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Abstract

The Augmented Sombor index of a connected graph G with at
least three vertices is defined as

d; +d3

A450(@) = P p—
i J

v;v; €E(G)

where d; and d; denote the degrees of the vertices v; and vj, re-
spectively. In this paper, we examine the chemical applicability of
the ASO index for predicting thirteen physicochemical properties
of octane isomers. We also characterize extremal graphs with re-
spect to the ASO index over the following three classes of graphs
with a given order: (i) trees, (ii) quasi-trees (where a quasi-tree is a
connected graph that becomes a tree upon the removal of a single
vertex), and (iii) connected graphs. Furthermore, we determine the
unique graph minimizing the ASO index among all unicyclic graphs
of fixed order. Finally, we conclude the paper by outlining potential
directions for future research related to the ASO index.
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1 Introduction

Let G = (V, E) be a simple graph with vertex set V(G) = {v1,va,...,0,}
and edge set E(G), where |E(G)| = m. For any vertex v; € V(G), its
neighborhood is defined as Ng(v;) = {vr € V(G) : vuy, € E(G)}, and its
degree as d; = |Ng(v;)| (We use the notation dg(v;) to denote the degree
of vertex v; in the graph G, particularly when multiple graphs are under
consideration). Throughout this article, standard notations C,,, P,, Sy,
and K, are used to represent the cycle, path, star, and complete graph of
order n, respectively. A vertex of degree one is called a pendent vertex,
and an edge incident to such a vertex is termed a pendent edge.

Chemical graph theory, a vital branch of mathematical chemistry, ap-
plies graph-theoretical concepts to model and study molecular structures.
In this framework, atoms are represented by vertices and chemical bonds
by edges, providing a robust mathematical foundation for analyzing molec-
ular properties. Among several types of indices investigated within this
field, degree-based topological indices play a prominent role, see for in-
stance [3-5,8,10,13].

These indices, which depend on vertex degrees, capture local atomic
connectivity and have shown strong correlations with diverse physical,
chemical, and biological properties. Due to their computational efficiency
and predictive accuracy, such indices are instrumental in quantitative
structure-property relationship (QSPR) studies, which support the design
and analysis of new chemical compounds.

One of the notable and much-investigated degree-based indices is the

Sombor index [11], defined for a graph G as:

SOG)= > J&+d

v;v; EE(G)

The Sombor index has attracted significant research interest; see the re-
views [16,25] and some of the recently published papers [6,7,15,17,19-21,
23,27,29).

Already in [11], in addition to the above defined Sombor index, some of

its variants were examined (the reduced and the average Sombor index).
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In the meantime, many more such variants were conceived, of which the
elliptic [1,9,12,14], Euler [2,18,24,28], and the diminished Sombor indices
[22] are worth especial attention.

Building upon this foundation, we propose a novel degree-based topo-
logical index, referred to as the augmented Sombor (ASO) index. The
ASO index of a graph G containing no component isomorphic to Py is
defined as
d; +d3

450@) = > \gra 7
i j

v;0; €B(G)
Note that d; + d; — 2 is the degree of the edge v;v; € E(G).

In this paper, we examine the chemical applicability of the ASO index
for predicting thirteen physicochemical properties of octane isomers. We
also characterize extremal graphs with respect to the ASO index over the
following three classes of graphs with a given order: (i) trees, (ii) quasi-
trees (where a quasi-tree is a connected graph that becomes a tree upon
the removal of a single vertex), and (iii) connected graphs. Furthermore,
we prove that the cycle C, uniquely minimizes the ASO index among
all unicyclic graphs of order n (> 3). Finally, we conclude the paper by

outlining potential directions for future research related to the ASO index.

