
MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 95 (2026) 695–729

ISSN: 0340–6253

doi: 10.46793/match.95-3.09325

Parameter-Minimal Analysis of Carbon

Dioxide Removal through Direct Air Capture

Noel T. Fortuna,∗, Angelyn R. Laoa,b,c, Eduardo R.
Mendozaa,b,d, Luis F. Razone

aDepartment of Mathematics and Statistics, De La Salle University,

Manila 0922, Philippines
bCenter for Natural Sciences and Environmental Research, De La Salle

University, Manila 0922, Philippines
cCenter for Complexity and Emerging Technologies, De La Salle

University, Manila 0922, Philippines
dMax Planck Institute of Biochemistry, Martinsried near Munich,

Germany
eDepartment of Chemical Engineering, De La Salle University, Manila

0922, Philippines

noel.fortun@dlsu.edu.ph, angelyn.lao@dlsu.edu.ph,

eduardo.mendoza@dlsu.edu.ph, luis.razon@dlsu.edu.ph

(Received April 21, 2025)

Abstract

In detailed Earth models that require extensive computation
time, it is difficult to make an a priori prediction of the possibility
of multistationarity. The potential for multistationarity, or the ex-
istence of steady-state multiplicity, in the Earth System raises con-
cerns that the planet could reach a climatic ‘tipping point,’ rapidly
transitioning to a warmer steady-state from which recovery may be
practically unattainable. In this study, we demonstrate Chemical
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Reaction Network Theory (CRNT) analysis of a simple heuristic
box model of the Earth System carbon cycle with the human inter-
vention of Direct Air Capture. CRNT leverages parameter-minimal
analysis, relying primarily on the graphical and kinetic structure
of the reaction network system, to identify necessary conditions for
steady-state multiplicity. The analysis reveals necessary conditions
for the combination of system parameters where steady-state multi-
plicity may exist. Moreover, the analysis provides insights into key
system properties, such as absolute concentration robustness and
some conditions for atmospheric carbon reduction.

1 Introduction

As researchers explore the intricate dynamics of climate change, the notion

of climate tipping points has emerged as a key area of interest [1, 2, 5, 9].

These tipping points represent moments when the climate system reaches

a threshold and undergoes self-perpetuating changes, leading to profound

and possibly irreversible impacts on our planet. Understanding and antic-

ipating these tipping points is essential to formulate successful approaches

for lessening the impact of climate change. Researchers have developed so-

phisticated models, primarily utilizing numerical simulations, to simulate

the intricate dynamics of multistationarity in the global carbon system [5].

However, the challenge lies in pinpointing the precise conditions that can

trigger multistationarity within the system [2,20,23,24].

In this study, we explore the possibility of a global carbon system to ex-

hibit multiple steady states by employing a methodology based on reaction

networks. The process entails constructing a reaction network that mir-

rors the dynamic behavior and properties of the global carbon system. By

applying chemical reaction network theory (CRNT), key characteristics,

including the system’s potential for multiple steady states, are efficiently

identified. In addition, the analysis offers valuable insights into essential

system characteristics, such as absolute concentration robustness, along

with specific conditions for the reduction of atmospheric carbon.

Specifically, we analyze a global carbon cycle system that involves car-

bon dioxide removal (CDR) technology. CDR technologies encompass a

variety of methods such as afforestation, reforestation, direct air capture,
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and bioenergy with carbon capture and storage [12, 18]. Implementing

CDR technologies is seen as vital in achieving the goals set out in the

Paris Agreement, which aims to keep the global mean surface temperature

well below 2°C and target 1.5°C [16].

Our analysis focuses on a global carbon system with Direct Air Capture

(DAC) intervention. In this technology, carbon dioxide is directly captured

from the atmosphere using chemical absorbents. The captured carbon is

securely stored in geological formations, preventing its release back into

the atmosphere [18,23].

The proposed CRNT approach provides a unique advantage by focusing

on the topological features and kinetics of the network itself, eliminating

the need to define system rate constants. This feature is especially benefi-

cial when studying systems where such parameter values are unknown. By

enabling a rate-constant-minimal analysis, CRNT promises to be a useful

tool for revealing the intricacies of systems with uncertain rate-constant

data, thereby providing critical insights into the dynamic behavior of the

global carbon system.

This paper continues with the following structure: Section 2 establishes

the necessary background by reviewing preliminary concepts in CRNT.

Section 3 presents the global carbon cycle model and elaborates on the

process of obtaining its dynamically equivalent power-law kinetic repre-

sentation. Section 4 discusses the relevant dynamical properties of the

system, using the kinetic representation derived in Section 3 and tools

from CRNT. Lastly, Section 5 synthesizes the key results from the preced-

ing analysis and points towards future research directions.

2 Fundamentals of reaction networks and ki-

netic systems

As preparation for the paper’s analysis, we outline some foundational con-

cepts pertaining to chemical reaction networks and chemical kinetic sys-

tems.
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Notation

We denote the real numbers by R, the non-negative real numbers by R≥0

and the positive real numbers by R>0. Objects in reaction systems are

viewed as members of vector spaces. Suppose I is a finite index set. By

RI , we mean the usual vector space of real-valued functions with domain

I . If x ∈ RI
>0 and y ∈ RI , we define xy ∈ R>0 by xy =

∏
i∈I xyi

i . Let

x∧ y be the component-wise minimum, (x∧ y)i = min(xi, yi). The vector

log x ∈ RI ,where x ∈ RI
>0, is given by (log x)i = log xi, for all i ∈ I .

The support of x ∈ RI , denoted by supp x, is given by supp x := {i ∈
I | xi ̸= 0}.

2.1 Fundamentals of chemical reaction networks

A chemical reaction network or CRN is a finite set of interdependent re-

actions that happen simultaneously. In an abstract sense, it can serve as

a representation of any system whose evolution is driven by the transfor-

mation of its elements into different elements. The fundamental element

of a chemical reaction is the species. The chemical species can encompass

a range of entities, including chemical elements, molecules, or proteins.

In this study, the species represent various carbon pools involved in the

system. A complex is a nonnegative linear combination of the species.

Put another way, a complex is the set of species with associated nonnega-

tive coefficients (called stoichiometric coefficients). A chemical reaction is

typically written as

Reactant complex → Product complex,

where the set of species on the left side of the equation (reactant complex )

are consumed or transformed to form the set of species on the right side

(product complex ).

Formally, we define a CRN as follows.

