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Abstract

Metallic zinc-based alloys are being extensively investigated for
potential use in medicine for the fabrication of implants via addi-
tive manufacturing technologies. A mathematical model for zinc
electro-extraction from a 20% sodium hydroxide solution is pro-
posed. The initial–boundary–value problems for charged-particle
transport that describe the electrolysis processes possess several fea-
tures that complicate their numerical solution. Was developed and
proposed a modification of the streamline-sweep method, suitable
for the charged-particle transport problem in an electrolyte when a
convective term and variable coefficients are present. This method
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computes the charged-particle flux at the same time as the primary
solution. This approach avoids the large errors that occur when
flux is obtained by numerically differentiating the solution. The
algorithm was verified by comparison with experimental data and
with the results of solving a one-dimensional kinetic problem at
the electrode. The one-dimensional model treats both diffusive and
drift fluxes more accurately than the kinetic model. As a result, the
initial-stage discrepancy between experimental data and computed
results was cut by 50 %.

1 Introduction

Zinc-based metallic alloys are extensively studied for potential. The fea-

sibility of using zinc and its alloys for implant manufacturing has been

investigated in studies [3, 18]. Traditional manufacturing processes for

producing customized implants, such as porous scaffolds for tissue engi-

neering, face significant limitations. Study [11] describes the laser powder

bed fusion (L-PBF) technique as a reliable method for fabricating metallic

implants from zinc-based alloys. This additive manufacturing approach

enables the production of implants with a personalized structure tailored

to meet the specific needs of the patient. Additionally, the influence of al-

loy composition on corrosion, which increases Zn2+ concentration in bone

tissue and may potentially inhibit bone regeneration, has been investi-

gated. Study [13] provides a review of 3D printing methods for manufac-

turing patient-specific orthopedic implants from biomaterials and metals.

Zinc-based alloys are recommended for the production of bone screws and

load-bearing components of bone plates due to zinc’s cytotoxicity, absence

of gas formation, and high biocompatibility. However, pure zinc is rarely

used due to its low mechanical strength, and zinc-based alloys with addi-

tional metallic elements (e.g., Mg, Ca, and Sr) are more commonly em-

ployed. Study [15] presents research on the physicochemical and biological

effects of zinc doping in wollastonite bioceramics used for ocular prostheses.

Experimental results demonstrated that substituting part of the calcium

content with zinc (up to 9%) significantly improves sinterability and me-

chanical properties. Study [14] highlights the application of zinc-based

alloys in the selective laser melting (SLM) fabrication of cardiovascular
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stents and dental implants. One of the methods for obtaining pure zinc

from low-grade and polymetallic ores or metallurgical waste is electroex-

traction. Electroextraction also recovers cadmium, indium, gallium, and

other metals from polymetallic ores. The electrochemical system of the

electroextraction process consists of a cathode, an electrolyte, and an in-

soluble anode. The solutions used are typically obtained through selective

dissolution (leaching) of metal-containing ores, ore concentrates, or inter-

mediate metallurgical products. In this study, a mathematical model of

zinc electroextraction from a 20% sodium hydroxide solution is proposed.

The mathematical model is developed for the deposition of a porous zinc

layer. In this case, the zinc evolution process is governed by diffusion to-

ward the electrode. The process rate can be considered proportional to the

diffusion flux and inversely proportional to the thickness of the deposited

zinc layer. The peculiarities of the electrolysis process, which complicate

the numerical solution of this model, are described. Additionally, a modi-

fied sweep method for solving the model is proposed and substantiated.

2 Mathematical description of the zinc elec-

troextraction process from low-grade ore

2.1 Equations in the electrolyte volume

The explanation of the mathematical model for the zinc electroextrac-

tion process from an alkaline electrolyte is provided in study [7]. The

mathematical model is constructed for ore leaching with a solution con-

taining 20% sodium hydroxide. According to [19], a sodium hydrox-

ide concentration of 20% is sufficient for the overall dissolution reaction

2NaOH + Zn+ 2H2O→Na2[Zn(OH)4] + H2 whereas at lower NaOH

concentrations the reaction proceeds with formation of zinc oxide (ZnO).

