(IV) If n+1
2 ≤ ∆ ≤ n− 1, then

Lz(T ) ≤ −(n+ 2)∆2 + (n2 + 2n)∆− 4n+ 4,

with equality if and only if π(T ) = (∆, n−∆, 1, 1, · · · , 1︸ ︷︷ ︸
n−2

).

Let T (n,∆,∆′) denote the set of n-vertex trees with maximum degree

∆ and second maximum degree ∆′. A vertex v is called as a branching

vertex if dv ≥ 3. A double spider is formally defined as a tree containing

precisely two branching vertices. Saha [33] established an extension of the

results originally presented by Dehgardi and Liu [14].

Theorem 2.22. [33] Let n ≥ 11 and T ∈ T (n,∆,∆′). Then

Lz(T ) ≥ (n−1)(∆2+(∆′)2)−(∆3+(∆′)3)−(3n−10)(∆+∆′)+(4n2−14n+4).

The equality holds if and only if T is a double spider with the degrees of

two branching vertices ∆ and ∆′.

2.3 Unicyclic graphs and c-cyclic graphs

Let Un be a class of unicyclic graphs with n vertices. The authors of

[24,29,30] independently determined the minimum Lanzhou index among

Un.

Theorem 2.23. [24, 29,30] Let G ∈ Un with n ≥ 3. Then

Lz(G) ≥ n2 + 3n− 18,

with equality if and only if G ∼= S+
n , where S+

n is the graph obtained from

Sn by adding one edge between its two pendent vertices.

Let Un(a, b, c) denote the unicyclic graph constructed from a triangle

C3 by appending a, b, and c pendent vertices to its three distinct vertices

respectively, where a+ b+ c+ 3 = n.

Theorem 2.24. [30] Among the unicyclic graphs with n vertices.
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(i) If 11 ≤ n ≤ 26, the maximal Lanzhou index is achieved by the

unicyclic graph Un(a1, a2, a3) with a1 + a2 + a3 + 3 = n and max
1≤i<j≤3

|ai −
aj | ≤ 1.

(ii) If n = 27, the maximal Lanzhou index is achieved by U27(12, 12, 0)

or U27(8, 8, 8).

(iii) If n ≥ 28, the maximal Lanzhou index is achieved by the graph

Un

(⌈
n−2
2

⌉
− 1,

⌊
n
2

⌋
− 1, 0

)
.

Through distinct methodological approaches, Li et al. [29] and Imran

et al. [24] independently established rigorous characterizations of maximal

Lanzhou index for unicyclic graphs with n ≥ 28 vertices. Complementing

these results, Liu et al. [30] conducted a complete characterization of ex-

tremal unicyclic graphs attaining maximal Lanzhou index for 3 ≤ n ≤ 10.

Let G′ ∈ Un be the unicyclic graphs obtained from Cn−k by attaching

k pendent vertices to one vertex of Cn−k. Let G′′ ∈ Un be the unicyclic

graphs obtained from Cn−k by attaching k pendent vertices to different k

vertex of Cn−k. In [7], Alrowaili et al. established a complete characteri-

zation of maximal and minimal Lanzhou indices among Un with k pendent

vertices.

Theorem 2.25. [7] Let G ∈ Un with k pendent vertices. Then

4n(n− 3)− k2(k+7)− k(6− nk) + nk ≤ Lz(G) ≤ 2(nk+2n2 − 7k− 6n),

with left equality if and only if G ∼= G′, right equality if and only if G ∼= G′′.

By majorization techniques, Wei et al. [43] subsequently established the

maximal Lanzhou index for unicyclic graphs with given diameter d ≥ 9

and n ≥ 3d− 8. Let C3(n, d, i) be the graph obtained from C3 = z1z2z3z1

by attaching the path Pi and ⌈n−d−2
2 ⌉ isolated vertices to vertex z1, and

then attaching the path Pd−i−1 and ⌊n−d−2
2 ⌋ isolated vertices to vertex z2.

