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Abstract

The Augmented Sombor index of a connected graph G with at
least three vertices is defined as

ASO(G) =
∑

vivj∈E(G)

√
d2i + d2j

di + dj − 2
,

where di and dj denote the degrees of the vertices vi and vj , re-
spectively. In this paper, we examine the chemical applicability of
the ASO index for predicting thirteen physicochemical properties
of octane isomers. We also characterize extremal graphs with re-
spect to the ASO index over the following three classes of graphs
with a given order: (i) trees, (ii) quasi-trees (where a quasi-tree is a
connected graph that becomes a tree upon the removal of a single
vertex), and (iii) connected graphs. Furthermore, we determine the
unique graph minimizing the ASO index among all unicyclic graphs
of fixed order. Finally, we conclude the paper by outlining potential
directions for future research related to the ASO index.
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1 Introduction

Let G = (V,E) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn}
and edge set E(G), where |E(G)| = m. For any vertex vi ∈ V (G), its

neighborhood is defined as NG(vi) = {vk ∈ V (G) : vivk ∈ E(G)}, and its

degree as di = |NG(vi)| (We use the notation dG(vi) to denote the degree

of vertex vi in the graph G, particularly when multiple graphs are under

consideration). Throughout this article, standard notations Cn, Pn, Sn,

and Kn are used to represent the cycle, path, star, and complete graph of

order n, respectively. A vertex of degree one is called a pendent vertex,

and an edge incident to such a vertex is termed a pendent edge.

Chemical graph theory, a vital branch of mathematical chemistry, ap-

plies graph-theoretical concepts to model and study molecular structures.

In this framework, atoms are represented by vertices and chemical bonds

by edges, providing a robust mathematical foundation for analyzing molec-

ular properties. Among several types of indices investigated within this

field, degree-based topological indices play a prominent role, see for in-

stance [3–5,8, 10,13].

These indices, which depend on vertex degrees, capture local atomic

connectivity and have shown strong correlations with diverse physical,

chemical, and biological properties. Due to their computational efficiency

and predictive accuracy, such indices are instrumental in quantitative

structure-property relationship (QSPR) studies, which support the design

and analysis of new chemical compounds.

One of the notable and much-investigated degree-based indices is the

Sombor index [11], defined for a graph G as:

SO(G) =
∑

vivj∈E(G)

√
d2i + d2j .

The Sombor index has attracted significant research interest; see the re-

views [16,25] and some of the recently published papers [6,7,15,17,19–21,

23,27,29].

Already in [11], in addition to the above defined Sombor index, some of

its variants were examined (the reduced and the average Sombor index).



525

In the meantime, many more such variants were conceived, of which the

elliptic [1,9,12,14], Euler [2,18,24,28], and the diminished Sombor indices

[22] are worth especial attention.

Building upon this foundation, we propose a novel degree-based topo-

logical index, referred to as the augmented Sombor (ASO) index. The

ASO index of a graph G containing no component isomorphic to P2 is

defined as

ASO(G) =
∑

vivj∈E(G)

√
d2i + d2j

di + dj − 2
.

Note that di + dj − 2 is the degree of the edge vivj ∈ E(G).

In this paper, we examine the chemical applicability of the ASO index

for predicting thirteen physicochemical properties of octane isomers. We

also characterize extremal graphs with respect to the ASO index over the

following three classes of graphs with a given order: (i) trees, (ii) quasi-

trees (where a quasi-tree is a connected graph that becomes a tree upon

the removal of a single vertex), and (iii) connected graphs. Furthermore,

we prove that the cycle Cn uniquely minimizes the ASO index among

all unicyclic graphs of order n (> 3). Finally, we conclude the paper by

outlining potential directions for future research related to the ASO index.