For the experiment, as in study [7], the preparation of the electrolyte is

carried out by leaching zinc from the ore using a sodium hydroxide solution

(20%) with the overall reaction 2NaOH + Zn+ 2H2O→Na2[Zn(OH)4]+

H2 sodium tetrahydroxo zincate completely dissociates into ions in the so-

lution [19,20]
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Na2[Zn(OH)4]→ 2Na+ + [Zn(OH)4]
2−.

The mathematical model is posed between flat parallel inert electrodes

with an inter-electrode distance greater than the geometric dimensions of

the electrode. The mathematical model contains the following second-

order differential equations:

1. The diffusion-convection equation for hydrogen ions is as follows

∂CH+

∂t + ∂
∂x

(
−DH+

∂CH+

∂x + UH+CH+
∂φ
∂x

)
=

= R1CH2O −R2COH−CH+ (1)

Here, CH+ is the concentration of hydrogen ions, DH+ is the diffusion

coefficient of hydrogen ions, UH+ is the mobility coefficient of hydrogen

ions,φ is the electric field potential,R1 is the water dissociation constant,

and R2 is the association constant of hydroxide ions and hydrogen ions

into a water molecule.

2. The diffusion-convection equation for the hydroxide group

∂COH−
∂t + ∂

∂x

(
−DOH−

∂COH−
∂x − UOH−COH−

∂φ
∂x

)
=

= R1CH2O −R2COH−CH+ (2)

Here, COH− is the concentration of hydroxide ions, DOH− is the diffu-

sion coefficient of hydroxide ions, and UOH− is the mobility coefficient of

hydroxide ions.

3.The diffusion-convection equation for sodium ions

∂CNa+

∂t
+

∂

∂x

(
−DNa+

∂CNa+

∂x
+ UNa+CNa+

∂φ

∂x

)
= 0 (3)

Here, CNa+ , DNa+ , UNa+ represent the concentration, diffusion coefficient,

and mobility coefficient of sodium ions, respectively.

4. The diffusion-convection equation for tetrahydroxozincate anions

∂C[Zn(OH)4]2−

∂t + ∂
∂x

(
−D[Zn(OH)4]2−

∂C[Zn(OH)4]2−

∂x

)
− ∂

∂x

(
U[Zn(OH)4]2−C[Zn(OH)4]2−

∂φ

∂x

)
= 0 (4)
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Here, C[Zn(OH)4]2− ,D[Zn(OH)4]2− , U[Zn(OH)4]2− represent the concentra-

tion, diffusion coefficient, and mobility coefficient of tetrahydroxozincate

anions, respectively.

5. The Poisson equation, in the approximation of its potentiality and

homogeneity along the electrodes

1

F

∂((1 + χ)ε0E)

∂x
= (CNa+ + CH+ − C[Zn(OH)4]2− − COH−) (5)

Here, χ is the electric susceptibility of the medium,ε0 is the dielectric con-

stant, F is Faraday’s constant, and E = −∂φ
∂x is the electric field intensity.

6. The boundary conditions The equation for water molecules in gen-

eral form is written as:

∂CH2O

∂t
+

∂

∂x

(
−DH2O

∂CH2O

∂x

)
= R1CH2O −R2COH−CH+ (6)

However, since the dissociation and association constants of water are very

small, and the transport of water does not affect charge transport, we

will consider the water concentration as constant when solving the model

problem The ion product of water KW = CH+COH− remains constant

under unchanged conditions. The mobility of ions U can be expressed

through the equivalent conductivity Λ as:Λ = UF

2.2 The boundary conditions at the cathode

and anode

Electrolysis is a heterogeneous process, and the main reactions occur at the

phase boundary, specifically between the surface of the liquid electrolyte

and the metal electrode. These reactions depend on the pH of the medium.

In an alkaline environment oxygen evolves at the anode. In alkaline media

hydrogen adsorption at the cathode proceeds via H2O + 2e→O + 2H+,

and oxygen evolution at the anode via 2OH−→O +H2O. At the cath-

ode, the hydrogen-evolution reaction runs in parallel with zinc deposi-

tion. There is, however, debate about the precise interfacial mecha-

nism of zinc deposition. It has been suggested that during electrodepo-

sition the [Zn(OH)4]
2− complex is converted into hydrated Zn(OH)2.