Let C4(n, d, i) be the graph obtained from C4 = z1z2z3z4z1 by attaching

the path Pi and ⌈n−d−2
2 ⌉ isolated vertices to vertex z1, and then attaching

the path Pd−i−2 and ⌊n−d−2
2 ⌋ isolated vertices to vertex z3.

Theorem 2.26. [43] Let G be a unicyclic graph with maximum Lanzhou

index among unicyclic graphs with n vertices and diameter d ≥ 8. If
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d ≥ 9 and n ≥ 3d − 8, then G ∈ {C3(n, d, 1), C3(n, d, 2), · · · , C3(n, d,

d− 2), C4(n, d, 1), C4(n, d, 2), · · · , C4(n, d, d− 3)}.

Let Un,∆ be the class of unicyclic graphs with maximum ∆. Let G ∈
Un,∆ and C be the unique cycle of G. If G − E(C) is some independent

vertices and a spider, which center is on cycle C and has ∆− 2 legs, then

such graph is denoted by US
n,∆.

Theorem 2.27. [11] Let G ∈ Un,∆ with maximum Lanzhou index and

n ≥ 11. Then

Lz(G) ≥ 4(n− 3)(n−∆+ 1) +∆2(n−∆− 1) + (n− 2)(∆− 2),

with equality if and only if G ∈ US
n,∆.

Theorem 2.28. [9] Let G ∈ Un,∆ with ∆(G) = 4 and n ≥ 8. Then

Lz(G) ≤ 6n2 +O(n).

Let Fc denote the graph constructed by merging c triangles at a com-

mon vertex, known as Dutch windmill graphs. Lan et al. [28] subsequently

characterized maximal and minimal Lanzhou indices for c-cyclic graphs

with n vertices.

Theorem 2.29. [28] Let G be a c-cyclic graph with n vertices. If n ≥ 3c+4

and c ≥ 1, then

Lz(G) ≥ (n− 1)(n− 2) + 2c(3n− 10),

with equality if and only if G ∼= H0, where H0 denotes the graph constructed

from Fc by appending n − 2c − 1 pendent vertices to the unique vertex of

degree 2c.

Theorem 2.30. [28] Let G be a c-cyclic graph with n vertices. If 3 ≤
c ≤ n

13 , then Lz(G) ≤ Lz(G0), with equality if and only if G ∼= G0, where

G0 is the graph constructed from W0 (see Figure 1) by appending
⌊
n−c−2

2

⌋
pendent vertices to vertex v1 and

⌈
n−c−2

2

⌉
pendent vertices to vertex v2.
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Theorem 1. Let G be a c-cyclic graph with n vertices. If n ≥ 3c+ 4 and

c ≥ 1, then

Lz(G) ≥ Lz(H0) = (n− 1)(n− 2) + 2c(3n− 10),

where equality holds if and only if G = H0.

wc

W0
v1

v2

w1 w2

Figure 1. The graph W0.

For c ≥ 0, let G0 be the c-cyclic graph with n vertices, which is obtained

from W0 (see Figure 1) by attaching ⌈0.5(n− c− 2)⌉ and ⌊0.5(n− c− 2)⌋
pendent vertices to v1 and v2, respectively. The following is the second

main result of this paper.

Theorem 2. If 3 ≤ c ≤ n
13 and G is a c-cyclic graph with n vertices, then

Lz(G) ≤ Lz(G0), where the equality holds if and only if G = G0.

Let G be the tricyclic graph with 38 vertices, which is obtained from the

complete graph K4 with four vertices by attaching 11, 11 and 12 pendent

vertices to each of three vertices of K4, respectively. By an elementary

computation, we have Lz(G) = 15496 > 15464 = Lz(G0) for n = 38 and

c = 3. Thus, the bound n
13 of Theorem 2 is best possible.

