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Abstract

This work presents a comprehensive analysis of nonlinear dynam-
ics in a discrete-time chlorine dioxide-iodine-malonic acid (CDIMA)
reaction model, combining theoretical bifurcation analysis with nu-
merical validation. Using forward Euler discretization and normal
form theory, we establish the existence of codimension-two bifurca-
tions at the system’s positive fixed point, characterized by 1:2, 1:3,
and 1:4 strong resonances. Numerical simulations quantitatively
confirm these theoretical predictions, revealing three distinct dy-
namical regimes: (1) stable period-2 limit cycles emerging from 1:2
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resonance, demonstrating rhythmic bistable oscillations; (2) com-
plex period-3 orbits arising from 1:3 resonance, indicating tripled-
state nonlinear interactions; and (3) a mixed periodic-chaotic regime
generated by 1:4 resonance, exhibiting sensitive dependence on ini-
tial conditions. The remarkable agreement between analytical and
computational results provides robust verification of the CDIMA
system’s rich dynamical repertoire. These findings offer new insights
into chemical oscillator control, with potential applications ranging
from engineered reaction-diffusion systems to biological rhythm reg-
ulation. The integrated theoretical-numerical approach developed
here establishes a general framework for investigating complex be-
haviors in nonlinear chemical systems.

1 Introduction

In nature, the interaction between various chemical substances often re-

sults in highly complex dynamic phenomena. The Belousov–Zhabotinsky

(BZ) reaction exemplifies non-equilibrium thermodynamics, showcasing a

family of reactions that produce nonlinear chemical oscillations. The os-

cillatory BZ reactions were first investigated by Belousov in 1958 [14] and

later expanded upon by Zhabotinskii in 1964 [21]. The dynamics of chemi-

cal oscillations can exhibit significant complexity. The original BZ reaction

involves over twenty reaction steps; however, many of these steps can reach

equilibrium, allowing the kinetics to be simplified into three differential

equations. For more detailed information on the BZ reaction, readers are

directed to references [22,23]. Similarly, Lengyel et al. [1] explored another

relatively simple oscillatory chemical reaction involving chlorine dioxide,

iodine, and malonic acid (ClO2–I2–MA).

These three reactions can be outlined through the following steps

(i) The iodination of malonic acid (MA) is represented by the following

reaction scheme:

MA+ I2 → IMA + I− +H+ (1)

(ii) The oxidation of iodide ions by chlorine dioxide radicals is described

by the following reaction:

ClO2 + I− → ClO−
2 +

1

2
I2. (2)
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(iii) The reaction between chlorite ions and iodide ions, produced in the

first two steps, to generate iodine is represented as:

ClO−
2 + 4I− + 4H+ → Cl− + 2I2 + 2H2O. (3)

The rate equations for the chlorine dioxide-iodine-malonic acid

(ClO2–I2–MA) reaction system are given by:

−d[I2]

dt
=

c1a[MA][I2]

c1b + [I2]
, (4)

−d[ClO2]

dt
= c2[ClO2][I

−], (5)

and

−d[ClO−
2 ]

dt
= c3a[ClO

−
2 ][I

−][H+] + c3b[ClO
−
2 ][I

−][I2]
I−

u+ [I−]2
, (6)

where c1a, c2, c3a, and c3b are reaction rate constants, while c1b and u

describe saturation phenomena. Furthermore, the last term in Equation

(6) captures the autocatalytic effect of I2 and the self-inhibitory effect of

I− on the chlorite-iodide reaction [4]. This term is designed such that

it approaches zero in two scenarios: (i) when [I−] → 0, where the re-

action cannot proceed due to the absence of iodide ions, and (ii) when

[I−] → ∞, where the self-inhibition effect becomes dominant. The rate

equations (4-6) described above result in a five-variable model that in-

cludes the concentrations of [ClO−
2 ], [I

−], [ClO2], [I2], and [MA]. However,

the primary role of malonic acid iodination is to generate iodide ions, and

ethyl acetoacetate can be used as a substitute for malonic acid (MA) [4].

