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Abstract

In this work, we investigate similarity transfer in transition metal
networks from a graph-theoretical perspective. Using binary com-
pound data, we construct large-scale chemical element networks
comprising more than 2000 edges. Within this framework, we define
similarity transfer ratio (ST) as a new graph-theoretical descrip-
tor that quantifies how similarity between elements can be prop-
agated through mediating neighbors. Three fundamental transfer
mechanisms—horizontal, vertical, and diagonal—are formally char-
acterized, and their mathematical properties, including symmetry
and topological inequalities, are rigorously proven.

Analysis of 29 transition metals shows that more than 79% of
ST values exceed 90%, demonstrating the robustness of similarity
transfer as a structural feature of chemical networks. Beyond its
chemical interpretation, the ST framework complements classical
graph-theoretical indices such as Wiener and Randić descriptors by
capturing the transferability of similarity rather than measuring only
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static adjacency or distance. This study bridges network topology
and chemical graph theory, establishing a transferable and quan-
tifiable descriptor that offers new insights into periodic trends. In
addition, the framework suggests potential for guiding compound
prediction, although its primary contribution lies in extending the
mathematical foundations of chemical similarity.

1 Introduction

Similarity among chemical elements is a fundamental concept in chemistry.

The Periodic Table, as the systematic classification of chemical elements

into groups with similar properties [1,2], serves as a cornerstone for under-

standing elemental relationships. Typically, it is believed that adjacent el-

ements exhibit similarities in their properties; for instance, elements within

the same group of the PT share comparable characteristics. Over the past

several decades, researchers have focused on identifying similarities among

elements by analyzing their chemical, physical, and physicochemical prop-

erties [3–5]. This approach has laid a foundation for exploring elemental

relationships and understanding their behavior in various chemical sys-

tems.

At the beginning of this century, with the advancement of network the-

ory, researchers began constructing networks based on compounds and in-

vestigating similarities using relational properties of chemical elements [6].

The topological properties of chemical networks have emerged as a power-

ful tool for analyzing elemental relationships [7–12]. Building on our pre-

vious work, where we established large-scale chemical element networks

with more than 2000 edges [8], this research further explores similarity

transfer among transition metals. The network-topological perspective

enables quantitative characterization of similarity propagation paths, the

identification of bridge elements that facilitate inter-group transfer, and

the derivation of topological constraints governing compound formation.

While most classical studies emphasize similarity as a static reflec-

tion of shared physicochemical properties, the present work focuses on

how similarity propagates across the network. The concept of similarity

transfer therefore represents a dynamic process rather than a redundant
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restatement of similarity itself. In chemical terms, this transfer indicates

the preservation and transmission of comparable bonding environments

through mediating elements. Conversely, dissimilarity plays an equally

important role: it often underlies chemical reactivity and bond formation,

since dissimilar elements tend to complement one another in valence or

electronic configuration. Hence, analyzing both similarity and dissimilar-

ity provides a more complete view of how chemical relationships emerge

and evolve within the periodic system.

Chemical graph theory has long provided powerful tools for character-

izing chemical structures through graph-theoretical descriptors such as the

Wiener index [13], the Randić index [14], and Zagreb indices [15]. These

classical measures capture distances, degrees, and connectivity, and have

been successfully applied to correlate molecular graphs with chemical and

physical properties. However, these indices are essentially static; they do

not capture how similarity can be transferred across a network through

mediating neighbors.

It is worth noting that in mathematical terms, a network is equivalent

to a graph; the term “network” is commonly used when dealing with large-

scale systems, while “graph” is typically adopted in chemical graph theory.

