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Abstract

In this paper, we firstly focus on catacondensed even ring systems
(shortly CERS) without any linearly connected adjacent triple of
finite faces. For such a graph G, we describe a bijection between the
set of all perfect matchings (Kekulé structures) of G and the set of
all independent sets of the inner dual of G, which enables us to prove
the equality between three polynomials: the sextet polynomial of G,
the independence polynomial of the inner dual of G, and the newly
introduced link polynomial of G. These equalities imply that the
number of perfect matchings of G equals the number of resonant sets
of G and also the number of independent sets of the inner dual of G.
Moreover, we show that the number of edges of the resonance graph
of G coincides with the derivative of the mentioned polynomials
evaluated at x = 1. Finally, we provide the generalization of the
results to all peripherally 2-colorable graphs.
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1 Introduction

Kekulé structures of aromatic hydrocarbons represent specific arrange-

ments of double bonds within a molecule [6]. In graph-theoretical terms,

these structures correspond to perfect matchings of the associated molec-

ular graph. The interplay among different Kekulé structures is captured

by resonance graphs, which were introduced independently by chemists

El-Basil [7,8] and Gründler [9] as well as by mathematicians Zhang, Guo,

and Chen [18], who referred to them as Z-transformation graphs. Firstly,

the research focused on the properties of resonance graphs in hexagonal

systems [18]. Subsequently, the concept was generalized to catacondensed

even ring systems, shortly CERS [16], and to all plane (elementary) bipar-

tite graphs (see, e.g., [19, 20]).

The sextet polynomial was introduced by Hosoya and Yamaguchi in

1975 [13] as a counting polynomial in chemistry related to Kekulé struc-

tures. More precisely, it counts resonant sets of a given polycyclic aro-

matic hydrocarbon. Several interesting properties of this polynomial were

obtained in [17], see also [12]. For example, it was shown that for a thin

polyhex graph G (i.e. a benzenoid graph that has no coronene skeleton),

the sextet polynomial evaluated at x = 1 coincides with the number of

perfect matchings of G.

Daisy cubes were introduced in [14] as a subfamily of partial cubes

which contains also Fibonacci and Lucas cubes. The connection between

resonance graphs and daisy cubes was initially explored in [22], where it

was shown that the resonance graph of a kinky benzenoid graph (i.e. a ben-

zenoid graph without linear hexagons) is a daisy cube. Moreover, in [1]

and [2], CERS and 2-connected outerplane bipartite graphs whose reso-

nance graphs are daisy cubes were characterized, respectively. Addition-

ally, the characterization was generalized to all plane bipartite graphs [3].

In particular, it turns out that if G is a plane elementary bipartite graph

other than K2, then its resonance graph R(G) is a daisy cube if and only

if the Fries number of G equals the number of finite faces of G, which in

turn is equivalent to G being peripherally 2-colorable. Note that CERS

that do not contain any linearly connected adjacent triple of finite faces are
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peripherally 2-colorable and that fibonaccenes also belong to this family

of graphs [15].

Let G be a peripherally 2-colorable graph. Recently, a bijection was

established between the set of maximal hypercubes of the resonance graph

R(G) and the set of maximal independent sets of the inner dual G∗ of G,

where G∗ is a tree isomorphic to the τ -graph of R(G) [4]. Moreover, an

algorithm for a binary code labelling for the vertex set of the resonance

graph R(G) as a daisy cube with respect to the set of maximal independent

sets of the inner dual G∗ was obtained. Consequently, the existence of a

bijection between the set of all perfect matchings of G and the set of all

independent sets of the inner dual G∗ was observed. However, it is not

clear which perfect matching of G corresponds to a given independent set

of G∗ with respect to the mentioned algorithm.

In this paper, we firstly focus on the family of CERS that do not contain

any linearly connected adjacent triple of finite faces, since from a chemi-

cal perspective, they offer a more intuitive graphical representation than

general peripherally 2-colorable graphs, while also encompassing several

interesting families of chemical graphs.