Definition 1. A chemical reaction network or CRN is a triple N :=

(S ,C ,R) of nonempty finite sets S , C , and R, of m species, n com-

plexes, and r reactions, respectively, where C ⊆ RS
≥0 and R ⊂ C × C
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satisfying the following properties:

(i) (y, y) /∈ R for any y ∈ C ;

(ii) for each y ∈ C , there exists y′ ∈ C such that (y, y′) ∈ R or (y′, y) ∈
R.

For y ∈ C , the vector

y =
∑
A∈S

yAA,

where yA is the stoichiometric coefficient of the species A. In lieu of

(y, y′) ∈ R, we write the more suggestive notation y → y′. In this reaction,

the vector y is called the reactant complex and y′ is called the product

complex.

We can view every complex in a CRN as a vector in a vector space

called species space RS , whose coordinates refer to the coefficients or

stoichiometry of the different species. In this way, every reaction may also

be associated with a vector, called reaction vector, which is formed by

subtracting the reactant complex vector from the product complex vector.

Example 1. Consider the following CRN with five species, A1, A2, A3,

A4, A5, and seven reactions.

Reaction Reactant Product Reaction vector

A1 + 2A2 → 2A1 +A2 [1, 2, 0, 0, 0]⊤ [2, 1, 0, 0, 0]⊤ [1,−1, 0, 0, 0]⊤

2A1 +A2 → A1 + 2A2 [2, 1, 0, 0, 0]⊤ [1, 2, 0, 0, 0]⊤ [−1, 1, 0, 0, 0]⊤

A2 → A3 [0, 1, 0, 0, 0]⊤ [0, 0, 1, 0, 0]⊤ [0,−1, 1, 0, 0]⊤

A3 → A2 [0, 0, 1, 0, 0]⊤ [0, 1, 0, 0, 0]⊤ [0, 1,−1, 0, 0]⊤

A4 → A2 [0, 0, 0, 1, 0]⊤ [0, 1, 0, 0, 0]⊤ [0, 1, 0,−1, 0]⊤

A2 → A5 [0, 1, 0, 0, 0]⊤ [0, 0, 0, 0, 1]⊤ [0,−1, 0, 0, 1]⊤

A5 → A4 [0, 0, 0, 0, 1]⊤ [0, 0, 0, 1, 0]⊤ [0, 0, 0, 1,−1]⊤

From a dynamic perspective, every reaction y → y′ ∈ R leads to

a change in species concentrations proportional to the reaction vector

(y′ − y) ∈ RS . The overall change induced by all the reactions lies in

a subspace of RS such that any trajectory in RS
>0 lies in a coset of this

subspace.
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Definition 2. The stoichiometric subspace of a network N is given

by

S := span {y′–y ∈ RS | y → y′ ∈ R}.

The rank of the network is defined as s := dimS. For x ∈ RS
>0, its

stoichiometric compatibility class is defined as (x + S) ∩ RS
≥0. Two

vectors x∗, x∗∗ ∈ RS are stoichiometrically compatible if x∗∗−x∗ ∈ S.

Definition 3. A CRN with stoichiometric subspace S is said to be con-

servative if there exists a positive vector x ∈ RS
> such that S⊥∩RS

> ̸= ∅.

The stoichiometric subspace S of the CRN is Example 1 is spanned by the

following vectors: 


1

−1

0

0

0

 ,


0

−1

1

0

0

 ,


0

1

0

−1

0

 ,


0

−1

0

0

1




.

Since S has 4 basis vectors, the rank of the CRN is 4. Moreover, it is

conservative since there exists a positive vector, say [k, k, k, k, k]⊤ with

k ∈ R, that is orthogonal to all reaction vectors.

CRNs can be viewed as directed graphs where the complexes are ver-

tices and the reactions are arcs. A group of complexes that are connected

by arrows is referred to as a linkage class. Hence, in Example 1 there two

linkage classes: {A1 + 2A2 ⇄ 2A1 + A2} and {A2 ⇄ A3, A4 → A2, A2 →
A5, A5 → A4}.

The strongly connected components of a CRN are precisely the strong

linkage classes of the CRN. A strong linkage class is a terminal strong

linkage class if there is no reaction from a complex in the strong linkage

class to a complex outside the given strong linkage class.

Definition 4. A CRN with n complexes, nr reactant complexes, ℓ linkage

classes, sℓ strong linkage classes, and t terminal strong linkage classes is

(i) weakly reversible if sℓ = ℓ;
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(ii) t-minimal if t = ℓ;

(iii) point terminal if t = n− nr; and

(iv) cycle terminal if n− nr = 0.

Clearly, the CRN in Example 1 is weakly reversible, t-minimal, and cycle

terminal.

An important structural index of a CRN, called deficiency, provides

one way to classify networks.

Definition 5. The deficiency δ of a CRN with n complexes, ℓ linkage

classes, and rank s is defined as δ := n− ℓ− s.

This index, independent of network size, measures the “linear indepen-

dence” of reactions: higher deficiency indicates less linear independence.

Even large or complex CRNs can have a deficiency of zero [28].

Example 1 provides a deficiency-zero CRN since it has 6 complexes, 2

linkage classes, and its rank is 4.

2.2 Fundamentals of chemical kinetic systems

It is generally assumed that the rate of a reaction y → y′ ∈ R depends on

the concentrations of the species in the reaction. The exact form of the

non-negative real-valued rate function Ky→y′ depends on the underlying

kinetics.

The following definition of kinetics is expressed in a more general con-

text than what one typically finds in CRNT literature.

Definition 6. A kinetics for a network N = (S ,C ,R) is an assignment

to each reaction y → y′ ∈ R a rate function Ky→y′ : ΩK → R≥0, where

ΩK is a set such that RS
>0 ⊆ ΩK ⊆ RS

≥0, x∧x∗ ∈ ΩK whenever x, x∗ ∈ ΩK ,

and Ky→y′(x) ≥ 0 for all x ∈ ΩK . A kinetics for a network N is denoted

by K : ΩK → RR
≥0 ( [36]). A chemical kinetics is a kinetics K satisfying

the condition that for each y → y′ ∈ R, Ky→y′(x) > 0 if and only if

supp y ⊂ supp x. The pair (N ,K) is called a chemical kinetic system

( [4]).
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The system of ordinary differential equations that govern the dynamics

of a CRN is defined as follows.

Definition 7. The ordinary differential equation (ODE) associated

with a chemical kinetic system (N ,K) is defined as
dx

dt
= f(x) with

species formation rate function

f(x) =
∑

y→y′∈R

Ky→y′(x)(y′ − y). (1)

A positive equilibrium or steady state x is an element of RS
>0 for

which f(x) = 0.