Additionally, experimental observations reveal that the concentrations of

iodide and chlorite ions undergo significant variations, spanning several

orders of magnitude during oscillations. In contrast, the concentrations of

malonic acid, chlorine dioxide, and iodine exhibit much slower changes. As

a result, these concentrations can be treated as constants, allowing the sys-

tem’s behavior to be approximated using a two-variable model that focuses

solely on the concentrations of iodide and chlorite ions. In a flow reactor
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with appropriate feeding, the concentrations of chlorine dioxide, iodine,

and malonic acid can be maintained nearly constant. Under these condi-

tions, oscillations can still be observed within suitable ranges of concen-

trations and temperature. Therefore, we conclude that the concentrations

of MA, I2, and ClO2 vary significantly more slowly compared to the in-

termediate species I− and ClO−
2 , which undergo changes spanning several

orders of magnitude during an oscillation period. By defining X = [I−],

Y = [ClO−
2 ], and A = [I2], we derive the following equations [1]:

A → X; rM1 = c′1; c′1 = c1[MA]0,

X → Y; rM2 = c′2[X]; c′2 = c2[ClO2],

and 4X + Y → P; rM3 =
c′3[X][Y]

u+ [X]2
; c′3 = c3b[I2]0.

Following the approach outlined in [1], we apply the transformations

X = αx, Y = βy, and t = kt, where α =
√
u, β =

uc′2
c′3

, k = 1
c′2
, a =

kc′1
α ,

and b = α
β . Using these transformations, we obtain the following two-

dimensional system:
dx

dt
= a− x− 4xy

1 + x2
,

dy

dt
= bx

(
1− y

1 + x2

)
,

(7)

where x and y represent the dimensionless concentrations of I− and

ClO−
2 , respectively, and a > 0, b > 0 are kinetic parameters. For specific

values of the parameters a and b, the system (7) exhibits a stable limit cy-

cle. For a deeper exploration of chaos and bifurcation phenomena in the BZ

reaction and chemical reaction systems, see references [2, 3, 11–13]. Note

that the discrete dynamical system is often more suitable than its contin-

uous counterpart due to its rich dynamics and remarkable computational

efficiency, as demonstrated in [20, 24]. Moreover, this approach proves

particularly effective for nonlinear chemical oscillatory reaction models, as

evidenced in [25–27]. As established by Strogatz [28], chaotic behavior can

only arise in continuous systems with at least a three-dimensional phase

space. Consequently, system (7) being of lower dimensionality cannot ex-
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hibit chaos. In contrast, its discrete-time counterpart can manifest chaotic

dynamics even in a one-dimensional mapping. To explore the chaotic be-

havior of system (7) in greater depth, it is suitable to examine its discrete-

time counterparts. To achieve this, applying the forward Euler’s scheme

results in the following discrete-time version of system (7):

xn+1 = xn + h

(
a− xn − 4xnyn

1 + x2
n

)
,

yn+1 = yn + bh

(
xn − xnyn

1 + x2
n

)
,

(8)

where h represents the step size. In 2018, Din et al. [5] performed an in-

depth analysis of the stability and Neimark-Sacker bifurcations for model

(8). In 2023, Mu et al. [6] introduced a time delay into the system and an-

alyzed the stability and chaos control of model (8). The discrete-time

model of the Chlorine Dioxide-Iodine-Malonic Acid (CDIMA) reaction

showcases a diverse range of nonlinear dynamical phenomena, including

period-doubling bifurcations, Neimark-Sacker bifurcations, and chaotic be-

havior. Although research on discrete-time systems has largely concen-

trated on codimension-one bifurcations, exploring codimension-two bifur-

cations in the CDIMA reaction provides a deeper insight into the system’s

intricate dynamics. Fundamental aspects of bifurcation phenomena and

chaotic behavior in discrete-time chemical reaction systems are thoroughly

examined in [7–10,16–19,29–34].

The motivational aspects and the novelty of this paper are further

outlined as follows:

• The CDIMA reaction is renowned for displaying a wide range of com-

plex oscillatory patterns. Investigating how resonance phenomena,

such as 1:2, 1:3, and 1:4 resonances, arise and develop within the sys-

tem is essential for accurately predicting and effectively controlling

the reaction’s behavior.

• Resonances like 1:2, 1:3, and 1:4 play a critical role in deciphering

the periodicity and synchronization of oscillatory systems. These

resonances can give rise to intricate behaviors, such as quasiperi-

odicity and chaos, which are key to understanding how the system
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transitions between stable and unstable states.

• The study reveals how 1:2, 1:3, and 1:4 resonances generate complex

bifurcation structures and interactions, uncovering intricate chaotic

transitions and shifts in periodicity within the system’s behavior.

These phenomena, previously unexplored in a discrete-time frame-

work, provide new insights into the system’s dynamics.

• The findings of the study enable the development of predictive con-

trol strategies, which can either mitigate the onset of chaos or regu-

late periodic behavior. By carefully tuning system parameters, it be-

comes possible to achieve stable oscillations or avoid chaotic regimes

at specific resonance points.

The remainder of this paper is organized in the following manner:

Section 2 covers codimension-2 bifurcations, while Section 3 provides

numerical simulations.