2 Chemical applicability

In order to evaluate the chemical relevance of the ASO index, we exam-

ined its statistical relationship with experimentally determined values for

thirteen key physicochemical properties of octane isomers. The properties

considered in this analysis are: boiling point, heat capacity at P constant,

heat capacity at T constant, density, entropy, enthalpy of vaporization, en-

thalpy of formation, standard enthalpy of vaporization, standard enthalpy

of formation, total surface area, acentric factor, molar volume, and octanol-

water partition coefficient. The complete experimental dataset for these

properties is obtained from the publicly accessible molecular descriptors

database, archived at: https://web.archive.org/web/20180912171255if_

/http://www.moleculardescriptors.eu/index.htm. For each of the afore-

https://web.archive.org/web/20180912171255if_/http://www.moleculardescriptors.eu/index.htm
https://web.archive.org/web/20180912171255if_/http://www.moleculardescriptors.eu/index.htm
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mentioned properties, the Pearson correlation coefficient (corr) is com-

puted to quantify the degree of linear association with the ASO index.
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Figure 1. Correlation (Corr) between the ASO index and four proper-
ties (S, HVAP, DHVAP, AccentFac).

In order to focus on the most statistically significant relationships, only

those correlations with an absolute coefficient value |corr| > 0.8 were re-

tained for further discussion. As illustrated in Figure 1, four properties sat-

isfied this criterion: entropy (S), enthalpy of vaporization (HVAP), stan-

dard enthalpy of vaporization (DHVAP), and acentric factor (AcenFac).

These strong correlations suggest that the ASO index captures structural

features of octane isomers that are closely linked to molecular thermody-

namic behavior. It is worth noting that the above correlations are signifi-

cantly better than those reported for the original Sombor index [26].

We additionally considered the reciprocal form of the ASO index, re-

ferred to as the reciprocal augmented Sombor (RASO) index, which is
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defined as

RASO(G) =
∑

vivj∈E(G)

√
di + dj − 2

d2i + d2j
.

Our analysis reveals that the absolute value of the Pearson correlation

coefficient between the ASO and RASO indices is 0.9988 (see Figure 2).

This exceptionally high correlation indicates that, for the case of octane

isomers, both of these indices possess essentially identical predictive capa-

bilities with respect to the considered set of physicochemical properties.

15.0 15.5 16.0 16.5
ASO

3.1

3.2

3.3

3.4

RASO

ASO vs RASO, Corr = -1.00

Figure 2. Correlation (Corr) between the ASO and RASO indices.

3 mathematical aspects of the ASO index

In order to obtain the main results, we first establish some preliminary

properties of the function h defined as h(di, dj) =
d2
i+d2

j

di+dj−2 . We note that

h(di, dj) =
d2i + d2j

di + dj − 2
= di − dj + 2 +

(dj − 2)2 + d2j
di + dj − 2
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= di − dj + 2 +
2 (dj − 1)2 + 2

di + dj − 2
. (1)

Using (1), we obtain the following two results.

Lemma 1. Let G be a graph of order n (> 4). For any pendent edge

vivj ∈ E(G) (di > dj = 1),

5 ≤ h(di, dj) ≤ n+
2

n− 2
. (2)

In (2), the left equality holds if and only if (di, dj) ∈
{
(2, 1), (3, 1)

}
, and

the right equality holds if and only if (di, dj) = (n− 1, 1).

Proof. Let vivj be any pendent edge in G such that di > dj = 1. From

(1), we obtain

h(di, dj) =
d2i + d2j

di + dj − 2
= di + 1 +

2

di − 1
. (3)

Lower Bound: If di ≥ 4, then

di + 1 +
2

di − 1
> 5,

and hence, the left inequality in (2) strictly holds. Otherwise, 2 ≤ di ≤ 3.

Then, (di, dj) ∈
{
(2, 1), (3, 1)

}
and hence the left equality holds in (2).

Upper Bound: If di = n − 1, then the right equality holds in (2). Oth-

erwise, di ≤ n− 2. For di ≤ n− 3, from (3), we obtain

h(di, dj) =
d2i + d2j

di + dj − 2
≤ n− 2 +

2

di − 1
< n+

2

n− 2

as di ≥ 2. Also, for di = n− 2, from (3), we obtain

h(di, dj) =
d2i + d2j

di + dj − 2
= n− 1 +

2

n− 3
< n+

2

n− 2

as n ≥ 5. Hence, the right inequality in (2) strictly holds when di ≤ n− 2.

This completes the proof of the lemma.
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Lemma 2. Let G be a graph of order n (> 3). For any non-pendent edge

vivj ∈ E(G),

4 ≤ h(di, dj) ≤ n+
1

n− 2
. (4)

In (4), the left equality holds if and only if di = 2 = dj, and the right

equality holds if and only if di = dj = n− 1.