In this paper, we use both terms interchangeably, with “network” referring

to the scale of the data and “graph” emphasizing the theoretical frame-

work. In this study, we extend chemical graph theory by introducing the

similarity transfer ratio (ST) as a new graph-theoretical descriptor embed-

ded in transition metal networks. ST formalizes how similarity between

two vertices can be propagated via intermediate nodes, thereby providing

a propagation-based perspective that complements existing indices. We

characterize three fundamental transfer mechanisms—horizontal, vertical,

and diagonal—prove their mathematical properties, and validate them

with large-scale element network data. In doing so, we aim to bridge

the perspectives of network topology and chemical graph theory, enriching

the ethodological foundations of mathematical chemistry.
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2 Graph-theoretical framework for similar-

ity transfer

2.1 Chemical element network

We represent chemical elements and their binary compounds as a chemical

element network. Each vertex corresponds to a chemical element, and an

edge is established between two vertices if the corresponding elements co-

occur in at least one binary compound. The stoichiometries of elements

are disregarded. Following our previous work, the dataset comprises 97

elements and results in a large-scale network containing 2198 edges [8], re-

flecting the extensive connectivity among elements in the compound space.

From a mathematical perspective, this network is equivalent to a sim-

ple undirected graph G = (V,E), where V denotes the set of vertices

(elements) and E denotes the set of edges representing co-occurrence re-

lations. For the purpose of this paper, we restrict our attention to the

29 transition metals contained in this larger network. This restriction is

motivated by the fact that rows such as Ga, Ge, and As, and columns

such as B, Al, and Ga exhibit substantial variations in elemental proper-

ties, which complicate the definition of consistent similarity transfer. By

contrast, the transition metals constitute a more homogeneous subset, al-

lowing for meaningful comparison and reliable validation of the proposed

descriptor.

2.2 Neighbor sets and degrees

For a vertex v ∈ V , the neighbor set is defined as

N(v) = {u ∈ V : (u, v) ∈ E},

which represents the set of elements that directly co-occur with v in binary

compounds. The degree of vertex v is defined as

deg(v) = |N(v)|,
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which indicates the number of distinct elements connected to v. These

quantities are fundamental in graph theory and serve as the basis for

defining similarity transfer descriptors, as they capture the relational en-

vironment of each element within the network.

2.3 Similarity transfer ratio

We introduce ST as a novel graph-theoretical descriptor that quantifies

how similarity between two elements can be transmitted through one or

more mediating elements.

Definition 1 (Horizontal/Vertical ST). For three distinct vertices

A,B,C ∈ V aligned horizontally or vertically in the Periodic Table, the

similarity transfer ratio is defined as

ST(A,B,C) =
|N(A) ∩N(C)| − |(N(A) ∩N(C)) \ (N(A) ∩N(B))|

|N(A) ∩N(C)|
.

The above definition quantifies the portion of shared chemical informa-

tion that remains transferable through an intermediate vertex. In topolog-

ical terms, the intersection operation identifies common bonding environ-

ments between two elements, while the subtraction term isolates the part

that fails to propagate via the mediator. Consequently, the ratio expresses

the efficiency of information transmission through the network, bridging

the abstract graph representation with chemical interpretability. A high

ST value indicates that most of the structural neighborhood around the

two elements can be reconstructed through their shared mediator, reflect-

ing a strong propagation of similarity.

Definition 2 (Diagonal ST). For four distinct vertices A,B,C,D ∈
V , where A and D are diagonally positioned in the Periodic Table and

B,C serve as mediating vertices, the diagonal similarity transfer ratio is

defined as

EAD := N(A) ∩N(D), EBC := N(B) ∪N(C).

ST(A,B,C,D) =
|EAD| − |EAD \ (N(A) ∩ EBC)|

|EAD|
.
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Although the diagonal ST employs intersection with one mediator (B)

and union with the other (C), this asymmetry reflects their distinct topo-

logical roles along two diagonal orientations of the Periodic Table. Specif-

ically, B and C occupy adjacent but non-equivalent environments in elec-

tronic configuration, so the union operation accounts for their comple-

mentary influence on A and D. Despite this asymmetric formulation, the

overall descriptor remains symmetric under permutation of A and D, en-

suring mathematical consistency of the definition.

