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Abstract

Introduced by Arizmendi et al. in the year 2018, the energy
EG(v) of a vertex v of a graph gives the graph energy distribution
over all its vertices and is found to be very useful in understand-
ing the influence of individual vertices on the overall graph energy.
In this paper, we determine the vertex energies of some particular
classes of trees. Consequently, we obtain the vertex energies of all
integral trees on at most 30 vertices.
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1 Introduction

The concept of graph energy, introduced by Gutman [6], has been a very

significant graph invariant in the field of mathematical chemistry. Owing to

its close association with the total π-electron energy of molecules, obtained

from simple Hückel orbital calculations, graph energy and its variants have

been studied extensively in literature.

Given a simple undirected graphG = (V,E) with V (G) = {v1, · · · , vn},
its adjacency matrix A(G) = [aij ]n×n has entries 1 or 0 according as the

vertices vi and vj are adjacent or non-adjacent. The energy E(G) of G is

defined as

E(G) =

n∑
i=1

|λi|

where λi’s are the eigenvalues of A(G), which are all real, owing to the

fact that A(G) is real symmetric.

In the year 2018, Arizmendi et al. [1] introduced the concept of the

energy EG(vi) of a vertex vi of the graph G as

EG(vi) = |A|ii, i = 1, 2, · · · , n, where |A| = (AA∗)
1/2

.

The author in [1] have shown that the energy E(G) is the sum of the

individual energies of all its vertices, thereby validating the significance of

vertex energy in analyzing the contribution of an individual vertex to the

total graph energy. Also, they have deduced various inequalities for the

vertex energy and have provided certain examples and counterexamples

of natural conjectures for this parameter to explain its role in further

studies on graph energy. Ramane et al. [9] calculated the vertex energies

of subdivision graphs of some commonly studied graph structures such as

complete graph, complete bipartite graph. Later, Gutman and Furtula [7]

have shown how to numerically compute the energy of vertices of a graph

using the eigenvalue matrix and orthonormal matrix of the eigenvector

matrix of A(G). In this article, we highlight the scope for calculating

numerical values of vertex energies, along with their analysis and potential

applications.
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No. n Name of the tree Tree Spectrum

1 1 K1 0 0

2 2 K2 01 1

3 5 K1,4 01111 03, 2

4 6 K1,2 ∼ K1,2 012211 02, 1, 2

5 7 SK1,3 0121212 0, 12, 2

6 10 K1,9 019 08, 3

7 14 K1,6 ∼ K1,6 012616 010, 2, 3

8 17 K1,16 0116 015, 4

9 17 SK1,8 0(12)8 0, 17, 3

10 17 K1,7 ∼ SK1,4 0127(12)4 07, 13, 2, 3

11 19 K1,5 ∼ SK1,6 0125(12)6 05, 15, 2, 3

12 25 T1 01(23333)322(12)3 011, 13, 23, 3

13 26 K1,25 0125 024, 5

14 26 T2 0(12222)5 016, 24, 3

15 26 K1,12 ∼ K1,12 01212112 022, 3, 4

Table 1. Integral trees of order at most 30

A tree is a simple undirected graph that is connected and acyclic. In

mathematical chemistry, trees are very often used to represent and analyze

chemical and molecular structures and their intrinsic properties. A graph

is said to be integral [8] if the spectrum of its adjacency matrix has only

integral eigenvalues. In the literature, several studies have focused on

determining and characterizing integral graphs. For a concise survey on

integral trees and integral graphs, we refer the reader to [2]. As noted

in [4] and [5], only 15 out of 14,830,871,802 non-isomorphic trees of order

up to 30 are integral. Table 1 presents a complete enumeration of all such

integral trees of order at most 30.

Since the spectrum of each tree is symmetric around 0 owing to the

fact that it is bipartite, only the non-negative half of the spectrum is

enlisted in the table. Also, each tree is listed as a sequence, with the zero

representing the starting vertex, called the root, and each increasing sub-

sequence representing a new walk, using the depth-first approach, starting

from the vertex represented by the initial number of the sub-sequence.
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Further, the exponent k to a sub-sequence represents k walks starting

from the preceding vertex of the sub-sequence. For example, the tree T1

represented by the sequence 01(23333)322(12)3 is shown in Figure. 1. Also,

some of the enlisted trees are named as follows.

