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Abstract

This paper investigates the construction of spectral siblings and
spectral cousins—pairs of graphs whose characteristic polynomials
differ by a constant or a linear function, respectively—through a
series of graph operations. We establish sufficient conditions for
generating families of such graphs by coalescing known siblings with
specific structures.

1 Introduction

The relationship between graph energy and nullity in chemical graph the-
ory is indeed a significant topic, particularly in understanding the thermo-

dynamic stability of molecules represented by graphs. The larger (smaller)
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the energy of the graph, the stronger (weaker) the thermodynamic stabil-
ity of the corresponding compound. On the other hand, the nullity of a
graph is the algebraic multiplicity of number zero in its spectrum. Empir-
ical and theoretical studies suggest an inverse correlation between graph
energy and nullity. As nullity increases, the graph energy tends to de-
crease, indicating reduced stability. Conversely, graphs with low nullity
(e.g., non-singular graphs) often exhibit higher energy, reflecting greater
stability [1,3,5].

Let G be a simple graph with vertex set V(G) = {vy1,- -+ ,v,} and edge
set E(G). The adjacency matrix A(G) = [a;;] of G is an n x n symmetric
matrix defined by,

1 ifvv; € E(G),
ai; =
0 otherwise.
The characteristic polynomial of the graph G is defined as the character-
istic polynomial of A(G), i.e.,

o(G, xz) = det(zl, — A(G)),

where I, is the identity matrix of order n. Let A1,---, A, be the eigen-
values of A(G). The energy of G, introduced by Gutman in 1978 [8], is
defined as

£(G) =Y M.

This concept was motivated by Hiickel molecular orbital theory in chem-
istry. In particular, Giinthard and Primas [13] showed that, under certain
assumptions, the total m-electrons energy in conjugated hydrocarbons can
be expressed as the sum of the absolute values of the eigenvalues of the
molecular graph’s adjacency matrix.

The nullity of a graph G, denoted by n(G), is defined as the algebraic
multiplicity of the eigenvalue zero in the spectrum of its adjacency matrix.
Equivalently, 7(G) equals the number of eigenvalues of A(G) that are zero.
A graph G is called non-singular if n(G) = 0 and singular, if n(G) > 0.

In the study of graph energy, there is already a close relationship be-

tween the graph energy and the nullity. A related conjecture is proposed
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in [3,5] as follows.

Conjecture 1. [3,5] Let G and Gy be two structurally similar graphs with
n(G) < n(Go). Then E(G) > E(Gy).

Due to the ambiguity of the definition of structurally similar graphs
involved in the conjecture, earlier attempts [5,10-12] to justify its validity
were based on designing an approximate expression for the energy that
contains the nullity term. Recently, Gutman [7] found that the effect of
nullity on the energy can be straightforwardly evaluated by calculating
the energy of two structurally similar graphs—known as siblings—whose
characteristic polynomials differ by exactly a constant. Therefore, the

definition of siblings and the related result are given as follows.

Definition 1. [7] Let G; be a non-singular simple graph and G a singular
simple graph. Then G; and G are called siblings (more precisely, spectral
siblings), if the difference of their characteristic polynomials, ¢(G1,x) —

@(Ga,x), is independent of the variable z, i.e., is a constant.

Theorem 1 ( [7]). If the graphs G1 and G are siblings, then the effect of
nullity on the energy of G is equal to E(G1) — E(G2).

Two pairs of siblings, T1(k), Tz(k) and T5(k), Ts4(k), illustrated in
Figure 1, were provided in [7]. A similar construction, in which the char-
acteristic polynomials differ by a linear function, leads to the concept of

spectral cousins.

k k k-1 k+1
— — — —
T.(k) T,(K)

k k+1 k k+1

— — — —
T:k) T.K)

Figure 1. Two pairs of siblings.