Since zinc hydroxide is an insoluble base, one would expect to de-
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tect it in the cathodic deposit; yet most studies do not observe it [12]

. Thus, at the cathode the following stepwise reactions take place:

[Zn(OH)4]
2− k1→Zn2+ + 4OH−, Zn2+ + 2e

k2→Zn, H2O
k3→H+ +OH−,

H+ +OH− k4→H2O, H+ + e
k5→H, H +H

k6→H2. At the anode, wa-

ter decomposition proceeds via the sequence [9]:H2O
l1→H+ +OH−,

H+ +OH− l2→H2O, 2OH− + 2e
l3→O +H2O, O +O

l4→O2. Here, k1, k2,

k3, k4, k5, k6 are the rate constants for the various stages of the elec-

trochemical reactions, l1, l2, l3, l4 are the rate constants for the anodic

pre-electrode electrochemical reactions. The mathematical description of

the cathodic processes is expressed by the system of kinetic equations:

∂CH2O/∂t = −k3CH2O,

∂CH+/∂t = k3CH2O − k5CH+ ,

∂CH/∂t = k5CH+ − k6CHCH ,

∂CH2/∂t = k6CHCH ,

∂C
[Zn(OH)4]2−

∂t
= −D[Zn(OH)4]2−

∂C
[Zn(OH)4]2−

∂x
k7 − k1C[Zn(OH)4]2− ,

∂CZn2+/∂t = k1C[Zn(OH)4]2− − k2CZn2+ ,

∂CZn/∂t = k2CZn2+ ,

(7)

The rate constants for the stage processes at the electrode are calcula-

ted based on the works [1,2,8].The method for calculating the interfacial-

process rate constants from [9] allows the electrochemical reactions at each

electrode to be treated separately. Additionally, taking into account the

results of work [9], where k4 was practically zero, this stage process is not

considered in the present system. Sodium ions do not undergo deposition

at the cathode; rather, their redistribution occurs in the interelectrode

space, with an increase in concentration near the cathode and a decrease

near the anode. For sodium ions, we impose a continuity condition on the
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flux, considering that convection outweighs diffusion.

CNa+ |cathode = UNa+CNa+

∂φ

∂x
, (8)

For the Poisson equation, the boundary condition at the cathode is set

based on the Nernst equation:

φ|cathode = E0,cathode +
RT

F
ln

(
CH+CZn+

CH

)
(9)

The mathematical description of the anodic processes is expressed by the

system of kinetic equations:

∂CH2O

∂t = −l1CH2O + l2CH+COH− + l3C
2
OH−

∂COH−
∂t = l1CH2O − l2CH+COH− − l3C

2
OH−

∂CO

∂t = l3C
2
OH− − l4C

2
O

∂CO2

∂t = l4C
2
O

∂CH+

∂t = −l1CH2O + l2CH+COH−

. (10)

The concentration of sodium ions in the anodic space is assumed to be

zero:

CNa+ |anode = 0. (11)

For the Poisson equation, the boundary condition at the anode is also set

based on the Nernst equation:

φ|anode = E0,anode +
RT

F
ln

(
1

COH(−)

)
(12)

For tetrahydroxozincate anions, the Nernst boundary condition can be

written as:

C[Zn(OH)4]2− |anode = (U[Zn(OH)4]2−)(C[Zn(OH)4]2−)
∂φ

∂x
. (13)
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When an electric current passes through a heterogeneous system consisting

of metal electrodes and a liquid electrolyte, the primary processes occur at

the phase boundary, where there is a strong concentration imbalance. As

we move away from the electrode regions, due to the polarization of the

medium, ions become more bound. Due to the smallness of the dissociation

and association constants, in this region, the ion concentration is deter-

mined solely by diffusion-migration transfer. In the electrode regions, drift

processes dominate over diffusion processes, leading to significant changes

in characteristics such as concentration and voltage values [6, 17]. Thus,

the constructed mathematical model has strong gradients in the solutions

of these initial-boundary problems and boundary value problems, which

significantly complicates their solution. Also, one of the characteristics for

comparing experimental and calculated values is the volt-ampere charac-

teristic (VAC), which is the relationship between the total current through

the gas discharge gap and the voltage across it. The total current, which

is the sum of the fluxes of all charged particles, must be the same at every

point in space within this heterogeneous system.