2 Codimension-two bifurcations

In this section, we examine the codimension-two bifurcation, which arises

when a system undergoes qualitative changes in its dynamics as two in-

dependent parameters are varied simultaneously. Codimension-two bifur-

cations involve more intricate dynamics, as both parameters must be ad-

justed to reach the bifurcation point. This type of bifurcation often results

in richer and more complex behavior, including the emergence of periodic

solutions, new fixed points, and multiple oscillatory modes. In the normal

form, the system incorporates two parameters, which can be understood

as a control parameter and a bifurcation parameter. As the bifurcation

parameters are varied, the system undergoes a sequence of transforma-

tions, including the creation and annihilation of fixed point pairs, the

formation and breakdown of limit cycles, and the onset of a homoclinic

bifurcation. Examples of codimension-two bifurcations encompass fold-flip

bifurcations, along with 1:2, 1:3, and 1:4 strong resonances.

Chemically, these resonances correspond to distinct periodic regimes in

the concentrations of key intermediates (e.g., iodine, chlorous acid) dur-
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ing the CDIMA reaction. A 1:2 resonance arises when the system cycles

between two well-defined chemical states, producing a stable period-2 oscil-

lation. Likewise, 1:3 and 1:4 resonances reflect more complex periodicities,

where the reaction traverses three or four successive concentration states

before repeating the sequence. Such resonances represent phase-locked dy-

namical modes, where the system settles into a precise rhythmic pattern

rather than exhibiting quasiperiodic or chaotic oscillations.

Figure 1. Topological classification for system (8).

It is easy to see that system (8) has a unique positive equilibrium point

(x∗, y∗) =
(

a
5 ,

a2

25 + 1
)
. For an in-depth examination of local stability,

codimension-1 bifurcation, and chaos control of (8), refer to [5]. Specifi-

cally, we explore the existence of 1:2, 1:3, and 1:4 resonances by applying

normal form theory and bifurcation theory. For this, let

J(x∗,y∗) =

(
(3a2−125)h

a2+25 + 1 − 20ah
a2+25

2a2bh
a2+25 1− 5abh

a2+25

)
(9)

be the Jacobian matrix of system (8) evaluated at positive fixed point

(x∗, y∗). Moreover, let det(J) = a(3ah+a+5bh(5h−1))−125h+25
a2+25 and Tr(J) =

h(3a2−5ab−125)
a2+25 + 2 be the determinant and trace of J(x∗,y∗), respectively.

Hence, the following curves determine the locations where these resonance
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points occur:

R2 : Tr(J) =
h
(
3a2 − 5ab− 125

)
a2 + 25

+ 2 = −2,

R3 : Tr(J) =
h
(
3a2 − 5ab− 125

)
a2 + 25

+ 2 = −1,

R4 : Tr(J) =
h
(
3a2 − 5ab− 125

)
a2 + 25

+ 2 = 0,

NS : det(J) =
a (3ah+ a+ 5bh(5h− 1))− 125h+ 25

a2 + 25
= 1.

From this, it is straightforward to see that the intersections NS ∩ R2,

NS∩R3, and NS∩R4 correspond to the 1:2, 1:3, and 1:4 resonance points,

respectively. Furthermore, for h = 0.978, a ∈ [0.001, 5], and b ∈ [0.001, 5],

the existence of 1:2, 1:3, and 1:4 strong resonance points in system (8) is

illustrated in Fig. 1.

2.1 1:2 strong resonance

This subsection focuses on analyzing the 1:2 strong resonance for system

(8) at its positive fixed point. A 1:2 strong resonance bifurcation occurs

in discrete dynamical systems when two eigenvalues are −1, or equiva-

lently the trace of the Jacobian is −2 and determinant is one. Apply-

ing this condition to Jacobian J(x∗, y∗) of system (8), we have T :=
h(3a2−5ab−125)

a2+25 + 2 = −2, and D := a(3ah+a+5bh(5h−1))−125h+25
a2+25 = 1, that

is, a =
5
√

(2−5h)2√
5h(3h+4)−4

, b = 32√
(2−5h)2

√
5h(3h+4)−4

. For the existence of these

values of a and b, we assume that h ̸= 0.4, 0.176607, then positive fixed

point of (8) experiences 1:2 strong resonance at (a, b) = (a2, b2), where a2

and b2 are defined as follows:

a2 :=
5
√
(2− 5h)2√

5h(3h+ 4)− 4
, b2 :=

32√
(2− 5h)2

√
5h(3h+ 4)− 4

.
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Moreover, it is easy to see that
(a2, b2) =

(
5(2−5h)√
5h(3h+4)−4

, 32

(2−5h)
√

5h(3h+4)−4

)
if h < 0.4,

(a2, b2) =

(
5(5h−2)√
5h(3h+4)−4

, 32

(5h−2)
√

5h(3h+4)−4

)
if h > 0.4.