The paper is organized as follows. In Section 3, we describe a bijec-

tion f between the set of all perfect matchings of G and the set of all

independent sets of the inner dual G∗ such that any independent set X

of G∗ of cardinality k is mapped to the perfect matching f(X) = M of G

in which only the finite faces from X have M -links to all adjacent finite

faces, where G is a CERS without any linearly connected adjacent triple

of finite faces. Then, in Section 4, we establish the equality between the

sextet polynomial of such a graph G and the independence polynomial of

the inner dual of G. Moreover, we also introduce the link polynomial of

G and show that it coincides with the above mentioned polynomials. We

continue with the investigation of the derivative of all three discussed poly-

nomials in Section 5. Finally, in Section 6 we generalize the established

results to all peripherally 2-colorable graphs.
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2 Preliminaries

Let G be a plane graph. We say that two faces of G are adjacent if they

have an edge in common. We denote the edges lying on some face F of G

by E(F ). The subgraph induced by the edges in E(F ) is the periphery of

F and the periphery of the outer face is also called the periphery of G. The

vertices of G that belong to the outer face are called peripheral vertices and

the remaining vertices are interior vertices. Furthermore, an outerplane

graph is a plane graph in which all vertices are peripheral vertices.

An even ring system is a 2-connected plane bipartite graph with all

interior vertices of degree 3 and all peripheral vertices of degree 2 or 3. An

outerplane even ring system is called catacondensed even ring system or

shortly CERS [16]. Moreover, an even ring system whose inner faces are

only hexagons is called a benzenoid graph.

The distance dG(u, v) between vertices u and v of a connected graph G

is defined as the usual shortest path distance. The distance between two

edges e and f of G, denoted by dG(e, f), is defined as the distance between

corresponding vertices in the line graph of G.

Let F , F ′, F ′′ be three finite faces of a CERS G such that F, F ′ have

the common edge e and F ′, F ′′ have the common edge f . In this case,

the triple (F, F ′, F ′′) is called an adjacent triple of finite faces. Moreover,

the adjacent triple of finite faces (F, F ′, F ′′) is angularly connected if the

distance dG(e, f) is an even number and linearly connected otherwise.

The inner dual of a plane graph G is a graph whose vertices are the

inner faces of G; two vertices are adjacent if and only if the corresponding

faces are adjacent. Obviously, the inner dual of a CERS is always a tree,

see Figure 1.

A path P of a graph G is called a handle if all internal vertices (if exist)

of P are degree-2 vertices of G, and each end vertex of P has degree at

least three in G [5]. A nontrivial handle is a handle with more than one

edge.

A perfect matching M of a graph G is a subset of E(G) such that

every vertex of G is incident with exactly one edge from M . In chemical

literature, perfect matchings are known as Kekulé structures (see [10] for
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Figure 1. A benzenoid graph (CERS) G, which is a molecular graph
of chrysene, and its inner dual G∗.

more details). The set of all perfect matchings of a graph G will be denoted

by M(G) and the cardinality of this set by K(G). A bipartite graph G

is elementary if and only if it is connected and each edge is contained in

some perfect matching of G.

Let G be a graph and M a perfect matching of G. If H is a path or

a cycle of G, then H is M -alternating if edges of H are alternately in M

and out of M . It is clear that any nontrivial handle of G is M -alternating.

In addition, for a nontrivial handle P with an odd number of edges, either

both end edges of P or none of them belong to M . Furthermore, if G is a

plane graph and F is a face of G, then F is M -alternating if the periphery

of F is an M -alternating cycle.

If F, F ′ are adjacent inner faces of a CERS G, then the two edges on

the periphery of F that have exactly one vertex on the periphery of F ′

are called the link from F to F ′. It was proved in [16] that for a given

perfect matching M and every link either both edges or none belong to M .

Moreover, if M is a perfect matching of G such that the link from F to F ′

is contained in M , then we say that G has the M -link from F to F ′. For

example, for a graph G and perfect matching M shown on the left side of

Figure 2, there is the M -link from F7 to F6 and also from F7 to F8.

Let G be a plane bipartite graph. The resonance graph R(G) of G is

the graph whose vertices are the perfect matchings of G, and two perfect

matchings M1,M2 are adjacent if and only if their symmetric difference

forms exactly one cycle that is the periphery of some finite face F of G,

i.e. E(F ) = M1 ⊕M2 [20].
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A subset S of finite faces of a plane bipartite graph G is a resonant

set of G [21] if the faces from S are pairwise vertex disjoint and G − S

is either empty or has a perfect matching (here G − S denotes the graph

obtained from G by deleting all the vertices of faces from S). Note that

in literature resonant sets are sometimes referred to as covers [21], sextet

patterns [12, 17], or generalized Clar structures [10].