2 Chemical applicability

In order to evaluate the chemical relevance of the ASO index, we exam-
ined its statistical relationship with experimentally determined values for
thirteen key physicochemical properties of octane isomers. The properties
considered in this analysis are: boiling point, heat capacity at P constant,
heat capacity at T constant, density, entropy, enthalpy of vaporization, en-
thalpy of formation, standard enthalpy of vaporization, standard enthalpy
of formation, total surface area, acentric factor, molar volume, and octanol-
water partition coefficient. The complete experimental dataset for these
properties is obtained from the publicly accessible molecular descriptors
database, archived at: https://web.archive.org/web/20180912171255if_

/http://www.moleculardescriptors.eu/index.htm. For each of the afore-


https://web.archive.org/web/20180912171255if_/http://www.moleculardescriptors.eu/index.htm
https://web.archive.org/web/20180912171255if_/http://www.moleculardescriptors.eu/index.htm
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mentioned properties, the Pearson correlation coefficient (corr) is com-
puted to quantify the degree of linear association with the ASO index.
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Figure 1. Correlation (Corr) between the ASO index and four proper-
ties (S, HVAP, DHVAP, AccentFac).

In order to focus on the most statistically significant relationships, only
those correlations with an absolute coeflicient value |corr| > 0.8 were re-
tained for further discussion. As illustrated in Figure 1, four properties sat-
isfied this criterion: entropy (S), enthalpy of vaporization (HVAP), stan-
dard enthalpy of vaporization (DHVAP), and acentric factor (AcenFac).
These strong correlations suggest that the ASO index captures structural
features of octane isomers that are closely linked to molecular thermody-
namic behavior. It is worth noting that the above correlations are signifi-
cantly better than those reported for the original Sombor index [26].

We additionally considered the reciprocal form of the ASO index, re-
ferred to as the reciprocal augmented Sombor (RASO) index, which is
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defined as
di +dj —2

ViVj EE(G)
Our analysis reveals that the absolute value of the Pearson correlation
coefficient between the ASO and RASO indices is 0.9988 (see Figure 2).
This exceptionally high correlation indicates that, for the case of octane
isomers, both of these indices possess essentially identical predictive capa-

bilities with respect to the considered set of physicochemical properties.
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Figure 2. Correlation (Corr) between the ASO and RASO indices.

3 mathematical aspects of the ASO index

In order to obtain the main results, we first establish some preliminary

2 2
ditd; We note that

properties of the function h defined as h(d;, d;) = e

(dj —2)* +d3

h(di,dj):iif:di—dj+2+ R
T Y
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2(dj —1)2+2 )
di+d;—2

=d; — dj + 2+
Using (1), we obtain the following two results.
Lemma 1. Let G be a graph of order n(> 4). For any pendent edge
ViV € E(G) (dl > dj = 1),
2

5§h(d2,d)<n+7 (2)
In (2), the left equality holds if and only if (d;,d;) € {(2, 1), (3, 1)}, and
the right equality holds if and only if (d;,d;) = (n —1,1).

Proof. Let v;v; be any pendent edge in G such that d; > d; = 1. From
(1), we obtain
di + d3 2

Lower Bound: If d; > 4, then

di+1+

a1 > 5,
and hence, the left inequality in (2) strictly holds. Otherwise, 2 < d; < 3.
Then, (d;,d;) € {(2,1), (3,1)} and hence the left equality holds in (2).

Upper Bound: If d; = n — 1, then the right equality holds in (2). Oth-
erwise, d; <n — 2. For d; <n — 3, from (3), we obtain
d; +d3

2
h(didj) = ———9 _ <p—2 s
( )= P — n +dl_1<n+ —5

as d; > 2. Also, for d; = n — 2, from (3), we obtain

di + dz 2 2
WMd, d)= —— _ —p 14+ —— ——
as n > 5. Hence, the right inequality in (2) strictly holds when d; < n—2.
This completes the proof of the lemma. |
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Lemma 2. Let G be a graph of order n (> 3). For any non-pendent edge
ViV € E(G),

1
In (4), the left equality holds if and only if d; = 2 = d;, and the right
equality holds if and only if d; = dj =n — 1.
Proof. Let v;v; be any non-pendent edge in G such that d; > d; > 2.
Lower Bound: We have (d; — 2)? + (d; — 2)? > 0, which gives,
di +d5 > 4d; +4d; —8 =4(d; + dj — 2),

that is,
d? + d2
h(d;,d;) = ——2L— > 4.
( j) d; + dj -2~
In the above inequalities, the equality holds if and only if d; = 2 = d;.

