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Abstract

A nut graph is a connected simple graph with nullity one that
has a full kernel eigenvector. In the context of π systems, chemical
nut graphs are identical with the subcubic nut graphs. Chemical
nut graphs are of interest for at least two reasons: the possibility of
fully distributed radical reactivity arising from partial occupation of
their sole non-bonding orbital, and their identification with the class
of strong omniconductors of nullity one in source-and-sink models of
ballistic molecular conduction. In this note, a mapping between the
Hückel tight-binding theory of π-conjugated carbon frameworks and
the Telegraph equations for networks of coaxial cables is described.
This mapping motivates experimental realisation of chemical nut
graphs, where the radio-frequency resonances of the cable network
correspond to the spectrum of a weighted version of the molecular
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graph. In particular, measurements with a vector network anal-
yser give direct access to the nullstate of the cable network, and
hence to a simulation of the non-bonding molecular orbital of the
π system. We demonstrate the distributed nature of the kernel
eigenvector, which underpins the description of chemical reactivity,
omni-conduction and electrical properties, for the cable models of
the smallest chemical nut graph, and the three smallest nut graphs.
We also show the feasibility of larger cable networks obtainable by
known constructions for infinite families of nut graphs.

1 Introduction

The special properties of nut graphs have attracted attention in both

mathematics and chemistry [11, 22–26]. A nut graph is a simple graph

(unweighted, without loops or parallel edges) for which the 0, 1 adjacency

matrix has a single zero eigenvalue, and for which the kernel eigenvector

has no zero entries. It is straightforward to show that nut graphs are

connected, have no vertices of degree 1, and are non-bipartite [27]. Tra-

ditionally, the graph consisting of an isolated vertex is considered to be

a trivial case [27]. Hence, the smallest non-trivial nut graphs have 7 ver-

tices; these are the three Sciriha graphs shown in Fig. 1. As cycles have

nullity either 0 or 2, every non-trivial nut graph has at least one vertex

of degree > 2. Extensive catalogues of nut graphs of various classes have

been compiled [1–3].

(a) S1 (b) S2 (c) S3

Figure 1. The Sciriha graphs: the three smallest nut graphs, with ker-
nel eigenvectors.

In chemistry, the focus is on chemical nut graphs. Chemical graphs are

intended to represent possible carbon skeletons of conjugated systems, and

therefore they are defined here as connected simple graphs with maximum
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degree ≤ 3. The chemical nut graphs are then exactly the subcubic nut

graphs. As a nut graph has no leaves, and is not a cycle, an n-vertex

chemical nut graph has v2 vertices of degree 2 and v3 of degree 3, where

n = v2 + v3, v2 ≥ 0, v3 > 0, and v3 is even. Chemical nut graphs exist for

all pairs (v2, v3) satisfying these inequalities, apart from a finite set of pairs

at small orders, and two specific infinite families with small v3: i.e. for

pairs (v2, 2) with v2 is even, and (v2, 4) with v2 odd, there is no chemical

nut graph [8]. Proof of these results for chemical nut graphs relied upon

the existence of constructions by which nut graphs of higher order n can be

produced from smaller nut graphs either by insertion of vertices on edges,

or replacement of degree-3 vertices with a specific hexagonal motif. The

smallest chemical nut graph has 9 vertices and is shown in Fig. 2 along

with an 11-vertex chemical nut graph, constructed via insertion of two

vertices on a cut edge (bridge) of the 9-vertex graph. Cubic polyhedral

nut graphs (v2 = 0) include, for example, the Frucht graph [9] and some

fullerenes [7, 26].

The defining feature of the nut graph is that the unique non-trivial

kernel eigenvector (in chemical terms, the unique non-bonding π molecular

orbital) is distributed over all vertices (conjugated carbon atoms). In some

cases, the vector is equidistributive (has entries of equal magnitude on

all vertices), but in general it may contain entries with different relative

magnitudes. In any chemical nut graph, as there are at least two vertices

of degree 3, the ratio of largest to smallest magnitudes of entries is at least

2 : 1 [3]. For example, the Sciriha graphs are all equidistributive, whereas

the smallest chemical nut graph, Chem1, is not, as it has one vertex entry

that has twice the magnitude of the others (see Figures 1 and 2).

