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Abstract

We show how to obtain, solving recurrences, closed-form formu-
las for topological indices of families of graphs obtained through the
iterated application of some specific operation on a given graph.

1 Introduction

In what follows, we will deal with a finite simple connected graph G =

(V,E) with vertex set V = {1, 2, . . . , n} and edge set E. For all graph-

theoretical concepts the reader can consult reference [20]. On such a graph,

the Kirchhoff index is defined (see [4]) as

K(G) =
∑
i<j

Rij , (1)

where Rij is the effective resistance between vertices i and j when the

graph is thought of as an electric network where every edge is given a unit
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resistance. This topological index has been the subject of intense scrutiny

in the past few decades, and one specific goal has been to find closed-

form expressions for the index in a variety of families of graphs. In that

regard, several different tools have been used, such as classic results from

electric networks and linear algebra (see [16] and [2], for earlier articles

on the subject, and [3] and [8], for more recent ones ). One approach

that perhaps that has not been exploited much is the use of recurrences.

In [21], they used recurrences for individual resistances between pairs of

vertices, yielding many valuable results, though the values of the Kirchhoff

indices based on the recurrences of the individual resistances (theorem

4.1) arguably are not given in closed form. Other works where they use

recurrences to find individual effective resistances can be found in [9] and

references therein. In [17] we looked at recurrences defined directly on the

Kirchhoff indices, not on individual resistances, of some c-cyclic graphs,

using the following argument: starting with a given graph G, we obtain a

new graph G
′
by joining to each vertex of G a new pendant vertex with a

single edge. Then it is shown with simple calculations that

K(G
′
) = 4K(G) + 2n2 + n. (2)

Next, a family of graphs is defined recursively by choosing an initial graph

G1 to be a c-cyclic graph, for small values of c, and then defining

Gn+1 = G
′
(Gn). (3)

With the help of (2), we can express (3) as the recurrence

Rn+1 − 4Rn = 22n+1 − 2n, (4)

where Rn = K(Gn), and then we solve the recurrence using classical ar-

guments.

In [17] we also mentioned that the operation described above is in fact

G◦K1, the corona of G with an isolated vertex K1. We remind the reader

that the corona G1 ◦ G2 of the graphs G1 = (V1, E1) and G2 = (V2, E2)

is the graph that results from one copy of G1 and |V1| copies of G2, after
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joining each vertex of the i-th copy of G2 to the i-th vertex of G1.

Then (2) could have been found using the formula for the corona of two

graphs G1 = (V1, E1) and G2 = (V2, E2), where n = |V1| and |V2| = m,

found in [23]:

K(G1 o G2) = mn2 −mn+ (m+ 1)2K(G1) + n2K(G2 +K1). (5)

Here G2 + K1 is the graph resulting from joining a single vertex to all

vertices of G2 using m edges.

In this article we want to generalize the result in [17] in several direc-

tions: first, we will consider graphs other than K1 to play the role of G2

in (5), and G1 will be arbitrary, not just a c-cyclic graph; also, we will

consider operations other than the corona; and finally, we will consider

topological indices other than the Kirchhoff index. The only limitation of

our method is that we will need to obtain a linear recurrence with constant

coefficients such as (4).

In general, the linear recurrence should have the form

c0Rn+i + c1Rn+i−1 + · · ·+ ciRn = g(n).

If the right side is g(n) = 0 we say that the equation is homogeneous and

if g(n) ̸= 0 we say that the equation is non-homogeneous. There are at

least two methods of solving these recurrences, one entails using generating

functions and the other, that we will follow, imitates the usual way to solve

linear ordinary differential equations: first, a solution of the form Rn = rn

is proposed for the homogeneous equation, leading to a problem of finding

the roots r1, r2, . . . , ri of the characteristic polynomial

c0r
i + c1r

i−1 + · · ·+ ci = 0,

and then expressing the general solution to the homogeneous equation as

Rn = k1r
n
1 + k2r

n
2 + · · ·+ kir

n
i .