Next, taking into account the accuracy of numerical scheme, it is more

appropriate to assume that 0 < h < 0.4, so in this case we have

(a2, b2) =

(
5(2− 5h)√

5h(3h+ 4)− 4
,

32

(2− 5h)
√
5h(3h+ 4)− 4

)
.

Let un = xn − a
5 , vn = yn − (a

2

25 + 1), a = a2 + α1 and b = b2 + α2, where

α = (α1, α2) is small perturbation parameter, then the system (8) can be

transformed as follows:(
u

v

)
→ (J(α))

(
u

v

)
+

(
f1(u, v, α)

f2(u, v, α)

)
, (10)

where

J(α) :=

 h
(
3− 200

α2
1+a2

2+2α1a2+25

)
+ 1 − 20h(α1+a2)

α2
1+a2

2+2α1a2+25

2h(α1+a2)
2(α2+b2)

α2
1+a2

2+2α1a2+25
1− 5h(α1+a2)(α2+b2)

α2
1+a2

2+2α1a2+25


=

(
µ10(α) µ01(α)

ν10(α) ν01(α)

)
,


f1(u, v, α) = µ20(α)u

2 + µ11(α)uv + µ02(α)v
2 +O

(
(|u|+ |v|)3

)
,

f2(u, v, α) = ν20(α)u
2 + ν11(α)uv + ν02(α)v

2 +O
(
(|u|+ |v|)3

)
,

µ20(α) = −
20h (α1 + a2)

(
α2
1 + a22 + 2α1a2 − 75

)
(α2

1 + a22 + 2α1a2 + 25) 2
,

µ11(α) =
100h (α1 + a2 − 5) (α1 + a2 + 5)

(α2
1 + a22 + 2α1a2 + 25) 2

, µ02(α) = 0,
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ν20(α) = −
5h (α1 + a2)

(
α2
1 + a22 + 2α1a2 − 75

)
(α2 + b2)

(α2
1 + a22 + 2α1a2 + 25) 2

,

ν11(α) =
25h (α1 + a2 − 5) (α1 + a2 + 5) (α2 + b2)

(α2
1 + a22 + 2α1a2 + 25) 2

, ν02(α) = 0.

Next, at α1 = α2 = 0, we take α = (0, 0) = O, and J(O) is given as

follows:

J(O) :=

 4
5h − 3

(5h−2)
√

5h(3h+4)−4

10h
16−40h

5h
√

5h(3h+4)−4
1− 4

5h

 . (11)

Moreover, eigenvector of J(O) associated with eigenvalue −1 is q0 =(
1
4

√
5h(3h+ 4)− 4

1

)
and its generalized eigenvector associated with

eigenvalue −1 is q1 =

 5h
√

5h(3h+4)−4

8(2−5h)

0

. In addition, the eigenvec-

tor and generalized eigenvector of J(O)T associated with eigenvalues −1,

respectively are p0 =

(
1

0

)
and p1 =

 − 4(10h−4)

5h
√

5h(3h+4)−4

10h−4
5h

, where

q0, q1, p0, p1 satisfy the following conditions:

J(O)q0 = −q0,

J(O)q1 = −q1 + q0,

J(O)T p0 = −p0,

J(O)T p1 = −p1 + p0,

⟨p0, q0⟩ = ⟨p1, q1⟩ = 1,

⟨p0, q1⟩ = ⟨p1, q0⟩ = 0.

Taking into account the aforementioned relations, we consider the following

transformation:(
u

v

)
=

 1
4

√
5h(3h+ 4)− 4

5h
√

5h(3h+4)−4

8(2−5h)

1 0

( w

z

)
. (12)
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From (10) and (12), it follows that:(
w

z

)
→

(
p10(α)− 1 1 + p01(α)

q10(α) q01(α)− 1

)(
w

z

)

+

(
f3(w, z, α)

f4(w, z, α)

)
.