2.4 Transfer mechanisms (horizontal, vertical, and di-

agonal)

From a topological viewpoint, horizontal, vertical, and diagonal transfers

correspond respectively to propagation within a period, within a group,

and across both directions of the Periodic Table. The asymmetric form of

the diagonal case (intersection with one mediator and union with another)

reflects their complementary roles along two distinct diagonal orientations,

while the overall definition preserves symmetry between the terminal ele-

ments.

Based on these definitions, three fundamental transfer mechanisms can

be distinguished:

1. Horizontal transfer: Similarity propagates between adjacent ele-

ments within the same period, mediated by an intermediate element.

2. Vertical transfer: Similarity propagates between adjacent elements

within the same group, mediated by an intermediate element.

3. Diagonal transfer: Similarity propagates between diagonally re-

lated elements, mediated by two intermediate elements that jointly

facilitate the transfer.

To illustrate these mechanisms, we consider a concrete case of horizon-

tal transfer from our dataset. As shown in Figure 1, the similarity between

Y and Nb is mediated through the intermediate element Zr. Specifically,

97% (= (35-1)/35) of the common neighbors between Y and Nb are pre-



649

served when the transfer is mediated by Zr, reinforcing the similarity re-

lation between Y and Nb.

Figure 1. Horizontal similarity transfer: Y → Nb mediated by Zr

3 Mathematical analysis and results

3.1 Horizontal ST

Horizontal ST values were calculated for all adjacent triplets of transition

metals in the same row, and the results are summarized in Table 1. Values

are generally high, with only two combinations containing Tc having values

less than 80%.

To further explore robustness, we extended the calculation by replacing

the third element C with another element X positioned further to the right

in the same row. This “extended horizontal ST” consistently yielded values

close to or above 90%, as presented in Table 2.

It is also important to note that

ST(A,B,C) = ST(C,B,A).
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Table 1. Horizontal ST (%).

Combination ST Combination ST Combination ST

Sc, Ti, V 97 Y, Zr, Nb 97 Hf, Ta, W 96
Ti, V, Cr 91 Zr, Nb, Mo 94 Ta, W, Re 82
V, Cr, Mn 95 Nb, Mo, Tc 76 W, Re, Os 90
Cr, Mn, Fe 86 Mo, Tc, Ru 75 Re, Os, Ir 93
Mn, Fe, Co 93 Tc, Ru, Rh 94 Os, Ir, Pt 96
Fe, Co, Ni 88 Ru, Rh, Pd 90 Ir, Pt, Au 94
Co, Ni, Cu 96 Rh, Pd, Ag 87 Pt, Au, Hg 86
Ni, Cu, Zn 82 Pd, Ag, Cd 88

Table 2. Extended horizontal ST (%).

Combination ST Combination ST Combination ST

Sc, Ti, Cr 97 Y, Zr, Mo 100 Hf, Ta, Re 88
Sc, Ti, Mn 97 Y, Zr, Tc 100 Hf, Ta, Os 88
Sc, Ti, Fe 97 Y, Zr, Ru 96 Hf, Ta, Ir 88
Sc, Ti, Co 96 Y, Zr, Rh 93 Hf, Ta, Pt 84
Sc, Ti, Ni 97 Y, Zr, Pd 97 Hf, Ta, Au 84
Sc, Ti, Cu 97 Y, Zr, Ag 93 Hf, Ta, Hg 92
Sc, Ti, Zn 97 Y, Zr, Cd 91

Proof. Let E := N(A) ∩N(C). By the definition of horizontal ST,

ST(A,B,C) =
|E| − |(N(A) ∩N(C)) \ (N(A) ∩N(B))|

|E|

= 1− |E \ (N(A) ∩N(B))|
|E|

.

Since E ⊆ N(A), we have the set identity

E \ (N(A) ∩N(B)) = E \N(B).

(Generally, if E ⊆ F , then E \ (F ∩ G) = E \ G.) Similarly, because

E ⊆ N(C), we also have

E \ (N(C) ∩N(B)) = E \N(B).
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Hence

|E \ (N(A) ∩N(B))| = |E \N(B)| = |E \ (N(C) ∩N(B))|.