Once this is achieved, we find a particular solution of the non-homogeneous
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using the method of undetermined coefficients, and finally, the general

solution to the non-homogeneous equals the general solution of the ho-

mogeneous plus the particular solution to the non-homogeneous. For the

remainder of this article we will only consider recurrences with i = 1, which

in the language of ordinary differential equations would mean solving first

order linear equations. For all details regarding this and other methods of

solving recurrences, the reader is directed to reference [10].

2 The results

The main idea is that if we can express the topological index T of an

operation S on G, T (S(G)), in terms of T (G) and some other parameters

of G (like the number of edges or the number of vertices) in a linear way,

then by the iterated application of S, we construct a sequence of graphs

G1 = G,

Gn+1 = S(Gn), (6)

for n ≥ 1, and then when we evaluate the index T on both sides of (6) we

can find a recurrence for T (Gn) that can be solved easily in a closed form.

If Gn = (Vn, En), usually we must find |En| and/or |Vn| in closed form,

as a function of n, in order to solve the recurrence. In general, that is an

easy task.

Example 1. If we choose G2 = K2, since K2 + K1 = K3, we get the

particular case of (5) as

K(G1 ◦K2) = 4|V1|2 − 2|V1|+ 9K(G1). (7)

Now define recursively

Gn+1 = Gn ◦K2, (8)

for n ≥ 1. It is clear that if Vn is the vertex set of Gn then |Vn| = 3n−1|V1|,
and (7) and (8) imply
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K(Gn+1) = K(Gn ◦K2) = 4× 32n−2|V1|2 − 2× 3n−1|V1|+ 9K(Gn). (9)

And if we replace K(Gn) with Rn to ease the notation, we have the

recurrence

Rn+1 − 9Rn = 4× 32n−2|V1|2 − 2× 3n−1|V1|.

The general solution of the homogeneous recurrence

Rn+1 − 9Rn = 0

is simply Rn = C9n, for some constant C > 0. To deal with a particular

solution of the non-homogeneous, we split the problem in two, and find

first a particular solution R∗
n to the recurrence

Rn+1 − 9Rn = −2× 3n−1|V1|. (10)

We propose a solution of the form R∗
n = A3n−1|V1|, and inserting into (10)

we obtain A = 1
3 and thus R∗

n = 1
33

n−1|V1| = 3n−2|V1|. Now we find a

particular solution R∗∗
n to the recurrence

Rn+1 − 9Rn = 4× 32n−2|V1|2. (11)

We cannot propose a solution of the form R∗∗
n = B32n−2|V1|2, because

this is already a solution to the homogeneous recurrence. Therefore we

propose R∗∗
n = Bn32n−2|V1|2, and inserting into (11) we get B = 4

9 , so

that R∗∗
n = 4n32n−4|V1|2 and the general solution to the non-homogeneous

is

Rn = C32n + 3n−2|V1|+ 4n32n−4|V1|2. (12)

Using the initial condition R1 = K(G1) and inserting into (12) we find

that

C =
1

9

(
K(G1)−

4|V1|2

9
− |V1|

3

)
,
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Thus, inserting this value of C into (12), we have shown the following

Proposition 1. If we take an arbitrary G1 = (V1, E1), and define recur-

sively Gn+1 using (8), for n ≥ 1, then the Kirchhoff index of Gn is given

by the expression

K(Gn) = 4n32n−4|V1|2 + 32n−4
(
9K(G1)− 4|V1|2 − 3|V1|

)
+ 3n−2|V1|.

(13)

In particular, if we start with G1 = K3, then we get

K(Gn) = (4n− 3)32n−2 + 3n−1. (14)

In figure 1 we illustrate the particular case G1 = K3 of proposition

1 by displaying G3, and notice the fractal-like nature of these Gn’s as n

grows.