For a graph category G, if Lz(G) is maximum (respectively, minimum)

in G, then we call G as a maximum (respectively, minimum) extremal

graph of G. Vukičević et. al. [13] showed that G0 is the unique maximum

extremal graph of trees with n ≥ 15 vertices, Liu et. al. [11] proved that

G0 is the unique maximum extremal graph of unicyclic graphs with n ≥ 28

vertices, and Liu [10] identified that G0 is the unique maximum extremal

Figure 1. The graph W0 [28].

2.4 Chemical graphs

Let GH(m, k1, k2, k3, k4) (see Figure 2) be a general hexagonal system [27],

where m ≥ 1 is the number of benzenoids in the lowest layer, 0 ≤ k1 ≤
k3 ≤ m, 0 ≤ k4 ≤ k2 ≤ m and k1 + k2 = k3 + k4. In [42], Wang et al.

calculated Lanzhou index of GH(m, k1, k2, k3, k4).

Figure 1. A general hexagonal system GH(m, k1, k2, k3, k4).

and 2(m+ k1− 1) + 1 on the highest layer. Then the number of vertices of degree 3 in T

is
∑k1

j=1

(
2(m+ j−1) + 1

)
= k1(2m+k1). Similarly, the number of vertices of degree 3 in

T ′ is k4(2m+ 2k1 − k4). Since P is a parallelogram and the number of vertices on every

layer is 2(m + k1), it follows that the number of all vertices in P is 2(m + k1)(k3 − k1),

and hence the number of all vertices of degree 3 in GH(m, k1, k2, k3, k4) is

2m(k1 + k2 + 1) + k1(k1 + 2k2 + 1)− k4(k4 + 1)− 2.

Furthermore, the number of vertices of degree 2 on the bound of GH(m, k1, k2, k3, k4)

is m+ 2 + k1 + 1 + k2 + 1 + k3 + 1 + k4 + 1 +m+ k1 − k4 − 2 = 2m+ 3k1 + 2k2 − k4 + 4.

Then the result follows.

Due to parallelogram, trapezium, bitrapezium and corona hexagonal systems [7] de-

noted by P (m,n), T (m,n), BT (m, k1, k2) and Hm are the special cases of general hexago-

nal system, that is, P (m,n) = GH(m, 0, n−1, n−1, 0), T (m,n) = GH(m, 0, n−1, 0, n−

1), BT (m, k1, k2) = GH(n− k1, k1, k2, k1, k2) and Hm = GH(m,m− 1,m− 1,m− 1,m−

1) = BT (2m− 1,m− 1,m− 1), and so Corollaries 2, 3 and 4 are immediate.

-111-

Figure 2. A general hexagonal system GH(m, k1, k2, k3, k4) [27].

Theorem 2.31. [42] Let m ≥ 1, 0 ≤ k1 ≤ k3 ≤ m, 0 ≤ k4 ≤ k2 ≤ m and

k1 + k2 = k3 + k4. Then

Lz(GH(m, k1, k2, k3, k4)) = 9n3(n2 + n3 − 4) + 4n2(n2 + n3 − 3),

where n3 = 2m(k1 + k2 + 1) + k1(k1 + 2k2 + 1) − k4(k4 + 1) − 2 and

n2 = 2m+ 3k1 + 2k2 − k4 + 4.
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In hexagonal systems, a vertex is called an internal vertex if the vertex

shared by three hexagons. The hexagonal system without internal vertices

is called a catacondensed hexagonal system.

Theorem 2.32. [42] Let HSn be a catacondensed hexagonal system with

n hexagons. Then Lz(HSn) = 104n2 − 52n+ 20.

In [18], Ghalavand et al. ordered the chemical graphs with respect

to Lanzhou index. They determined the first twenty-six chemical trees

for n ≥ 22, the first thirty-five chemical unicyclic graphs for n ≥ 24,

the first thirty-three chemical bicyclic graphs for n ≥ 22, the first thirty-

nine chemical tricyclic graphs for n ≥ 24, the first thirty-three chemical

tetracyclic graphs for n ≥ 22, the first thirty-seven chemical pentacyclic

graphs for n ≥ 24. Further, they determined the first forty-two chemical

graphs for n ≥ 22.