Definition 8. The set of positive equilibria or steady states of a

chemical kinetic system (N ,K) is given by

E+(N ,K) = {x ∈ RS
>0 | f(x) = 0}.

For brevity, we also denote this set by E+. The chemical kinetic system

is said to be multistationary (or has the capacity to admit multiple

steady states) if there exist positive rate constants such that | E+∩P |≥ 2

for some positive stoichiometric compatibility class P. On the other hand,

it is monostationary if | E+ ∩ P |≤ 1 for all positive stoichiometric

compatibility class P.

Definition 9. The reaction vectors of a CRN (S ,C ,R) are positively

dependent if for each reaction y → y′ ∈ R, there exists a positive number

ky→y′ such that
∑

y→y′∈R ky→y′(y′ − y) = 0.

Remark. In view of Definitions 7 and 8, a necessary condition for a chemical

kinetic system to admit a positive steady state is that its reaction vectors

are positively dependent.

To reformulate the species formation rate function in Eq. (1), we con-

sider the natural basis vectors ωi ∈ RI where i ∈ I = C or R and

define

(i) the molecularity map Y : RC → RS with Y (ωy) = y;
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(ii) the incidence map Ia : RR → RS with Ia(ωy→y′) = ωy′ − ωy; and

(iii) the stoichiometric map N : RR → RS with N = Y Ia.

Hence, Eq. (1) can be rewritten as f(x) = Y IaK(x) = NK(x). The

positive steady states of a chemical kinetic system that satisfies IaK(x) = 0

are called complex balancing equlibria.

Definition 10. The set of complex balanced equilibria of a chemical

kinetic system (N ,K) is the set

Z+(N ,K) = {x ∈ RS
>0 | IaK(x) = 0} ⊆ E+(N ,K).

A chemical kinetic system is said to be complex balanced if it has a

complex balanced equilibrium.

We define power law kinetics through the r×m kinetic order matrix

F = [Fij ], where Fij ∈ R encodes the kinetic order the jth species of the

reactant complex in the ith reaction. Further, consider the rate vector

k ∈ RR
>0, where ki ∈ R>0 is the rate constant in the ith reaction.

Definition 11. A kinetics K : RS
>0 → RR is a power law kinetics or

PLK if

Ki(x) = κix
(Fi,∗)

⊤
for all i ∈ R,

where Fi,∗ is the row vector containing the kinetic orders of the species of

the reactant complex in the ith reaction.

Definition 12. A PLK system has reactant-determined kinetics (or

of type PL-RDK) if for any two branching reactions i, j ∈ R (i.e.,

reactions sharing a common reactant complex), the corresponding rows of

kinetic orders in F are identical. That is, Fih = Fjh for all h ∈ S .

Definition 13. The m×n matrix Ỹ defined by Müller and Regensburger

[22] is the matrix (Ỹ )ij = Fki if j is a reactant complex of reaction k and

(Ỹ )ij = 0, otherwise. The m × nr T -matrix is the truncated Ỹ where

the non-reactant columns are deleted and nr is the number of reactant

complexes.
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2.3 Independent decomposition of a CRN

Decomposition theory was initiated by M. Feinberg in his 1987 review

paper [7]. He introduced the general concept of a network decomposition

of a CRN as a union of subnetworks whose reaction sets form a partition of

the network’s set of reactions. He also introduced the so-called independent

decomposition of chemical reaction networks.

Definition 14. A decomposition of a CRN N into k subnetworks of the

form N = N1 ∪ · · · ∪Nk is independent if its stoichiometric subspace is

equal to the direct sum of the stoichiometric subspaces of its subnetworks,

i.e., S = S1 ⊕ · · · ⊕ Sk. Equivalently, the decomposition is independent if

s = s1 + · · ·+ sk.

For an independent decomposition, Feinberg concluded that any posi-

tive equilibrium of the “parent network” is also a positive equilibrium of

each subnetwork.

Theorem 1 (Rem. 5.4, [7]). Let (N ,K) be a chemical kinetic system

with partition {R1, . . . ,Rk}. If N = N1 ∪ · · · ∪ Nk is the network de-

composition generated by the partition and E+(Ni,Ki) = {x ∈ RS
>0 |

NiKi(x) = 0, i = 1, . . . , k}, then
⋂k

i=1 E+(Ni,Ki) ⊆ E+(N ,K). If the

network decomposition is independent, then equality holds.

2.4 Absolute concentration robustness in PLP sys-

tems

A chemical kinetic system is said to be absolute concentration robust in the

species A ∈ S if c∗A does not depend on the initial conditions and attains

the same value in every positive equilibrium concentration c∗ ∈ RS
> .

Definition 15. A CKS (N ,K) has absolute concentration robust-

ness (ACR) in a species A ∈ S if there exists c∗ ∈ E+(N ,K) and for

every other c∗∗ ∈ E+(N ,K), we have c∗∗A = c∗A.

Lao et al. [19] developed the Species Hyperplane Criterion for absolute

concentration robustness for a large class of chemical kinetic system called

positive equilibria log-parametrized (PLP) kinetic system:
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Definition 16. For a reaction network N with species S , a log-parame-

terized (LP) set is a non-empty set of the form

E(P, x∗) = {x ∈ RS
>0 | log x− log x∗ ∈ P⊥},

where P (called the LP set’s flux subspace) is a subspace of RS , x∗

(called the LP’s reference point) is a given element of RS
>0, and P⊥

(called the LP set’s parameter subspace) is the orthogonal complement

of P . A chemical kinetic system (N ,K) is positive equilibria log-

parametrized (PLP) system if its set of positive equilibria is an LP

set, i.e., E+(N ,K) = E(PE , x
∗) where PE is the flux subspace and x∗ is

a given positive equilibrium.

Theorem 2 (Species Hyperplane Criterion, Theorem 3.12, [19]). If

(N ,K) is a PLP system, then it has ACR in species S if and only if

its parameter subspace (PE)
⊥ is a subspace of the hyperplane {x ∈ RS |

xS = 0}.

Consequently, a simple method for evaluating ACR in a PLP system

is obtained:

Corollary (Prop. 4.1, [19]). Let {v1, . . . , vE} be a basis of the parameter

subspace (PE)
⊥ of a PLP system (N ,K). The system has ACR is species

S if and only if the coordinate corresponding to S in each basis vector

vi,S = 0 for each i = 1, . . . , E.