Upper Bound: Since d; > d;, we have d; +d; —2 > 2(d; — 1). Using

this, from (1), we obtain

d? + d? 2(d; —1)2 2
Wdidj) = — G g, g2y
(did) = T2 P G d, 2 T drd, 2
<ditlf—
= 6t eri—‘rdj—Q

If d; < n — 2, then from the above, we obtain

h(d;,d;) = 7d? 4 < 1 2 <n< .
(“ J)_di+dj—2in +di—|—dj—2in n+n—2
as d; > d; > 2, and hence, the right inequality in (4) strictly holds.

Otherwise, d; = n — 1, and hence, from (1), we obtain

2 2
2 + &2

(dj —1)* +2
4+ d, 2

2
=n—d;+1 5
" J+ + n+dj*3 ()

= h(n — 1, dj)
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We have 2 < d; <n — 1. Let us consider a function

2(z—1)2+2

=n-—z+1
fl@)=n—-z+1+ P

, 2<x<n-—1.

Then, we obtain

4(x—1)(n+z—3)—2(2*—2z+2)
(n+xz—3)2

fll@)=-1+

4d(z—1)(n+z-3)—(n+z—-3)?%—-2(2*-22+2)
(n+x—3)2

22+ 2nx—n?—6z+2n—1
(n+x—3)2

(J;+n—3)2—2(n2—4n+5>

(n+a—3)2
_(an:”m) (s4n-3- 22 —In+5))

(n+x —3)2

From the above, we conclude that f(z) is an increasing function on
2(n?2—4n+5) — (n —3) <z < n—1 and a decreasing function on
2<z<4/2(n?—-4n+5)— (n—3). Hence

f(z) <max {f(2), f(n—1)}.

One can easily see that

4 1
f(2):n71+m<n+m:f(n71)

as n > 4. From the above with (5), we conclude that

hn— 1, dj) = f(d;) < fln—1) =n+ —

Moreover, the equation f(d;) = f(n — 1) holds if and only if d; = n — 1.
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Hence,
h(d;, d 7d$+d§ < _
( 79 j)_dz+d_]—2 7n+n_2
with equality if and only if d; =n — 1 = d;. ]

Lemma 3. Let a be a real number and n (> 1) be an integer. Consider a
function

(n —a)? + 2?
n+x—a—2

flz) =

, 1<e<n—1.

Then f(x) is an increasing function on x > \/(n —a —2)2 + (n —a)? —

(n—a—2), and a decreasing function on x < \/(n —a —2)2 + (n —a)? —
(n—a-—2).

Proof. The result follows from the following equation:

2m(n—a—2)+x2—(n—a)2.

|
(n+xz—a—2)2

fi(x) =

Proposition 1. Let G be a graph of order n(> 8) with any edge v;v;.
Then h(d;,d;) < h(n—2,n—2) < h(n—1,n—3) = h(n—2,1) < h(n—1,2) <
h(n—1,n—2) < h(n—1,n—1) < h(n—1,1) for (d;, d;) ¢ {(n—l,l), (n—

1,2), (n—2,1), (n—2,n—2), (n—1,n—3), (n—1,n—2), (nfl,nfl)}.
Proof. Let v;v; be an edge in G such that d; > d;. Also, let
S:{(n—l,l), (n—1,2), (n—2,1), (n—2,n—2), (n—1,n—3),
(n—1,n—2), (n—l,n—l)}.
We note that
hin—1 1)*n+i h(n —2 1)*n71+i h(n—3,1) =
b - n_27 b - n_37 b -

2 4 4

2 1 5
h(n—1n—3)=n—1+—— h(n—1,n—2)=n— >+
(n n )=n 3 (n n )=n > 3@n =)
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2
h(n—2,n—4):n—2+m,h(n—2,n—3):n—1.5+n7