Ali et al. [3] determined the graphs with minimum Lanzhou index

among connected chemical (n,m)-graphs, where n and m satisfy the con-

ditions 3n ≥ 2m,n ≥ 4,m ≥ n+ 1.

Theorem 2.33. [3] Let n and m be fixed integers satisfying the conditions

3n ≥ 2m,n ≥ 4,m ≥ n + 1. Then among all connected chemical (n,m)-

graphs, those with maximum degree 3 and minimum degree at least 2 attain

the minimum Lanzhou index.

2.5 Graph operations

Bera and Das [9] computed the Lanzhou index of corona and joined graphs.

Theorem 2.34. [9] Let G and H be two graphs with |V (G)| = n1, |V (H)|
= n2, |E(G)| = m1 and |E(H)| = m2. Then

Lz(G ∨H) =Lz(G) + Lz(H) + 4n2(n1 − 1)m1 + 4n1(n1 − 1)m2

− 2n2M1(G)− 2n1M1(H) + n1n2(2n1n2 − n1 − n2)

− 2n2
2m1 − 2n2

1m2.
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Theorem 2.35. [9] Let G and H be two graphs with |V (G)| = n1, |V (H)|
= n2, |E(G)| = m1 and |E(H)| = m2. Then

Lz(G ◦H) =Lz(G) + n1Lz(H) + 2n2(2n1n2 + 2n1 − 3n2 − 2)m1

− 3n2M1(G) + n1n
2
2(n1 − 1)(n2 + 1)− 3n1M1(H)

+ 2n1(2n1n2 + 2n1 − 5)m2 + n1n2(n1n2 + n1 − 2).

Denote by R(G) the graph obtained from G by adding a new vertex

corresponding to each edge of G and connecting every new vertex to the

end vertices of corresponding edge [12]. The balanced double star with n

vertices is either Sn
2 ,n2

when n is even or Sn+1
2 ,n−1

2
when n is odd. Let BSn

be the balanced double star with n vertices. Let n be odd and Tn+1
2

be a

tree with n+1
2 vertices. Zeng et al. [45] obtained the sharp upper bound of

Lanzhou index of R
(
Tn+1

2

)
.

Theorem 2.36. [45] Let n be odd and R
(
Tn+1

2

)
a graph with n ≥ 27

vertices. Then

Lz
(
R
(
Sn+1

2

))
≤ Lz

(
R
(
Tn+1

2

))
≤ Lz

(
R
(
BSn+1

2

))
.

It was also shown that the result of Theorem 2.36 is not true for n ≤ 26.

The Cartesian product [10] is a widely studied operation in graph theory.

Wang et al. [42] calculated Lanzhou index of Cartesian product graphs.

Theorem 2.37. [42] Let
k∏

j=1

Pmj+2 = Pm1+2□Pm2+2□ · · ·□Pmk+2 be the

Cartesian product of paths {Pmj+2}kj=1, where k is a positive integer and

mj is a non-negative integer for j = 1, 2, · · · , k. Then

Lz

 k∏
j=1

Pmj+2

 =

k∑
d=0

(n− 1− k − d)(k + d)22k−d
∑

J∈[k]d

∏
j∈J

mj ,

where [k]d = {S : S ⊆ {1, 2, · · · , k} and |S| = d} and n =
k∏

j=1

(mj + 2).

Especially, if mj = 0 for j = 1, 2, · · · , k, hence ∆ = k, then the Carte-

sian product is a k-dimension cube, and Lanzhou index is 2kk2(2k−k−1);
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if mj = m > 0 for j = 1, 2, · · · , k, hence ∆ = 2k, then Lanzhou index is

k∑
d=0

((m+ 2)k − 1− k − d)(k + d)22k−d

(
k

d

)
md.