3 The numerical method for solving

The algorithm sequentially solves charged-particle transport and potential

problems. It also solves the boundary Cauchy problem using a fourth-order

Runge-Kutta method. The solution algorithm involves the sequential nu-

merical solution of initial-boundary value problems for the transport of

charged particles and boundary value problems for determining the po-

tential. In this process, the Cauchy problem is additionally solved at the

boundary using the Runge-Kutta method of the fourth order. The con-

struction of a difference scheme for differential equations and the solution

of the resulting system of algebraic equations will be considered using the

example of the initial-boundary value problem of diffusion-migration of

hydrogen ions. This problem, as noted above, has several features that

complicate its solution:

1) The large concentration gradients in the near-electrode regions lead

to computational errors when numerically calculating the particle flux in
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these near-electrode regions.

2) The shift from diffusion-dominated regions in the gap center to

convection-dominated near-electrode regions changes the equation type

and limits solution methods.

3) The presence of a strong gradient of the electric field in the near-

electrode regions leads to the dominance of the convection process. Thus,

a problem arises in approximating the first-order derivative when using

implicit schemes. The approximation of the central difference derivative

may result in a violation of diagonal dominance and, consequently, cause

instability in the computations when solving the system of algebraic equa-

tions. However, when using upwind differences for the approximation, the

order of accuracy of the computations decreases.

Using the standard sweep formula requires numerical differentiation to

get the flux, leading to accuracy loss. Therefore, we use a streamline-sweep

method adapted for diffusion terms. The classical method (Samarsky

[16, 21]) applies only to pure convection equations. For instance, in [4],

a variant of the streamline sweep method is proposed for modeling semi-

conductor devices to solve the electron transport problem. Let’s consider

the possibility of applying the streamline sweep method to the problem of

transporting hydrogen anions during electrolysis, taking into account the

convective term and time-varying coefficients in the inter-electrode space.

For simplicity, let C represent the concentration of hydrogen ions CH+ , D

represent the diffusion coefficient DH+ , u represent the mobility coefficient

UH+ , ψ denote the source of hydrogen ions R1CH2O , and a represent the

product of R2CHO− . The initial-boundary value problem for the diffusion-

migration of hydrogen ions in general form, including the flux term, can

be written as:

∂C

∂t
+
∂G

∂x
= ψ − aC (14)

G = −D∂C
∂x

+ uEC (15)

Here, G is the hydrogen ion flux. The concentration of hydrogen at the

cathode ψ1 and at the anode ψ2 is found by solving the Cauchy problem
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systems (7), (10) using the explicit fourth-order Runge-Kutta method. In

the problem we are considering, the boundary conditions will be inter-

preted as Dirichlet conditions (first-kind conditions).

CH+ |cathode = ψ1. (16)

CH+ |anode = ψ2. (17)

The formulation of the charged particle balance problem with separate

highlighting of the flux is widely used both in gas discharges and in

solid conductors [5, 10]. The discretization of equation (14) and the con-

struction of the difference scheme will be carried out using the integral-

interpolation method, which is commonly used for constructing conser-

vative difference schemes. For this, we introduce a coordinate system,

directing the Ox axis perpendicular to the surface of the electrode, plac-

ing the cathode at x = 0. The anode will then be located at x = b,

where b is the diste betweeancn the cathode and the anode. Next, we

introduce a spatiotemporal grid ωh × ωt on the segment [0, b], where:

ωt = {t0 = 0, tj = tj−1 + τ, j = 1, 2, . . .} Here, h is the spatial step,

and τ is the time step. The integral-interpolation method consists of inte-

grating the differential equation over non-intersecting regions surrounding

each grid node, and subsequently approximating the integrals. To solve

the problem, we define ωh+1/2 = {x1/2, . . . , xi−1/2, . . . , xN−1/2, }, where
xi−1/2 is the midpoint of the interval [xi, xi−1]. When constructing an im-

plicit difference scheme, the values of the differential equation coefficients

are taken from the lower time layer ts−1 . The equation (14) is integrated

over the segment [xi+h/2 − xi−h/2], and t = ts is assumed.∫ xi+1/2

xi−1/2

∂C

∂t
∂x+

∫ xi+1/2

xi−1/2

∂G

∂x
∂x =

∫ xi+1/2

xi−1/2

(ψ − aC) ∂x (18)

The
∫ xi+1/2

xi−1/2

∂G
∂x ∂x will be expanded using the Newton-Leibniz formula.