(i) The star K1,n has n+ 1 vertices, with the root as the central vertex.

(ii) The graph SG is the subdivision graph of the the graph G, with the

root being the same for both the graphs.

(iii) If G1 and G2 are rooted trees, then G1 ∼ G2 is the tree obtained by

adding an edge between their roots.

Figure 1. The tree T1 represented by the sequence 01(23333)322(12)3

In the present study, we work on establishing closed form expressions

to determine the vertex energies of some particular classes of trees. Sub-

sequently, we obtain the vertex energies of all integral trees of order up to

30.

The following results are helpful for discussion in the later sections of

the paper.
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Lemma 1. [1] Let G be a graph of order n. Then,

EG(vi) =
n∑

j=1

pij |λj | , i = 1, · · · , n,

where λj denotes the jth eigenvalue of A(G) and

n∑
i=1

pij = 1 and

n∑
j=1

pij = 1.

Further, pij = u2
ij, where U = (uij) is the matrix of orthonormal vectors

of the eigenvectors of A(G).

Lemma 2. [1] Let G be a graph of order n. For k ∈ N, let ϕi

(
Ak

)
be

the kth moment of A w. r. t. the linear functional ϕi. Then,

ϕi

(
Ak

)
=

n∑
j=1

pij
(
λk
j

)
, i = 1, · · · , n,

with ϕi

(
Ak

)
being the number of vi − vi walks of G of length k.

Lemma 3. [10] Let G1 and G2 be graphs with roots at u and v respectively.

Then, the characteristic polynomial of G1 ∼ G2 is

P (G1 ∼ G2;λ) = P (G1;λ)P (G2;λ)− P (G1 − u;λ)P (G2 − v;λ).

Theorem 1. [1] For the star graph G = K1,n, with v0 being the central

vertex and v1, · · · , vn the leaves,

EG(vi) =

{ √
n if i = 0,
1√
n

otherwise.

2 Vertex energies of some trees

In this section, we determine the vertex energies of some special trees,

namely the subdivision graph of the star graph K1,n and the tree K1,n ∼
K1,n.
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Theorem 2. Let G = SK1,n be the subdivision graph of the star graph

K1,n with v0 being the central vertex, v1, · · · , vn the leaves and s1, · · · , sn
the vertices obtained by subdivision, then

EG(v) =



n√
n+ 1

if v = v0,

n2 − 1 +
√
n+ 1

n (n+ 1)
if v = vi, i = 1, · · · , n,

n− 1 +
√
n+ 1

n
otherwise

Proof. As discussed in [3], the characteristic polynomial of G = SK1,n is

given by

P (G;λ) = λ (λ+ 1)
n−1

(λ− 1)
n−1 (

λ+
√
n+ 1

) (
λ−

√
n+ 1

)
.

Accordingly, the spectrum of G is given by 0,±1n−1,±
√
n+ 1 so that the

distinct eigenvalues of G are λ1 = 0, λ2 = −1, λ3 = 1, λ4 = −
√
n+ 1 and

λ5 =
√
n+ 1.

Observing the different vertex symmetries in the graph, we have that all

the vertices vi, i = 1, · · · , n have the same energy, and si, i = 1, · · · , n have

the same energy. Further, since there are only five distinct eigenvalues, by

Lemma 2, the energy of the vertices of G can be obtained by solving three

5 × 5 systems of equations, one each for the central vertex v0, the leaves

vi and the vertices si, from calculating the first moments on one side and

directly counting walks on the other, considering the following three cases.

Case 1: Let p11, p12, p13, p14, p15 be the weights of the vertex v0 in G.