Proof. Let vivj be any non-pendent edge in G such that di ≥ dj ≥ 2.

Lower Bound: We have (di − 2)2 + (dj − 2)2 ≥ 0, which gives,

d2i + d2j ≥ 4 di + 4 dj − 8 = 4 (di + dj − 2),

that is,

h(di, dj) =
d2i + d2j

di + dj − 2
≥ 4.

In the above inequalities, the equality holds if and only if di = 2 = dj .

Upper Bound: Since di ≥ dj , we have di + dj − 2 ≥ 2 (dj − 1). Using

this, from (1), we obtain

h(di, dj) =
d2i + d2j

di + dj − 2
= di − dj + 2 +

2 (dj − 1)2

di + dj − 2
+

2

di + dj − 2

≤ di + 1 +
2

di + dj − 2
.

If di ≤ n− 2, then from the above, we obtain

h(di, dj) =
d2i + d2j

di + dj − 2
≤ n− 1 +

2

di + dj − 2
≤ n < n+

1

n− 2

as di ≥ dj ≥ 2, and hence, the right inequality in (4) strictly holds.

Otherwise, di = n− 1, and hence, from (1), we obtain

d2i + d2j
di + dj − 2

= n− dj + 1 +
2 (dj − 1)2 + 2

n+ dj − 3
(5)

= h(n− 1, dj).
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We have 2 ≤ dj ≤ n− 1. Let us consider a function

f(x) = n− x+ 1 +
2 (x− 1)2 + 2

n+ x− 3
, 2 ≤ x ≤ n− 1.

Then, we obtain

f ′(x) = −1 +
4 (x− 1) (n+ x− 3)− 2 (x2 − 2x+ 2)

(n+ x− 3)2

=
4 (x− 1) (n+ x− 3)− (n+ x− 3)2 − 2 (x2 − 2x+ 2)

(n+ x− 3)2

=
x2 + 2nx− n2 − 6x+ 2n− 1

(n+ x− 3)2

=
(x+ n− 3)2 − 2

(
n2 − 4n+ 5

)
(n+ x− 3)2

=

(
x+ n− 3 +

√
2 (n2 − 4n+ 5)

) (
x+ n− 3−

√
2 (n2 − 4n+ 5)

)
(n+ x− 3)2

.

From the above, we conclude that f(x) is an increasing function on√
2 (n2 − 4n+ 5) − (n − 3) ≤ x ≤ n − 1 and a decreasing function on

2 ≤ x ≤
√
2 (n2 − 4n+ 5)− (n− 3). Hence

f(x) ≤ max
{
f(2), f(n− 1)

}
.

One can easily see that

f(2) = n− 1 +
4

n− 1
< n+

1

n− 2
= f(n− 1)

as n ≥ 4. From the above with (5), we conclude that

h(n− 1, dj) = f(dj) ≤ f(n− 1) = n+
1

n− 2
.

Moreover, the equation f(dj) = f(n − 1) holds if and only if dj = n − 1.
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Hence,

h(di, dj) =
d2i + d2j

di + dj − 2
≤ n+

1

n− 2

with equality if and only if di = n− 1 = dj .

Lemma 3. Let a be a real number and n (> 1) be an integer. Consider a

function

f(x) =
(n− a)2 + x2

n+ x− a− 2
, 1 ≤ x ≤ n− 1.

Then f(x) is an increasing function on x ≥
√

(n− a− 2)2 + (n− a)2 −
(n− a− 2), and a decreasing function on x ≤

√
(n− a− 2)2 + (n− a)2 −

(n− a− 2).

Proof. The result follows from the following equation:

f ′(x) =
2x(n− a− 2) + x2 − (n− a)2

(n+ x− a− 2)2
.

Proposition 1. Let G be a graph of order n (> 8) with any edge vivj.

Then h(di, dj) < h(n−2, n−2) < h(n−1, n−3) = h(n−2, 1) < h(n−1, 2) <

h(n−1, n−2) < h(n−1, n−1) < h(n−1, 1) for (di, dj) /∈
{
(n−1, 1), (n−

1, 2), (n− 2, 1), (n− 2, n− 2), (n− 1, n− 3), (n− 1, n− 2), (n− 1, n− 1)
}
.

