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Abstract

This paper investigates the construction of spectral siblings and
spectral cousins—pairs of graphs whose characteristic polynomials
differ by a constant or a linear function, respectively—through a
series of graph operations. We establish sufficient conditions for
generating families of such graphs by coalescing known siblings with
specific structures.

1 Introduction

The relationship between graph energy and nullity in chemical graph the-

ory is indeed a significant topic, particularly in understanding the thermo-

dynamic stability of molecules represented by graphs. The larger (smaller)
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the energy of the graph, the stronger (weaker) the thermodynamic stabil-

ity of the corresponding compound. On the other hand, the nullity of a

graph is the algebraic multiplicity of number zero in its spectrum. Empir-

ical and theoretical studies suggest an inverse correlation between graph

energy and nullity. As nullity increases, the graph energy tends to de-

crease, indicating reduced stability. Conversely, graphs with low nullity

(e.g., non-singular graphs) often exhibit higher energy, reflecting greater

stability [1, 3, 5].

Let G be a simple graph with vertex set V (G) = {v1, · · · , vn} and edge

set E(G). The adjacency matrix A(G) = [aij ] of G is an n× n symmetric

matrix defined by,

aij =

1 if vivj ∈ E(G),

0 otherwise.

The characteristic polynomial of the graph G is defined as the character-

istic polynomial of A(G), i.e.,

ϕ(G, x) = det(xIn −A(G)),

where In is the identity matrix of order n. Let λ1, · · · , λn be the eigen-

values of A(G). The energy of G, introduced by Gutman in 1978 [8], is

defined as

E(G) =

n∑
i=1

|λi|.

This concept was motivated by Hückel molecular orbital theory in chem-

istry. In particular, Günthard and Primas [13] showed that, under certain

assumptions, the total π-electrons energy in conjugated hydrocarbons can

be expressed as the sum of the absolute values of the eigenvalues of the

molecular graph’s adjacency matrix.

The nullity of a graph G, denoted by η(G), is defined as the algebraic

multiplicity of the eigenvalue zero in the spectrum of its adjacency matrix.

Equivalently, η(G) equals the number of eigenvalues of A(G) that are zero.

A graph G is called non-singular if η(G) = 0 and singular, if η(G) > 0.

In the study of graph energy, there is already a close relationship be-

tween the graph energy and the nullity. A related conjecture is proposed
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in [3, 5] as follows.

Conjecture 1. [3,5] Let G and G0 be two structurally similar graphs with

η(G) < η(G0). Then E(G) > E(G0).

Due to the ambiguity of the definition of structurally similar graphs

involved in the conjecture, earlier attempts [5,10–12] to justify its validity

were based on designing an approximate expression for the energy that

contains the nullity term. Recently, Gutman [7] found that the effect of

nullity on the energy can be straightforwardly evaluated by calculating

the energy of two structurally similar graphs—known as siblings—whose

characteristic polynomials differ by exactly a constant. Therefore, the

definition of siblings and the related result are given as follows.

Definition 1. [7] Let G1 be a non-singular simple graph and G2 a singular

simple graph. Then G1 and G2 are called siblings (more precisely, spectral

siblings), if the difference of their characteristic polynomials, ϕ(G1, x) −
ϕ(G2, x), is independent of the variable x, i.e., is a constant.

Theorem 1 ( [7]). If the graphs G1 and G2 are siblings, then the effect of

nullity on the energy of G1 is equal to E(G1)− E(G2).

Two pairs of siblings, T1(k), T2(k) and T3(k), T4(k), illustrated in

Figure 1, were provided in [7]. A similar construction, in which the char-

acteristic polynomials differ by a linear function, leads to the concept of

spectral cousins.

k+1k-1 k+1k-1

kk kk kk

k kk k

kT ( )1 kT ( )2

kT ( )1

' kT ( )2

'

k+1

k-1

k k+1k k+1 k k+1k k+1

k+1

k

k+1

k

k+1
k

k+1
k

kT3( ) kT4( )

kT ( )3

' kT ( )4

'

Figure 1. Two pairs of siblings.

Definition 2. Let G1 be a non-singular simple graph and G2 a singular

simple graph. Then G1 and G2 are called cousins (more precisely, spectral
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cousins), if the difference of their characteristic polynomials, ϕ(G1, x) −
ϕ(G2, x), is a linear function of x.