1 1
hin—-2n—-2)=n—14+4 ——, h(n—1,n—-1) = —_—
(n—=2,n—2)=n +n—3’ (n—1,n-1) n—l—n
Since n > 9, from the above discussion, we have

h(n—=2,n—-2)<h(n—1,n—3)=h(n—2,1) < h(n —1,2) < h(n — 1,
n—2)<hn—1,n—-1)<h(n—-1,1). (6)
By Lemmas 1 and 2, we obtain h(d;,d;) < h(n—1,1) with equality if and
only if (d;,d;) = (n —1,1). We now prove the following claim:
Claim 1. For (d;,d;) ¢ S, h(d;,d;) < h(n—2,n— 2).
Proof of Claim 1. Let (d;,d;) ¢ S. We consider the following cases:

Casel. d; = 1. Since (d;,d;) ¢ S, we have d; <n — 3. If d; = 2, then

d?+1 1
i T 1+ ——=h(n—-2,n—2
41 5<n +n—3 (n—2,n—2)

h(di,1) =

as n > 9, and hence, the result holds. Otherwise, d; > 3. Again since

n > 9, we obtain

d? +1 2 2 1
h(d;, 1) = = =d;+1 <n-2 —1
(did) =g —7 =dit 1t g—gsn=24 g <n-1+ =
=h(n—2,n—2),

as desired.

Case2. d; = 2. Since (d;,d;) ¢ S, we have d; <n—2. For 2 <d; <3, we
have

1 1
§4+§<n—1+73:h(n—2,n—2)

d? +4

4

as n > 9, and hence, the result holds. Otherwise, 4 < d; < n — 2. Since
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n > 9, we obtain

4 4 1
h(di,2)=di+d—iSn—2+d—i<n—1+m:h(n—2,n—2),

as desired.

Case3. d; > 3. We note that

dj(di—dj+2)—4
di—|—dj—2

h(d;,d;) =d; +2 —

_ d; (d; — dj) — 2d;
= d di+dj—2 ®)

If d; < n — 3, then from (7), we obtain

1
h(dq;,dj)<di—|—2§n—1<n—1—|—73:h(n—2,n—2),
n—

as desired. Otherwise, d; > n — 2. We consider the following two cases:
Case3.1. d; = n — 2. In this case, 3 < d; < n — 2. Since (d;,d;) ¢ S, we

have 3 < d; <mn —3. Since n > 9, by Lemma 3 (setting a = 2), we obtain

h(d;,d;) < max {h(n —-2,3), h(n—2,n— 3)}

1
<n—1+ 3:h(n—2,n—2)

n —

as

10 1
h(n72,3)fn73+m<nfl+n_3fh(nf2,n72),

1.2 1
> <n—14+——==h(n—-2,n-2).

hn—2n—3)=n—1.
(n=2n=3)=n—15+ n—3

Hence, in this case, the result holds.

Case3.2. d; =n — 1. In this case, 3 < d; < n — 1. Since (d;,d;) ¢ S, we



534

have 3 < d; <n —4. Since n > 9, by Lemma 3 (setting a = 1), we obtain
h(d;,d;) < max{h(n -1,3),h(n—1,n— 4)}
< 1+L—h( 2 2)
n 5 = hn-2n
as
10 1
h(n—1 =n—-24+ — —1+——=h(n—-2,n—2
(n—1,3)=n +n<n +n—3 (n—2,n—2),

3.25 “n—14+ 1
n—3.5 n—3

h(n—1,n—4)=n—-15+ =h(n—2,n—2).

Hence, in this case, the result holds.
This completes the proof Claim 1.
Using (6) and Claim 1, we complete the proof of Proposition 1.  H

We now establish lower and upper bounds on the ASO index for trees

in terms of n, and characterize the trees that attain these extremal values.

Theorem 2. Let T be a tree of order n (> 3). Then

2
n—2

2vV5+2(n—3) < ASO(T) < (n—1)/n+ (9)
with equality on the left if and only if T = P,, and equality on the right if
and only if T =2 S,.

Proof. For n = 4, there are only two non-isomorphic trees; namely, P, and
S4. Here, by direct comparison, we have ASO(S4) > ASO(P,). Hence,
in the rest of the proof, we assume that n > 5. Let p be the number of

pendent vertices in T. Then 2 <p <n — 1.