Proof. Let vivj be an edge in G such that di ≥ dj . Also, let

S =
{
(n− 1, 1), (n− 1, 2), (n− 2, 1), (n− 2, n− 2), (n− 1, n− 3),

(n− 1, n− 2), (n− 1, n− 1)
}
.

We note that

h(n− 1, 1) = n+
2

n− 2
, h(n− 2, 1) = n− 1 +

2

n− 3
, h(n− 3, 1) =

n− 2 +
2

n− 4
, h(n− 1, 2) = n− 1 +

4

n− 1
, h(n− 2, 2) = n− 2 +

4

n− 2
,

h(n− 1, n− 3) = n− 1 +
2

n− 3
, h(n− 1, n− 2) = n− 1

2
+

5

2(2n− 5)
,
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h(n− 2, n− 4) = n− 2 +
2

n− 4
, h(n− 2, n− 3) = n− 1.5 +

1.25

n− 3.5
,

h(n− 2, n− 2) = n− 1 +
1

n− 3
, h(n− 1, n− 1) = n+

1

n− 2
.

Since n ≥ 9, from the above discussion, we have

h(n− 2, n− 2) < h(n− 1, n− 3) = h(n− 2, 1) < h(n− 1, 2) < h(n− 1,

n− 2) < h(n− 1, n− 1) < h(n− 1, 1). (6)

By Lemmas 1 and 2, we obtain h(di, dj) ≤ h(n− 1, 1) with equality if and

only if (di, dj) = (n− 1, 1). We now prove the following claim:

Claim 1. For (di, dj) /∈ S, h(di, dj) < h(n− 2, n− 2).

Proof of Claim 1. Let (di, dj) /∈ S. We consider the following cases:

Case1. dj = 1. Since (di, dj) /∈ S, we have di ≤ n− 3. If di = 2, then

h(di, 1) =
d2i + 1

di − 1
= 5 < n− 1 +

1

n− 3
= h(n− 2, n− 2)

as n ≥ 9, and hence, the result holds. Otherwise, di ≥ 3. Again since

n ≥ 9, we obtain

h(di, 1) =
d2i + 1

di − 1
= di + 1 +

2

di − 1
≤ n− 2 +

2

di − 1
< n− 1 +

1

n− 3

= h(n− 2, n− 2),

as desired.

Case2. dj = 2. Since (di, dj) /∈ S, we have di ≤ n− 2. For 2 ≤ di ≤ 3, we

have

h(di, 2) =
d2i + 4

di
≤ 4 +

1

3
< n− 1 +

1

n− 3
= h(n− 2, n− 2)

as n ≥ 9, and hence, the result holds. Otherwise, 4 ≤ di ≤ n − 2. Since
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n ≥ 9, we obtain

h(di, 2) = di +
4

di
≤ n− 2 +

4

di
< n− 1 +

1

n− 3
= h(n− 2, n− 2),

as desired.

Case3. dj ≥ 3. We note that

h(di, dj) = di + 2− dj (di − dj + 2)− 4

di + dj − 2
(7)

= di −
dj (di − dj)− 2di

di + dj − 2
. (8)

If di ≤ n− 3, then from (7), we obtain

h(di, dj) < di + 2 ≤ n− 1 < n− 1 +
1

n− 3
= h(n− 2, n− 2),

as desired. Otherwise, di ≥ n− 2. We consider the following two cases:

Case3.1. di = n− 2. In this case, 3 ≤ dj ≤ n− 2. Since (di, dj) /∈ S, we

have 3 ≤ dj ≤ n− 3. Since n ≥ 9, by Lemma 3 (setting a = 2), we obtain

h(di, dj) ≤ max
{
h(n− 2, 3), h(n− 2, n− 3)

}
< n− 1 +

1

n− 3
= h(n− 2, n− 2)

as

h(n− 2, 3) = n− 3 +
10

n− 1
< n− 1 +

1

n− 3
= h(n− 2, n− 2),

h(n− 2, n− 3) = n− 1.5 +
1.25

n− 3.5
< n− 1 +

1

n− 3
= h(n− 2, n− 2).

Hence, in this case, the result holds.