(a) Chem1 (b) Chem2

Figure 2. Kernel eigenvectors of chemical nut graphs: (a) Chem1, the
smallest chemical nut graph; (b) Chem2, constructed by
adding two vertices on the bridge of Chem1.
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Nut graphs are of interest in chemistry for two reasons that both stem

from this distributed nature of the kernel eigenvector. The first concerns

reactivity. If the zero eigenvalue in the spectrum of a chemical nut graph

occurs at the HOMO-LUMO frontier for some accessible electron count,

then the nature of the kernel eigenvector implies that, within the Hückel

approximations, there will be a doublet state with non-zero spin density,

and hence radical reactivity, on all carbon centres. The second reason

concerns molecular conduction. In the Hückel version of the SSP model of

ballistic conduction for two-wire devices [19], nut graphs are exactly the

strong omniconductors of nullity 1, i.e. they have Fermi-level conduction

for all distinct and ipso contact pairs, at least within the Hückel model [6],

precisely because every vertex of a nut graph is a core vertex (carries non-

zero density in the kernel eigenvector) [28].

In the present note, we consider an approach to nut graphs that is

based on an analogy between Hückel theory (the simplest tight-binding

theory) and the radio-frequency theory of coaxial cable networks. Specific

states of the cable network correspond to the non-bonding orbitals of an

analogous π system. This analogy allows realisation of a nut graph as a

macroscopic object with measurable electrical properties that derive from

the defining property of these graphs, and gives a strategy for making

larger cable networks by straightforward use of the known mathematical

constructions for nut graphs.

The structure of the paper is as follows. The connection between nut

graphs and the source-and-sink model of ballistic molecular conduction

is reprised in §2. The mathematical basis of the chemical graph/cable

network analogy is set out in §3 and the experimental method and results

are described in §4. Finally, some conclusions and perspectives are offered

in §5.

2 Nut graphs and the SSP model

Nut graphs were originally defined with respect to their special role in

graph theory. However, they also occupy a special position in the source-

and-sink-potential (SSP) model [10] for ballistic conduction in molecular



607

devices. In the graph theoretical tight-binding formulation [20], incorpo-

ration of a molecular π system in a circuit is represented by attaching the

molecular graph via single bonds to semi-infinite leads modelled as chains

of atoms. If G is the molecular graph and the vertices of G that are in

contact with the left and right leads (not necessarily distinct) are L̄ and

R̄, then the transmission of an incoming electron with zero energy is given

by a simple function of four graph characteristic polynomials. The DC

transmission at the zero of energy (the π non-bonding level) and in the

wide-band limit, at all energies, is given by [20]

TSSP(0) =
4(u0t0 − s0v0)β̃

2

(s0 − β̃2v0)2 + (u0 + t0)2β̃2
(1)

with s0, t0, u0, v0 denoting characteristic polynomials, evaluated in the

limit of zero energy, of the graphs G, G − L̄, G − R̄, and G − L̄ − R̄, re-

spectively. This expression can be used in conjunction with the Interlacing

Theorem to derive selection rules for conduction/insulation at zero energy

by considering the nullities of these four vertex-deleted graphs, i.e. the

numbers of zero roots of the polynomials s(E), t(E), u(E), and v(E) [20].

In the case of nut graphs, which figure prominently in this paper, u0t0 is

non-zero, whereas s0v0 is zero.

A useful distinction is between core and core-forbidden vertices [28].

A core vertex (CV) of a graph is one that has a non-zero entry in some

vector in the kernel of the adjacency matrix of that graph. All vertices that

are not core are core forbidden (CFV). Deletion of a core vertex reduces

nullity by one; deletion of a core-forbidden vertex leaves nullity unchanged

or increases it by one, a distinction recognised in the finer classification

of CFV into middle (CFVmiddle) and upper (CFVmiddle) subtypes. By

definition, all vertices of a nut graph are core vertices, and the expression

ut−sv is therefore non-vanishing at zero energy for these graphs, implying

T (0) ̸= 0 for all pairwise connections of a nut graph, whether distinct or

not. Hence, in the terminology developed for the SSP model [6], the nut

graphs are strong omniconductors (in fact, they are exactly the strong

omniconductors of nullity one).