Then, we have

p11 + p12 + p13 + p14 + p15 = 1

p11λ1 + p12λ2 + p13λ3 + p14λ4 + p15λ5 = 0

p11λ
2
1 + p12λ

2
2 + p13λ

2
3 + p14λ

2
4 + p15λ

2
5 = n

p11λ
3
1 + p12λ

3
2 + p13λ

3
3 + p14λ

3
4 + p15λ

3
5 = 0

p11λ
4
1 + p12λ

4
2 + p13λ

4
3 + p14λ

4
4 + p15λ

4
5 = n (n+ 1) .
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Solving the system of equations, we get

p11 =
1

n+ 1
, p12 = 0, p13 = 0, p14 =

n

2 (n+ 1)
, p15 =

n

2 (n+ 1)
.

Thus, the energy of the vertex v0 is given by

EG(v0) =
5∑

j=1

p1j |λj | =
n√
n+ 1

.

Case 2: Let p21, p22, p23, p24, p25 be the weights of any vertex vi, i =

1, · · · , n in G. Then, we have

p21 + p22 + p23 + p24 + p25 = 1

p21λ1 + p22λ2 + p23λ3 + p24λ4 + p25λ5 = 0

p21λ
2
1 + p22λ

2
2 + p23λ

2
3 + p24λ

2
4 + p25λ

2
5 = 1

p21λ
3
1 + p22λ

3
2 + p23λ

3
3 + p24λ

3
4 + p25λ

3
5 = 0

p21λ
4
1 + p22λ

4
2 + p23λ

4
3 + p24λ

4
4 + p25λ

4
5 = 2.

Solving the system of equations, we get

p21 =
1

n+ 1
, p22 =

n− 1

2n
, p23 =

n− 1

2n
,

p24 =
1

2n (n+ 1)
, p25 =

1

2n (n+ 1)
.

Thus, the energy of each of the vertices vi, i = 1, · · · , n, is given by

EG(vi) =
5∑

j=1

p2j |λj | =
n2 − 1 +

√
n+ 1

n (n+ 1)
.

Case 3: Let p31, p32, p33, p34, p35 be the weights of any vertex si, i =

1, · · · , n in G. Then, we have

p31 + p32 + p33 + p34 + p35 = 1

p31λ1 + p32λ2 + p33λ3 + p34λ4 + p35λ5 = 0
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p31λ
2
1 + p32λ

2
2 + p33λ

2
3 + p34λ

2
4 + p35λ

2
5 = 2

p31λ
3
1 + p32λ

3
2 + p33λ

3
3 + p34λ

3
4 + p35λ

3
5 = 0

p31λ
4
1 + p32λ

4
2 + p33λ

4
3 + p34λ

4
4 + p35λ

4
5 = n+ 3.

Solving the system of equations, we get

p31 = 0, p32 =
n− 1

2n
, p33 =

n− 1

2n
, p34 =

1

2n
, p35 =

1

2n
.

Thus, the energy of each of the vertices si, i = 1, · · · , n, is given by

EG(vi) =
5∑

j=1

p3j |λj | =
n− 1 +

√
n+ 1

n
.

Lemma 4. The characteristic polynomial of K1,n ∼ K1,n is given by

P (K1,n ∼ K1,n;λ) = λ2n−2
(
λ2 + λ− n

) (
λ2 − λ− n

)
.

Proof. Taking G1 = G2 = K1,n in Lemma 3, we get

P (K1,n ∼ K1,n;λ) = P (K1,n;λ)
2 − P

(
Kn;λ

)2
=

(
λn−1

(
λ+

√
n
) (

λ−
√
n
))2 − (λn)

2

= λ2n−2
((

λ2 − n
)2 − λ2

)
= λ2n−2

(
λ2 + λ− n

) (
λ2 − λ− n

)
.

Theorem 3. For the graph G = K1,n ∼ K1,n, with u0 and v0 being

the central vertices of each star and u1, · · · , un and v1, · · · , vn their leaves

respectively,

EG(v) =


2n+ 1√
4n+ 1

if v = u0, v0,

2√
4n+ 1

otherwise.