Definition 2. Let G; be a non-singular simple graph and G5 a singular

simple graph. Then G; and G are called cousins (more precisely, spectral
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cousins), if the difference of their characteristic polynomials, ¢(G1,z) —

¢(Ga, x), is a linear function of z.

In this paper, we introduce several graph operations to systematically
construct spectral siblings and spectral cousins. In Section 2, we propose
two graph operations for generating spectral siblings. Correspondingly,

constructions for spectral cousins are presented in Section 3.

2 Constructing spectral siblings

In this section, we focus on the construction of spectral siblings. Specif-
ically, we propose a recursive graph operation that generates a series of
siblings from a given pair of spectral siblings. Before presenting the main
result, we first introduce the following necessary lemmas.

For a vertex v € V(G), denote by G — v the subgraph obtained from G
by deleting the vertex v and all edges incident to it. For an edge uv € G,
let G —uv and G + uv denote the graphs resulting from deleting or adding

the edge uwv, respectively.

Lemma 1. [15] Let uv be an edge of G. Then

$(G) = (G —uv) —$(G—u—-v) =2 Y ¢(G-0), (1)

CeC(uv)
where C(uv) is the set of cycles containing uv.

Lemma 2 (Sachs Theorem). [15] Let G be a graph with characteristic
n

polynomial ¢(G) = 3. apx™*. Then for k > 1,
k=0

ap = Z (71)w(5)20(8)’ (2)

S€ELy

where Ly denotes the set of Sachs subgraphs of G with k vertices, i.e., the
subgraphs in which every component is either a Ko or a cycle, w(S) is the
number of connected components of S, and c(S) is the number of cycles

contained in S. In addition, ag = 1.
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Let G and H be two graph with vi,vs € V(G) and uy,us € V(H).

Denote G o H as the resulting graph by coalescing vy, u; and wvs, usg,

respectively.

Theorem 2. Let G1, G2 be spectral siblings and Gy 0 Ky 3, Goo Ky 3 be
the graphs obtained by coalescing G1, G2 with K1 3 as described above. Let
b be the pendant vertex of Ky 3 which is not coalesced. If (G1 o Ky3) —b
and (G 0 K1 3) — b are isomorphic, then Gy 0 K13 and G2 0 K1 3 are also

spectral siblings.

Proof. Let a be the vertex in K 3 adjacent to b. Then b is a pendent vertex
in both G; 0 K13, ¢ = 1,2. By Lemma 1, the characteristic polynomials
satisfy

¢(Gro Ky 3,7) = 2¢(G10o K13 —b,x) — $(G1,2),

¢(Gao Ky 3,x) =xp(Ga0 K13 —b,x) — (G2, ).

Taking the difference of these two equations yields
¢(G1o K1 3,7) — (G20 Ky 3,7) = ¢(G1,7) — ¢(G2, ). (3)

Since G; and G4 are siblings, the right-hand side is a constant, implying
that G o K 3 and G o K 3 are also siblings.

It remains to verify that one graph is non-singular and the other is
singular.

For i = 1,2, let r;, z; be the row vectors in A(G; o K 3) corresponding
to a and b, respectively. Thus the adjacency matrix of G; o K; 3 can be

represented as

By performing Gaussian elimination using the last row and column, the

nonzero entries in r;'— and r; can be eliminated. This operation preserves

the nullity, so the singularity of G; o K 3 is the same as that of G;.
Therefore, G; o K; 3 and G o K 3 are spectral siblings. [ |

According to Theorem 2, the graphs Ty (k) = T5(k) o K1 3 and Tj (k) =
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Ty(k) o K1 3, shown in Figure 2, are siblings. Furthermore, by iteratively
applying Theorem 2, an infinite family of spectral siblings can be con-
structed recursively. An example of such a construction starting from
T1(2) and T»(2) is shown in Figure 3. In all figures, coalesced vertices are
marked with hollow dots.