The integrals
∫ xi+1/2

xi−1/2

∂C
∂t ∂x and

∫ xi+1/2

xi−1/2
(ψ − aC) ∂x will be expanded using

the quadrature formula of central rectangles.
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∂C

∂t

∣∣∣∣
xi

h+ G|xi+1/2
− G|xi−1/2

= (ψ − aC)|xih (19)

Next, we will use the formulas for numerical differentiation and obtain:

ui − u0i
τ

+ Ciui =
ωi−1/2 − ωi+1/2

h
+ fi (20)

where ui, ωi,Ci,fi Grid functions, which approximate the values of the

solution, flux, source term, and resulting coefficients at the i-th point. The

flux (15) will be considered at the grid points ωh+1/2, and the migration

term will be approximated using the grid points ωh:

G|xi−1/2
=

(
−D∂C

∂x

)∣∣∣∣
xi−1/2

+
ωi−1/2 − ωi+1/2

h
+ fi (21)

Thus, the system of equations (14)-(15) at the grid nodes can be rewrit-

ten as follows

ui − u0i
τ

+ ciui =
ωi−1/2 − ωi+1/2

h
+ fi (22)

ωi−1/2 + di−1/2ui = ki−1/2ui−1 (23)

Where ui, ωi, ci, fi , di−1/2 , ki−1/2 are the grid analogs that approx-

imate the values of the solution, flux, source term of the equation, and

the resulting coefficients at the i – th point. We assume the existence of

a relationship between the unknown function ui−1 and the flux ωi−1/2 of

the form:

αiui−1 + βiωi−1/2 = γi (24)

and we find a recurrence relation to compute the sweep coefficients αi,βi,γi,

and the unknown functions ui−1,ωi−1/2. To do this, from equation (24),

we solve for ui−1 and substitute it into equation (23). This gives:

ωi−1/2

(
αi + ki−1/2βi

)
= ki−1/2γi − di−1/2αi (25)

Since the coefficients αi, βi, γi in equation (24) are determined up to a

multiplier, we introduce an additional condition:αi + k(i− 1/2)βi = 1 and
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we obtain the final system

ωi−1/2 = ki−1/2γi − di−1/2αiui (26)

Substituting (26) into (22), we get:

(ci + 1/t)ui +
ωi+1/2

h
−
ki−1/2γi − di−1/2αiui

h
= fi +

u0i
t

(27)

Now, we group the coefficients of ui−1 and obtain:(
ci +

1

t
+
di−1/2αi

h

)
ui +

ωi+1/2

h
= fi +

u0i
t

+
ki−1/2γi

h
(28)