3 The DAC model and its kinetic represen-

tation

The global carbon cycle has been modeled with varying complexity. While

sophisticated state-of-the-art models offer highly accurate Earth system

predictions, they rely on complex networks (with an enormous number

of equations) that are computationally expensive. Here, we focus on a

simple heuristic box model, based on the spatial aggregation of carbon

while focusing only on the processes that are most significant at a global



706

Figure 1. In the box model, the boxes represent the different pools,
solid arrows indicate the transfer of carbon from one pool to
another, and dashed arrows indicate the pools that influence
a carbon transfer.

scale. Though box models of carbon cycle are not quantitatively precise,

they provide reasonable accuracy and help reveal important interactions

and feedback often obscured in more complex systems [1, 13,27].

3.1 The DAC model

The pre-industrial system of Anderies et al. [1] forms the building block

for developing and examining the global carbon cycle system with DAC

intervention. The model extends the initial three-box model that consid-

ers carbon interactions in the land-atmosphere-ocean system of Anderies

et al. [1], denoted by A1, A2 and A3 respectively. The schematic diagram

is shown in Figure 1. The modeling framework relies on ordinary differen-

tial equations where all processes are modeled by products of power law

functions. More precisely, a Generalized Mass Action (GMA) system is an

ODE system established by individually approximating each process in the

system with a power-law term [25,26,32–35]. These terms are then aggre-

gated, with incoming fluxes indicated by a plus sign and outgoing fluxes

by a minus sign. The procedure for deriving power-law approximations of

rate functions is based on Taylor linearization in logarithmic coordinates.

For a detailed derivation of the power-law approximation of the process

rates in the pre-industrial carbon cycle model of [1], refer to Appendix B
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of [10].

The current model incorporates the industrial carbon transfer activities

(such as fossil fuel combustion) that lead to the linear transfer of carbon

geological stock (A4) to the atmosphere. DAC intervention is introduced

by incorporating an extra box to store carbon (A5) directly sequestered

from the atmosphere. The rate of transfer is also assumed to be linear.

The system also introduces a possible leak, which can be used to assess

the CDR performance of the system even in the presence of such a leak.

Together with the power-law approximation of the transfer rates in the

pre-industrial model and the linear functions of carbon transfer from A4

to A2, and A5 to A4, we form the system of ODEs of the carbon cycle

system with DAC intervention:

Ȧ1 = k1A
p1

1 Aq1
2 − k2A

p2

1 Aq2
2

Ȧ2 = k2A
p2

1 Aq2
2 − k1A

p1

1 Aq1
2 − amA2 + amβA3 + k4A4 − k5A2

Ȧ3 = amA2 − amβA3

Ȧ4 = k6A5 − k4A4

Ȧ5 = k5A2 − k6A5

(2)

Table 1 provides a summary of the system parameters that will be

referenced in the model’s specification and analysis.

3.2 Power-law kinetic representation of the model of

carbon cycle with DAC

The analysis of the model involves constructing a power-law kinetic

representation. Such a representation involves a chemical reaction net-

work (CRN) with power-law kinetics that is dynamically equivalent to the

original system (i.e., they share the same ODEs). The goal is to iden-

tify important system dynamic properties through its power-law kinetic

representation without the need for numerical computations or simula-

tions typically required for nonlinear ODEs. With tools and insights from

CRNT, the analysis is conducted with minimal reliance on specific param-

eters, as it treats rate constants symbolically and avoids dependence on

their numerical values.
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Symbol Description

p1 and p2

Kinetic orders of land interaction
p1: Kinetic order of land photosynthesis interaction (p-
interaction)
p2: Kinetic order of land respiration interaction (r-intera-
ction)

q1 and q2

Kinetic orders of atmosphere interaction
q1: Kinetic order of atmosphere photosynthesis interaction
(p-interaction)
q2: Kinetic order of atmosphere respiration interaction (r-
interaction)

p2 − p1 Land r-p-interaction difference
q2 − q1 Atmosphere r-p-interaction difference

Rp =
p2 − p1

q2 − q1
Land-atmosphere r-p-intearction difference ratio

Rq =
q2 − q1

p2 − p1
Atmosphere-land r-p-intearction difference ratio

Table 1. Model parameters

In this section, we outline the process of constructing the CRN network

for the model of interest and defining the power-law kinetics for this CRN.

3.2.1 CRN representation of the DAC model

Given a box model of a global carbon cycle, a corresponding CRN repre-

sentation can be set up using the procedure proposed by Arceo et al. [3].

In this approach, one associates the reaction Ai → Aj to the carbon trans-

fer from pool Ai to pool Aj . Moreover, if the carbon transfer is influenced

by some carbon pools (as indicated by the dashed arrows in the schematic

diagram), say
∑

Ak, all these species are added to both sides of Ai → Aj

to form the chemical reaction

Ai +
(∑

Ak

)
︸ ︷︷ ︸

reactant complex

→ Aj +
(∑

Ak

)
︸ ︷︷ ︸
product complex

(3)

This process preserves the set of coordinates of the reaction vectors, which

is important in describing the dynamics of the whole system (see Section

3.2.2).

In the current model of the carbon cycle with DAC (see Fig. 1), the
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transfer of carbon from the atmosphere A2 to land A1 is influenced by

A1 and A2. According to (3), the reaction associated with this process

is A2 + {A1 + A2} → A1 + {A1 + A2} or simply A1 + 2A2 → 2A1 +

A2. The carbon transfer from land to atmosphere is represented by the

reaction A1 + A2 → 2A2 because the process is influenced by A2. This

reaction can be translated (as described in [17]), but without changing the

stoichiometry, by adding A1 to both sides of the reaction. The translation

lowers the deficiency of the network from one (as done in [10]) into zero.

Hence, the atmosphere-land carbon transfer is depicted by the reversible

reaction A1 + 2A2 ⇄ 2A1 +A2.

In summary, the CRN representation of the DAC model is precisely

the network specified in Example 1 of Section 2.

3.2.2 Power-law kinetics of the DAC model

Given the CRN representation of the DAC model, we can associate the

corresponding transfer power-law rates (provided in Figure 1) to each re-

action:

Reaction Reaction rates

R1 : A1 + 2A2 → 2A1 +A2 k1A
p1

1 Aq1
2

R2 : 2A1 +A2 → A1 + 2A2 k2A
p2

1 Aq2
2

R3 : A2 → A3 amA2

R4 : A3 → A2 amβA3

R5 : A4 → A2 k4A4

R6 : A2 → A5 k5A2

R7 : A5 → A4 k6A5

(4)

Hence, the CRN representation of the DAC model must be endowed

with power-law kinetics in order to reflect the ODE system in Equation

(2). From Definition 11, the power-law functions of a CRN representation

are encoded using the kinetic order matrix F , where entry Fij encodes

the kinetic order of the jth species in the ith reaction. Hence, given the

power-law rates in (4), the kinetic order matrix of the current system is
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F =

A1 A2 A3 A4 A5



p1 q1 0 0 0 R1

p2 q2 0 0 0 R2

0 1 0 0 0 R3

0 0 1 0 0 R4

0 0 0 1 0 R5

0 1 0 0 0 R6

0 0 0 0 1 R7

.