O T

T; (k) T. (k)

Figure 2. A pair of siblings, Tgl,(k) and T4/(k)7 constructed from
Tg(k) and T4(/€)

e G5
b =

Figure 3. A series of siblings constructed from 74 (2) and T%(2).

In what follows, we focus on the construction of spectral siblings based

on the acyclic graphs. We begin by recalling a classical result.

Lemma 3. A tree T is non-singular if and only if it has a unique perfect

matching.
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This result extends naturally to forests. The following theorem provides
a method for constructing spectral siblings by adding an edge within a pair

of acyclic siblings.

Theorem 3. Let Gy, Go be acyclic spectral siblings, and let uy,v1 € V(G1)
and ug, vy € V(Gy). Define GT = Gy +uivy and G5 = Ga + ugve. Then
GT, G are spectral siblings, if the following conditions hold:

1. u; and v; are non-adjacent in G;, fori=1,2;
2. Gy —u1 —v1 and Gy — us — vy are isomorphic;

3. GT — (1 and G; — Cy are isomorphic, where C; is the cycle formed
by adding edge u;v; in G;, i =1,2.

Proof. According to Lemma 1, for ¢ = 1,2, the characteristic polynomial

of G;“ is given by

(G, x) = ¢(Gi,x) — ¢(GF —u; — vi, @) — 2 Z d(GF - Cy,x),
C,eC(uiv;)

where C(u;v;) denotes the set of cycles containing the edge u;v;. Under the
given conditions, G; and G5 are siblings and G{r —uy — v, (}’2+ — Uy — Uy
as well as G} — C1, G§ — Oy are isomophic. Therefore, G and Gj are
siblings.

It remains to consider the singularity of G;r, i = 1,2. Without loss of
generality, assume 7(G1) > 0 and n(G3) = 0. It is sufficient to show that
GT is singular and G;‘ is non-singular. In fact, we only need to prove that
n(GF) > 0, because if n(G5) also greater than zero, this would contradict
the fact that the difference of their characteristic polynomials is a constant.

Since G and G4 are acyclic, by Lemma 3, GG; has no perfect matching
and Gz has a unique perfect matching. Note that |V(G1)| = |V(G2)| is
even. We consider three cases based on the structure of G .

Case 1. Both G| and Gj are acyclic. If n(G]) = 0, by Lemma 3,
then Gf‘ also has a perfect matching containing the edge ujv;, implying
that G; —u; — v1 has a perfect matching. However, since G5 has a unique

perfect matching not containing usvs, the graph Gs — us — vo has no
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perfect matching. This contradicts condition (2). Hence, n(G7) > 0 and
1(G3) =0.
Case 2. Both G and G are unicyclic graphs. Then both G and G
are trees. Let ¢(G) = > a,(j)x”*k, i=1,2. If n(G}) =0, by Lemma 2,
k=0

al) = 3 (=1)2(9)2¢(5) £ 0. So G has Sachs subgraphs.
S€EL,
Subcase 2.1. Suppose G has a Sachs subgraph containing the cycle

C1. Let P,,», be the unique path between u,; and v; in graph G;, i = 1,2.
Then G; — P,,,, must have a perfect matching and |V (G1 — Py, )| is
even. This implies G; has a perfect matching, contradicting n(G1) > 0.
Subcase 2.2. Suppose all Sachs subgraphs of G are perfect matchings,
containing the edge u;v1. Then G; —u; —v; has a perfect matching and by
condition (2), so does Gy — us — vo. However, the perfect matching of G,
,v, and the other in Go—
V (Puyuv,). Otherwise, G has a Sachs subgraph containing Cs. Since G —

includes at least one edge with one endpoint in P,

C; and G}' — C5 are isomorphic, Gf also has a Sachs subgraph containing
C4, a contradiction. Then the removal of us and wvs in G;“ disrupts the
matching structure, leaving vertices in P,,,, —us —v2 inadequately covered
in Go — ug — vg, thereby preventing the existence of a perfect matching in
Go — ug — vo. Contradiction.