Case3.2. di = n− 1. In this case, 3 ≤ dj ≤ n− 1. Since (di, dj) /∈ S, we
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have 3 ≤ dj ≤ n− 4. Since n ≥ 9, by Lemma 3 (setting a = 1), we obtain

h(di, dj) ≤ max
{
h(n− 1, 3), h(n− 1, n− 4)

}
< n− 1 +

1

n− 3
= h(n− 2, n− 2)

as

h(n− 1, 3) = n− 2 +
10

n
< n− 1 +

1

n− 3
= h(n− 2, n− 2),

h(n− 1, n− 4) = n− 1.5 +
3.25

n− 3.5
< n− 1 +

1

n− 3
= h(n− 2, n− 2).

Hence, in this case, the result holds.

This completes the proof Claim 1.

Using (6) and Claim 1, we complete the proof of Proposition 1.

We now establish lower and upper bounds on the ASO index for trees

in terms of n, and characterize the trees that attain these extremal values.

Theorem 2. Let T be a tree of order n (> 3). Then

2
√
5 + 2 (n− 3) ≤ ASO(T ) ≤ (n− 1)

√
n+

2

n− 2
(9)

with equality on the left if and only if T ∼= Pn, and equality on the right if

and only if T ∼= Sn.

Proof. For n = 4, there are only two non-isomorphic trees; namely, P4 and

S4. Here, by direct comparison, we have ASO(S4) > ASO(P4). Hence,

in the rest of the proof, we assume that n ≥ 5. Let p be the number of

pendent vertices in T . Then 2 ≤ p ≤ n− 1.

Lower Bound: If p = 2, then T ∼= Pn with ASO(T ) = 2
√
5 + 2 (n− 3),

and hence the left equality in (9) holds. Otherwise, 3 ≤ p ≤ n− 1. Since
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n ≥ 5, by Lemmas 1 and 2, we obtain

ASO(T ) =
∑

vivj∈E(T )

√
d2i + d2j

di + dj − 2

=
∑

vivj∈E(T ),

di≥dj=1

√
h(di, dj) +

∑
vivj∈E(T ),

di≥dj≥2

√
h(di, dj)

≥ p
√
5 + 2 (n− p− 1) = p (

√
5− 2) + 2 (n− 1)

≥ 3 (
√
5− 2) + 2 (n− 1) = 2

√
5 +

√
5− 2 + 2 (n− 3)

> 2
√
5 + 2 (n− 3),

which implies that the left inequality in (9) strictly holds.

Upper Bound: If p = n− 1, then T ∼= Sn with

ASO(T ) = (n− 1)

√
n+

2

n− 2

and hence the right equality in (9) holds. Otherwise, 2 ≤ p ≤ n− 2. Since

n ≥ 5, using the definition of the ASO index as well as Lemmas 1 and 2,

we obtain

ASO(T ) =
∑

vivj∈E(T ),

di≥dj=1

√
h(di, dj) +

∑
vivj∈E(T ),

di≥dj≥2

√
h(di, dj)

≤ p

√
n+

2

n− 2
+ (n− p− 1)

√
n+

1

n− 2

< p

√
n+

2

n− 2
+ (n− p− 1)

√
n+

2

n− 2

= (n− 1)

√
n+

2

n− 2

as n − p − 1 ≥ 1. Hence, the right inequality in (9) strictly holds when

2 ≤ p ≤ n− 2.
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Theorem 3. Let G be a unicyclic graph of order n. Then ASO(G) ≥ 2n

with equality if and only if G ∼= Cn.

Proof. If G ∼= Cn, then ASO(G) = 2n and hence the equality holds.

Otherwise, G ≇ Cn. If n = 4, then G is the graph obtained from S4 by

inserting an edge between two pendent vertices of S4, and hence by direct

comparison, we have ASO(G) > ASO(C4). Next, we assume that n ≥ 5.

We note that there exists at least one pendent vertex in G. Let p (≥ 1) be

the number of pendent vertices in G. Since G is unicyclic, m = n, where

m is the number of edges. Since n ≥ 5, by Lemmas 1 and 2, we obtain

ASO(G) =
∑

vivj∈E(G),

di≥dj=1

√
h(di, dj) +

∑
vivj∈E(G),

di≥dj≥2

√
h(di, dj)

≥ p
√
5 + 2 (m− p)

= p
√
5 + 2 (n− p) = 2n+ p (

√
5− 2) > 2n,

as p ≥ 1. The inequality strictly holds. This completes the proof of the

theorem.