Lower Bound: If p = 2, then T = P, with ASO(T) =25 +2(n — 3),
and hence the left equality in (9) holds. Otherwise, 3 < p <n — 1. Since
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n > 5, by Lemmas 1 and 2, we obtain

d? + d?
ASO(T) = Z d._:_dAiQ
’Uﬂ)jEE(T) v J
= Y h(di dy)+ > h(d;,d;)
vivj €B(T), vivj €B(T),
di>dj=1 di>dj>2

>pVi+2(n—p—1)=p(V6—-2)+2(n—1)
>3(V6-2)4+2(n—1)=2V5+V5-2+2(n—3)
>2V5+2(n - 3),

which implies that the left inequality in (9) strictly holds.

Upper Bound: If p =n — 1, then T' = S,, with

2

ASO(T) = (n=1) y/n+ —

and hence the right equality in (9) holds. Otherwise, 2 < p < n — 2. Since
n > 5, using the definition of the ASO index as well as Lemmas 1 and 2,

we obtain

ASO(T) = > h(diydj) + Y h(d;,d;)
'UivjEE(T), v,;vjEE(T)
d;>dj=1 d;>d;>2

py/n (n—p—1)4/n+
/ 2
(n—p—1)4/n+ —

(n—1)

—

3
I
N

3
)

as n —p—1> 1. Hence, the right inequality in (9) strictly holds when
2<p<n-—2 [ |
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Theorem 3. Let G be a unicyclic graph of order n. Then ASO(G) > 2n
with equality if and only if G = C,.

Proof. f G = C,,, then ASO(G) = 2n and hence the equality holds.
Otherwise, G 2 C,. If n = 4, then G is the graph obtained from Sy by
inserting an edge between two pendent vertices of Sy, and hence by direct
comparison, we have ASO(G) > ASO(Cjy). Next, we assume that n > 5.
We note that there exists at least one pendent vertex in G. Let p (> 1) be
the number of pendent vertices in G. Since G is unicyclic, m = n, where

m is the number of edges. Since n > 5, by Lemmas 1 and 2, we obtain

AS0(G) = Y \/h(Twle > \/h(T,dj)

viv; €E(G), vv; EE(G),
di>dj=1 di>d;>2

>pV542(m—p)
=pVB6+2(n—p)=2n+p(V5-2)>2n,

as p > 1. The inequality strictly holds. This completes the proof of the

theorem. ]

Recall that a graph G is called a quasi-tree if there exists a vertex
u € V(G) such that the graph obtained by removing u and all edges
incident to it is a tree. A quasi-tree is said to be a trivial quasi-tree
if it is a tree. Hence, every non-trivial quasi-tree contains at least one
cycle. Let Ky ,_o denote the complete bipartite graph of order n (> 2),
with one partite set containing 2 vertices and the other containing n — 2
vertices. Define K3, o as the graph obtained from K3, o by adding an
edge between the two vertices of degree n — 2. We now establish both
lower and upper bounds on the ASO index of quasi-trees in terms of n,
and characterize the graphs that attain these extremal values.

By Theorem 5 (given after the next theorem), the path graph P,
uniquely minimizes the ASO index among all quasi-trees (including trivial
ones) of order n (> 3). Also, for n > 4, we have ASO(S,,) < ASO(K3,,_5),
which together with Theorem 2 implies that ASO(T') < ASO(Kj3,,_,) for

any tree of order n (> 3). Thus, in the following theorem, we consider only
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non-trivial quasi-trees.

Theorem 4. Let G be a non-trivial quasi-tree of order n (> 4). Then,

2n < ASO(G) < y/n +

2(n—2 -1
n—2jL (n=2)y/n Jrn—

(10)

with equality on the left if and only if G = C),, and equality on the right if
and only if G = Kj,,_,.

Proof. Let m and p be the number of edges and the number of pendent
vertices in G, respectively. Since G is a non-trivial quasi-tree, we have
n<m<2n—3.

Lower Bound: If m = n, then the desired result holds by Theorem 3.

Otherwise, m > n + 1. Since n > 5, by Lemmas 1 and 2, we obtain

ASO(G) = > y/hldi,dj) >2m >2(n+1) > 2n,

v;v; EE(G)
as desired.