Let N be the stoichiometric matrix of the CRN representation of the

DAC model. Then the system of ODEs can be rewritten as

ẋ = NK(x), (5)

where K(x) is the vector which contains the reaction rates. It can be easily

checked that if the stoichiometric matrix for the CRN representation of the

DAC model and the vector the containing the reaction rates are specified,

the ODE system in (5) is precisely the system in (2), thereby verifying

the dynamical equivalence of the power-law kinetic representation and the

original system.

Remark. Henceforth, we refer to the power-law kinetic representation of

the model of carbon cycle system with DAC as the DAC system.

4 Steady-state analysis of the DAC system

Since the power-law kinetic representation of the DAC system is weakly

reversible and has zero deficiency, current theorems on power law kinetic

systems on deficiency-zero networks [21,30] ensure the presence of a set of

positive equilibria of the system.

Proposition 3. The DAC system has a positive steady state.

In fact, for a class of DAC system (later defined as positive and neg-

ative DAC systems), a parameterization of its steady state is provided in

Proposition 11.
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4.1 Multistationarity analysis

As expressed in Definition 8, a CRN is said to be multistationary or has

the capability for multiple steady states if there is at least one stoichio-

metric compatibility class with at most two distinct positive steady states.

Otherwise, the CRN is monostationary.

In the subsequent discussion, it is found that the capacity of the DAC

system to admit multiple steady states depends on values of the kinetic

orders p1, p2, q1, and q2. More precisely, the multistationarity property is

quickly decided based on the sign of the ratio Rp or Rq defined in Table 1.

The analysis centers around these two values due to the structure of the

kinetic flux subspace S̃ of the system. Essentially, the kinetic flux subspace

of a system is the kinetic analogue of the stoichiometric subspace. If the

stoichiometric subspace is the span of the reaction vectors, the kinetic

flux subspace is the span of the fluxes in terms of the kinetic vectors.

Interestingly, a mathematical description of the set of positive steady states

of a chemical kinetic system can be written as a vector element of the

space that is perpendicular (i.e., orthogonal complement) to the system’s

kinetic flux subspace: If the vector x∗ is any positive equilibrium of a

system, the set of positive equilibria consists of vectors x such that the

vector log(x) − log(x∗) resides in the orthogonal complement of kinetic

flux subspace. (See Section 2.4.)

Proposition 4. For the DAC system,

(S̃)⊥ = span

{[
−1 Rp Rp Rp Rp

]⊤}
where Rp :=

p2 − p1
q2 − q1

, q2 ̸= q1.

Similarly,

(S̃)⊥ = span

{[
−Rq 1 1 1 1

]⊤}
where Rq :=

q2 − q1
p2 − p1

, p2 ̸= p1.

Proof. In a weakly reversible CRN, S̃ = Im
(
Ỹ Ia

)
. For the DAC system,
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Ỹ =



A1+2A2 2A1+A2 A2 A3 A4 A5

A1 p1 p2 0 0 0 0

A2 q1 q2 1 0 0 0

A3 0 0 0 1 0 0

A4 0 0 0 0 1 0

A5 0 0 0 0 0 1

,

Ia =



R1 R2 R3 R4 R5 R6 R7

A1+2A2 −1 1 0 0 0 0 0

2A1+A2 1 −1 0 0 0 0 0

A2 0 0 −1 1 1 −1 0

A3 0 0 1 −1 0 0 0

A4 0 0 0 0 −1 0 1

A5 0 0 0 0 0 1 −1


.

Hence,

Ỹ Ia =


p2 − p1 p1 − p2 0 0 0 0 0

q2 − q1 q1 − q2 −1 1 1 −1 0

0 0 1 −1 0 0 0

0 0 0 0 −1 0 1

0 0 0 0 0 1 −1

 .

So,

S̃ = Im
(
Ỹ Ia

)
= span




p2 − p1

q2 − q1

0

0

0

 ,


0

−1

1

0

0

 ,


0

0

1

−1

0

 ,


0

0

0

−1

1




.

From here, it can be easily computed that

(S̃)⊥ = span

{[
−1 Rp Rp Rp Rp

]⊤}
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or (S̃)⊥ = span

{[
−Rq 1 1 1 1

]⊤}
.

The ratio Rp was crucial in the analysis of the power-law kinetic rep-

resentation of the pre-industrial model of Anderies et al. done by Fortun

& Mendoza [11]. They identified and analyzed three distinct classes of

Anderies systems, characterized by the sign of the ratio Rp. Here, the

analysis of the DAC system will be largely characterized in a similar way.

For convenience, we will call the different system classes of DAC as posi-

tive, negative, P -null and Q-null DAC systems:

Definition 17. We call the set of DAC systems with Rp > 0 (or Rq > 0)

as positive DAC systems. The set of DAC systems where Rp < 0

(or Rq < 0) are termed negative DAC systems. DAC systems with

p2 − p1 = 0 and q2 − q1 ̸= 0 are P -null DAC systems. DAC systems

with q2 − q1 = 0 and p2 − p1 ̸= 0 are Q-null DAC systems.

Multistationarity of positive DAC systems

Müller & Regensburger [22] provided a simple criterion to assess the uniqu-

eness of a (complex balanced) steady state in a deficiency zero network.

This is done by analyzing the sign vector connections between the sto-

ichiometric subspace and the orthogonal complement of the kinetic flux

subspace.

Theorem 5. (Proposition 3.2 of [22]) If for a weakly reversible generalized

mass action system with σ(S)∩σ(S̃)⊥ ̸= {0}, then there is a stoichiometric

class with more than one complex balanced equilibrium.

Due to this, we have the following result:

Proposition 6. A positive DAC system is multistationary.

Proof. If Rp > 0, sign (S̃)⊥ =




−
+

+

+

+

 ,


+

−
−
−
−




. The stoichiometric sub-
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space S is spanned by the following vectors:


1

−1

0

0

0

 ,


0

−1

1

0

0

 ,


0

1

0

−1

0

 ,


0

−1

0

0

1




.

Let x ∈ S where

x = a1


1

−1

0

0

0

+ a2


0

−1

1

0

0

+ a3


0

1

0

−1

0

+ a4


0

−1

0

0

1

 =


a1

−a1 − a2 + a3 − a4

a2

−a3

a4

 .