Recall that a graph G is called a quasi-tree if there exists a vertex

u ∈ V (G) such that the graph obtained by removing u and all edges

incident to it is a tree. A quasi-tree is said to be a trivial quasi-tree

if it is a tree. Hence, every non-trivial quasi-tree contains at least one

cycle. Let K2,n−2 denote the complete bipartite graph of order n (> 2),

with one partite set containing 2 vertices and the other containing n − 2

vertices. Define K ′
2,n−2 as the graph obtained from K2,n−2 by adding an

edge between the two vertices of degree n − 2. We now establish both

lower and upper bounds on the ASO index of quasi-trees in terms of n,

and characterize the graphs that attain these extremal values.

By Theorem 5 (given after the next theorem), the path graph Pn

uniquely minimizes the ASO index among all quasi-trees (including trivial

ones) of order n (> 3). Also, for n ≥ 4, we have ASO(Sn) < ASO(K ′
2,n−2),

which together with Theorem 2 implies that ASO(T ) < ASO(K ′
2,n−2) for

any tree of order n (> 3). Thus, in the following theorem, we consider only
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non-trivial quasi-trees.

Theorem 4. Let G be a non-trivial quasi-tree of order n (> 4). Then,

2n ≤ ASO(G) ≤
√

n+
1

n− 2
+ 2 (n− 2)

√
n− 1 +

4

n− 1
(10)

with equality on the left if and only if G ∼= Cn, and equality on the right if

and only if G ∼= K ′
2,n−2.

Proof. Let m and p be the number of edges and the number of pendent

vertices in G, respectively. Since G is a non-trivial quasi-tree, we have

n ≤ m ≤ 2n− 3.

Lower Bound: If m = n, then the desired result holds by Theorem 3.

Otherwise, m ≥ n+ 1. Since n ≥ 5, by Lemmas 1 and 2, we obtain

ASO(G) =
∑

vivj∈E(G)

√
h(di, dj) ≥ 2m ≥ 2(n+ 1) > 2n,

as desired.

Upper Bound: For every n ∈ {5, 6, 7, 8}, using a computer software, we

have verified that K ′
2,n−2 has the maximum ASO index among all quasi-

trees of order n. Hence, in what follows, we assume that n ≥ 9. Let vivj

be any edge in G such that di ≥ dj . We consider the following cases:

Case1. di = n− 1. In this case, vertex vi is adjacent to all the remaining

vertices. If dj = n− 1, then G ∼= K ′
2,n−2 with

ASO(G) =

√
n+

1

n− 2
+ 2 (n− 2)

√
n− 1 +

4

n− 1
,

and hence, the right equality in (10) holds. Otherwise, dj ≤ n− 2. Let vk

be a vertex in G such that G− vk is a tree. First, we assume that k = i.

Then, G− vi is a tree, and hence, m = 2n− 3. Let H = G− vi. Since H

is a tree, dH(vℓ) ≥ 1 for vℓ ∈ V (H) and hence dG(vℓ) ≥ 2 for vℓ ∈ V (G).
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Since G is a quasi-tree, using Proposition 1, we obtain

ASO(G) =
∑

vivj∈E(G)

√
h(di, dj) =

∑
vivj∈E(G),

di≥dj≥2

√
h(di, dj)

≤
√
h(n− 1, n− 2) + (2n− 4)

√
h(n− 1, 2)

<
√
h(n− 1, n− 1) + (2n− 4)

√
n− 1 +

4

n− 1

=

√
n+

1

n− 2
+ (2n− 4)

√
n− 1 +

4

n− 1

as n ≥ 5. Thus, the right inequality in (10) strictly holds when k = i.

Next, we assume that k ̸= i. In this case, G − vk ∼= Sn−1, where

dG(vk) ≤ n− 2. Thus, we have m ≤ 2n− 4. Since G is a quasi-tree, using

Proposition 1, we obtain

∑
vivj∈E(G),

di≥dj=1

√
h(di, dj) ≤ p

√
h(n− 1, 1) = p

√
n+

2

n− 2

and ∑
vivj∈E(G),

di≥dj≥2

√
h(di, dj) ≤

√
h(n− 1, n− 2) + (m− p− 1)

√
h(n− 1, 2)

<
√

h(n− 1, n− 1) + (2n− p− 5)
√
h(n− 1, 2)

=

√
n+

1

n− 2
+ (2n− p− 5)

√
n− 1 +

4

n− 1
.