De et al. [15] investigated Lanzhou index under several graph opera-

tions such as union, join, Cartesian product, composition, tensor product,

strong product, corona product, symmetric difference of graphs. Other

results about Lanzhou index of the operations on graphs can be found

in [6, 36]. Jahanbani et al. [25] also obtained some bounds for Lanzhou

index, most of the bounds are not sharp. The chemical applications of

Lanzhou index can be found in [2, 15,30].

3 Relations between Lanzhou index

and other indices

In this section, we present the relations between Lanzhou index and other

indices. Hua et al. [23] systematically investigated the interrelations among

three degree-based topological indices, namely, the Lanzhou index Lz(G),

the second Zagreb index M2(G), and the forgotten index F (G).

Theorem 3.1. [23] Let G ∈ Gn with independence number α(G). Then

Lz(G) ≥ F (G)− 2αM2(G),

with equality if and only if G ∼= Kn or Kn.

Theorem 3.2. [23] Let G ∈ Gn. Then

Lz(G) ≥ 2M2(G)− F (G),

with equality if and only if G ∼= Kn or Kn.

Theorem 3.3. [23] Let T ∈ Tn with n ≥ 3. Then

Lz(T ) ≥ 3M2(T )− F (T ),
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with equality if and only if T ∼= P3.

The eccentricity of a vertex v is defined as eccG(v) = max{dG(u, v)|u ∈
V (G)}. The radius of a graph is defined as r(G) = min{eccG(v)|v ∈
V (G)}. The eccentric connectivity index [35] of a graph G is defined as

ξc(G) =
∑

u∈V (G)

dueccG(u). The Schultz index [34] of a graph G is defined

as SI(G) = 1
2

∑
{u,v}⊆V (G)

(du+dv)dG(u, v). Bera et al. [9] gave some bounds

for Lanzhou index byM1(G), M2(G), ξc(G), irr(G), SI(G), F (G), ISI(G)

and SDD(G).

Theorem 3.4. [9] Let G ∈ Gn. Then

Lz(G) ≥ (r(G)− 1)M1(G),

with equality if and only if G ∼= Kn or G ∼= Kn − n
2K2 (n is even).

Theorem 3.5. [9] Let G ∈ Gn. If du + dv ≥ n for any uv ∈ E(G), then

Lz(G) ≤ 2M2(G)−M1(G).

Theorem 3.6. [9] Let G ∈ Gn with maximum degree ∆ and minimum

degree δ. Then

Lz(G) ≤ (n− 1)M1(G)− 2M2(G),

with equality if and only if every connected component of G is regular.

Moreover,

(n− 1−∆)M1(G) ≤ Lz(G) ≤ (n− 1− δ)M1(G),

with equality if and only if G is a regular graph.

Theorem 3.7. [9] Let G ∈ Gn with minimum degree δ. Then

Lz(G) ≥ δξc(G)−M1(G),

with equality if and only if G ∼= Kn or G ∼= Kn − n
2K2 (n is even).
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Theorem 3.8. [9] Let G ∈ Gn be a connected graph with minimum degree

δ. Then
2(n− 2)

∆
M2(G) ≤ Lz(G) ≤ 2(n− 2)

δ
M2(G),

with equality if and only if G is a regular graph.

Theorem 3.9. [9] Let G ∈ Gn,m be a connected graph with maximum

degree ∆ and minimum degree δ. Then

(n− 1)M1(G) ≤ irr(G)2 +Lz(G) + 2M2(G) ≤ (n− 1)M1(G) + 2

(
m

2

)
(∆− δ)2,

with left equality if and only if G is a regular graph, right equality if and

only if G is a regular graph or a bipartite semiregular graph.

Theorem 3.10. [9] Let G ∈ Gn,m be a connected graph with minimum

degree δ. Then

SI(G) ≥ 1

2(n− 1)
(Lz(G) + F (G)) + (n(n− 1)− 2m)δ,

with equality if and only if G ∼= Kn or G ∼= Kδ ∨ (n− δ)K1(δ < n− 1) or

G is a regular graph with diameter 2.