For a string u of length n over B = {0, 1}, u = (u1, . . . , un) ∈ Bn, where

n ≥ 1, we will briefly write u as u1 . . . un. The hypercube Qn of dimension

n is defined in the following way: the vertices of Qn are all binary strings

from Bn, and two vertices of Qn are adjacent if the corresponding binary

strings differ in precisely one position. If G is a graph and X ⊆ V (G),

then ⟨X⟩ denotes the subgraph of G induced by X. Let ≤ be a partial

order on Bn defined with u1 . . . un ≤ v1 . . . vn if ui ≤ vi holds for all

i ∈ {1, . . . , n}. For X ⊆ Bn we define the graph Qn(X) as the subgraph of

Qn with Qn(X) = ⟨{u ∈ Bn | u ≤ x for somex ∈ X}⟩ and say that Qn(X)

is a daisy cube (generated by X) [14].

Let G be a graph. A set of pairwise nonadjacent vertices of G is called

an independent set of G. We denote by I(G) the set of all independent

sets of G and by i(G) the cardinality of the set I(G).

3 Constructing perfect matchings from inde-

pendent sets of the inner dual

Let G be a CERS without any linearly connected adjacent triple of finite

faces. In this section, we describe a bijection f : I(G∗) → M(G) between

the set of all independent sets of the inner dual G∗ of G and the set of all

perfect matchings of G. We start with the following lemma, which follows

by Lemma 3.1 in [3] and describes the structure of such graphs.

Lemma 1. Let G be a CERS without any linearly connected adjacent

triple of finite faces. Then each handle of G is a path on an odd number

of edges.

We proceed with the main result of this section.
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Theorem 2. Let G be a CERS without any linearly connected adjacent

triple of finite faces. Then there exists a bijection f : I(G∗) → M(G)

such that any independent set X of G∗ of cardinality k is mapped to the

perfect matching f(X) = M of G in which only the finite faces from X

have M -links to all adjacent finite faces.

Proof. Let F1, F2, . . . , Fn be the finite faces of G. Recall that the inner

dual G∗ of G is a tree with vertices F1, F2, . . . , Fn. Moreover, let X ⊆
V (G∗) = {F1, F2, . . . , Fn} be an independent set of G∗. Since X is an

independent set of G∗, the finite faces of G in the set X are pairwise edge

disjoint. Since G is a CERS, it follows that any two finite faces in X are

also vertex disjoint because any vertex degree of G is at most 3. By Lemma

1, each handle of G is a path on an odd number of edges, so the induced

subgraph G−X is either empty or has a perfect matching. Therefore, X

is a resonant set of G.

Define the perfect matching f(X) of G in the following way: for any

i ∈ {1, . . . , n}, if Fi ∈ X, then f(X) contains the links from Fi to all its

adjacent finite faces (recall that this is possible by Lemma 1). Note that

in this way, face Fi is f(X)-alternating.

Moreover, for any i ∈ {1, . . . , n}, if Fi /∈ X, then f(X) does not contain

any link from Fi to adjacent finite faces. Observe that since each handle

of G is a path on an odd number of edges, the above stated conditions

uniquely determine the perfect matching f(X). So f is well-defined.

If X,Y are two distinct independent sets of G∗, then there exists a

finite face Fi of G which is included in exactly one of the sets X,Y . Con-

sequently, the perfect matchings f(X) and f(Y ) differ in the edges of face

Fi. Therefore, f(X) ̸= f(Y ) and so f is injective.

Finally, we show that f is surjective. Let M ∈ M(G) be a perfect

matching of G and X the set of all finite faces F of G such that F have

M -links to all adjacent finite faces. Obviously, the faces in X are pairwise

disjoint and therefore, X is an independent set of G∗. By the definition of

function f , we also have f(X) = M . This completes the proof.

To show an example, letG be a CERS shown in Figure 2 that represents

the molecular graph of a phenylene. The vertices in squares on the right
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side of the figure represent the independent set X = {F2, F5, F7} of the

inner dual G∗. If f is a bijection from Theorem 2, then f(X) = M is the

perfect matching of G shown on the left side of the same figure.