In this paper, we introduce several graph operations to systematically

construct spectral siblings and spectral cousins. In Section 2, we propose

two graph operations for generating spectral siblings. Correspondingly,

constructions for spectral cousins are presented in Section 3.

2 Constructing spectral siblings

In this section, we focus on the construction of spectral siblings. Specif-

ically, we propose a recursive graph operation that generates a series of

siblings from a given pair of spectral siblings. Before presenting the main

result, we first introduce the following necessary lemmas.

For a vertex v ∈ V (G), denote by G− v the subgraph obtained from G

by deleting the vertex v and all edges incident to it. For an edge uv ∈ G,

let G−uv and G+uv denote the graphs resulting from deleting or adding

the edge uv, respectively.

Lemma 1. [15] Let uv be an edge of G. Then

ϕ(G) = ϕ(G− uv)− ϕ(G− u− v)− 2
∑

C∈C(uv)

ϕ(G− C), (1)

where C(uv) is the set of cycles containing uv.

Lemma 2 (Sachs Theorem). [15] Let G be a graph with characteristic

polynomial ϕ(G) =
n∑

k=0

akx
n−k. Then for k ≥ 1,

ak =
∑
S∈Lk

(−1)ω(S)2c(S), (2)

where Lk denotes the set of Sachs subgraphs of G with k vertices, i.e., the

subgraphs in which every component is either a K2 or a cycle, ω(S) is the

number of connected components of S, and c(S) is the number of cycles

contained in S. In addition, a0 = 1.
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Let G and H be two graph with v1, v2 ∈ V (G) and u1, u2 ∈ V (H).

Denote G ◦ H as the resulting graph by coalescing v1, u1 and v2, u2,

respectively.

Theorem 2. Let G1, G2 be spectral siblings and G1 ◦K1,3, G2 ◦K1,3 be

the graphs obtained by coalescing G1, G2 with K1,3 as described above. Let

b be the pendant vertex of K1,3 which is not coalesced. If (G1 ◦K1,3) − b

and (G2 ◦K1,3)− b are isomorphic, then G1 ◦K1,3 and G2 ◦K1,3 are also

spectral siblings.

Proof. Let a be the vertex inK1,3 adjacent to b. Then b is a pendent vertex

in both Gi ◦ K1,3, i = 1, 2. By Lemma 1, the characteristic polynomials

satisfy

ϕ(G1 ◦K1,3, x) = xϕ(G1 ◦K1,3 − b, x)− ϕ(G1, x),

ϕ(G2 ◦K1,3, x) = xϕ(G2 ◦K1,3 − b, x)− ϕ(G2, x).

Taking the difference of these two equations yields

ϕ(G1 ◦K1,3, x)− ϕ(G2 ◦K1,3, x) = ϕ(G1, x)− ϕ(G2, x). (3)

Since G1 and G2 are siblings, the right-hand side is a constant, implying

that G1 ◦K1,3 and G2 ◦K1,3 are also siblings.

It remains to verify that one graph is non-singular and the other is

singular.

For i = 1, 2, let ri, zi be the row vectors in A(Gi ◦K1,3) corresponding

to a and b, respectively. Thus the adjacency matrix of Gi ◦ K1,3 can be

represented as  A(Gi) rTi zTi
ri 0 1

zi 1 0

 .

By performing Gaussian elimination using the last row and column, the

nonzero entries in r⊤i and ri can be eliminated. This operation preserves

the nullity, so the singularity of Gi ◦K1,3 is the same as that of Gi.

Therefore, G1 ◦K1,3 and G2 ◦K1,3 are spectral siblings.

According to Theorem 2, the graphs T
′

3(k) = T3(k) ◦K1,3 and T
′

4(k) =



554

T4(k) ◦K1,3, shown in Figure 2, are siblings. Furthermore, by iteratively

applying Theorem 2, an infinite family of spectral siblings can be con-

structed recursively. An example of such a construction starting from

T1(2) and T2(2) is shown in Figure 3. In all figures, coalesced vertices are

marked with hollow dots.
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Figure 2. A pair of siblings, T
′
3(k) and T

′
4(k), constructed from

T3(k) and T4(k).

Figure 3. A series of siblings constructed from T1(2) and T2(2).

In what follows, we focus on the construction of spectral siblings based

on the acyclic graphs. We begin by recalling a classical result.

