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Abstract

A commonly employed method is to convert the task to a linear
algebra problem, and then solve the null space of the constructed
formula matrix. However, in this method, the directly obtained solu-
tion may be invalid, and there is no canonical choice of independent
basis reactions. In this paper, we show that these drawbacks origi-
nate from the fact that the fundamental structure of solutions here
is not a linear space but a positive affine monoid. This new under-
standing enables a systematic approach and a complete description
of all possible reactions by a unique set of independent elementary
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reactions, called Hilbert-basis reactions. By clarifying its underlying
mathematical structure, our work offers a new perspective on this
old problem of balancing chemical equations.

1 Introduction and notations

For a given set of m reactants {Ri} (i = 1, 2, · · · ,m) and a given set of

n products {Pj} (j = 1, 2, · · · , n), balancing chemical equations for them

refers to finding nonnegative integers ck ≥ 0 (k = 1, 2, · · · ,m + n) such

that

c1R1 + c2R2 + · · ·+ cmRm → cm+1P1 + cm+2P2 + · · ·+ cm+nPn (1)

is a valid chemical equation. This is a very basic problem in chemistry.

For simple cases, one may obtain the solution just by inspection [35]. For

more complicated cases, it is difficult to solve using just inspection. One

needs to resort to certain techniques, e.g., by using oxidation numbers or

half reactions [7,15–17,21,25,29,37,40–42], which requires a fair knowledge

of chemistry.

There also exist a class of approaches known as algebraic methods,

which translate the task into an algebraic problem and solve it by math-

ematical techniques. Such algebraic methods were initially attempted by

Bottemly more than a century ago [8], and further developed by many

others over the years [2,3,10,13,19,24,26,27,30,31,38]. For most of them,

the procedures can be formulated in terms of matrices, and the key is es-

sentially to find the null space kerF of a matrix F known as the formula

matrix. Hence, algebraic methods are especially suitable for computer

solutions [1, 12,20,22,28,32,33,39].

Nevertheless, there are in general two shortcomings of the existing al-

gebraic methods. Firstly, as a linear space, it is clear that the null space

kerF must also contain invalid solutions which do not fulfill the require-

ment that all components ck are nonnegative integers. Denoting the set

of all valid solutions by S, this means S is only a proper subset of kerF.

Secondly, the solution kerF is usually represented by its basis vectors, but
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there is no canonical (unique) choice of the bases for a linear space. One

may impose certain additional conditions to select a set of bases [26]. How-

ever, there is generally no guarantee that all members of this set belong

to S.

In this work, we point out that the algebraic structure of the solution

set S is not described by a linear space; instead, it corresponds to a struc-

ture known as positive affine monoid. The above mentioned shortcomings

fundamentally originates from the inadequate treatment of S as a linear

space, and they are completely eliminated by using approaches for positive

affine monoid. Particularly, based on this new perspective, we show that

for each given system of reactants and products, there exists a unique set of

independent elementary reactions, called the Hilbert-basis reactions (short

for HBRs), corresponding to the unique Hilbert basis of S. All other reac-

tions in S can be decomposed into HBRs. Our proposed approach to find

HBRs can be readily performed by using existing routines. We develop a

software package which implements this approach and can be readily used

on a personal computer. This work clarifies the underlying mathematical

structure involved in balancing chemical equations, and offers a new ap-

proach to obtain elementary chemical reactions which avoids the previous

shortcomings.

2 Algebraic structure of solution space

Balancing chemical equations is based on the principle of conservation of

atoms/charges for chemical reactions. Let {Eℓ} (ℓ = 1, · · · , s) be the set

of all the elements involved in the substances {Ri} and {Pj}. For each Eℓ,

we use rℓi (resp. pℓi) to denote the number of Eℓ atoms in a Ri (resp. Pj)

molecule. The conservation of atoms tells us for each ℓ, equation (1) leads

to the following equation:

rℓ1c1 + · · ·+ rℓmcm − pℓ1cm+1 − · · · − pℓncm+n = 0. (2)

This gives ℓ coupled equations. To put these equations in a more compact

form, we define R = [rℓi] as an s ×m matrix, and P = [pℓj ] as an s × n
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matrix. Then, we construct the formula matrix as

F = [R,−P], (3)

which is an s× (m+ n) matrix. One finds that Eq. (2) can be put into a

matrix equation

Fc = 0, (4)

where the column vector c = (c1, · · · , cm+n)
T is the solution of this equa-

tion. This matrix equation (4) is the common starting point for existing

algebraic methods. It should be noted that in our definition of formula

matrix, there is a minus sign in front of the product matrix P. This differs

from definition in the early works by several authors [2–4, 6, 36]. Because

in those treatments, the solution space is taken as a linear space, so the

minus sign becomes insignificant. In addition, if the substances {Ri} and

{Pj} are not all charge neutral, the conservation of charge will give an

additional equation:

r01c1 + · · ·+ r0mcm − p01cm+1 − · · · − p0ncm+n = 0, (5)

where r0i (resp. p0j) is the charge of Ri (resp. Pj). One can easily see

that this just adds a row into the defined formula matrix, without causing

additional complexity.