Figure 2. Phenylene (CERS) G with a perfect matching M and its
inner dual G∗ with the independent set X.

Remark. Let G be a CERS without any linearly connected adjacent triple

of finite faces. Note that the existence of a bijection between sets I(G∗) and

M(G) also follows from binary coding of perfect matchings described in [4].

More precisely, let X ⊆ V (G∗) = {F1, F2, . . . , Fn} be an independent set

of G∗ and b(X) = b1b2 . . . bn the binary code of length n defined in the

following way:

bi =

1 ; Fi ∈ X

0 ; Fi /∈ X

for any i ∈ {1, . . . , n}. By Algorithm 2 from [4] it follows that the set

B = {b(X) | X is an independent set of G∗}

is the vertex set of the daisy cube isomorphic to the resonance graph R(G),

see Figure 3. Obviously, the set I(G∗) has the same cardinality as the set

B, which further has the same cardinality as the set V (R(G)) = M(G).

Therefore, |I(G∗)| = |M(G)| and there exists a bijection between I(G∗)

and M(G).
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Figure 3. Binary codes as vertices of the resonance graph of graph G
from Figure 1.

4 Equality between the independence poly-

nomial and the sextet polynomial

In this section, we prove that ifG is a CERS without any linearly connected

adjacent triple of finite faces, then the independence polynomial of the

inner dualG∗ coincides with the sextet polynomial of graphG. In addition,

we introduce a new polynomial, named the link polynomial, and prove that

for CERS without any linearly connected adjacent triple of finite faces this

polynomial equals both above mentioned polynomials.

Firstly, we define the first two polynomials. If G is a graph and k ≥ 0,

denote by I(G, k) the set of all independent sets of G with cardinality k.

The cardinality of the set I(G, k) will be denoted as i(G, k). Note that

i(G, 0) = 1 for any graph since the empty set is an independent set. The

independence polynomial [11] of G is defined as

I(G;x) =
∑
k≥0

i(G, k)xk.
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Recall that i(G) is the number of all independent sets of G. Obviously,

i(G) = I(G; 1).

For example, the independence polynomial of the inner dual G∗ of

benzenoid graph G from Figure 1 is

I(G∗;x) = 1 + 4x+ 3x2.

Next, let G be a plane bipartite graph with a perfect matching. For

k ≥ 0, denote by R(G, k) the set of all resonant sets of G with cardinality

k. The cardinality of the set R(G, k) will be denoted as r(G, k). Note

that r(G, 0) = 1 since the empty set is also a resonant set. The sextet

polynomial [13] of G is defined as

B(G;x) =
∑
k≥0

r(G, k)xk.

In addition, by r(G) we denote the number of all resonant sets of G. Ob-

viously, r(G) = B(G; 1). For example, the sextet polynomial of benzenoid

graph G from Figure 3 is

B(G;x) = 1 + 4x+ 3x2,

which is equal to the independence polynomial of G∗.

Theorem 3. Let G be a CERS without any linearly connected adjacent

triple of finite faces. Then the independence polynomial of G∗ equals the

sextet polynomial of G:

I(G∗;x) = B(G;x).

Proof. Let k ≥ 0. We will show that I(G∗, k) = R(G, k). For any X ∈
I(G∗, k), it follows by the proof of Theorem 2 that X is also a resonant

set of G with cardinality k, so I(G∗, k) ⊆ R(G, k).

On the other hand, for any X ∈ R(G, k), the finite faces from X are

pairwise vertex disjoint since X is a resonant set. Therefore, X is an

independent set of G∗ with cardinality k, so R(G, k) ⊆ I(G∗, k).



497

Consequently, for any k ≥ 0 we have

i(G∗, k) = |I(G∗, k)| = |R(G, k)| = r(G, k),

which implies the equality of the two polynomials.

Next, we introduce so-called link polynomial, which will be used to

prove some additional equalities.

