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California 95192-0103.

shl688@shu.edu.cn, whwang@shu.edu.cn, wasin.so@sjsu.edu

(Received March 17, 2025)

Abstract

The energy E(G) of a graph G is the sum of the absolute values of
all the eigenvalues of its adjacency matrix. Gutman (2001) pointed
out a problem to characterize the graph G and the edge e of G such
that E(G− e) ⩽ E(G). Tang et al. (2023) gave a sufficient condition
for E(G − e) ⩽ E(G), where e is not necessarily a cut-edge set or
a cut edge. We deduce here a stronger conclusion than the results
obtained by Tang et al. (2023). Our findings cover some known
conclusions, such as the results obtained by Gutman and Pavlović
(1999) and Tang et al. (2023). In addition, based on the new results
we obtained in this article, we can directly conclude that adding
edges to a complete k-partite graph leads to a graph with a higher
energy than the energy of the original graph.
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1 Introduction

Let G = (V (G), E(G)) be a simple graph with n vertices, where V (G) =

{v1, v2, . . . , vn} and E(G) are the vertex set and edge set of G, respectively.

Let A(G) = (ai,j)n×n denote the adjacency matrix of G with ai,j = 1 if vi

is adjacent to vj and ai,j = 0 otherwise. Since A(G) is a real symmetric

matrix, every eigenvalue of A(G) is real. Let λi(G) denote the i-th largest

eigenvalue of A(G), where 1 ⩽ i ⩽ n. Namely, we have λ1(G) ⩾ λ2(G) ⩾

· · · ⩾ λn(G). It is well known that λ1(G) is referred to as the spectral

radius of the graph G. The energy of a graph G is defined as the sum of

the absolute values of all the eigenvalues of A(G) [8]. We have

E(G) =

n∑
i=1

|λi(G)|. (1)

Graph energy is an important graph spectral invariant [13]. In the-

oretical chemistry, researchers have studied the energy of a graph exten-

sively because it is connected to the total π-electron energy of the molecule

that the graph represents. The graph energy helps people understand the

chemical properties of the molecule through its graph structure [5, 7]. In

studying the graph energy, one important area is focused on understand-

ing how the energy of a graph alters when a subgraph is removed. In a

survey paper [9] on the subject of graph energy, Gutman pointed out a

“hard-to-crack” issue, as shown in Problem 1.

Problem 1. [9] Characterize the graph G and their edges e such that

E(G− e) ⩽ E(G).

Problem 1 and the related issues are called the graph energy change

problem and they attracted many attentions among the community [2, 3,

8]. Day and So [2] studied graph energy changes due to edge deletions

by using a classical inequality for the singular values of a matrix sum

and they got E(G − e) ⩽ E(G), where e is a cut edge. Wang and So

[16] utilized three different ways to prove E(Cn − e) < E(Pn), where Cn

and Pn are respectively cycle graph and path graph with n vertices and

n ̸= 4. Li and So [11] constructed an infinite family of connected graphs
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equienergetic with subgraphs of one edge fewer. Gutman and Shao [7]

studied the condition for E(G− e) < E(G), where G is a weighted graph.

Ding et al. [4] considered some sufficient conditions such that E(G) <

E(G+e) for a bipartite graph G, where e ∈ E(Gc) and Gc is a complement

of G.

Gutman and Pavlović [6] studied the graph energy change and they

introduced the definition of the graph Kcn(k) as follows.

Definition 1. [6] Let Wk be a k-element subset of the vertex set of the

complete graph Kn, where 2 ⩽ k ⩽ n and n ⩾ 3. The graph Kcn(k) is

obtained by deleting, from Kn, all the edges connecting pairs of vertices

in Wk. In addition, Kcn(0) ≡ Kcn(1) ≡ Kn.

By using the characteristics polynomial of graphs and the spectral

methods, Gutman and Pavlović [6] obtained the following Theorem 1.

Theorem 1. [6] E(Kcn(k)) < E(Kn), where 2 ⩽ k ⩽ n and n ⩾ 3.

For Kcn(k), if k = 2, then Kcn(2) is derived from the complete graph

Kn by deleting an edge. By Theorem 1, we get E(Kn − e) < E(Kn) for

any edge e of Kn.

The following observation of Cioǎba [2] provides an infinite family of

graphs with the property of energy increased.

Theorem 2. [2] If Kn,n is the regular complete bipartite graph of order

2n with n ⩾ 2, then E(Kn,n) < E(Kn,n − e) for any edge e of Kn,n.