Choose a1 > 0, a2 < 0, a3 > 0, a4 < 0, and a1 + a2 > a3 − a4 so that

sign(x) =
[
+ − − − −

]⊤
and thus, sign(S) ∩ sign(S̃)⊥ ̸= {0}.

Therefore, any positive DAC system is multistationary.

Figure 2 shows time-domain simulations for a positive DAC system

with three stoichiometrically compatible initial conditions:

IC1 =
[
0.25 0.25 0.25 0.25 0

]⊤
,

IC2 =
[
0.35 0.15 0.35 0.15 0

]⊤
, and

IC3 =
[
0.15 0.05 0.45 0.35 0

]⊤
.

(6)

The MATLAB code for the simulations and analyses presented in this

study is available on GitHub at https://github.com/morn-phil/Para

meter-Minimal-Analysis-of-CDR-through-DAC.

For the case where both the land respiration and photosynthesis in-

teraction difference (p2 − p1) and the atmosphere respiration and photo-

synthesis interaction difference (q2 − q1) are positive, there exists a set of

rate constants that leads to multiple equilibrium points. The simulations

demonstrate that each initial condition converges to a distinct equilibrium,

https://github.com/morn-phil/Parameter-Minimal-Analysis-of-CDR-through-DAC
https://github.com/morn-phil/Parameter-Minimal-Analysis-of-CDR-through-DAC
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Figure 2. Time-domain simulations of a positive DAC system (p2 = 5,
p1 = 2, q2 = 5, and q1 = 2). The rate constants assigned
are k1 = 0.4, k2 = 0.3, k4 = 0.1, k5 = 0.05, k6 = 0.01, am =
0.05, and β = 1. Here, three stochiometrically compatible
initial conditions (ICs) lead to different equilibrium points.

confirming the capacity for multistationarity.

Generally, the presence of multistationarity in a carbon cycle system re-

veals the possibility of tipping points, which are critical thresholds beyond

which a return to a previous state becomes difficult or prolonged. Although

not all multistationary systems will exhibit crossed tipping points, their

confirmed presence motivates a targeted numerical search. Once a tipping

point is located, it transforms from a theoretical risk into a quantifiable

target, allowing policymakers to define and enforce boundaries that keep

the system within a ‘safe operating space’ [1, 13,29].

Multistationarity of negative DAC systems

For a negative DAC system where Rp < 0, we have

sign (S̃)⊥ =

{[
− − − − −

]⊤
,
[
+ + + + +

]⊤}
.
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In order for x ∈ S to have similar signs for all its components, say positive,

necessarily

a1 > 0, a2 > 0, a3 < 0, a4 > 0.

However, the second component −a1 − a2 + a3 − a4 < 0. Hence, it is

not possible for a uniform positive sign for all components of x. Similarly,

it is not possible to obtain a vector x ∈ S with negative signs in all its

components. Thus, sign (S) ∩ sign (S̃)⊥ = {0} and Theorem 5 does not

apply. For negative DAC systems, we turn to injectivity analysis.

Definition 18. ( [8,36]) A CRN with stoichiometric matrixN is injective

if for any distinct stoichiometrically compatible species vectors x and y,

we have NK(x) ̸= NK(y) for all kinetics K endowed on the CRN.

Note that if a CRN is injective, then it is monostationary. In other

words, an injective CRN cannot support multiple positive steady states

for any rate constants. Wiuf and Feliu [8, 36] established a criterion to

identify if a system is injective.

Let M = N ·diag(z) ·F diag(k), where N represents the stoichiometric

matrix and F is the kinetic order matrix of the PLK system. Consider the

symbolic matrix M∗ created by using symbolic vectors k = (k1, . . . , km)

and z = (z1, . . . , zr). Assume {ω1, . . . , ωd} forms a basis of the left kernel

of N , and i1, . . . , id represent row indices. Define the m ×m matrix M∗

by substituting the ij-th row of M with ωj .

Theorem 7. ( [8, 36]) The interaction network with power law kinetics

and fixed kinetic orders is injective if and only if the determinant of M∗ is

a non-zero homogeneous polynomial with all coefficients being positive or

all being negative.

We identify two subsets of negative DAC systems that are injective:

Proposition 8. The DAC system is injective, and hence monostationary,

if any of the following cases hold:

(i) p1 < 0, p2 > 0, q1 > 0, and q2 < 0; or

(ii) p1 > 0, p2 < 0, q1 < 0, and q2 > 0.
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For all other cases, the network is not injective.

Proof. Using the computational approach and Maple script provided by

Feliu & Wiuf [8], we obtain the determinant of M∗ for the DAC system:

det =− p1k1k2k3k4z1z4z5z6–p1k1k2k3k5z1z4z6z7 − p1k1k2k4k5z1z3z5z7

− p1k1k3k4k5z1z4z5z7 + p2k1k2k3k4z2z4z5z6 + p2k1k2k3k5z2z4z6z7

+ p2k1k2k4k5z2z3z5z7 + p2k1k3k4k5z2z4z5z7 + q1k2k3k4k5z1z4z5z7

− q2k2k3k4k5z2z4z5z7

Hence, for p1 < 0, p2 > 0, q1 > 0, and q2 < 0, all the terms are positive,

and for p1 > 0, p2 < 0, q1 < 0, and q2 > 0, all the terms are negative.

In both cases, the networks are injective by Theorem 7 and hence, mono-

stationary. In all other cases, the systems are non-injective, which is a

necessary condition for multistationarity.

Figure 3 presents time-domain simulations for a negative DAC system

conforming to the conditions of Proposition 8, Case (i). The initial con-

ditions used are the same stoichiometrically compatible initial conditions

as Equation (6). The convergence of these initial conditions to a single

equilibrium point indicates monostationarity.

Monostationarity of null DAC systems

For P -null and Q-null DAC systems, the analysis is based on an indepen-

dent decomposition of the network. Feinberg [7] demonstrated that, in an

independent decomposition, the intersection of the set of positive steady

states of the subnetworks coincides with the set of positive steady states

of the entire network (see Section 2.3). By examining an independent

decomposition of the P -null and Q-null DAC systems, we observe that:

Proposition 9. Any P -null or Q-null DAC system is monostationary.

Proof. Consider the (finest) independent decomposition of DAC that con-

tains two subnetworks:

N1 = {A1 + 2A2 ⇄ 2A1 +A2, A2 ⇄ A3},

N2 = {A4 → A2, A2 → A5, A5 → A4}
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Figure 3. Time-domain simulations of a monostationary negative DAC
system. Specifically, p2 = 3, p1 = −0.2, q2 = −0.5, and
q1 = 4, which satisfy Case (i) of Proposition 8. The rate
constants used are k1 = 0.4, k2 = 0.3, k4 = 0.1, k5 = 0.05,
k6 = 0.01, am = 0.05, and β = 1.