Comparing the resulting equation with equation (24) and considering that,

according to [4] , the sufficient stability conditions for the computational

process are: ∣∣∣dαi+1

dαi

∣∣∣ < 1,
∣∣∣dβi+1

dβi

∣∣∣ < 1,
∣∣∣dγi+1

dγi

∣∣∣ < 1

obtain the following recurrence relations: if
∣∣di−1/2

∣∣ ≤ 1 and
∣∣ki−1/2

∣∣ ≤ 1

then αi+1 = ci +
1
t +

di−1/2αi

h , βi+1 = 1
h , γi+1 = fi +

u0
i

t − γiki−1/2

h

if
∣∣di−1/2

∣∣ ≤ 1 and
∣∣ki−1/2

∣∣ > 1 then αi+1 = ci
ki−1/2

+ 1
tki−1/2

+
di−1/2αi

hki−1/2
,

βi+1 = 1
hki−1/2

,γi+1 = fi
ki−1/2

+
u0
i

tki−1/2
− γi

h

if
∣∣di−1/2

∣∣ > 1 and
∣∣ki−1/2

∣∣ ≤ 1 then αi+1 = ci
di−1/2

+ 1
tdi−1/2

+αi

h , βi+1 =

1
hdi−1/2

, γi+1 = fi
di−1/2

+
u0
i

tdi−1/2
− γiki−1/2

hdi−1/2
if
∣∣di−1/2

∣∣ > 1 and
∣∣ki−1/2

∣∣ > 1

then αi+1 = ci
di−1/2ki−1/2

+ 1
tdi−1/2ki−1/2

+ αi

hki−1/2
, βi+1 = 1

hdi−1/2ki−1/2
,

γi+1 = fi
di−1/2ki−1/2

+
u0
i

tdi−1/2ki−1/2
− γi

hdi−1/2

To find the recurrence relation for the fluxes, we express ui from equa-

tion (26) and substitute it into equation (22):

if
∣∣di−1/2

∣∣ ≤ 1, then

ωi−1/2 =
(
−γiki−1/2(1+ci)

αidi−1/2t
+ fi +

u0
i

t +
ωi+1/2

h

)(
hαidi−1/2

1+αidi−1/2+ci

)
if
∣∣di−1/2

∣∣ > 1, then

ωi−1/2 =
(
−γiki−1/2(1+ci)

αidi−1/2t
+ fi +

u0
i

t +
ωi+1/2

h

)(
hαi

1
di−1/2

+αi+
ci

di−1/2

)
These recurrence formulas are stable with respect to random errors. To

compute the sweep coefficients α1, β1, γ1, we will use the boundary con-
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ditions at x = 0 in the grid analogy. This will give u1 = ψ1 . Comparing

with equation (24), we get α1 = 1, β1 = 0, γ1 = ψ1. To compute the flux

ωN−1/2, we substitute the boundary condition uN = fN into equation (24)

and solve for ωN−1/2 : ωN−1/2 = γn−fNαN

βN
The accuracy of the method is

determined by the precision of the finite-difference scheme and the determi-

nation of the interfacial process constants. An upwind differencing scheme

was used to approximate the first derivative, yielding an accuracy of order

O(h), where h is the spatial grid step. The procedure for finding these

constants is described in [9]. This method was implemented in the MAT-

LAB development environment using custom code written by the authors.

During testing of the algorithm, grid convergence was observed when it

was evaluated at specific time points. Before applying the electric current,

we assume the interelectrode gap is at its initial state [7]. In this state, the

Zn2+ concentration in the solution is 10 g/L. The working electrode is

stainless steel with an area of 1 cm2 and is assumed inert. The electrolyte

is a 20% NaOH solution. We calculated the stage-wise reaction constants

using the method from [7] under identical assumptions. Figure 1 compares

experimental mass-yield data from [20] with our model’s predictions. Both

sets of results use the streamwise-sweep method at 125 A. The solution to

the model problem based on the data from work [7] showed a quantita-

tive match in the output of zinc. Because the model is formulated in the

porous-film approximation, the zero-dimensional kinetic model accounts

for the diffusion flux in an approximate form based on the assumption

that the process rate is proportional to diffusion and inversely propor-

tional to the thickness of the deposited zinc layer. Its calculations exhibit

a large discrepancy during the initial nucleation phase of zinc formation,

with convergence of results at later stages. In the one-dimensional model,

thanks to a more accurate treatment of both diffusive and drift fluxes, the

initial-stage discrepancy was reduced by half: it reached a maximum of

13% at the start and no more than 5% thereafter. Additionally, the quali-

tative description of the distribution of characteristics in the inter-electrode

space was consistent with the physical and electrochemical description.
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Figure 1. Comparison of zinc yield at a current of 125 A.

4 Conclusion

In this work, a modification of the streamline sweep method is proposed,

suitable for the problem of charged particle transport in an electrolyte with

the presence of a convective term and varying coefficients. This method

allows, along with the solution, to find the value of the flux of charged par-

ticles, which helps avoid significant computational errors when calculating

the flux using numerical differentiation of the solution. The recurrence

formulas for computing the sweep coefficients, the solution, and the flux

are stable with respect to random errors. The solution to the model prob-

lem showed consistent qualitative results from an electrochemical point

of view, including the presence of solution gradients in the near-electrode

regions, as well as ion binding in the center of the inter-electrode gap.
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