Figure 1. The graph G3

Example 2. The multiplicative degree-Kirchhoff index is defined as

K∗(G) =
∑
i<j

didjRij , (15)
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The subdivision graph of a give graph G = (V,E) is the graph S(G) =

(VS(G), ES(G)) obtained by the following operation S: every edge in E is

divided into two new edges with the introduction of a new vertex of degree

2, so that |ES(G)| = 2|E| and |VS(G)| = |V |+ |E|.
For this index and this operation, the following relation was found

in [22]:

K∗(S(G)) = 8K∗(G) + 2|E|(2|E| − 2|V |+ 1). (16)

If G1 = (V1, E1) is arbitrary and we define the sequence of graphs

Gn+1, n ≥ 1, as in (6), it is easy to see that

|En| = |E1|2n−1

and

|Vn| = |V1|+ |E1|(2n−1 − 1).

If we use these facts in (16), then we get the recurrence

Rn+1 − 8Rn = 2|En|(2|En| − 2|Vn|+1) = |E1|(2|E1| − 2|V1|+1)2n, (17)

where Rn = K∗(Gn).

Very much as in example 1, the solution to the homogeneous is Rn =

C8n for some constant C > 0. As for the non-homogeneous, we have

a simpler case than in example 1, because we only need to look for a

particular solution of the form R∗
n = A2n, and inserting into (17) we get

A = −|E1|
6

(2|E1| − 2|V1|+ 1).

Then the general solution to the non-homogeneous is

Rn = C8n − |E1|
3

(2|E1| − 2|V1|+ 1)2n−1. (18)

Using the initial condition R1 = K∗(G1) in (18) we identify the constant

as

C =
1

8

[
K∗(G1) +

|E1|
3

(2|E1| − 2|V1|+ 1)

]
,
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and plugging this value of C back into (18) finishes the proof of the fol-

lowing

Proposition 2. If G1 = (V1, E1) is an arbitrary graph, and we define

recursively Gn+1 for n ≥ 1 using (6) and the subdivision as the operation

S, then the multiplicative degree-Kirchhoff index of Gn is given by the

expression

K∗(Gn) = K∗(G1)8
n−1 +

8n−1 − 2n−1

3
|E1|(2|E1| − 2|V1|+ 1).

Remark. Proposition 2 was shown in [22] with a different proof.

For our next example, we will look at a simple case which can be

solved with bare hands calculations, but that we nevertheless include as

an instance where the recurrence is homogeneous.

Example 3. The forgotten topological index or F -index is defined as

F (G) =
∑
v∈V

d3v.

The tensor product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is

defined as the graph G1 ×G2 with vertex set V1 × V2 and (u, x) adjacent

to (v, y) if and only if (u, v) ∈ E1 and (x, y) ∈ E2. For this product, it is

not difficult to get that (see [5])

F (G1 ×G2) = F (G1)F (G2). (19)

We can define an operation S on all graphs G by fixing G2, and considering

S(G) = G×G2. Then we define recursively Gn+1 as in (6), for n ≥ 1, and

if we take the F index on both sides of (6) we get

F (Gn+1) = F (Gn ×G2) = F (Gn)F (G2),
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which can be rewritten, taking Rn = F (Gn) as

Rn+1 − F (G2)Rn = 0.

This simple homogeneous recurrence has the general solution Rn =

CF (G2)
n, for some C > 0, and using the initial condition R1 = F (G)

we can easily identify the constant C and see that we have shown the

following

Proposition 3. For any G, and the graphs Gn defined by (6), with the

operation S being the tensor product with the fixed graph G2 we have

F (Gn) = F (G)F (G2)
n−1,

for n ≥ 1.

Our last example deals with one of the pioneering topological indices,

the first Zagreb index. This example has the added difficulty that the

closed-form expression for the number of edges of the n-th graph needs

itself solving a recurrence.

Example 4. The first Zagreb index is defined as

M1(G) =
∑
v∈V

d2v. (20)

The composition G[H] of graphs G = (V1, E1) and H = (V2, E2) is

the graph with vertex set V1 × V2 and (u1, v1) is adjacent with (u2, v2)

whenever u1 is adjacent with u2 or u1 = u2 and v1 is adjacent with v2.