In both cases, 7(G7) > 0 and n(G3) = 0, so GI and G are siblings.

Case 3. Suppose G is acyclic and Gy is unicyclic. Then u; and vy
must lie in different connected components in G, while us and vo must
lie in the same connected component in G3. This structural discrepancy
would manifest in the graphs G; — u; — v; and G2 — us — v, preventing
them from being isomorphic, contradicting condition (2). Therefore, this
scenario is impossible under the given conditions of the theorem.

Based on the analysis of the three cases above, the conclusion holds. H

As established, T3(k) and Ty(k) in Figure 2 are siblings. According
to Theorem 3, T5 (k) and T;(k), shown in Figure 4, are siblings. The
endpoints of the newly added edges in both graphs are marked by hollow
dots.
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k+1 k+1

T, (k) T, (k)

Figure 4. A pair of siblings, T5 (k) and T; (k), constructed from
Tg(k) and T4(k)

3 Constructing spectral cousins

In this section, we explore the construction of spectral cousins. Let H
be the graph shown in Figure 5, where u,v are the pendant vertices. We

propose the following method for constructing spectral cousins.

Theorem 4. Let G1, G2 be spectral siblings and Gy o H, Gy o H be the
graphs obtained by coalescing G1, Go with H (shown in Figure 5), where
u,v € H are the coalesced vertices. If (GioH)—a—0b and (GooH)—a—b
are isomorphic and n(G1) > 2, then G1oH and GaoH are spectral cousins.

Figure 5. The graph H in Theorem 4

Proof. According to Lemma 1, the characteristic polynomials satisfy

d(GroH,z) = (G0 H —ab,x) —d(Gro H—a—b,z) —2¢(G1,x),
¢(G20H,JT) = ¢(G20H—ab,x) _(b(G? OH—a—b,J?) _2¢(G27$)

Since G100 H —a—0b and Gy 0 H —a — b are isomorphic, their characteristic
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polynomials are identical. Thus,
¢(GroH,z)—d(GaoH,x) = (G100 H —ab, ) —p(Ga0 H —ab, ) —2¢, (4)

where ¢ = ¢(G1,z) — $(G2, x) is a constant. Hence, it is sufficient to prove
that ¢(G1 o H —ab,z) — (G 0 H — ab, x) is a linear function. In fact,

¢(G1 oH — ab7 iL’) = x(rb(Gl oH — bv l‘) - m¢(G1,x), (5)

¢(GQ oH — ab7 I) = x¢(G2 oH — bv CC) - IQS(GQ,JZ) (6)

By Theorem 2, Gy o H — b and G5 o H — b are siblings. Therefore, ¢(G; o
H,z) — ¢(G2 0 H,x) is a linear function.

Next, we consider the singularity of G;0 H, i = 1,2. From Equation (5)
and (6), G1o H —ab and G5 o H — ab are singular graph. Furthermore, by
Cauchy interlacing Theorem [2], G o H — a — b has at least one eigenvalue
equal to zero, due to n(G1) > 2. Therefore, the constant term of ¢(G; o
H—a—b,z) is zero. Since GioH —a—b and Goo H —a—b are isomorphic,

G20 H —a — b is also singular. It indicats that, the singularity of G; o H

aligns with that of G;. That completes the proof. |
K-
k k
k+1
T, (k) T, (k)

Figure 6. A pair of cousins, Tln(lc) and Tg/l(k), constructed from
T1(k) and T»(k).

As we know, T} (k) and T3(k) in Figure 1 are siblings. In addition, the
nullities of T3 (k) and T5(k) depend on the parity of &, i.e.,
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n(Ti (k) = 2, n(Ta(k)) = 0, if k is odd;

o n(Ti(k)) =0, n(Te(k)) =2, if k is even.

According to Theorem 4, T} (k) and Ty, (k), shown in Figure 6, are spectral

cousins. The coalesced vertices are indicated by hollow dots.
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