The numerators of ST(A,B,C) and ST(C,B,A) are therefore equal, and

their denominators are both |E|. It follows that ST(A,B,C) = ST(C,B,

A).

This symmetry also applies to vertical and diagonal ST.

3.2 Vertical ST

Vertical similarity transfer is investigated by considering triplets of tran-

sition metals located in the same column of the periodic table (Table 3).

Values are generally high, with several combinations reaching or approach-

ing 100%. (The column containing Sc and Y is excluded because no lan-

thanoid element is specified to complete a triplet.)

Table 3. Vertical ST (%).

Combination ST Combination ST

Ti, Zr, Hf 100 Co, Rh, Ir 90
V, Nb, Ta 95 Ni, Pd, Pt 92
Cr, Mo, W 90 Cu, Ag, Au 91
Mn, Tc, Re 74 Zn, Cd, Hg 73
Fe, Ru, Os 96

3.3 Diagonal ST

Diagonal ST takes two patterns: positive diagonal ST (transfer from up-

per-left to lower-right) and negative diagonal ST (upper-right to lower-

left). Results are shown in Tables 4 and 5, respectively.

These findings suggest that similarity transfer among transition met-

als is not confined to a single orientation but can occur robustly along

horizontal, vertical, and diagonal directions of the periodic table. The

consistently high transfer ratios underscore the universality of preserved

neighbors as the foundation of similarity propagation.
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Table 4. Positive diagonal ST (%).

Combination ST Combination ST Combination ST

Sc, Ti, Y, Zr 97 Co, Ni, Rh, Pd 96 Tc, Ru, Re, Os 100
Ti, V, Zr, Nb 98 Ni, Cu, Pd, Ag 94 Ru, Rh, Os, Ir 98
V, Cr, Nb, Mo 100 Cu, Zn, Ag, Cd 100 Rh, Pd, Ir, Pt 96
Cr, Mn, Mo, Tc 88 Zr, Nb, Hf, Ta 100 Pd, Ag, Pt, Au 100
Mn, Fe, Tc, Ru 96 Nb, Mo, Ta, W 93 Ag, Cd, Au, Hg 89
Fe, Co, Ru, Rh 91 Mo, Tc, W, Re 91

Table 5. Negative diagonal ST (%).

Combination ST Combination ST Combination ST

Ti, Sc, Zr, Y 97 Ni, Co, Pd, Rh 96 Ru, Tc, Os, Re 96
V, Ti, Nb, Zr 100 Cu, Ni, Ag, Pd 100 Rh, Ru, Ir, Os 98
Cr, V, Mo, Nb 100 Zn, Cu, Cd, Ag 98 Pd, Rh, Pt, Ir 96
Mn, Cr, Tc, Mo 97 Nb, Zr, Ta, Hf 97 Ag, Pd, Au, Pt 96
Fe, Mn, Ru, Tc 95 Mo, Nb, W, Ta 97 Cd, Ag, Hg, Au 97
Co, Fe, Rh, Ru 100 Tc, Mo, Re, W 100

4 Validation and theoretical implications

This section validates the ST framework against classical graph-theoretical

indices and chemical databases, and discusses both theoretical implications

and practical predictive applications.

4.1 Comparison with classical graph descriptors

Traditional graph-theoretical descriptors, such as the Wiener index and

the Randić index, typically measure global or pairwise structural features

of chemical graphs. In contrast, ST captures higher-order relations by

quantifying how similarity propagates across triplets or quadruplets of ele-

ments. This makes ST a complementary descriptor: while classical indices

emphasize aggregate connectivity or branching, ST emphasizes the preser-

vation of common neighbors through mediators, reflecting local propaga-

tion mechanisms that are not visible from pairwise descriptors alone.
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4.2 Topological inequalities and constraints

The formulation of ST naturally gives rise to topological inequalities that

constrain how neighbor sets can overlap in the chemical element network.