In previous treatments, one solves Eq. (4) by regarding the solution

space as a linear space (over rational numbers Q). Then the task is reduced

simply to find the null space kerF for matrix F, which is a routine linear

algebra problem. However, as we mentioned, kerF is actually larger than

the true solution space S, which requires components of solution c must

be nonnegative integers, i.e.,

S =
{
c | Fc = 0 and ck ∈ Z≥0, k = 1, · · · ,m+ n

}
. (6)

Then, the question is: How can we describe the algebraic structure of S

in a more accurate way?

According to a mathematical result known as Gordan’s lemma, the
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structure of S defined in Eq. (6) corresponds to a positive affine monoid

[14]. A commutative monoid is a set with a binary operation, which is

closed, associative, commutative, and has identity element. For the so-

lution space S here, its elements are the vectors with components being

nonnegative integers. The binary operation here is simply the vector addi-

tion. Clearly, if a,b ∈ S, then a+b is also an element of S, so it is closed.

The associativity and commutativity are evident. The identity element

is given by the zero vector. It is important to note that different from a

group, the elements here do not have inverses, since if c ∈ S, then −c /∈ S.

The only exception is the zero vector, which is its own inverse, and the

adjective ”positive” refers to this feature. Finally, the word ”affine” means

that the monoid is finitely generated, i.e., it has a finite number of gener-

ators. Moreover, among the generators, there exists a unique minimal set,

which is crucial for the theory of positive affine monoid, as we discuss in

the subsequent sections.

3 Hilbert-basis reactions

A key property of a positive affine monoid is that it has a unique minimal

set of generators, known as Hilbert basis. For monoid S, its Hilbert basis

may be denoted as Hilb(S) [14]. Each element in Hilbert basis cannot be

decomposed into sum of other elements in S. Meanwhile, every element

of S can be generated by elements in Hilb(S), although the decomposition

may not be unique. This is in contrast to the properties of linear spaces,

whose choice of bases is not unique but the decomposition of a vector into

given bases is unique. Suppose Hilb(S) = {vi} (i = 1, · · · , d) containing d

elements. We may write the following expression

S =
{
q1v

1 + · · ·+ qdv
d | qi ∈ Z≥0,v

i ∈ Hilb(S)
}
. (7)

In general, the number of elements in Hilbert basis d will be larger than

the dimension of kerF.

This set of Hilbert basis are of central importance, as they represent

the basic building blocks and contain the whole information of the solution



594

space S. It follows that the chemical reactions corresponding to the Hilbert

basis are also of key interest, as they correspond to the most elementary

ones. They are named as HBRs. Thus, in our approach, the task of

balancing chemical equations for given reactants and products is reduced

to finding the corresponding HBRs.

Mathematicians have developed several algorithms for calculating the

Hilbert basis for a given affine monoid [11]. The basic idea involves two

steps. The first step is to find a set of (generally not minimal) generators

of the affine monoid. This step can be done by finding the generators

of rational cones, of which the intersection forms the affine monoid. The

second step is to reduce this set of generators to Hilbert basis [14]. Such

algorithms have been efficiently implemented in several open source pack-

ages [9,43,44]. In the examples below, we shall use the Normaliz package [9]

for the step of obtaining the Hilbert basis.

4 Examples

Here, we demonstrate the application of our approach to two examples.

More examples can be found in this website:

https://github.com/zhangzeyingvv/HilbertBalance/.

We have developed a software package called HilbertBalance [45],

which implements our Hilbert basis approach to balance chemical equa-

tions on a personal computer and is made accessible as open-source on this

website.

For the first example, we consider the reaction of the chlorate ion in

hydrochloric acid [34]. The reactants consist of R = {ClO−
3 ,Cl

−,H+} and

the products are given by P = {ClO2,Cl2,H2O}. Hence, we need to solve

6× 1 vector c for the following chemical equation:

c1ClO
−
3 + c2Cl

− + c3H
+ → c4ClO2 + c5Cl2 + c6H2O,

with its components ci being nonnegative integers.

https://github.com/zhangzeyingvv/HilbertBalance/
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For this problem, the F matrix is given by

F =


charge −1 −1 1 0 0 0

Cl 1 1 0 −1 −2 0

H 0 0 1 0 0 −2

O 3 0 0 −2 0 −1

 , (8)

where we add the charge conservation condition in the first row of the

matrix.