A complete k-partite graph, denoted by Kt1,...,tk , is a graph whose

vertices can be divided into k disjoint sets in such a way that no two vertices

within the same set are adjacent and every pair of vertices in Kt1,...,tk from

different sets is adjacent, where k ⩾ 2 and ti ⩾ 1 for 1 ⩽ i ⩽ k. Akbari

et al. [1] avoided the hard calculation of eigenvalues and generalized the

results of Theorem 2 to Theorem 3.

Theorem 3. [1] E(Kt1,...,tk) < E(Kt1,...,tk −e) for any edge e of Kt1,...,tk ,

where k ⩾ 2 and ti ⩾ 2 for 1 ⩽ i ⩽ k.

Later, Shan et al. [14] introduced a new method to study the graph

energy and they completely determined how the energy ofKt1,...,tk changes

when one edge is deleted for min{t1, . . . , tk} = 1.
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For a graph G and a vertex u in V (G), let NG(u) be the set of neighbors

of u. Without confusion, we use N(u) instead of NG(u). For a subset V ′

of V (G), let G[V ′] represent the induced subgraph of G. Namely, the

vertex set of G[V ′] is V ′ and G[V ′] contains all the edges that have both

endpoints in V ′.

Recently, Tang et al. [15] obtained Theorem 4 as follows.

Theorem 4. [15] Suppose that G is a graph of order n with a given

vertex set U such that the induced subgraph G[U ] is a regular complete

bipartite graph Ka,a, and N(v) \ U = N(u) \ U for any v, u ∈ U . Then

E(G) > E(G − E(G[U ])), i.e., deleting all the edges of G[U ] from G will

decrease E(G).

The property of energy change is of practical importance for researchers

to investigate the extremal energy problems among some graph classes.

Although researchers have obtained some relevant conclusions for Problem

1, Problem 1 is still far from being completely resolved.

In this article, we further study the sufficient conditions for E(G) >

E(G − E′) and E(G) < E(G + E′), where G is a graph of order n and E′

is an edge set. The main results of this article are shown in Theorems

5–7 and Corollary 1 in Section 2. In Theorem 5, we release the conditions

of Theorem 4 and obtain a stronger conclusion than Theorem 4. Then

by Theorem 5, we get Theorems 6 and 7. Theorem 6 covers some known

results, such as Theorem 1 obtained by Gutman and Pavlović [6] and

Lemma 1 in [15] (as shown in Corollary 1). Theorem 7 yields some new

results.

2 Main results

In this section, we obtain the main results of this article. To obtain our

results, we first introduce Lemmas 1–3. Lemma 1 is a useful lemma for us

to compare the spectral radii of two graphs. Lemma 2 gives us a sufficient

condition to compare the energies of two graphs.

Lemma 1. [12] Let G be a connected graph, and let G′ be a proper

spanning subgraph of G. Then ρ(G) > ρ(G′).
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Lemma 2. Let G1 and G2 be two n-vertex graphs with the same vertex

set, where n ⩾ 3. We assume that λk+1(G1) (1 ⩽ k ⩽ n − 1) is the first

eigenvalue of A(G1) which is equal to or smaller than zero, i.e., λi(G1) > 0

for 1 ⩽ i ⩽ k and λi(G1) ⩽ 0 for k + 1 ⩽ i ⩽ n. If λ1(G2) > λ1(G1) and

λi(G2) ⩾ λi(G1) for 2 ⩽ i ⩽ k, then we have E(G2) > E(G1).

Proof. Since λk(G1) > 0, by the condition of Lemma 2, we obtain λk(G2) >

0. If λk+1(G2) ⩽ 0, we have E(G2) = 2
k∑

i=1

λi(G2) > 2
k∑

i=1

λi(G1) = E(G1),

where the inequality holds since λ1(G2) > λ1(G1). If λk+1(G2) > 0, we

have E(G2) > 2
k∑

i=1

λi(G2) > 2
k∑

i=1

λi(G1) = E(G1).

Let x1, . . . ,xn be n vectors, and span{x1, . . . ,xn} be the vector space

spanned by those vectors.

Lemma 3. Let the n×n adjacency matrix A of a simple undirected graph

G of the form

A =

(
0 Y

Y T Z

)
,

where 0 is an m ×m matrix with 1 ⩽ m ⩽ n − 1, Y = eyT with e being

the all-1 vector and y being a fixed (0, 1)-vector.

(i) If p =

(
p′

p′′

)
is an eigenvector of A with respect to the nonzero

eigenvalue λ, then p′ = αe for some α.

(ii) If x =

(
x′

x′′

)
∈ span{p1,p2, . . . ,pi}, where pt’s are eigenvectors

of A with respect to nonzero eigenvalues λt(G) for 1 ⩽ t ⩽ i, then x′ = µe

for some µ.