Proof. As seen from Lemma 4, the characteristic equation of G is given by

P (G;λ) = λ2n−2
(
λ2 + λ− n

) (
λ2 − λ− n

)
.
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Thus, the spectrum of G is given by 02n−2, −1±
√
4n+1

2 , 1±
√
4n+1
2 . Accord-

ingly, the distinct eigenvalues of G are λ1 = 0, λ2 = −1−
√
4n+1

2 , λ3 =
−1+

√
4n+1

2 , λ4 = 1−
√
4n+1
2 and λ5 = 1+

√
4n+1
2 .

As there exist two vertex symmetries in the graph, the vertices u0

and v0 have the same energy and the vertices ui, vi, i = 1, · · · , n, have
the same energy. Further, since there are only five distinct eigenvalues,

by Lemma 2, the energy of the vertices of G can be obtained by solving

three 5 × 5 systems of equations, one for the central vertices u0 and v0,

and the other for the leaves ui, vi, i = 1, · · · , n, from calculating the first

moments on one side and directly counting walks on the other, considering

the following two cases.

Case 1: For the vertices u0 and v0, let p11, p12, p13, p14, p15 be the weights

in G. Then, we have

p11 + p12 + p13 + p14 + p15 = 1

p11λ1 + p12λ2 + p13λ3 + p14λ4 + p15λ5 = 0

p11λ
2
1 + p12λ

2
2 + p13λ

2
3 + p14λ

2
4 + p15λ

2
5 = n+ 1

p11λ
3
1 + p12λ

3
2 + p13λ

3
3 + p14λ

3
4 + p15λ

3
5 = 0

p11λ
4
1 + p12λ

4
2 + p13λ

4
3 + p14λ

4
4 + p15λ

4
5 = n2 + 3n+ 1.

Solving the system of equations, we get

p11 = 0, p12 =
1 +

√
4n+ 1

4
√
4n+ 1

, p13 =
−1 +

√
4n+ 1

4
√
4n+ 1

,

p14 =
−1 +

√
4n+ 1

4
√
4n+ 1

, p15 =
1 +

√
4n+ 1

4
√
4n+ 1

.

Thus, we have

EG(u0) = EG(v0) =
5∑

j=1

p1j |λj | =
2n+ 1√
4n+ 1

.

Case 2: Let p21, p22, p23, p24, p25 be the weights of any vertex ui, vi, i =



476

1, · · · , n in G. Then, we have

p21 + p22 + p23 + p24 + p25 = 1

p21λ1 + p22λ2 + p23λ3 + p24λ4 + p25λ5 = 0

p21λ
2
1 + p22λ

2
2 + p23λ

2
3 + p24λ

2
4 + p25λ

2
5 = 1

p21λ
3
1 + p22λ

3
2 + p23λ

3
3 + p24λ

3
4 + p25λ

3
5 = 0

p21λ
4
1 + p22λ

4
2 + p23λ

4
3 + p24λ

4
4 + p25λ

4
5 = n+ 1.

Solving the system of equations, we get

p21 =
n− 1

n
, p22 =

−1 +
√
4n+ 1

4n
√
4n+ 1

, p23 =
1 +

√
4n+ 1

4n
√
4n+ 1

,

p24 =
1 +

√
4n+ 1

4n
√
4n+ 1

, p25 =
−1 +

√
4n+ 1

4n
√
4n+ 1

.

Thus, the energy of each of the vertices ui, vi, i = 1, · · · , n, is given

by

EG(ui) = EG(vi) =
5∑

j=1

p2j |λj | =
2√

4n+ 1
.

3 Vertex energy of small integral trees

In this section, we determine the vertex energy of all integral trees of order

at most 30 using the results in the previous sections. To begin with, we

introduce some notations used in the process.

Let G be a graph with k distinct eigenvalues λ1, · · · , λk and r vertex

symmetries. Then, it is easy to observe that there are r sets of vertices,

each having the same vertex energy. Further, using Lemma 1, they can

be determined by solving r different linear systems of k equations in k

unknowns of the form

pi1 + pi2 + · · ·+ pik = ϕi(1)

pi1λ1 + pi2λ2 + · · ·+ pikλk = ϕi(A)

pi1λ
2
1 + pi2λ

2
2 + · · ·+ pikλ

2
k = ϕi(A

2)
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...
...