For this composition and the first Zagreb index it is known that (see

[12])

M1(G[H]) = |V (H)|3M1(G) + |V (G)|M1(H) + 8|V (H)||E(H)||E(G)|.
(21)
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In the particular case that H = K2, equation (21) simplifies to

M1(G[K2]) = 8M1(G) + 2|V (G)|+ 16|E(G)|. (22)

It is also mentioned in [12] that

|V (G[H])| = |V (G)| × |V (H)|

and

|E(G[H])| = |E(G)||V (H)|2 + |E(H)||V (G)|.

For the particular case H = K2 this means

|V (G[K2])| = 2|V (G)| and |E(G[K2])| = 4|E(G)|+ V (G). (23)

Now we define the operation S on any graph G as

S(G) = G[K2], (24)

and then we define recursively Gn+1 as in (6), for n ≥ 1. If we take the

M1 index on both sides of (6) we get, using (22), that

M1(Gn+1) = M1(Gn[K2]) = 8M1(Gn) + 2|V (Gn)|+ 16|E(Gn)|. (25)

It is easy to see, using (23) that

|V (Gn)| = |V (G1)|2n−1, (26)

for n ≥ 1. As for |E(Gn)|, we use (23) to establish the recurrence

|E(Gn+1)| = 4|E(Gn)|+ |V (Gn)| = 4|E(Gn)|+ |V (G1)|2n−1,

for n ≥ 1. Using Bn = |E(Gn)|, this recurrence can be written as

Bn+1 − 4Bn = |V (G1)|2n−1,

and we solve it in the usual way: the solution to the homogeneous is
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Bn = C4n, for some C > 0, and for the non-homogeneous, the choice

B∗
n = A2n−1 yields A = − 1

2 |V (G1)| so that the general solution to the

non-homogeneous is

Bn = C4n − |V (G1)|2n−2. (27)

using the initial condition B1 = |E(G1)| in (27) yields C = 1
4 |E(G1)| +

1
8 |V (G1)|, and plugging back into (27) we get

|E(Gn)| = 22n−2|E(G1)|+ 22n−3|V (G1)| − 2n−2|V (G1)|. (28)

Now, substituting (26) and (28) into (25) and denoting Rn = M1(Gn) we

obtain the recurrence

Rn+1 − 8Rn = (4|E(G1)|+ 2|V (G1)|)22n − 3|V (G1)|2n. (29)

The homogeneous equation has the solution Rn = C8n = C23n for

some C > 0. For the non-homogeneous part, we split the problem of find-

ing a particular solution into two right sides, with the proposed particular

solutions being R∗
n = A22n and R∗∗

n = D2n, and we notice that, as op-

posed to the situation in example 1, neither one of these is a solution of

the homogeneous, so no further fixing (multiplying by n) is needed.

Plugging R∗
n into (29) produces A = −|E(G1)| − 1

2 |V (G1)|. Plugging

R∗∗
n into (29) produces D = 1

2 |V (G1)|. Hence, the general solution to the

non-homogeneous is

Rn = C8n + (−|E(G1)| −
1

2
|V (G1)|)22n +

1

2
2n|V (G1)|. (30)

Using the initial condition R1 = M1(G1) in (30) yields C = 1
8 (M1(G1)

+ 4|E(G1)| + |V (G1)|). Replacing this value of C back into (30) finishes

the proof of the following

Proposition 4. For any G, and the graphs Gn defined by (6), with the

operation S being the composition with the fixed graph K2 we have

M1(Gn) = (M1(G1) + 4|E(G1)|+ |V (G1)|)8n−1
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+(−|E(G1)| −
1

2
|V (G1)|)22n + |V (G1)|2n−1,

for n ≥ 1.

Final remark. We have shown how to find closed-form expressions for

a variety of topological indices applied to some families of graphs built

through the iterated application of some specific operation on a given

graph. The main difficulties of the method are usually found when deal-

ing with the non-homogeneous part of a linear recurrence with constant

coefficients. The potential range of applications of this idea is very wide,

judging by the abundance of references concerning the values of different

indices on different graph operations, such as those mentioned previously

in this article and [1], [6], [7], [11], [13], [14], [15], [18], [19], etc.
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