The entries in the kernel eigenvector of a chemical nut graph are easily
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assigned from the local condition that the sum of entries in the kernel

vector over the neighbours of any vertex vanishes. The trick of assigning

variables by pivoting on each vertex in turn, and using simple logic to

eliminate redundant variables has a long history in chemistry [15]. As

the nullity of a nut graph is one, all entries in the kernel eigenvector are

multiples of a single parameter, enabling comparison at a glance with the

cable network experiments described below.

3 Coaxial cable networks

Coaxial cables were patented by Heaviside in 1880 [17] as a means of

allowing signal propagation with minimal interference from external elec-

tromagnetic influences. A coaxial cable consists of a pair of concentric

cylindrical conductors, separated by a dielectric material. It is charac-

terised by two parameters: the propagation speed, c, determined by the

refractive index of the dielectric, and the impedance, Z, which depends on

the ratio of the diameters of the two conductors. Signal propagation in

such cables is described by Heaviside’s Telegraph equations [12,14]. In the

absence of losses, these reduce to simple one-dimensional wave equations

for the voltage, V (x, t) and current I(x, t). These yield monochromatic

solutions of the form V (x, t) = V (x)e−iωt with

V (x) = V (0) cos (ωx/c) + iZI(0) sin (ωx/c) , (2)

where the current is I(x) = (ic/ωZ)dV/dx. In a network, this implies that

the voltages Vn and Vn′ on two vertices, connected by a cable with length

dnn′ and impedance Znn′ , are related by

Vn′ = Vn cos (ωdnn′/c) + iZnn′Inn′ sin (ωdnn′/c) , (3)

where Inn′ is the current flowing out of vertex n towards vertex n′.

In order to produce a network that maps onto a tight binding model, we

choose the lengths of the cables such that the propagation time, τ = d/c,

is the same in each. In this work, we use identical cables, such that all have

the same length and the same impedance, Z0 = 50Ω. Charge conservation
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(Kirchhoff’s First Law) requires the net current flowing out of a vertex to

be zero, so

iZ0 sinωτ
∑
⟨n′⟩

Inn′ =
∑
⟨n′⟩

(Vn′ − Vn cosωτ) = 0 , (4)

where ⟨n′⟩ indicates the set of neighbours that are connected to vertex n.

This leads to a generalised eigenvalue problem∑
⟨n′⟩

Vn′ =
∑
⟨n′⟩

H̄nn′Vn′ = εdeg(n)Vn , (5)

where H̄ is the adjacency matrix of the graph, ε = cos (ωτ) and deg(n)

is the degree of vertex n. To obtain a tight-binding form, we scale the

voltage at each vertex, defining vn = σ−1Vn, where σn = (deg(n))−1/2.

Then Eq. (5) can be written as a standard eigenvalue problem∑
⟨n′⟩

Hnn′ vn′ = ε vn , (6)

where Hnn′ = σnH̄n,n′σn′ . The cable network thus maps onto a weighted

graph, and typically eigenvectors of H and H̄ do not coincide. There

are two systematic exceptions. The first is for regular graphs, where all

eigenvectors are in common, and eigenvalues of H̄ and H are related by a

single scaling factor equal to the degree. The other is for singular graphs

(graphs with a zero eigenvalue). In this latter case, any zero-energy state

of the generalised problem, Eq. (5), is also an eigenstate with ε = 0 of the

unweighted adjacency matrix, H̄, and vice versa, implying equal nullity

of the two graphs. Thus, in the experiments we will be able to measure

the true nullstates of the nut-graph. Note that the eigenvalue, ε, is a

dimensionless quantity, but we will nevertheless describe it as an ‘energy’,

by analogy with the language of tight-binding theory. The zero of this

energy corresponds to a finite frequency, ωτ = π/2.

When driven with a radio-frequency source, using a vector network

analyser (VNA), the cable network will have resonances at frequencies, ω,

corresponding to the eigenvalues εk = cosωτ of Eq. (6). This provides an
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experimental measurement of the spectrum of the weighted graph. Specif-

ically, as shown in Ref. 29, the impedance of the network measured at

connection vertex α is

Zα(ε) = iZ0

√
1− ε2

∑
k

|V (k)
α |2

εk − ε
, (7)

where V
(k)
α is the amplitude of the kth eigenvector of Eq. (5) on the ver-

tex. Apart from a trivial factor, the real part of Zα(ε) at the pole is the

local density of states at the vertex α. The impedance plot for a vertex

therefore consists of a series of delta function peaks, i.e. resonances, at

the eigenvalues for which the density of states at that vertex is non-zero.