...

pi1λ
k−1
1 + pi2λ

k−1
2 + · · ·+ pikλ

k−1
k = ϕi(A

k−1),

where ϕi(A
j) represents the number of vi−vi walks of length j = 1, · · · , k−

1 for each i = 1, · · · , r.
Thus, if

J =



1 1 · · · 1

λ1 λ2 · · · λk

λ2
1 λ2

2 · · · λ2
k

...
...

...
...

λk−1
1 λk−1

2 · · · λk−1
k ,



P =


p11 p21 · · · pr1

p12 p22 · · · pr2
...

...
...

...

p1k p2k · · · prk,


and

Y =


ϕ1(1) ϕ2(1) · · · ϕr(1)

ϕ1(A) ϕ2(A) · · · ϕr(A)
...

...
...

...

ϕ1(A
k−1) ϕ2(A

k−1) · · · ϕr(A
k−1)

 ,

then the complete system can be written as

JP = Y

Further, since J is non-singular, the complete solution to this system

is given by

P = J−1Y

using which the energies of each vertex of a particular symmetry can be

computed.

Theorem 4. For the graph G = K1,7 ∼ SK1,4, with u0 and v0 being

the roots, u1, · · · , u7 and v1, · · · , v4 being the leaves of K1,7 and SK1,4
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respectively and s1, · · · , s4 the vertices obtained by subdivision in SK1,4,

EG(v) =



1.96667 if v = v0,

2.8 if v = u0,

0.36667 if v = u1, · · · , u7,

1.3 if v = s1, · · · , s4,
0.86667 otherwise.

Proof. As seen in Table 1, the characteristic polynomial of G = K1,7 ∼
SK1,4 is given by

P (G;λ) = λ7 (λ+ 1)
3
(λ− 1)

3
(λ+ 2) (λ− 2) (λ+ 3) (λ− 3) .

The spectrum of G is given by 07,±13,±2,±3 so that the distinct eigen-

values of G are λ1 = 0, λ2 = −1, λ3 = −2, λ4 = −3, λ5 = 1, λ6 = 2 and

λ7 = 3. The vertex set of G can be partitioned into 5 sets, based on 5

different vertex symmetries, namely {u0}, {v0}, {u1, · · · , u7}, {s1, · · · , s4}
and {v1, · · · , v4}, so that all the vertices belonging to a set have the same

energy.

Therefore, as discussed in the earlier part of the section, we have the

matrices J of order 7× 7, P of order 7× 5 and Y of order 7× 5 given by

J =



1 1 · · · 1

λ1 λ2 · · · λ7

λ2
1 λ2

2 · · · λ2
7

...
...

...
...

λ6
1 λ6

2 · · · λ6
7


, P =


p11 p21 · · · p51

p12 p22 · · · p52
...

...
...

...

p17 p27 · · · p57

,

Y =



1 1 1 1 1

0 0 0 0 0

5 8 1 2 1

0 0 0 0 0

36 68 8 8 2

0 0 0 0 0

288 596 68 50 8


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where Y is computed by counting the number of vi − vi walks of length

j = 1, · · · , 6 for each i = 1, · · · , 5. Solving the system JP = Y , we get

P =



0.177778 0.4 0.044444 0.025 0.002778

0.225 0.1 0.025 0.1 0.025

0 0 0 0.375 0.375

0.194444 0 0.861111 0 0.194444

0 0 0 0.375 0.375

0.225 0.1 0.025 0.1 0.025

0.177778 0.4 0.04444 0.025 0.0027778


Using the values of p′ijs in Lemma 1, we arrive at the required result.

Theorem 5. For the graph G = K1,5 ∼ SK1,6, with u0 and v0 being

the roots, u1, · · · , u5 and v1, · · · , v6 being the leaves of K1,5 and SK1,6

respectively and s1, · · · , s6 the vertices obtained by subdivision in SK1,6,

EG(v) =



2.433333 if v = v0,

2.4 if v = u0,

0.433333 if v = u1, · · · , u5,

1.266667 if v = s1, · · · , s6,
0.9 otherwise.