Lemma 3. A tree T is non-singular if and only if it has a unique perfect

matching.
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This result extends naturally to forests. The following theorem provides

a method for constructing spectral siblings by adding an edge within a pair

of acyclic siblings.

Theorem 3. Let G1, G2 be acyclic spectral siblings, and let u1, v1 ∈ V (G1)

and u2, v2 ∈ V (G2). Define G+
1 = G1 + u1v1 and G+

2 = G2 + u2v2. Then

G+
1 , G

+
2 are spectral siblings, if the following conditions hold:

1. ui and vi are non-adjacent in Gi, for i = 1, 2;

2. G1 − u1 − v1 and G2 − u2 − v2 are isomorphic;

3. G+
1 −C1 and G+

2 −C2 are isomorphic, where Ci is the cycle formed

by adding edge uivi in Gi, i = 1, 2.

Proof. According to Lemma 1, for i = 1, 2, the characteristic polynomial

of G+
i is given by

ϕ(G+
i , x) = ϕ(Gi, x)− ϕ(G+

i − ui − vi, x)− 2
∑

Ci∈C(uivi)

ϕ(G+
i − Ci, x),

where C(uivi) denotes the set of cycles containing the edge uivi. Under the

given conditions, G1 and G2 are siblings and G+
1 − u1 − v1, G

+
2 − u2 − v2

as well as G+
1 − C1, G

+
2 − C2 are isomophic. Therefore, G+

1 and G+
2 are

siblings.

It remains to consider the singularity of G+
i , i = 1, 2. Without loss of

generality, assume η(G1) > 0 and η(G2) = 0. It is sufficient to show that

G+
1 is singular and G+

2 is non-singular. In fact, we only need to prove that

η(G+
1 ) > 0, because if η(G+

2 ) also greater than zero, this would contradict

the fact that the difference of their characteristic polynomials is a constant.

Since G1 and G2 are acyclic, by Lemma 3, G1 has no perfect matching

and G2 has a unique perfect matching. Note that |V (G1)| = |V (G2)| is
even. We consider three cases based on the structure of G+

i .

Case 1. Both G+
1 and G+

2 are acyclic. If η(G+
1 ) = 0, by Lemma 3,

then G+
1 also has a perfect matching containing the edge u1v1, implying

that G1−u1− v1 has a perfect matching. However, since G2 has a unique

perfect matching not containing u2v2, the graph G2 − u2 − v2 has no
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perfect matching. This contradicts condition (2). Hence, η(G+
1 ) > 0 and

η(G+
2 ) = 0.

Case 2. Both G+
1 and G+

2 are unicyclic graphs. Then both G1 and G2

are trees. Let ϕ(G+
i ) =

n∑
k=0

a
(i)
k xn−k, i = 1, 2. If η(G+

1 ) = 0, by Lemma 2,

a
(1)
n =

∑
S∈Ln

(−1)ω(S)2c(S) ̸= 0. So G+
1 has Sachs subgraphs.

Subcase 2.1. Suppose G+
1 has a Sachs subgraph containing the cycle

C1. Let Puivi be the unique path between ui and vi in graph Gi, i = 1, 2.

Then G1 − Pu1v1 must have a perfect matching and |V (G1 − Pu1v1)| is
even. This implies G1 has a perfect matching, contradicting η(G1) > 0.

Subcase 2.2. Suppose all Sachs subgraphs of G+
1 are perfect matchings,

containing the edge u1v1. Then G1−u1−v1 has a perfect matching and by

condition (2), so does G2 − u2 − v2. However, the perfect matching of G2

includes at least one edge with one endpoint in Pu2v2 and the other in G2−
V (Pu2v2). Otherwise, G+

2 has a Sachs subgraph containing C2. Since G
+
1 −

C1 and G+
2 −C2 are isomorphic, G+

1 also has a Sachs subgraph containing

C1, a contradiction. Then the removal of u2 and v2 in G+
2 disrupts the

matching structure, leaving vertices in Pu2v2−u2−v2 inadequately covered

in G2 − u2 − v2, thereby preventing the existence of a perfect matching in

G2 − u2 − v2. Contradiction.

In both cases, η(G+
1 ) > 0 and η(G+

2 ) = 0, so G+
1 and G+

2 are siblings.