(iii) Let W =

(
X 0

0 0

)
and x =

(
x′

x′′

)
as in part (ii), where X

is a (0,1)-matrix with non-negative entries. Then xTWx ⩾ 0.

Proof. (i) By the definition of eigen-equation, we have(
Y p′′

Y Tp′ +Zp′′

)
=

(
0 Y

Y T Z

)(
p′

p′′

)
= Ap = λp =

(
λp′

λp′′

)
.

Hence Y p′′ = λp′ and so p′ = 1
λY p′′ = 1

λey
Tp′′ = αe with α = yTp′′

λ .
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(ii) This is clearly a result of part (i).

(iii) From part (ii), since X is a (0, 1)-matrix, we have xTWx =

(x′)TXx′ = (µe)TX(µe) = µ2(eTXe) ⩾ 0.

Based on Theorem 4, we remove a constraint of Theorem 4 (namely,

the induced subgraph G[U ] is a regular complete bipartite graph Ka,a)

and obtain Theorem 5 as follows.

Theorem 5. Let G be a graph of order n and V0 be a given subset of

V (G), where N(v) \ V0 = N(u) \ V0 for any two vertices v, u ∈ V0. If

E(G[V0]) ̸= ∅, then E(G) > E(G− E(G[V0])).

Proof. If G is not connected, we only need to consider the component

containing all the vertices in V0 since the energy of a graph equals to the

sum of the energies of all its components. Let G′ = G − E(G[V0]) for

simplicity. Next, we assume that G is connected. To obtain Theorem 5,

we prove Claims 1 and 2 as follows.

Claim 1. λ1(G) > λ1(G
′).

Proof. It is noted that G′ is a proper subgraph of G since E(G[V0]) ̸= ∅.

We have λ1(G) > λ1(G
′) by Lemma 1.

We assume that λk+1(G
′) is the first eigenvalue of A(G′) which is equal

to or smaller than zero, where 1 ⩽ k ⩽ n− 1.

Claim 2. λi(G) ⩾ λi(G
′) > 0 for 2 ⩽ i ⩽ k.

Proof. By the definition of λk+1(G
′), we have λi(G

′) > 0 for 2 ⩽ i ⩽

k. Next, we prove λi(G) ⩾ λi(G
′) > 0 for 2 ⩽ i ⩽ k. Let V (G) =

{v1, v2, . . . , vn} and V0 = {v1, v2, . . . , vm}, where n ⩾ 3 and 2 ⩽ m ⩽

n − 1. It is noted that if m = n, then Theorem 5 obviously holds. For

an arbitrary vertex vi in V0, we have |N(vi)\V0| ⩾ 1 since G is connected

and n > m, where 1 ⩽ i ⩽ m. Let |N(vi)\V0| = d, where 1 ⩽ i ⩽ m.

Let X = A(G[V0]), where X is an m × m real symmetric matrix. Let

Z = A(G[V (G) − V0]). We assume Y =
(
Jm×d 0m×(n−m−d)

)
, where

Jm×d is an m× d matrix whose entries are all 1. We have

A(G) =

(
X Y

Y T Z

)
, A(G′) =

(
0m×m Y

Y T Z

)
.

Let {pj}nj=1 and {qj}nj=1 be orthonormal lists of eigenvectors of A(G′)
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and A(G) respectively. It is noted that the sequences {pj}nj=1 and {qj}nj=1

are organized such that their elements correspond to their eigenvalues in

the same order. Let S1 = span{p1,p2, . . . ,pi} and S2 = span {qi, qi+1,

. . . , qn}, where i is fixed, 2 ⩽ i ⩽ k, and 2 ⩽ k ⩽ n − 1. It is easy to

check that dim(S1) = i and dim(S2) = n− i+ 1. So there is a unit vector

x ∈ S1 ∩ S2 since i + (n − i + 1) = n + 1 > n. Let W = A(G) −A(G′).

For 2 ⩽ i ⩽ k and 2 ⩽ k ⩽ n− 1, by the Rayleigh Theorem [10], we have

λi(G) = qT
i A(G)qi ⩾ xTA(G)x

= xTA(G′)x+ xTWx

⩾ pT
i A(G′)pi + xTWx = λi(G

′) + xTWx. (2)

Since G′ is a simple undirected graph with the adjacency matrix A(G′)

=

(
0m×m Y

Y T Z

)
, where Y =

(
Jm×d 0m×(n−m−d)

)
= eyT with e be-

ing the all-1 vector and y being a fixed (0, 1)-vector, we can directly get

xTWx ⩾ 0 by Lemma 3. Thus, we have λi(G) ⩾ λi(G
′) for 2 ⩽ i ⩽ k

and 2 ⩽ k ⩽ n− 1.