Theorem 3.11. [9] Let G ∈ Gn with maximum degree ∆. Then

Lz(G) ≥ 4(n− 1−∆)ISI(G),

with equality if and only if G is a regular graph.

Theorem 3.12. [9] Let G ∈ Gn with maximum degree ∆. Then

Lz(G) ≤ ∆2(n(n− 1)− SDD(G)),

with equality if and only if G is a regular graph.

Ghalavand et al. [18] gave some bounds for Lanzhou index by M1(G),

F (G), minimum degree δ and maximum degree ∆.

Theorem 3.13. [18] Let G ∈ Gn,m. Then

Lz(G) ≤
√
[(n− 1)(n2 − n− 4m) +M1(G)]M4

1 (G),



750

with equality if and only if G is a regular graph.

Theorem 3.14. [18] Let G ∈ Gn. Then

Lz(G) ≤ [(n− 1)M1(G)]2

4F (G)
,

with equality if and only if G is a n−1
2 -regular graph.

Theorem 3.15. [18] Let G ∈ Gn,m and G ≇ Kn. Then

Lz(G) ≥
(n− 1)2M1(G) +M4

1 (G)− 2(n− 1)F (G) + 2m(n− 1−∆)(n− 1− δ)

2(n− 1)− (∆ + δ)
.

If G is not a regular graph and dv(G) ∈ {a, b} for all v ∈ V (G), then

we call G is a (a, b)-regular graph.

Theorem 3.16. [18] Let G ∈ Gn,m. Then

(i) Lz(G) ≥ 2m((n− 1)(2δ + 1) + δ(δ + 1))− (2δ + 1)M1(G)− n(n−
1)δ(δ + 1);

(ii) Lz(G) ≥ 2m((n−1)(2∆−1)+∆(∆−1))− (2∆−1)M1(G)−n(n−
1)∆(∆ + 1);

(iii) Lz(G) ≤ 2m((n− 1)(δ+∆)+ δ∆)− (δ+∆)M1(G)− n(n− 1)δ∆.

With equalities if and only if G is a regular graph or (a, b)-regular graph.

Yang et al. [44] gave some bounds for Lanzhou index byHM(G), F (G),

SO(G), R(G), RR(G), SDD(G), SC(G) and RSC(G).

Theorem 3.17. [44] Let G ∈ Gn,m. Then

4(n− 1)m2

n
−HM(G) ≤ Lz(G) ≤ (n− 1)m

2
+

n− 3

2
HM(G),

with equalities if and only if G ∼= Kn.

Theorem 3.18. [44] Let G ∈ Gn,m with maximum degree ∆ and minimum

degree δ. Then

Lz(G) ≥ (n− 1)m(
δ

2
+

δ2

2
√
8∆2 + δ2 + 4

√
2∆

) + (n− 1)(1−
√
2)SO(G),

with equality if and only if G is a regular graph.
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Theorem 3.19. [44] Let G ∈ Gn with minimum degree δ. Then

Lz(G) ≤ (n− 1−
√
δ)
√
2SO(G),

with equality if and only if G is an empty (edgeless) graph.

Theorem 3.20. [44] Let G ∈ Gn,m with maximum degree ∆ and minimum

degree δ. Then

2(δ2(n− 1)−∆3)R(G) ≤ Lz(G) ≤ (∆(m− 1)(n− 1)− δ3)R(G),

with equalities if and only if G is a regular graph and du(G)+dv(G) = m+1

for uv ∈ E(G).

Theorem 3.21. [44] Let G ∈ Gn,m be a connected graph with maximum

degree ∆ and minimum degree δ. Then

(2(n− 1)− 2∆2

δ
)RR(G) ≤ Lz(G) ≤ (

√
2(n− 1)(

∆

δ
+

δ

∆
)− 2)RR(G),

with equalities if and only if G is a regular graph.