In practice, these resonances are broadened slightly by losses in the cables,

which may lead to residual signal, even where the density of states at the

vertex is nominally zero. The intensity of a peak is essentially |V (k)
α |2, and

so measuring impedance at all the vertices in the network allows us to plot

the spatial structure of a given eigenvector, and in particular to identify

the core and core-forbidden vertices of the graph. These are easily dis-

tinguished, as the measurements give access to response across the whole

frequency range.

We also measure amplitude and phase of the complex transmission for

any chosen pair of vertices. This allows us to demonstrate, for example,

the strong omniconducting behaviour of the graph S3, and also, at least

in the case of graphs with nullity 1, to determine the relative signs of the

entries in the nullstate vector on different core vertices.

When, as here, we have a non-degenerate state at ε = 0, the transmis-

sion depends on the amplitudes of this state, on the input vertex α and

the output vertex β. This allows us to use the sign of the transmission

amplitude at ε = 0 to measure the relationship between the signs of V
(0)
α

and V
(0)
β . The situation is complicated by the effects of the losses due to

the finite input and output impedances of the VNA, equivalent to source

and sink dissipation in the SSP model. Taking these into account, we find

the transmission amplitude , tβα(ε), at zero energy for our case of interest,



611

the nut graph, to be

tβα(0) =
iV

(0)
β V

(0)
α

−
∑

εk ̸=0 ε
−1
k

(
V

(k)
α V

(0)
β − V

(k)
β V

(0)
α

)2

+ i
(
(V

(0)
α )2 + (V

(0)
β )2

) ,

(8)

where the sum in the first term in the denominator is over all the non-

zero eigenstates of Eq. (5), with energies εk and amplitudes V
(k)
α and V

(k)
β

on the input and output vertices. These loss terms lead to a non-zero

phase for tβ,α(ε = 0). However, as the imaginary part of the denominator

in Eq. (8) is greater than zero, the real part Re{tβα} is a product of a

positive quantity and V
(0)
β V

(0)
α . Using this fact, the relative signs of the

nullstate entries on each vertex can be measured experimentally, providing

a full tomography of the state, and effectively a proxy for measurement of

the non-bonding π molecular orbital.

The quantity |tβ,α(ε = 0)|2 derived from Eq. (8) is not equal to the

Fermi level transmission for the molecular graph in the SSP model, TSSP,

but zero/non-zero values of the two quantities are matched, as this depends

on vanishing/non-vanishing of products of entries in the nullstate/non-

bonding orbital vector. In the molecular-orbital/channel formulation of

the SSP model [21], Fermi-level transmission through a nut graph takes

the same form as the expression for |tβ,α(ε = 0)|2 derived from Eq. (8).

(Take Case 9 and 10 of Table I in [21], set all Hückel resonance integrals

to unity, and use Laurent expansions of numerator and denominator.)

Where the expressions for |tβ,α(ε = 0)|2 and TSSP(0) differ, however, is

that the denominator of |tβ,α(ε = 0)|2 involves eigenvalues of H, i.e. εk,

whereas the denominator of T (0)SSP involves eigenvalues of the unweighted

adjacency matrix of H̄.

The transmission (Eq. (8)) is specific to the case of nullity 1. For η > 1,

the numerator of Eq. (8) becomes a sum involving a shell invariant that

depends on the two vertices α and β, so that sign information for the spe-

cific basis vectors cannot be recovered immediately from the transmission

in the same way as when nullity is 1.
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4 Experiments

We have carried out an experimental investigation of the nullstates of the

various nut graphs discussed above, using radio frequency measurements

on the coaxial cable networks that represent them. We use type RG58

cables which have an impedance of 50 Ω. The lengths of the cables are

approximately 41 cm, and hence the condition for zero energy (ωτ = π/2)

corresponds to a frequency around 114 MHz. Each cable is made with

an SMA female connector at one end and a male connector at the other.

They can therefore be joined directly to form a vertex of degree two, whilst

a standard T-connector provides degree three. This is exactly what is

required to represent chemical graphs, but for degrees greater than three,

it is necessary to stack multiple T-connectors to make the junction. Fig. 3

shows photographs of experimental cable networks for several nut graphs.