Let G be a CERS. For k ≥ 0, denote by M(G, k) the set of all perfect

matchingsM of G such that there are exactly k finite faces of G which have

M -links to all adjacent finite faces. The cardinality of the set M(G, k) will

be denoted as ℓ(G, k). We define the link polynomial of G in the following

way:

L(G;x) =
∑
k≥0

ℓ(G, k)xk. (1)

Recall that K(G) is the number of all perfect matchings of G. It is clear

that K(G) = L(G; 1).

Let G be a benzenoid graph from Figure 1. From Figure 3 we can see

that ℓ(G, 0) = 1, ℓ(G, 1) = 4, ℓ(G, 2) = 3, and ℓ(G, k) = 0 for any k ≥ 3.

Hence,

L(G;x) = 1 + 4x+ 3x2.

Therefore, we prove the following result.

Theorem 4. Let G be a CERS without any linearly connected adjacent

triple of finite faces. Then the independence polynomial of G∗ equals the

link polynomial of G:

I(G∗;x) = L(G;x).

Proof. Obviously, the set I(G∗) can be written as

I(G∗) =
⋃
k≥0

I(G∗, k),

where for any k1 ̸= k2, the sets I(G∗, k1) and I(G∗, k2) are pairwise dis-
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joint. Similarly, the set M(G) can be written as

M(G) =
⋃
k≥0

M(G, k),

where for any k1 ̸= k2, the sets M(G, k1) and M(G, k2) are pairwise

disjoint.

Let k ≥ 0. Define f ′
k as the restriction of the function f : I(G∗) →

M(G) from Theorem 2 to the set I(G∗, k). By Theorem 2, the image of

f ′
k is contained in the set M(G, k). Let fk : I(G∗, k) → M(G, k) be a

function such that for any X ∈ I(G∗, k), fk(X) = f ′
k(X). Obviously, since

f is injective, it follows that fk is also an injective function.

To show that fk is surjective, letM be a perfect matching fromM(G, k).

Therefore, M ∈ M(G) and since f is surjective, there exists X ∈ I(G∗)

such that f(X) = M . If X ∈ I(G∗, k1), where k1 ̸= k, then f(X) ∈
M(G, k1), which is a contradiction. Therefore, X ∈ I(G∗, k), so fk(X) =

f(X) = M . We have proved that fk is surjective and consequently, fk is

a bijection.

This implies that for any k ≥ 0, |I(G∗, k)| = |M(G, k)| and also

i(G∗, k) = ℓ(G, k), so the independence polynomial of G∗ equals the link

polynomial of G.

By Theorems 3 and 4 we immediately obtain that the link polynomial

coincides with the sextet polynomial.

Corollary 5. Let G be a CERS without any linearly connected adjacent

triple of finite faces. Then the link polynomial of G equals the sextet poly-

nomial of G:

L(G;x) = B(G;x).

By Theorems 3, 4 and Corollary 5 we obtain also the following result.

Corollary 6. Let G be a CERS without any linearly connected adjacent

triple of finite faces. The number of perfect matchings of G equals the

number of resonant sets of G and the number of independent sets of the

inner dual G∗:

K(G) = r(G) = i(G∗).



499

Proof. Since K(G) = L(G; 1), r(G) = B(G; 1), and i(G∗) = I(G∗; 1), the

statement follows directly.

Note that the equality K(G) = r(G) was proved in [17] for so-called

thin polyhex graphs. It would be interesting to generalize this equality to

all CERS. However, the equality of the three polynomials does not hold

for all CERS. For example, if G is the benzenoid graph of anthracene

(formed of three linearly connected hexagons), then B(G;x) = 1 + 3x,

L(G;x) = 2 + 2x, and I(G∗;x) = 1 + 3x+ x2.

5 Derivatives of the considered polynomials

We notice that the derivative of the sextet polynomial of graph G from

Figure 1 evaluated at x = 1 is

B′(G; 1) = 4 + 6 · 1 = 10,

which is exactly the number of edges of the resonance graph R(G) shown

in Figure 3. Therefore, in this section we prove this equality for all CERS

without any linearly connected adjacent triple of finite faces. Firstly, we

connect the derivative of the link polynomial to the number of perfect

matchings of some subgraphs of G. Note that for a CERS G and a face F

of G, we denote by G − F the graph obtained from G by deleting all the

vertices of F .

Theorem 7. Let G be a CERS without any linearly connected adjacent

triple of finite faces. If F1, . . . , Fn are the finite faces of G, then it holds

L′(G; 1) =

n∑
i=1

K(G− Fi).