Theorem 3.22. [44] Let G ∈ Gn,m be a connected graph with maximum

degree ∆ and minimum degree δ. Then

(
2(n− 1)∆δ2

∆2 + δ2
−∆2)SDD(G) ≤ Lz(G) ≤ (

(n− 1)(m+ 1)∆

2δ
−δ2)SDD(G),

with equalities if and only if G is a regular graph and du(G)+dv(G) = m+1

for uv ∈ E(G).

Theorem 3.23. [44] Let G ∈ Gn,m be a connected graph with maximum

degree ∆ and minimum degree δ. Then

(
√
2(n−1)δ−

√
2∆2

δ
)RSC(G) ≤ Lz(G) ≤ (

√
2(n−1)∆−

√
2δ2

∆
)RSC(G),

with equalities if and only if G is a regular graph.

Theorem 3.24. [44] Let G ∈ Gn,m be a connected graph with maximum

degree ∆ and minimum degree δ. Then (2
√
2(n−1)δ

5
2−2∆2

√
2(m+ 1))SC
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(G) ≤ Lz(G) ≤ ((n − 1)(m + 1)
3
2 − 2

√
2δ

5
2 )SC(G), with equalities if and

only if G is a regular graph and du(G) + dv(G) = m+ 1 for uv ∈ E(G).

Let G be a graph with n vertices and dvi = di, then d1 ≥ d2 ≥ · · · ≥ dn

denotes the degree sequence of G. The first Zagreb coindex M1(G) [13] of

a graph G is defined as M1(G) =
∑

uv/∈E(G)

(du + dv). Inverse degree index

ID(G) [16] of a graph G is defined as ID(G) =
∑

v∈V (G)

1
dv
. Inverse degree

coindex ID(G) of a graph G is defined as ID(G) =
∑

uv/∈V (G)

( 1
d2
u
+ 1

d2
v
).

Theorem 3.25. [31] Let G ∈ Gn,m with n ≥ 2, δ ≥ 1. Then

Lz(G) ≤ (∆+2δ)M1(G)+∆δ2[(n−1)ID(G)−n]−δ(2∆+δ)[n(n−1)−2m],

with equality if and only if ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ for

some t, 1 ≤ t ≤ n− 1.

Theorem 3.26. [31] Let G ∈ Gn,m with δ ≥ 1. Then

Lz(G) ≤ (∆ + δ)M1(G)−∆δ[(n− 1)2ID(G)− 2n(n− 1) + 2m],

with equality if and only if ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ for

some t, 1 ≤ t ≤ n− 1.

Theorem 3.27. [31] Let G ∈ Gn,m with n ≥ 3 vertices, δ ≥ 1. Then

((n− 1)(ID(G)− ∆+ δ

∆δ
)− n+ 2)2(Lz(G)− (n− 1)(∆2 + δ2) + ∆3 + δ3)

≥ ((n− 1)(n− 2)− 2m+ δ +∆)3 ,

with equality if and only if ∆ = d1 ≥ d2 = · · · = dn−1 ≥ dn = δ or

n − 1 = ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn−1 ≥ dn = δ for some t,

1 ≤ t ≤ n− 2.

Theorem 3.28. [31] Let G ∈ Gn,m with n ≥ 3, δ ≥ 1. The complement

graph G has m edges. Then

(ID(G)− n− 1−∆

∆2
− n− 1− δ

δ2
)(Lz(G)− (n− 1−∆)∆2 − (n− 1− δ)

δ2) ≥ (2m− 2(n− 1) + ∆+ δ)2,
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with equality if and only if ∆ = d1 ≥ d2 = · · · = dn−1 ≥ dn = δ or

n − 1 = ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn−1 ≥ dn = δ for some t,

1 ≤ t ≤ n− 1.

Note that Lz(G) = F (G).

Theorem 3.29. [31] Let G ∈ Gn,m with δ ≥ 1. Then

√
ID(G)F (G) +

√
ID(G)Lz(G) ≥ n(n− 1),

with equality if and only if G is a regular graph.