Case 3. Suppose G+
1 is acyclic and G+

2 is unicyclic. Then u1 and v1

must lie in different connected components in G1, while u2 and v2 must

lie in the same connected component in G2. This structural discrepancy

would manifest in the graphs G1 − u1 − v1 and G2 − u2 − v2, preventing

them from being isomorphic, contradicting condition (2). Therefore, this

scenario is impossible under the given conditions of the theorem.

Based on the analysis of the three cases above, the conclusion holds.

As established, T3(k) and T4(k) in Figure 2 are siblings. According

to Theorem 3, T ∗
3 (k) and T ∗

4 (k), shown in Figure 4, are siblings. The

endpoints of the newly added edges in both graphs are marked by hollow

dots.
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Figure 4. A pair of siblings, T ∗
3 (k) and T ∗

4 (k), constructed from
T3(k) and T4(k).

3 Constructing spectral cousins

In this section, we explore the construction of spectral cousins. Let H

be the graph shown in Figure 5, where u, v are the pendant vertices. We

propose the following method for constructing spectral cousins.

Theorem 4. Let G1, G2 be spectral siblings and G1 ◦ H, G2 ◦ H be the

graphs obtained by coalescing G1, G2 with H (shown in Figure 5), where

u, v ∈ H are the coalesced vertices. If (G1 ◦H)−a− b and (G2 ◦H)−a− b

are isomorphic and η(G1) ≥ 2, then G1◦H and G2◦H are spectral cousins.

u vc

a b

Figure 5. The graph H in Theorem 4

Proof. According to Lemma 1, the characteristic polynomials satisfy

ϕ(G1 ◦H,x) = ϕ(G1 ◦H − ab, x)− ϕ(G1 ◦H − a− b, x)− 2ϕ(G1, x),

ϕ(G2 ◦H,x) = ϕ(G2 ◦H − ab, x)− ϕ(G2 ◦H − a− b, x)− 2ϕ(G2, x).

Since G1 ◦H−a− b and G2 ◦H−a− b are isomorphic, their characteristic
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polynomials are identical. Thus,

ϕ(G1◦H,x)−ϕ(G2◦H,x) = ϕ(G1◦H−ab, x)−ϕ(G2◦H−ab, x)−2c, (4)

where c = ϕ(G1, x)−ϕ(G2, x) is a constant. Hence, it is sufficient to prove

that ϕ(G1 ◦H − ab, x)− ϕ(G2 ◦H − ab, x) is a linear function. In fact,

ϕ(G1 ◦H − ab, x) = xϕ(G1 ◦H − b, x)− xϕ(G1, x), (5)

ϕ(G2 ◦H − ab, x) = xϕ(G2 ◦H − b, x)− xϕ(G2, x). (6)

By Theorem 2, G1 ◦H − b and G2 ◦H − b are siblings. Therefore, ϕ(G1 ◦
H,x)− ϕ(G2 ◦H,x) is a linear function.

Next, we consider the singularity of Gi◦H, i = 1, 2. From Equation (5)

and (6), G1 ◦H − ab and G2 ◦H − ab are singular graph. Furthermore, by

Cauchy interlacing Theorem [2], G1 ◦H −a− b has at least one eigenvalue

equal to zero, due to η(G1) ≥ 2. Therefore, the constant term of ϕ(G1 ◦
H−a−b, x) is zero. Since G1 ◦H−a−b and G2 ◦H−a−b are isomorphic,

G2 ◦H − a− b is also singular. It indicats that, the singularity of Gi ◦H
aligns with that of Gi. That completes the proof.
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''
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Figure 6. A pair of cousins, T
′′
1 (k) and T

′′
2 (k), constructed from

T1(k) and T2(k).

As we know, T1(k) and T2(k) in Figure 1 are siblings. In addition, the

nullities of T1(k) and T2(k) depend on the parity of k, i.e.,
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• η(T1(k)) = 2, η(T2(k)) = 0, if k is odd;

• η(T1(k)) = 0, η(T2(k)) = 2, if k is even.

According to Theorem 4, T
′′

1 (k) and T
′′

2 (k), shown in Figure 6, are spectral

cousins. The coalesced vertices are indicated by hollow dots.
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vanović, Extending the McClelland formula for total π-electron en-
ergy, J. Math. Chem. 55 (2017) 1934–1940.

[11] I. Gutman, S. Radenković, S. Dordević, I. Milovanović, E. Milo-
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