Figure 3. Photographs of physical cable networks that simulate nut
graphs S1, S2, and S3. Edges (cables) are labelled in white,
vertices (connectors) are bronze-coloured, and the respective
degree sequences are 2641, 2245, 234361.

We make two sorts of radio frequency measurement with a VNA: the

impedance obtained at each vertex gives the amplitude of the state, and

transmission measurements provide the information required to determine

the relative signs. Typical experimental data are shown in Fig. 4(a), for

a network corresponding to the Sciriha graph S1. In the impedance spec-

tra, the states appear as narrow peaks, broadened by the resistive losses

in the cables. By integrating over the region of the peak and comparing

with Eq. (7), we obtain |Vn|2, the squared amplitude on vertex n. This

measurement for each vertex in the network allows us to perform a tomog-

raphy of the state by combining it with transmission measurements: the

relative sign of the amplitudes on a pair of vertices is given by the sign of
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the real part of the transmission at ε = 0, see Eq. (8). By choosing an

input vertex, and measuring the transmission to all the other vertices, we

can determine the relative signs of the state on each vertex. This enables

us to plot the nullstate, as in Fig. 4(b), where the radius of each circle is

proportional to the amplitude of the state on that vertex, and the colour

indicates the sign.
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(a) (b) S1

Figure 4. (a) Examples of experimental measurements of the real part
of the impedance, Re[ZA] (RH scale, blue dot-dashed curve)
and transmission, tBC (LH scale, real/ imaginary compo-
nents magenta solid/dashed curves). The measurements
were made on cable network (b), representing Sciriha graph
S1, recording impedance at vertex A, and transmission be-
tween B and C. Similar measurements were used to obtain
the amplitude of the nullstate on each vertex of the graph:
the modulus is found by integrating the impedance over the
window −0.08 < ε < 0.08 (orange) and using Eq.(7) to ob-
tain |Vn|2. Relative signs are deduced from transmission
between pairs of sites (see Eq. (8) and discussion). The ra-
dius of each vertex in (b) is proportional to experimental
amplitude, Vn, with colour indicating sign. Measured and
theoretical nullstates agree, with fidelity 99.9%.

In Fig. 5 we show the experimental nullstates for the networks repre-

senting the two remaining 7-vertex nut graphs, S2 and S3. Fig. 6 shows the

results for the smallest chemical nut graph, and the chemical nut graph

constructed by the addition of two vertices to the bridge, demonstrating

experimentally that this construction indeed creates a new nut graph.
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(b) S3(a) S2

Figure 5. Experimentally determined nullstates for cable networks rep-
resenting Sciriha graphs S2 and S3, using the method illus-
trated in Fig. 4. The radius of each vertex is proportional
to the amplitude, Vn, and colours indicate relative signs. In
both, fidelity between theory and experiment is 99.2%.

(a) Chem1 (b) Chem2

Figure 6. Experimental nullstates for networks representing (a) the
smallest chemical nut graph, and (b) a chemical nut graph
constructed with the addition of two vertices on a bridge.
The amplitude of the state is proportional to the radius of
the vertex, and colour indicates the sign. The fidelity is
98.6% for (a) and 99.8% for (b).

As a measure of how well the experiments reproduce the theoretical

nullstate, we calculate the fidelity of the experimental measurement, de-

fined by

F = |V graphT

V exp|2, (9)

where V graph is the theoretical kernel eigenvector, and V exp is the exper-

imental nullstate, both being normalised to unity. All our measurements

give fidelities between 98.6% and 99.9%, demonstrating excellent agree-

ment with theory.

In Fig. 7 we present experimental data confirming the strong omnicon-

duction of the graph S3. Two sets of measurements were taken. Trans-

mission for vertex pairs demonstrates the distinct omniconduction, whilst
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Figure 7. Experimental demonstration of strong omniconduction for
nut graph S3 (inset). The symmetry of the graph implies
that full demonstration requires only transmission measure-
ments between one vertex of each orbit (blue, green, ma-
genta) and all other vertices of the graph. Absolute values
of the transmission are plotted (solid curves, coloured by in-
put vertex). The transmission at ε = 0 is always non-zero,
confirming distinct omniconduction. Also shown (dashed) is
the absolute value of the reflectance spectrum for one vertex
of each orbit, demonstrating ipso-omniconduction.

reflectance, measured for one vertex at a time, demonstrates the ipso-

omniconduction. We plot the absolute value of the transmission, |tβα|. In
all cases, |tβα| at ε = 0 is much greater than zero, demonstrating distinct

omniconduction. The figure also shows the absolute reflectance at each

input. This too is non-zero at ε = 0, and hence ipso-omniconduction is

also apparent.