Using the above inequalities, we obtain

ASO(G) =
∑

vivj∈E(G),

di≥dj=1

√
h(di, dj) +

∑
vivj∈E(G),

di≥dj≥2

√
h(di, dj)
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< p

√
n+

2

n− 2
+

√
n+

1

n− 2
+ (2n− p− 5)

√
n− 1 +

4

n− 1
.

(11)

Claim 2.

p

√
n+

2

n− 2
< (p+ 1)

√
n− 1 +

4

n− 1
.

Proof of Claim 2. Since p is the number of pendent vertices in G, we

have
p

2
< n− 1 +

4

n− 1
,

that is,
p

2

√
n− 1 +

4

n− 1

<

√
n− 1 +

4

n− 1
.

Since n ≥ 5, using the above inequality, we obtain√
n+

2

n− 2
−
√
n− 1 +

4

n− 1

=
1− 4

n− 1
+

2

n− 2√
n+

2

n− 2
+

√
n− 1 +

4

n− 1

<
1√

n+
2

n− 2
+

√
n− 1 +

4

n− 1

<
1

2

√
n− 1 +

4

n− 1

<
1

p

√
n− 1 +

4

n− 1
,

that is,

p

√
n+

2

n− 2
< (p+ 1)

√
n− 1 +

4

n− 1
.
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which proves Claim 2.

Using Claim 2 in (11), we obtain

ASO(G) < (p+ 1)

√
n− 1 +

4

n− 1
+

√
n+

1

n− 2

+ (2n− p− 5)

√
n− 1 +

4

n− 1

=

√
n+

1

n− 2
+ 2 (n− 2)

√
n− 1 +

4

n− 1
,

which shows that the right inequality in (10) strictly holds in the case

under consideration.

Case2. di = n−2. We have 1 ≤ dj ≤ di = n−2. By Lemma 3, we obtain

h(di, dj) =
(n− 2)2 + d2j
n+ dj − 4

≤max
{
h(n− 2, 1), h(n− 2, n− 2)

}
= n− 1 +

2

n− 3
.

Since n ≥ 5, we have n−1+ 2
n−3 ≤ n−1+ 4

n−1 < n+ 2
n−2 . Sincem ≤ 2n−3,

using the above results, we obtain

ASO(G) =
∑

vivj∈E(G)

√
h(di, dj) ≤ m

√
n− 1 +

2

n− 3

≤ (2n− 3)

√
n− 1 +

2

n− 3

<

√
n+

2

n− 2
+ 2 (n− 2)

√
n− 1 +

4

n− 1
,

as desired.

Case3. di ≤ n− 3. In this case we have to prove that

h(di, dj) ≤ n− 1 +
4

n− 1
. (12)



541

First we assume that dj ≥ 2. Then from (7), we obtain

h(di, dj) ≤ n− 1 < n− 1 +
4

n− 1

as di ≥ dj and dj (di − dj + 2) ≥ 2dj ≥ 4. The result (12) holds.

Next we assume that dj = 1. Then from (7), we obtain

h(di, dj) = di + 2− di − 3

di − 1
= di + 1 +

2

di − 1
.

If di = 2, then from the above, we obtain

h(di, dj) = 5 ≤ n− 1 +
4

n− 1

as n ≥ 5. The result (12) holds. Otherwise, di ≥ 3. Thus we have

h(di, dj) = di + 2− di − 3

di − 1
= di + 1 +

2

di − 1

≤ n− 2 +
2

di − 1
< n− 1 +

4

n− 1
.

The result (12) holds.

Since n ≥ 5, using (12), we obtain

ASO(G) =
∑

vivj∈E(G)

√
h(di, dj) ≤ m

√
n− 1 +

4

n− 1

≤ (2n− 3)

√
n− 1 +

4

n− 1

<

√
n+

1

n− 2
+ 2 (n− 2)

√
n− 1 +

4

n− 1
,

as desired. This completes the proof of the theorem.