Upper Bound: For every n € {5,6,7,8}, using a computer software, we
have verified that K3, , has the maximum ASO index among all quasi-
trees of order n. Hence, in what follows, we assume that n > 9. Let v;v;

be any edge in G such that d; > d;. We consider the following cases:

Casel. d; = n — 1. In this case, vertex v; is adjacent to all the remaining
vertices. If dj =n — 1, then G = K3 ,,_, with

/ 1 4

and hence, the right equality in (10) holds. Otherwise, d; < n —2. Let vy,
be a vertex in G such that G — vy is a tree. First, we assume that k = q.
Then, G — v; is a tree, and hence, m = 2n — 3. Let H = G — v;. Since H
is a tree, dy(vg) > 1 for vy € V(H) and hence dg(ve) > 2 for v, € V(G).
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Since G is a quasi-tree, using Proposition 1, we obtain

ASOG) = Y \/h(Tadj): > h(d;, d;)

vivjEE(G) U1du7>€dE(>G2)
iZdj =

<+vVh(n—1,n—2)+ (2n—4)\/h(n—1,2)

4
<A/h(n—1,n—1)4 (2n —4) n71+71
\/ n—
/ 1 / 4
= _— 2n — 4 -1
n+n72+(n Sy +n71

as n > 5. Thus, the right inequality in (10) strictly holds when k = i.

Next, we assume that k # 4. In this case, G — vy = S,,_1, where
de(vg) < n—2. Thus, we have m < 2n — 4. Since G is a quasi-tree, using

Proposition 1, we obtain

Y hled) <p VAT =py 2

viv €E(G),
di>dj=1

and

> Mdidy) <yV/h(n—1,n—=2)+ (m—p—1)y/h(n—1,2)

viv; EE(G),
di>d;>2

<vVh(n—1,n—1)+2n—p—>5)v/h(n—1,2)

Y T G 5) fn—14 —
VTR nop " n—1

Using the above inequalities, we obtain

ASOG) = Y hldudy)+ Y \/h(di,d;)

v;vj EE(G), v;v; €E(G),
d;>dj=1 d;>d;>2
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4
n—1

(11)

2 1
<p\/n++\/n++(2n—p—5) n—1+
n—2 n—2

Claim 2.

\/n+ 2 <(p+1)y/n—1+ 1
pynT L oS W " n—1

Proof of Claim 2. Since p is the number of pendent vertices in G, we

have 4

p

g S T

2<n + 1
that is,

p

1
T AL
2 n—l—l—i1

Since n > 5, using the above inequality, we obtain

N
n —4/n—
n—2 n—1

4 2
1—
_ n—1 n—2
\/+ 2 +\/ 1+ 1
n n — _
n—2 n—1
1

<

\/+ 2 +\/ 1+ 1
n n— e
n—2 n—1
1
/ 4
1+ —
" +n—1
/ 4
4 —
n +n—1’
2 4
—_— 1 -1 .
pg/n+n_2<(p+) n +n—1

<
2
1

<=
p

that is,
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which proves Claim 2.

Using Claim 2 in (11), we obtain

4 1
ASO(G)<(p—|—1)\/n—1+_1+\/n+_2

4
+(2n—p—5) —

which shows that the right inequality in (10) strictly holds in the case

under consideration.

Case2.d; =n—2. We have 1 < d; <d; =n—2. By Lemma 3, we obtain

(n—2)*+d;
Mdindy) = = <max{h(n —2,1), h(n—2,n — 2)}
14+ 2
—n_ _ 4
n—3
Since n > 5, we have n— 1—|——<n 1—|——<n—|— . Since m < 2n—3,

using the above results, we obtain

ASO(G) = Z h(

v;v; EE(G

/ 2
2n—3 n—l—i—i
1/n—|—7+2 n—2 Un—l—l—

Case 3. d; < n — 3. In this case we have to prove that

()

as desired.

4
h(di,d])<’ﬂ,*].+71 (12)
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First we assume that d; > 2. Then from (7), we obtain

4
h(d;,d;)) <n—1 14+ —
( i) <n <n +n—1

as d; > d; and d; (d; — dj +2) > 2d; > 4. The result (12) holds.