If one pursues the conventional approach by treating the solution set

S as a linear space and directly calcuates the null space of F, then the

obtained kerF is two dimensional and the basis vectors b1,b2 obtained

from Gaussian elimination [5] are{
b1 5 1 6 6 0 3

b2 −4 4 0 −6 3 0

}
. (9)

Here, for compactness, we express the column vector basis as rows inside

the brackets. One can easily spot the problem here: the basis b2 is not

a valid solution since it contains negative coefficients. One may get rid

of the negative coefficients by making linear combinations of the two vec-

tors, but there is no guarantee that a general linear combination would

be a valid solution. The choice of basis here is not unique. More impor-

tantly, although the dimension of linear space kerF is two, this does not

correspond to the number of independent basis reactions.

Now, let’s apply our new approach by looking for the Hilbert basis for

the solution set S. We find that this determines a unique set of three

Hilbert basis
ClO−

3 Cl− H+ ClO2 Cl2 H2O

v1 1 5 6 0 3 3

v2 2 2 4 2 1 2

v3 5 1 6 6 0 3

 . (10)

Here, for better understanding, in the top arrow, we indicate the substance
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for each entry of the vector. This shows there are three HBRs:

ClO−
3 + 5Cl− + 6H+ → 3Cl2 + 3H2O,

2ClO−
3 + 2Cl− + 4H+ → 2ClO2 +Cl2 + 2H2O,

5ClO−
3 + Cl− + 6H+ → 6ClO2 + 3H2O.

These HBRs give a complete description of the solution set S. On one

hand, any reactions from the reactants to the products can be generated

by these HBRs; on the other hand, any combination of HBRs (with nonneg-

ative integer coefficients) is a valid reaction of this system. This approach

based on Hilbert basis avoids the shortcomings mentioned above for the

conventional approach.

In the second example, we consider a complex reaction involved in the

production of perchloric acid [18, 23]. Here, the reactants consist of four

substances R = {NH4ClO4,HNO3,HCl,H2O}, and the products contain

five P = {HClO4 · 2H2O,N2O,NO,NO2,Cl2}. In other words, we are

balancing the following chemical equation:

c1NH4ClO4 + c2HNO3 + c3HCl + c4H2O →

c5H5ClO6 + c6N2O+ c7NO+ c8NO2 + c9Cl2.

Here, we denote HClO4 · 2H2O as H5ClO6 for short. The F matrix is

constructed as

F =


Cl 1 0 1 0 −1 0 0 0 −2

H 4 1 1 2 −5 0 0 0 0

N 1 1 0 0 0 −2 −1 −1 0

O 4 3 0 1 −6 −1 −1 −2 0

 . (11)

The null space kerF is five dimensional. Its five basis vectors are
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obtained as 

b1 −6 6 13 0 −1 0 0 0 4

b2 −2 10 3 0 1 0 0 8 0

b3 2 6 1 0 3 0 8 0 0

b4 1 1 0 0 1 1 0 0 0

b5 −1 1 1 1 0 0 0 0 0


. (12)

It is noted that b1,b2 and b5 contain negative coefficients, so they are not

valid solutions. And it is nontrivial how to make valid solution via linear

combinations of these vectors.

Meanwhile, by the Hilbert basis approach, we find there are a unique

set of 17 Hilbert basis vectors for this problem, which are given by

NH4ClO4 HNO3 HCl H2O H5ClO6 N2O NO NO2 Cl2

v1 0 2 1 1 1 1 0 0 0

v2 0 4 1 0 1 0 2 2 0

v3 0 6 2 1 2 0 5 1 0

v4 0 6 4 0 2 0 6 0 1

v5 0 6 4 0 2 1 3 1 1

v6 0 6 4 0 2 2 0 2 1

v7 0 8 2 0 2 1 1 5 0

v8 0 8 3 2 3 0 8 0 0

v9 0 8 7 0 3 2 4 0 2

v10 0 8 7 0 3 3 1 1 2

v11 0 10 10 0 4 4 2 0 3

v12 0 12 3 0 3 2 0 8 0

v13 0 12 13 0 5 6 0 0 4

v14 1 1 0 0 1 1 0 0 0

v15 1 5 1 0 2 0 5 1 0

v16 1 7 2 1 3 0 8 0 0

v17 2 6 1 0 3 0 8 0 0



.

The corresponding HBRs can be readily written out. For example, the



598

first two basis v1 and v2 lead to the following two HBRs:

2HNO3 +HCl + H2O → HClO4 · 2H2O+N2O,

4HNO3 +HCl → HClO4 · 2H2O+ 2NO+ 2NO2.

Any valid solution can be generated by these HBRs.

5 Conclusion

In conclusion, we propose a new algebraic approach for balancing chemical

equations. It is based on the recognition of the proper algebraic structure

of solution set being positive affine monoid rather than linear space. This

understanding leads to a unique set of elementary solutions, the HBRs,

corresponding to the Hilbert basis of positive affine monoid. Our approach

avoids several problems with conventional algebraic approaches, such as

invalid solutions with negative ceofficients, non-uniqueness and incorrect

number of independent elementary reactions. We have developed a open

source package HilbertBalance, which implements our approach and can

be readily used on a personal computer.
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