The subnetwork N1 is identical to the power-law kinetic representation

of the pre-industrial system of the Anderies system studied by Fortun &

Mendoza [11]. They showed that the null Anderies system cannot exhibit

multiple steady-states or monostationary. The other subnetwork N2 is

a mass action system that is weakly reversible and has zero deficiency.

By the classic Deficiency Zero Theorem for mass action systems [6, 14,

15], N2 is monostationary. By Theorem 1, since both subsystems are

monostationary, the whole system is also monostationary.

4.2 Absolute concentration robustness

Absolute concentration robustness or ACR refers to a condition in which

the concentration of a species in a network attains the same value in every

positive steady-state set by parameters and does not depend on initial

conditions (see Definition 15). This implies that if an important variable,

such as A2 (representing atmospheric CO2 concentration), exhibits ACR,

its stability is guaranteed even when other variables fluctuate. Notably,
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conducting an ACR analysis for the DAC system is straightforward by

examining the values of Rp and Rq and applying the Species Hyperplane

Criterion introduced by Lao et al. [19]:

Proposition 10. A DAC system that is a

(i) positive or negative system has no ACR species;

(ii) P -null system has ACR species consisting precisely of A2, A3, A4

and A5; and

(iii) Q-null system has ACR in A1.

Prior to the proof, we illustrate a case where the DAC system is a Q-

null system. As shown in Figure 4, simulations from five different initial

conditions (not necessarily stoichiometrically compatible) converge to a

consistent steady-state value for A1, suggesting ACR for this species. This

property is not observed in the other system species.

We present the proof of the Proposition:

Proof. The Species Hyperplane Criterion (Theorem 2 and its Corollary)

guarantees that a system has ACR species if and only if the vector coordi-

nates corresponding to these species are zero for all basis vectors in space

(S̃)⊥. As noted earlier, for the DAC system,

(S̃)⊥ = span

{[
−1 Rp Rp Rp Rp

]⊤}
or (S̃)⊥ = span

{[
−Rq 1 1 1 1

]⊤}
Hence, a DAC system with positive or negative Rp or Rq has no ACR

species. The DAC system with Rp = 0 has ACR species consisting pre-

cisely of A2, A3, A4 and A5. If Rq = 0, the system has ACR in A1.

This Proposition suggests that if we desire that A2 or the CO2 concen-

tration in the atmosphere be stable irrespective of the initial conditions,

we would like Rp to be equal to zero. To achieve this, p1 (the kinetic order

of land photosynthesis interaction) must be equal to p2 (the kinetic order

of land respiration interaction) but q1 (the kinetic order of atmosphere
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Figure 4. Time-domain simulations of a Q-null DAC system,where
p2 = 2, p1 = −1, and q1 = q2 = 0.6. Morover, the rate
constants used are k1 = 0.2, k2 = 0.5, k4 = 0.1, k5 = 0.1,
k6 = 0.01, am = 0.05, and β = 1.

photosynthesis interaction) must not be equal to q2 (the kinetic order of

atmosphere respiration interaction).

4.3 Conditions for atmospheric carbon reduction

Finally, we provide different conditions under which a set of initial condi-

tions, along with all positive steady states within the corresponding stoi-

chiometric classes, leads to a genuine reduction in the atmospheric carbon

pool. That is, for a set of initial conditions A0 = {A0
1, A

0
2, A

0
3, A

0
4, A

0
5} and

steady stateA∗ = {A∗
1, A

∗
2, A

∗
3, A

∗
4, A

∗
5} in the corresponding stoichiometric

class, we have A∗
2 < A0

2.

The approach taken here is to use total amounts or conserved quantities

(in the sense of Definition 3) in a kinetic system. Generally, for any element

w ∈ S⊥ and x ∈ Ω,

wf(x) = w
dx

dt
= 0,
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since Im f ⊆ S. If w = (w1, . . . , wm) and x = (x1, . . . , xm), then

0 =
∑

wi
dxi

dt
=

d

dt

(∑
wixi

)
,

which implies that T :=
∑

wixi is a constant—this is called a conserved

quantity. Clearly, any two elements in a stoichiometric compatibility

class have the same conserved quantity or total amount.

The DAC system is a conservative CRN since (1, 1, 1, 1, 1) is a basis for

S⊥. This implies that for a set of initial conditions A0 and steady state

A∗ in the corresponding stoichiometric class,

A0
1 + · · ·+A0

5 = A∗
1 + · · ·+A∗

5.

4.3.1 A necessary condition for A2 reduction in positive/nega-

tive DAC systems

Observe that the set of positive equilibria of the positive or negative CDAC

system can be described as follows:

Proposition 11. The set of positive equilibria of the positive or negative

CDAC system can be parametrized by A2 as follows

A1 =

(
k2
k1

Aq2−q1
2

) 1
p1−p2

, p1 ̸= p2

A2 = A2, A3 =
1

β
A2, A4 =

k5
k4

A2 A5 =
k5
k6

A2.

Proof. Set the equations in (2) to 0 and solve for A2. For instance, setting

the first equation in the system to 0, we get

Ap1−p2

1 =
k2
k1

Aq2−q1
2

If p1 ̸= p2, A1 =

(
k2
k1

Aq2−q1
2

) 1
p1−p2

.

Remark. If we let P := p2−p1, the equilibrium value of A1 can be written
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as

A1 =

(
k1
k2

)1/P

A
−Rq

2

Denote

SUM0 := A0
1 +A0

3 +A0
4 +A0

5; and

SUM∗ := A∗
1 +A∗

3 +A∗
4 +A∗

5.

A set of initial conditions A0 determines a unique stoichiometric class S0.

Suppose there is another point in S0 with A2 = λA0
2, where 0 < λ < 1.

Moreover, suppose there is a positive or negative DAC system with an

equilibrium in S0 whose A2-value is λA0
2. For all positive equilibria in S0,

we have

SUM0 +A0
2 = SUM∗ +A∗

2.

From the set of positive equilibria of positive and negative CDAC in Propo-

sition 11, we have

SUM0 +A0
2 =

(
k1
k2

)1/P (
λA0

2

)−Rq
+

(
1

β
+

k5
k4

+
k5
k6

+ 1

)
λA0

2 (7)

From the last equation, we state the following necessary condition for the

reduction of A2 from its initial value to its steady-state value:

Proposition 12. All the values of P , Rq, β, and the rate constants sat-

isfying Equation (7) enable atmospheric carbon reduction from the initial

A0
2 to the steady-state value λA0

2.