Next we assume that d; = 1. Then from (7), we obtain

d;i — 3
=d;+1+

hldi, dy) = di +2 = = T

If d; = 2, then from the above, we obtain

4
n—1

as n > 5. The result (12) holds. Otherwise, d; > 3. Thus we have

d; —3 2
h(di’dj):di_‘_z_d,fl:di+1+d,f1
<n-2+ <n-—-1+ 1
=" d; —1 " n—1

The result (12) holds.

Since n > 5, using (12), we obtain

ASO(G) = > mémm

vv; €E(G)

4
< (2n — -1 R
<(2n—3)4/n +n—1

1 4
Jnd+ ——+2(n—-2)/n—-14+——
< n+n_2+ (n—2)4/n +n—1’

as desired. This completes the proof of the theorem. |

We now establish a lower bound for the ASO index of connected graphs

of order n, and characterize the graphs that attain this bound.
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Theorem 5. Let G be a connected graph of order n (> 2). Then
ASO(G) > 2V5+2(n —3)

with equality if and only if G = P,.

Proof. For every n € {3,4}, we have verified, using a computer software,
that P, has the minimum ASO index among all connected graphs of order
n. Now, we assume that n > 5. Let m be the number of edges in G. Since
G is connected, m > n — 1. If m = n — 1, then Theorem 2 yields the

desired result. If m > n, then by Lemmas 1 and 2, we obtain

ASO(G) = Y \/h(T,de > \/h(T,dj)

v;vj €E(G), v;v; EE(G),
di>d;=1 d;>d;>2

>pV542(m—p)

=p(V5-2)+2m

>2n>2V5+2(n—3),

where p is the number of pendent vertices. |

We now present an upper bound for the ASO index of connected graphs

of order n, and characterize the graphs that attain this bound.

Theorem 6. Let G be a graph of order n (> 2). Then

ASO(G) < (Z) n+ ﬁ (13)

with equality if and only if G =2 K,,.

Proof. For each n € {3,4}, we have verified the result using a computer
software. Hence, in the rest of the proof, we assume that n > 5. Let m
and p be the number of edges and the number of pendent vertices in G,

respectively. Then 0 < p < n—1. First, we assume that p = 0. By Lemma
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2, we obtain

d? + d?
Aso0@G) =Y P > h(d;, d;)

v;v; EE(G) v J v;v; EE(G),
di>d;>2

/ 1
< -
<m n+n_2
(N
=) V" T2

Moreover, the above two equalities hold if and only if m = (%) and
h(d;,d;) = h(n —1,n — 1), that is, if and only if G = K,,.

Next, we assume that 1 < p < n —1. Then m < (72’) — 1. First, we

prove the following claim.

Claim 3.

n+ <(p+1)

Proof of Claim 3. We have to prove that

—2n+2 In —2n+1
p
C n-—2

that is,

that is,

1+t 14242
(n—1)2 p p*

which is true always as p < n — 1. This proves Claim 3.

Using Lemmas 1 and 2 as well as Claim 3, we obtain

ASOG) = Y \/hdid))+ Y \/h(d,dy)

vinEE(G}, ’UinEE(G),
di>dj=1 d;>d;>2
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gp\/nﬂi p)\n+
<(p+1)y/n ++<<Z) p) +ni2
- (Z) "+ni2

as m < (g) — 1. Hence, in the case where 1 < p < n — 1, the strict

inequality in (13) holds. This completes the proof of the theorem. ]

4 Concluding remarks

In this paper, we introduced a new topological index, the augmented Som-
bor index (ASO), and examined its chemical applicability by evaluating
its performance in predicting thirteen physicochemical properties of octane
isomers. In addition, we investigated several mathematical properties of
the ASO index. Specifically, we established lower and upper bounds for the
ASO index within the classes of trees, quasi-trees, and connected graphs,
and characterized the corresponding extremal graphs in each case. Fur-
thermore, we derived a lower bound for the ASO index of unicyclic graphs
of order n, along with a characterization of the extremal graph that attains
this bound.

There remain many other well-known classes of graphs for which the
extremal behavior of the ASO index has yet to be explored. We hope that
future research will continue this line of investigation and uncover further

insights into mathematical and chemical aspects of this index.
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