5 Conclusions

This work on a crossover between graph theory/mathematical chemistry

and experimental physics follows in a tradition of using macroscopic models

to illustrate concepts and supply scaffolding for future investigations. Past

examples from theoretical chemistry/ chemical physics and from the theory

of electromagnetism include use of electrical circuit analogues for the secu-
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lar determinants in the theory of molecular vibrations [30], and, famously,

Maxwell’s initial mechanical model of the electromagnetic field [13,16,18].

The present approach gives a visualisation of a (one-electron) wavefunction

captured via a physical model embodied in a macroscopic cable network.

The nut graphs investigated here happen to have mixed vertex de-

gree. However, nut graphs can also be regular. In particular, cubic nut

graphs exist for n = 12 and all even n ≥ 18 [8], and these can be par-

titioned into uniform, balanced or unbalanced classes, according to the

pattern of entries in the kernel eigenvector [26]. Cubic nut graphs include

some classics of graph theory, such as the Frucht graph. The tripartite

uniform/balanced/unbalanced classification would be amenable to inves-

tigation using one-port measurements.

Another obvious extension would be to core graphs (graphs where all

vertices are core vertices, but nullity may exceed one), for which the cable

network invariants will correspond to partial spin/charge densities result-

ing from occupation of the nullspace of a π system.

Directions for further exploration of the analogy with the SSP model

include systematic simulation of the selection rules for ballistic conduction

at E = 0 of distinct (11 cases) and ipso (3 cases) devices, which are based

on the nullity signature of the polynomials s, t, u, v and of the combination

j2 = ut− sv. Every case can be found in some chemical graph. Note that

the commonality of kernels of weighted and unweighted graphs extends to

the related vertex-deleted graphs, implying that the vertices of weighted

and unweighted graphs have identical partitions into types CV, CFVmiddle,

CFVupper, whatever the value of η. It follows from this that the conduction

cases derived for E = 0 from weighted and unweighted graphs are the same.

It could also be interesting to work with the TLA (three-letter-acronym)

classification of molecular graphs, both bipartite and non-bipartite, and

sets of devices that can be derived from them [4]. Exotica such as the Clar

Goblet, a concealed non-Kekulean benzenoid, could also be of interest.

Beyond the realm of graphs, an interesting extension would be to di-

graphs with specific properties of their kernels and cokernels. Cable net-

works that mimic directed graphs are realisable with standard components,

and research on this is being pursued in Sheffield.
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Graphs: a database of interesting graphs, Discr. Appl. Math. 161
(2013) 311–314.

[2] K. Coolsaet, P. W. Fowler, J. Goedgebeur, Nut graphs, homepage of
Nutgen, http://caagt.ugent.be/nutgen/.

[3] K. Coolsaet, P. W. Fowler, J. Goedgebeur, Generation and properties
of nut graphs, MATCH Commun. Math. Comput. Chem. 80 (2018)
423–444.

[4] P. W. Fowler, M. Borg, B. T. Pickup, I. Sciriha. Molecular graphs and
molecular conduction: the d-omni-conductors, Phys. Chem. Chem.
Phys. 22 (2020) 1349–1358.

[5] P. W. Fowler, J. B. Gauci, J. Goedgebeur, T. Pisanski, I. Sciriha,
Existence of regular nut graphs for degree at most 11, Discuss. Math.
Graph Theory 40 (2020) 533–557.

[6] P. W. Fowler, B. T. Pickup, T. Z. Todorova, M. Borg, I. Sciriha,
Omni-conducting and omni-insulating molecules, J. Chem. Phys. 140
(2014) #054115.

[7] P. W. Fowler, B. T. Pickup, T. Z. Todorova, R. De Los Reyes, I. Scir-
iha, Omni-conducting fullerenes, Chem. Phys. Lett. 568–569 (2013)
33–35.

[8] P. W. Fowler, T. Pisanski, N. Bašić, Charting the space of chemical
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