Proof. As seen in Table 1, the characteristic polynomial of G = K1,5 ∼
SK1,6 is given by

P (G;λ) = λ5 (λ+ 1)
5
(λ− 1)

5
(λ+ 2) (λ− 2) (λ+ 3) (λ− 3) .

The spectrum of G is given by 05,±15,±2,±3 so that the distinct eigen-

values of G are λ1 = 0, λ2 = −1, λ3 = −2, λ4 = −3, λ5 = 1, λ6 = 2 and

λ7 = 3. Here, the vertex set of G can be partitioned into 5 sets, based on 5

different vertex symmetries, namely {u0}, {v0}, {u1, · · · , u5}, {s1, · · · , s6}
and {v1, · · · , v6}, so that all the vertices belonging to a set have the same

energy.

The matrices J of order 7× 7, P of order 7× 5 and Y of order 7× 5,

pertaining to the graph are therefore given by
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J =



1 1 · · · 1

λ1 λ2 · · · λ7

λ2
1 λ2

2 · · · λ2
7

...
...

...
...

λ6
1 λ6

2 · · · λ6
7


, P =


p11 p21 · · · p51

p12 p22 · · · p52
...

...
...

...

p17 p27 · · · p57

,

Y =



1 1 1 1 1

0 0 0 0 0

7 6 1 2 1

0 0 0 0 0

60 42 6 10 2

0 0 0 0 0

528 330 42 78 10


where Y is computed by counting the number of vi − vi walks of length

j = 1, · · · , 6 for each i = 1, · · · , 5. Solving the system JP = Y , we get

P =



0.355556 0.2 0.022222 0.05 0.005556

0.075 0.3 0.075 0.033333 0.083333

0 0 0 0.416667 0.416667

0.138889 0 0.805556 0 0.138889

0 0 0 0.416667 0.416667

0.075 0.3 0.075 0.033333 0.083333

0.355556 0.2 0.022222 0.05 0.005556


Using the values of p′ijs in Lemma 1 gives the required result.

Theorem 6. For the graph G = T1, with u0 being the root, v0 being the

subdivided rooted vertex, b1, b2 & b3 being the branching vertices, u1, · · · ,
u12 being the leaves associated with branching vertices, z1 & z2 being leaves

associated with u0,s1, s2 & s3 being the vertices obtained by subdivision and
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v1, v2 & v3 the leaves associated with these vertices,

EG(v) =



1.733333 if v = v0,

2.25 if v = u0,

2.183333 if v = b1, b2, b3,

0.483333 if v = u1, · · · , u12,

0.583333 if v = z1, z2,

1.316667 if v = s1, s2, s3,

0.85 if v = v1, v2, v3.

Proof. As seen in Table 1, the characteristic polynomial of G = T1 is given

by

P (G;λ) = λ11 (λ+ 1)
3
(λ− 1)

3
(λ+ 2)

3
(λ− 2)

3
(λ+ 3) (λ− 3) .

The spectrum of G is given by 011,±13,±23,±3 so that the distinct eigen-

values of G are λ1 = 0, λ2 = −1, λ3 = −2, λ4 = −3, λ5 = 1, λ6 = 2 and

λ7 = 3. Figure 1 shows the graph T1. As seen from the Figure 1, the vertex

set of G can be partitioned into 7 sets, based on 7 different vertex sym-

metries, namely {u0}, {v0}, {b1, b2, b3}, {u1, · · · , u12}, {z1, z2}, {s1, s2, s3}
and {v1, v2, v3}, so that all the vertices belonging to a set have the same

energy.

Therefore, we have the matrices J of order 7× 7,P of order 7× 7 and

Y of order 7× 7 given by

J =



1 1 · · · 1

λ1 λ2 · · · λ7

λ2
1 λ2

2 · · · λ2
7

...
...

...
...

λ6
1 λ6

2 · · · λ6
7


, P =


p11 p21 ... p71

p12 p22 ... p72
...

...
...