Proof. Obviously,

L′(G; 1) =
∑
k≥1

k · ℓ(G, k),

where ℓ(G, k) = |M(G, k)| is the number of perfect matchings M of G

such that exactly k finite faces of G has M -links to all adjacent finite
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faces. Note that in ∑
k≥1

k · ℓ(G, k),

any perfect matching M ∈ M(G, k) is counted k times. Therefore, we

describe a function

g :
⋃
k≥1

(
M(G, k)× {1, . . . , k}

)
→

n⋃
i=1

M(G− Fi).

Choose any

(M, j) ∈
⋃
k≥1

(
M(G, k)× {1, . . . , k}

)
.

Then there exists k ≥ 1, such that M ∈ M(G, k) and j ∈ {1, . . . , k}.
Suppose that exactly the finite faces from the set {Fs1 , Fs2 , . . . , Fsk} have

M -links to all adjacent finite faces, where s1 < s2 < · · · < sk. Define

g(M, j) = M \ E(Fsj ),

which is a perfect matching of G−Fsj , so g(M, j) ∈ M(G−Fsj ) and also

g(M, j) ∈
n⋃

i=1

M(G− Fi).

To prove that g is injective, let (M, j) and (M ′, j′) be two elements of⋃
k≥1

(
M(G, k)× {1, . . . , k}

)
such that g(M, j) = g(M ′, j′). Obviously, graphs G − Fi, i ∈ {1, . . . , n},
have pairwise distinct sets of vertices. Therefore, the sets M(G − Fi),

i ∈ {1, . . . , n}, are pairwise disjoint. Consequently, there exists exactly

one i ∈ {1, . . . , n} such that g(M, j) = g(M ′, j′) ∈ M(G− Fi). Hence,

M \ E(Fi) = g(M, j) = g(M ′, j′) = M ′ \ E(Fi)

and by the definition of function g, Fi has M -links and M ′-links to all

adjacent finite faces, which proves that M = M ′. Moreover, there exists
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exactly one k ≥ 1 such that M = M ′ ∈ M(G, k). Recall that the finite

faces from the set {Fs1 , Fs2 , . . . , Fsk} have M -links to all adjacent finite

faces, where s1 < s2 < · · · < sk. Obviously, Fsj = Fi and also Fsj′ = Fi,

so we obtain j = j′. This proves g is injective.

To show that g is surjective, let

M∗ ∈
n⋃

i=1

M(G− Fi).

Then there exists i ∈ {1, . . . , n} such that M∗ ∈ M(G − Fi). Let M be

the perfect matching of G such that M∗ ⊆ M and Fi has M -links to all

adjacent finite faces. Since G is a CERS without any linearly connected

adjacent triple of finite faces, such perfect matching M exists by Lemma 1.

Obviously, G has at least one finite face which has M -links to all adjacent

finite faces. So there exists k ≥ 1 such that M ∈ M(G, k). Since Fi has

M -links to all adjacent finite faces, by definition of function g there exists

j ∈ {1, . . . , k} such that g(M, j) = M \ E(Fi) = M∗.

We have proved that g is bijective and therefore,∣∣∣∣∣ ⋃
k≥1

(
M(G, k)× {1, . . . , k}

)∣∣∣∣∣ =
∣∣∣∣∣

n⋃
i=1

M(G− Fi)

∣∣∣∣∣ . (2)

Obviously, the sets M(G, k), where k ≥ 1, are pairwise disjoint and

therefore, the sets M(G, k)×{1, . . . , k}, where k ≥ 1, are pairwise disjoint.

Similarly, recall that the sets M(G−Fi), where i ∈ {1, . . . , n}, are pairwise
disjoint. Therefore, we get∣∣∣∣∣ ⋃

k≥1

(
M(G, k)× {1, . . . , k}

)∣∣∣∣∣ =
∑
k≥1

∣∣M(G, k)× {1, . . . , k}
∣∣

=
∑
k≥1

k · ℓ(G, k) = L′(G; 1)

and ∣∣∣∣∣
n⋃

i=1

M(G− Fi)

∣∣∣∣∣ =
n∑

i=1

|M(G− Fi)| =
n∑

i=1

K(G− Fi).