By the combination of Lemma 2 and Claims 1 and 2, we have E(G) >

E(G− E(G[V0])).

Remark: In Theorem 5, it does not require G[V0] to be a regular complete

bipartite graph Ka,a. Since Theorem 5 only needs N(v) \ V0 = N(u) \ V0

for any two vertices v, u ∈ V0, Theorem 5 can be applicable to a wider

range of graphs than Theorem 4.

By using Theorem 5, we obtain Theorems 6 and 7 as follows.

Theorem 6. Let U = {U1, U2, . . . , Up} and V = {V1, V2, . . . , Vq} be two

sets, where q > p ⩾ 0, Ui ⊆ V (Kn) for 1 ⩽ i ⩽ p, Vj ⊆ V (Kn) for

1 ⩽ j ⩽ q, |Ui| = |Vi| for 1 ⩽ i ⩽ p, Ui ∩ Uj = ∅ for 1 ⩽ i < j ⩽ p,

and Vi ∩ Vj = ∅ for 1 ⩽ i < j ⩽ q. We have E(Kn −
p∑

i=1

E(Kn[Ui])) >

E(Kn −
q∑

i=1

E(Kn[Vi])).

Proof. By the methods similar to those for the proofs of Lemma 1 in [15],

we can obtain thatKn−
p∑

i=1

E(Kn[Ui]) is isomorphic toKn−
p∑

i=1

E(Kn[Vi]).
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Therefore, we have E(Kn −
p∑

i=1

E(Kn[Ui])) = E(Kn −
p∑

i=1

E(Kn[Vi])). Fur-

thermore, by using Theorem 5 q−p times, we get E(Kn−
p∑

i=1

E(Kn[Vi])) >

E(Kn −
q∑

i=1

E(Kn[Vi])). Thus, Theorem 6 holds.

Remark: Theorem 6 covers some known results. For example, Theorem

1 obtained by Gutman and Pavlović [6] is a corollary of Theorem 6. In

addition, by Theorem 6, we can easily get Corollary 1 as follows. It is

noted that Corollary 1 is Lemma 1 in [15].

For completeness, we give the simple proofs of Theorem 1 and Corollary

1 as follows.

The new proof of Theorem 1. In Theorem 6, let U = ∅ and V1 be Wk

which is shown in Definition 1, where k ⩾ 2. Namely p = 0 and q = 1 in

Theorem 6. By Theorem 6, we can directly get Theorem 1.

Corollary 1. Suppose that M1 and M2 are two matchings of Kn with

n ⩾ 2. If |M1| < |M2|, then E(Kn −M1) > E(Kn −M2).

Proof. In Theorem 6, if U and V are two matchings of Kn, namely |Ui| = 2

for 1 ⩽ i ⩽ p and |Vj | = 2 for 1 ⩽ j ⩽ q, then Theorem 6 is Corollary

1.

For two given graphs G1 and G2, the joint product of G1 and G2,

denoted by G1+G2, is obtained from G1 and G2 by adding every possible

edge between the vertices in G1 and the vertices in G2.

Theorem 7. Let k ⩾ 2 and ti ⩾ 1 for 1 ⩽ i ⩽ k. We have E(Kt1,...,tk) <

E(Gt1 +Gt2 + · · ·+Gtk), where Gti is an arbitrary simple graph having ti

vertices with 1 ⩽ i ⩽ k and there exists at least one i with 1 ⩽ i ⩽ k such

that |E(Gti)| ⩾ 1.

Proof. By using Theorem 5 at most k times, we can get Theorem 7 .

Remark: In Theorem 7, since Gti is an arbitrary simple graph having ti

vertices, where ti ⩾ 1 for 1 ⩽ i ⩽ k with k ⩾ 2, we know that Gt1 +Gt2 +

· · ·+Gtk is a graph obtained by adding edges to a complete k-partite graph

Kt1,...,tk if there exists at least one i such that |E(Gti)| ⩾ 1. Theorem 3

obtained by Akbari et al. [1] shows that if we delete an arbitrary edge e

from Kt1,...,tk , then E(Kt1,...,tk) < E(Kt1,...,tk − e) holds, where ti ⩾ 2 for
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1 ⩽ i ⩽ k and k ⩾ 2. Naturally, it is interesting to ask how the energy

changes if we add an edge to Kt1,...,tk . By Theorem 7, we can directly

obtain that E(Kt1,...,tk + e) > E(Kt1,...,tk), where e is an edge, ti ⩾ 2 for

1 ⩽ i ⩽ k and k ⩾ 2.
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