...

p17 p27 ... p77

 ,
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Y =



1 1 1 1 1 1 1

0 0 0 0 0 0 0

4 6 5 1 1 2 1

0 0 0 0 0 0 0

24 51 30 5 6 7 2

0 0 0 0 0 0 0

168 456 211 30 51 36 7


where Y is computed by counting the number of vi − vi walks of length
j = 1, · · · , 6 for each i = 1, · · · , 7. Solving the system JP = Y , we get

P =



0.088889 0.3125 0.1125 0.0125 0.034722 0.0125 0.001389

0.3 0 0.366667 0.091667 0 0.133333 0.033333

0 0.187500 0.020833 0.020833 0.187500 0.354167 0.354167

0.222222 0 0 0.75 0.555556 0 0.222222

0 0.1875 0.020833 0.020833 0.1875 0.354167 0.354167

0.3 0 0.366667 0.091667 0 0.133333 0.033333

0.088889 0.3125 0.1125 0.0125 0.034722 0.0125 0.001389



Using the values of p′ijs in Lemma 1 gives the required result.

Theorem 7. For the graph G = T2, with u0 being the root, u1, · · · , u5

being the branching vertices and v1, · · · , v20 being the leaves,

EG(v) =


1.666667 if v = u0,

2.2 if v = u1, · · · , u5,

0.466667 otherwise.

Proof. As seen in Table 1, the characteristic polynomial of G = T2 is given

by

P (G;λ) = λ16 (λ+ 2)
4
(λ− 2)

4
(λ+ 3) (λ− 3) .

The spectrum of G is given by 016,±24,±3 so that the distinct eigenvalues

of G are λ1 = 0, λ2 = −2, λ3 = −3, λ4 = 2 and λ5 = 3. The vertex set of

G can be partitioned into 3 sets, based on 3 different vertex symmetries,

namely {u0}, {u1, · · · , u5}, and {v1, · · · , v20}, so that all the vertices be-

longing to a set have the same energy. Thus, we have the matrices J of

order 5× 5, P of order 5× 3 and Y of order 5× 3 given by
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J =



1 1 · · · 1

λ1 λ2 · · · λ5

λ2
1 λ2

2 · · · λ2
5

...
...

...
...

λ4
1 λ4

2 · · · λ4
5


, P =


p11 p21 p31

p12 p22 p32
...

...
...

p15 p25 p35

 ,

Y =


1 1 1

0 0 0

5 5 1

0 0 0

45 29 5


where Y is computed by counting the number of vi − vi walks of length

j = 1, · · · , 4 for each i = 1, 2, 3. Solving the system JP = Y , we get

P =


0.277778 0.1 0.011111

0 0.4 0.1

0.444444 0 0.777778

0 0.4 0.1

0.277778 0.1 0.011111


Using the values of p′ijs in Lemma 1 gives the required result.

As seen in Table 1, there are 15 integral trees of order at most 30. Out

of these, the vertex energies of the trees namely K1,7 ∼ SK1,4, K1,5 ∼
SK1,6, T1 and T2 are determined in this section. For the other trees,

vertex energies are calculated using suitable values of n as prescribed in

Theorems 1, 2 and 3, with the results summarized in Table 2.
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Table 2. Vertex energies of the remaining integral trees

No. n Name of the tree
Number of

vertex symmetries
Vertex energies

1 1 K1 1 0

2 2 K2 1 1

3 5 K1,4 2
Central vertex: 2

Leaves: 0.5

4 6 K1,2 ∼ K1,2 2
Central vertices: 1.667

Leaves: 0.667

5 7 SK1,3 3
Central vertex: 1.5

Subdivided vertices: 1.333
Leaves: 0.833

6 10 K1,9 2
Central vertex: 3

Leaves: 0.333

7 14 K1,6 ∼ K1,6 2
Central vertices: 2.6

Leaves: 0.4

8 17 K1,16 2
Central vertex: 4

Leaves: 0.25

9 17 SK1,8 3
Central vertex: 2.667

Subdivided vertices: 1.25
Leaves: 0.917

13 26 K1,25 2
Central vertex: 5

Leaves: 0.2

15 26 K1,12 ∼ K1,12 2
Central vertices: 3.571

Leaves: 0.286
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