The result now follows by Equation (2).
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Since the link polynomial of G coincides with the sextet polynomial of

G and also with the independence polynomial of G∗, where G is a CERS

without any linearly connected adjacent triple of finite faces, we get the

following result.

Corollary 8. Let G be a CERS without any linearly connected adjacent

triple of finite faces. If F1, . . . , Fn are the finite faces of G, then it holds

B′(G; 1) = I ′(G∗; 1) =

n∑
i=1

K(G− Fi).

Note that the equality B′(G; 1) =

n∑
i=1

K(G−Fi) was proved in [17] for

so-called thin polyhex graphs. Again, it would be interesting to generalize

this result to all CERS. On the other hand, it is easy to see that equalities

L′(G; 1) = I ′(G∗; 1) =

n∑
i=1

K(G− Fi)

do not hold for all CERS. For example, consider the benzenoid graph of

anthracene (formed of three linearly connected hexagons).

Next, we give the connection to the number of edges of the resonance

graph.

Theorem 9. Let G be a CERS with finite faces F1, . . . , Fn. Then the

number of edges of the resonance graph R(G) of G equals

|E(R(G))| =
n∑

i=1

K(G− Fi).

Proof. Let us define a function

h : E(R(G)) →
n⋃

i=1

M(G− Fi).

Choose any edge M1M2 of the resonance graph R(G). By definition of

the resonance graph there exists exactly one finite face Fi of G such that
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E(Fi) = M1 ⊕M2. Let

h(M1M2) = M1 \ E(Fi) = M2 \ E(Fi).

Obviously, h(M1M2) ∈ M(G− Fi), so h is well defined.

Firstly, we prove that h is injective. Let M1M2 and M ′
1M

′
2 be two

edges of the resonance graph such that h(M1M2) = h(M ′
1M

′
2). Then

there exist finite faces Fi and Fj , where i, j ∈ {1, . . . , n}, of G such that

E(Fi) = M1⊕M2 and E(Fj) = M ′
1⊕M ′

2. Obviously, h(M1M2) is a perfect

matching of the graph G − Fi and h(M ′
1M

′
2) is a perfect matching of the

graph G− Fj . If i ̸= j, then the graphs G− Fi and G− Fj have distinct

sets of vertices, so h(M1M2) ̸= h(M ′
1M

′
2) and we obtain a contradiction.

Therefore, we have proved that Fi = Fj . Moreover, since

M1 \ E(Fi) = M2 \ E(Fi) = h(M1M2)

= h(M ′
1M

′
2) = M ′

1 \ E(Fi) = M ′
2 \ E(Fi),

perfect matchings M1, M2, M
′
1, M

′
2 differ only in the edges of the face

Fi. Since M1 ̸= M2, M
′
1 ̸= M ′

2, and the periphery of Fi has only two

perfect matchings, we obtain that {M1,M2} = {M ′
1,M

′
2}. Consequently,

M1M2 = M ′
1M

′
2 and so h is injective.

To show that h is surjective, choose any

M∗ ∈
n⋃

i=1

M(G− Fi).

We already know that there exists exactly one i ∈ {1, . . . , n} such that

M∗ ∈ M(G− Fi). Obviously, the periphery of Fi has exactly two perfect

matchings M∗
1 and M∗

2 . Let

M1 = M∗ ∪M∗
1 and M2 = M∗ ∪M∗

2 .

It is clear that E(Fi) = M1⊕M2 and hence, M1M2 ∈ E(R(G)). Moreover,

h(M1M2) = M1 \ E(Fi) = M1 \M∗
1 = M∗,
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so h is bijective.

Therefore, since the sets M(G−Fi), where i ∈ {1, . . . , n}, are pairwise
disjoint, we get

|E(R(G))| =

∣∣∣∣∣
n⋃

i=1

M(G− Fi)

∣∣∣∣∣ =
n∑

i=1

K(G− Fi),

which completes the proof.

The following corollary follows directly by Theorem 7, Corollary 8, and

Theorem 9.

Corollary 10. Let G be a CERS without any linearly connected adjacent

triple of finite faces. Then the number of edges of the resonance graph

R(G) of G equals

|E(R(G))| = B′(G; 1) = L′(G; 1) = I ′(G∗; 1).