We now establish a lower bound for the ASO index of connected graphs

of order n, and characterize the graphs that attain this bound.
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Theorem 5. Let G be a connected graph of order n (> 2). Then

ASO(G) ≥ 2
√
5 + 2 (n− 3)

with equality if and only if G ∼= Pn.

Proof. For every n ∈ {3, 4}, we have verified, using a computer software,

that Pn has the minimum ASO index among all connected graphs of order

n. Now, we assume that n ≥ 5. Let m be the number of edges in G. Since

G is connected, m ≥ n − 1. If m = n − 1, then Theorem 2 yields the

desired result. If m ≥ n, then by Lemmas 1 and 2, we obtain

ASO(G) =
∑

vivj∈E(G),

di≥dj=1

√
h(di, dj) +

∑
vivj∈E(G),

di≥dj≥2

√
h(di, dj)

≥ p
√
5 + 2 (m− p)

= p (
√
5− 2) + 2m

≥ 2n > 2
√
5 + 2 (n− 3),

where p is the number of pendent vertices.

We now present an upper bound for the ASO index of connected graphs

of order n, and characterize the graphs that attain this bound.

Theorem 6. Let G be a graph of order n (> 2). Then

ASO(G) ≤
(
n

2

)√
n+

1

n− 2
(13)

with equality if and only if G ∼= Kn.

Proof. For each n ∈ {3, 4}, we have verified the result using a computer

software. Hence, in the rest of the proof, we assume that n ≥ 5. Let m

and p be the number of edges and the number of pendent vertices in G,

respectively. Then 0 ≤ p ≤ n−1. First, we assume that p = 0. By Lemma
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2, we obtain

ASO(G) =
∑

vivj∈E(G)

√
d2i + d2j

di + dj − 2
=

∑
vivj∈E(G),

di≥dj≥2

√
h(di, dj)

≤ m

√
n+

1

n− 2

≤
(
n

2

)√
n+

1

n− 2
.

Moreover, the above two equalities hold if and only if m =
(
n
2

)
and

h(di, dj) = h(n− 1, n− 1), that is, if and only if G ∼= Kn.

Next, we assume that 1 ≤ p ≤ n − 1. Then m ≤
(
n
2

)
− 1. First, we

prove the following claim.

Claim 3.

p

√
n+

2

n− 2
< (p+ 1)

√
n+

1

n− 2
.

Proof of Claim 3. We have to prove that

p

√
n2 − 2n+ 2

n− 2
< (p+ 1)

√
n2 − 2n+ 1

n− 2
,

that is, √
1 +

1

(n− 1)2
< 1 +

1

p
,

that is,

1 +
1

(n− 1)2
< 1 +

2

p
+

1

p2
,

which is true always as p ≤ n− 1. This proves Claim 3.

Using Lemmas 1 and 2 as well as Claim 3, we obtain

ASO(G) =
∑

vivj∈E(G),

di≥dj=1

√
h(di, dj) +

∑
vivj∈E(G),

di≥dj≥2

√
h(di, dj)
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≤ p

√
n+

2

n− 2
+ (m− p)

√
n+

1

n− 2

< (p+ 1)

√
n+

1

n− 2
+

((
n

2

)
− 1− p

) √
n+

1

n− 2

=

(
n

2

)√
n+

1

n− 2

as m ≤
(
n
2

)
− 1. Hence, in the case where 1 ≤ p ≤ n − 1, the strict

inequality in (13) holds. This completes the proof of the theorem.

4 Concluding remarks

In this paper, we introduced a new topological index, the augmented Som-

bor index (ASO), and examined its chemical applicability by evaluating

its performance in predicting thirteen physicochemical properties of octane

isomers. In addition, we investigated several mathematical properties of

the ASO index. Specifically, we established lower and upper bounds for the

ASO index within the classes of trees, quasi-trees, and connected graphs,

and characterized the corresponding extremal graphs in each case. Fur-

thermore, we derived a lower bound for the ASO index of unicyclic graphs

of order n, along with a characterization of the extremal graph that attains

this bound.

There remain many other well-known classes of graphs for which the

extremal behavior of the ASO index has yet to be explored. We hope that

future research will continue this line of investigation and uncover further

insights into mathematical and chemical aspects of this index.
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