4.3.2 Sufficient conditions for atmosphere carbon reduction

Since the DAC system is conservative, each stoichiometric class is com-

pact (s. Appendix 1 of Horn & Jackson [14]). Hence, the continuous

maps pri : RS
>0 → R> and their sums attain maxima and minima on any

stoichiometric class.
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Proposition 13. Consider the P -null DAC system with set of initial con-

ditions A0 and positive steady state A∗ in the corresponding S0 (viewed as

a compact subset of RS
>0). Then if

(
k1
k2

) 1
q2−q1

< T −M ′′,

where T is the conserved quantity and M ′′ is the maximum of pr1 + pr3 +

pr4 + pr5 on S0, then A∗
2 < A0

2.

Proof. From the first equation of the ODE system in (2), we observe that

for a P -null DAC system (i.e., p1 = p2), A
∗
2 =

(
k1
k2

) 1
q2−q1

. Moreover,

T −M ′′ ≤ T −
(
A0

1 +A0
3 +A0

4 +A0
5

)
= A0

2.

Proposition 14. Consider the positive or negative DAC system with set

of initial conditions A0 and positive steady state A∗ in the corresponding

S0. Let m′ be the minimum of the continuous map pr2 on S0. Then if

1 +
M ′′

m′ <

(
k2
k1

) 1
p1−p2

(m′)
q2−q1
p1−p2 +

1

β
+

k5
k4

+
k5
k6

,

where M ′′ is the maximum of pr1 + pr3 + pr4 + pr5 on S0, then A∗
2 < A0

2.

Proof. Denote A∗
1+A∗

2+A∗
3+A∗

4+A∗
5 by = A∗

2

(
SUM+

)
, where in SUM+,

the summands are given in the parametrization of the equilibria set of

positive/negative DAC system (Prop. 11). Now,

1 <
A0

2

A∗
2

⇐⇒ 1 +
(pr1 + pr3 + pr4 + pr5)(A0)

A∗
2

<
A0

2

A∗
2

+
(pr1 + pr3 + pr4 + pr5)(A0)

A∗
2

= SUM+.

We have

1 +
(pr1 + pr3 + pr4 + pr5)(A0)

A∗
2

≤ 1 +
M ′′

m′
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by the definition of numerator and denominator. Furthermore,

(
k2
k1

) 1
p1−p2

(m′)
q2−q1
p1−p2 +

1

β
+

k5
k4

+
k5
k6

< SUM+.

Hence, the RHS of the first equivalence above is fulfilled and A∗
2 < A0

2.

5 Conclusion, summary, and outlook

We analyzed a global carbon cycle system that incorporates direct air

capture technology by utilizing the tools and insights in Chemical Reac-

tion Network Theory. We aim to demonstrate the distinct advantages

of applying Chemical Reaction Network Theory (CRNT), which provides

a fundamentally different class of insights. By examining a dynamically

equivalent reaction network of a global carbon cycle system with DAC

technology, this study efficiently identified crucial dynamic features: the

existence of positive steady states, the possibility of multiple steady states,

the absolutely robust concentration levels of carbon pools, and conditions

for atmospheric carbon reduction

While numerical computations can indicate properties such as multi-

stationarity for particular parameter sets, CRNT verifies these properties

conclusively by analyzing the network’s topology and kinetics, with mini-

mal reliance on specific parameter values. Furthermore, by treating kinetic

orders symbolically, the resulting conclusions are not limited to specific nu-

merical values and are therefore more general than those obtained solely

from simulation.

Irrespective of kinetic orders and rate constants, the DAC system is

expected to exhibit a positive steady state. Additionally, assessments con-

cerning the system’s multistationarity and ACR traits are based on the

sign of ratios Rp and Rq. Table 2 outlines the results discussed earlier,

connecting the signs of Rp and Rq to the dynamic characteristics of the

associated DAC system.

It can be seen from Table 2, that the desirable outcome of a unique and

stable concentration of carbon dioxide in the atmosphere may be realized

if Rp = 0. No tipping points from the existence of multistationarity would
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Property DAC system
Existence of at least one steady state True for all systems

Capacity for multiple steady states

Rp = 0: only one steady state
Rq = 0: only one steady state
Rp or Rq > 0: all parameter combi-
nations result in more than one steady
state
Rp or Rq < 0: some parameter com-
binations may result in more than one
steady state

ACR

Rp = 0: ACR in A2, A3, A4, A5

Rq = 0: ACR in A1

Rp or Rq > 0: no ACR in any species
Rp or Rq < 0: no ACR in any species

Table 2. Summary of the dynamic properties of the DAC system.

be expected.

Indeed, the use of CRNT provides a more structural understanding

than numerical methods. While simulations offer results for specific pa-

rameters, they can obscure the underlying system design. CRNT, in con-

trast, analyzes the network’s topology to reveal the fundamental motifs,

such as weak reversibility and deficiency zero architecture, that govern the

system’s dynamics. This moves beyond mere computation to explain why

a system behaves as it does, based on its inherent design.

The approach utilized in this research could prove valuable for rapidly

evaluating other negative emission technologies (NETs). It can efficiently

determine if the system fails to meet specified crucial criteria (such as the

absence of a positive steady state in the long run or bistability), prompting

a reassessment of the technology’s deployment.

The framework presented here, while demonstrated on a limited sys-

tem, shows significant potential for refinement and application to more

complex carbon cycle models. Its foundation in the kinetic representa-

tions of canonical power law models (e.g., Generalized Mass Action sys-

tems) demonstrates the potential for transferability and scalability. This

study thus provides the essential preliminary results needed to justify and

inform subsequent research targeting intricate carbon cycle models with

CDR techniques, where numerical methods can be computationally expen-

sive or fail to generate broader insights. When dealing with a broader or
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CRN representation of a carbon cycle, incorporating network decomposi-

tion theory in CRNT to dissect the system into smaller elements could be

a promising approach.

The idea of “planetary boundaries,” highlighted by Anderies et al. [1],

has had a profound influence on the global sustainability community, as

demonstrated in the research conducted by Steffen et al. [29]. Our ongo-

ing research efforts focus on developing kinetic representations for various

CDR methods such as bioenergy with carbon capture and storage and

ocean fertilization. Tan et al. [31] have stressed the significance of opti-

mizing combinations or “portfolios” of NETs. To address this challenge,

we aim to investigate other combinations of NETs to determine if these

may exhibit steady-state multiplicity.
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