6 Generalization to peripherally 2-colorable

graphs

In this section, we expand the obtained results to a wider family of graphs.

Let G be a plane elementary bipartite graph other than K2. Then G

is called peripherally 2-colorable if every vertex of G has degree 2 or 3,

vertices with degree 3 (if exist) are all peripheral vertices of G, and G can

be properly 2-colored black and white so that two vertices with the same

color are nonadjacent and vertices with degree 3 (if exist) are alternatively

black and white along the clockwise orientation of the periphery of G

[3]. An example of a peripherally 2-colorable graph is shown in Figure 4.

Obviously, a CERS without any linearly connected adjacent triple of finite

faces is peripherally 2-colorable.

Let F1, F2 be two adjacent finite faces of a peripherally 2-colorable

graph. The edges from the set E(F1) \ E(F2) that have an end vertex on

the periphery of F2 are called the link from F1 to F2. Note that the link

can be composed of two edges or in some cases of one edge, see Figure 4.
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Figure 4. A peripherally 2-colorable graph.

Moreover, if M is a perfect matching of G such that the link from F1 to

F2 is contained in M , then we say that G has the M -link from F1 to F2.

Note that this definition extends the corresponding definition on CERS.

We can now define the link polynomial of G in the same way as for CERS,

see Equation 1.

However, it was shown in the proof of Theorem 3.5 from [3] that any

peripherally 2-colorable graph G can be transformed to a CERS G′ such

that the resonance graphs R(G) and R(G′) are isomorphic, see Figure 5.

In addition, a bijection ϕ : M(G) → M(G′) between the sets of perfect

matchings of G and G′ was described such that the following holds true.

Let F1, F2 be any two adjacent finite faces of G and let F ′
1, F ′

2 be the

corresponding finite faces of G′. Moreover, let e ∈ E(F1) \ E(F2) be an

edge that has an end vertex on the periphery of F2 and e′ ∈ E(F ′
1)\E(F ′

2)

an edge of G′ that has an end vertex on the periphery of F ′
2. Then for

every perfect matching M of G, e is contained in M if and only if e′ is

contained in ϕ(M). It follows that that for a given perfect matching M of

G and every link with two edges either both edges or none belong to M ,

since this is true for all CERS [16]. Furthermore, the link from F1 to F2 is

contained in M if and only if the link from F ′
1 to F ′

2 is contained in ϕ(M).

From the above discussion we immediately see that the link polynomial of

G is equal to the link polynomial of G′, i.e. L(G;x) = L(G′;x).

Moreover, by the same arguments, a set S = {Fs1 , . . . , Fsk} of finite

faces of G is a resonant set of G if and only if the corresponding set

S′ = {F ′
s1 , . . . , F

′
sk
} is a resonant set of G′. This implies that the sextet

polynomials of G and G′ coincide: B(G;x) = B(G′;x).

Finally, graphs G and G′ have isomorphic inner duals, so their inde-

pendence polynomials are equal: I(G∗;x) = I((G′)∗;x).

Consequently, all results from the previous sections can be generalized
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Figure 5. A peripherally 2-colorable graph G with a perfect matching
M and the corresponding CERS G′ with perfect matching
ϕ(M).

to peripherally 2-colorable graphs.

Theorem 11. If G is a peripherally 2-colorable graph, then there exists

a bijection f : I(G∗) → M(G) such that any independent set X of G∗ of

cardinality k is mapped to the perfect matching f(X) = M of G in which

only the finite faces from X have M -links to all adjacent finite faces.

Theorem 12. If G is a peripherally 2-colorable graph, then

B(G;x) = L(G;x) = I(G∗;x)

and

K(G) = r(G) = i(G∗).

Theorem 13. If G is a peripherally 2-colorable graph with finite faces

F1, . . . , Fn, then

B′(G; 1) = L′(G; 1) = I ′(G∗; 1) = |E(R(G))| =
n∑

i=1

K(G− Fi).
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a binary coding of perfect matchings of outerplane bipartite graphs,
MATCH Commun. Math. Comput. Chem. 90 (2023) 453–468.

[3] S. Brezovnik, Z. Che, N. Tratnik, P. Žigert Pleteršek, Resonance
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