In particular, two inclusion relations hold:

N(A) ∩N(C) ⊆ N(A) ∩N(B), (1)

N(A) ∩N(D) ⊆ N(A) ∩ (N(B) ∪N(C)). (2)

which further lead to the cardinality inequalities:

|N(A) ∩N(C)| ≤ |N(A) ∩N(B)|, (3)

|N(A) ∩N(D)| ≤ |N(A) ∩ (N(B) ∪N(C)). (4)

Detailed numerical values in (3) and (4) are provided in the supplementary

file. Of the 86 value pairs examined, 78 pairs meet either (3) or (4),

representing a 90.7% satisfaction rate. Therefore, we can regard the above

inequalities as generally valid and use them as a guide to identify potential

compounds. For example, for ST(Fe,Co,Ni) in row 1 of Table 1, |N(Fe)∩
N(Ni)|=57 and |N(Fe) ∩N(Co)|=52, while from (3) we know |N(Fe) ∩
N(Co)| should be greater than or equal to |N(Fe) ∩ N(Ni)|. Therefore,

Fe and Co are expected to have more common neighbors.

It is worth noting that the present formulation of ST is not the only

conceivable one. If the logical operations of intersection and union were

inverted, alternative multi-valued descriptors could be obtained, possibly

distinguishing “fundamental” and “excited” transfer states. However, such

variants generally lack monotonicity and complicate numerical comparison.

The definition adopted in this paper was therefore chosen for its unique-

ness and stability, ensuring a single-valued and comparable measure of

transferability across all element pairs.

4.3 Compounds prediction

Among all 86 ST values in the five tables listed above, the minimum ST

observed is 73, with only four STs being smaller than 80; 68 STs are greater



654

than or equal to 90, accounting for over 79% of all STs. The average value

for all STs is 93, which is a high value that supports our belief in the

existence of a pattern for ST among elements, i.e., N(A) ∩ N(B) can be

regarded as the source of N(A)∩N(X), and N(A)∩ (N(B)∪ N(C)) can

be regarded as the source of N(A) ∩N(D).

The ST pattern provides a systematic basis for predicting potential

binary compounds. For instance, in the case of ST(Ni,Cu,Pd,Ag) in Ta-

ble 4, |N(Ni) ∩ N(Ag)| = 51, Three elements— K,C and W—appear in

N(Ni)∩N(Ag) but are absent from N(Ni) ∩ (N(Cu) ∪ (N(Pd), resulting

in an ST value of 94% (= (51-3)/51). To increase this value, at least one

of Cu or Pd must form binary compounds with K, C or W. Verification

through Chemspider [16], a website that provides search engines to get var-

ious kinds of compounds, confirms the existence of PdC, CuC, and CuW,

reducing the discrepancy to a single element (K) and effectively increasing

the ST value to 98%.

5 Conclusions

This study introduced ST as a novel graph-theoretical descriptor for ana-

lyzing the propagation of similarity among transition metals. By formal-

izing three transfer mechanisms—horizontal, vertical, and diagonal—and

proving their mathematical properties such as symmetry and topological

inequalities, we established a rigorous framework that enriches the method-

ological toolbox of chemical graph theory. The analysis of 29 transition

metals demonstrated that similarity transfer is highly robust, thereby of-

fering a new perspective on periodic trends from a network-topological

viewpoint.

The present analysis focuses on 29 transition metals, which constitute

a compact and chemically homogeneous subset suitable for initial valida-

tion. Nevertheless, the framework is not limited to these elements. In

future work, we plan to extend the model to include s-, p-, and f-block

elements and to analyze inter-block transfer mechanisms. Such expansion

will test the generality of the ST descriptor and may further enhance its

applicability to predicting new compounds and uncovering broader peri-
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odic trends.

Future research will also extend this approach to non-transition ele-

ments, incorporate stoichiometric weights into the network model, and

explore connections with other topological indices, thereby strengthening

the link between mathematical chemistry and real compound formation.

Beyond its theoretical contribution, the ST framework thus enriches

the mathematical foundations of chemical similarity while offering a unified

basis for both structural interpretation and predictive analysis across the

Periodic Table.
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