Let δ be the minimum degree of G.

Theorem 3.30. [31] Let G ∈ Gn,m with δ ≥ 1, δ ≥ 1. Then

√
ID(G)F (G) +

√
ID(G)F (G) ≥ n(n− 1),

√
ID(G)Lz(G) +

√
ID(G)Lz(G) ≥ n(n− 1),

with equalities if and only if G is a regular graph.

4 Nordhaus-Gaddum-type results

In this section, we collect some Nordhaus-Gaddum-type results of Lanzhou

index.

Theorem 4.1. [42] Let G ∈ Gn. Then

0 ≤ Lz(G) + Lz(G) ≤ 1

4
n(n− 1)3,

with left equality if and only if G ∼= Kn or Kn, with right equality if and

only if n is odd and G is a n−1
2 -regular graph.

Theorem 4.2. [44] Let G ∈ Gn,m. Then

0 ≤ Lz(G) + Lz(G) ≤ 2m(n− 1)2 − 4m2(n− 1)

n
,
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with left equality if and only if G ∼= Kn, with right equality if and only if

G is a regular graph.

Corollary 4.1. [44] Let G ∈ Gn,m. Then

0 ≤ Lz(G)Lz(G) ≤ m2(n− 1)2(n− 1− 2m)2

n2
.

Liu et al. [31] obtained the Nordhaus-Gaddum type results [38] for

Lanzhou index of trees.

Theorem 4.3. [31] Let T ∈ Tn. Then

(i) If n ≥ 2, then Lz(T ) + Lz(T ) ≥ (n− 1)(n− 2)(2n− 2−∆);

(ii) If n ≥ 4, then Lz(T ) + Lz(T ) ≤ (n − 1)(2(n − 1)2 − ∆2 − 2 −
(2(n−2)−∆)2

n−3 ),

with equality of (i) if and only if ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn =

δ = 1 for some t, 1 ≤ t ≤ n − 2, equality of (ii) if and only if T is a tree

such that ∆ = d1 ≥ d2 = · · · = dn−2 ≥ dn−1 = dn = δ = 1.

Corollary 4.2. [31] Let T ∈ Tn with n ≥ 2. Then

(n− 1)2(n− 2) ≤ Lz(T ) + Lz(T ) ≤ 2(n− 1)(n− 2)2,

with left equality if and only if T ∼= Sn, right equality if and only if T ∼= Pn.

Further, Milovanović et al. [37] also gave the Nordhaus-Gaddum results

of trees with respect to Lanzhou index.

Theorem 4.4. [37] Let T ∈ T (n,∆) with n ≥ 4. Then

Lz(T ) + Lz(T ) ≥

(n− 1)(2(n− 2) + ∆(n− 1−∆)2 +
(n− 3)(2(n− 2)2 − (2n− 3−∆)∆)2

(2(n− 2)−∆)(n2 − 6n+ 7 +∆)
),

with equality if and only if T ∼= Pn or Sn.

5 Open problems

In [7], Alrowaili et al. determined the maximum and minimum the Lanzhou

index among all unicyclic graphs n vertices and k pendent vertices. This
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naturally motivates the investigation of extremal graphs with other given

parameters, which leads to the following open problems.

Problem 5.1. Characterize the extremal graphs with respect to the Lan-

zhou index among all unicyclic graphs with several given parameters, such

as matching number, domination number, and other graph invariants.

Problem 5.2. Determine the extremal values of the Lanzhou index among

all trees with several given parameters, such as matching number, domi-

nation number, branching number, and other graph invariants.

If TI(G) is the topological index of graph G, then TI(G) is called the

ad-hoc version of TI(G). Based on this , Ali et al. [4] defined the ad-hoc

Lanzhou index, L̃z(G) =
∑

u∈V (G) du(du)
2 = Lz(G). It is also interesting

to consider the properties of the ad-hoc Lanzhou index.
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