(13)

where

p10(α) =
1

4

√
5h(3h+ 4)− 4ν10(α) + ν01(α) + 1,

p01(α) =
5h
√
5h(3h+ 4)− 4ν10(α)

8(2− 5h)
− 1,

q10(α) =
(5h− 2)((5h(3h+ 4)− 4)ν10(α)− 16µ01(α))

10h
√
5h(3h+ 4)− 4

+
2(5h− 2)(ν01(α)− µ10(α))

5h
,

q01(α) = −1

4

√
5h(3h+ 4)− 4ν10(α) + µ10(α) + 1,

f3(w, z, α) = f2

(√
5h(3h+ 4)− 4(2(5h− 2)w − 5hz)

8(5h− 2)
, w, α

)
,

f4(w, z, α) =

(8(2− 5h))f1

(√
5h(3h+4)−4(2(5h−2)w−5hz)

8(5h−2) , w, α

)
5h
√
5h(3h+ 4)− 4

+ 2f2

(√
5h(3h+ 4)− 4(2(5h− 2)w − 5hz)

8(5h− 2)
, w, α

)

−
(

4

5h

)
f2

(√
5h(3h+ 4)− 4(2(5h− 2)w − 5hz)

8(5h− 2)
, w, α

)
.

Next, we assume the following invertible linear transformation:(
w

z

)
= M

(
w̄

z̄

)
, (14)
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where

M =

(
1 + p01(α) 0

−p01(α) 1

)
.

From (13) and (15), it follows that:(
w̄

z̄

)
→

(
−1 1

ω1(α) ω2(α)− 1

)(
w̄

z̄

)
+

(
f5(w̄, z̄, α)

f6(w̄, z̄, α)

)
, (15)

where

ω1(α) = q10(α) + p01(α)q10(α)− p10(α)q01(α),

ω2(α) = p10(α) + q01(α),

f5(w̄, z̄, α) =

(
1

1 + p01(α)

)
f3 (w̄(1 + p01(α)), z̄ − w̄p10(α), α) ,

f6(w̄, z̄, α) =

(
p10(α)

1 + p01(α)

)
f3 (w̄(1 + p01(α)), z̄ − w̄p10(α), α)

+ f4 (w̄(1 + p01(α)), z̄ − w̄p10(α), α) .

Taking into account ω1(α) and ω2(α), we define the following matrix

at α = (0, 0) = O:

ζ(O) =

(
∂ω1

∂α1
(0, 0) ∂ω1

∂α2
(0, 0)

∂ω2

∂α1
(0, 0) ∂ω2

∂α2
(0, 0)

)

=

 √
5h(3h+4)−4(3h(5h+4)−4)

50h2

(2−5h)2
√

5h(3h+4)−4

40h

− (3h−2)
√

5h(3h+4)−4(5h(5h+6)−8)

100h2(5h−2)

(5h−2)
√

5h(3h+4)−4

40h

 .

Then by simple calculation det ζ(O) is obtained as follows:

det ζ(O) =
(5h(h(15h+ 14)− 12) + 8)2

4000h3
. (16)

Condition (16) is called transversality condition and it is supposed to be

true. Next, we apply ω1(α1, α2) and ω2(α1, α2) for the following parametri-
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zation in the neighborhood of α1 = 0 and α2 = 0:

γ1 = ω1(α1, α2), γ2 = ω2(α1, α2).

Then, α1 and α2 can be expressed in terms of γ1 and γ2 as follows:

α1 =
100h2 (γ1 + γ2(2− 5h))

(5h− 2)(5h(3h+ 4)− 4)3/2
,

α2 =
40h

(5h− 2)3 (5h(3h+ 4)− 4)3/2

[
γ1 (3h− 2)

(
5h(5h+ 6)− 8

)
+ 2γ2

(
h (15h(5h+ 2)− 44) + 8

)]
.

(17)

Using (17) in (15), we have the following mapping:

(
w̄

z̄

)
→

(
−1 1

γ1 −1 + γ2

)(
w̄

z̄

)
+

(
f7(w̄, z̄, γ)

f8(w̄, z̄, γ)

)
, (18)

where {
f7(w̄, z̄, γ) = g20(γ)w̄

2 + g11(γ)w̄z̄ + g02(γ)z̄
2,

f8(w̄, z̄, γ) = h20(γ)w̄
2 + h11(γ)w̄z̄ + h02(γ)z̄

2,

γ = (γ1, γ2) and at (γ1, γ2) = (0, 0) = O, one may compute easily

g20(O) =
(5h(3h+ 4)− 4)(h(5h+ 16)− 4)

40h2(5h− 2)
,

g11(O) = − (5h(3h+ 4)− 4)(5h(h(5h+ 17)− 8) + 4)

40(2− 5h)2h2
,

g02(O) =
(5h(h+ 4)− 4)(5h(3h+ 4)− 4)

32(2− 5h)2h
,

h20(O) =
(5h(3h+ 4)− 4)(h(5h+ 16)− 4)

40h2
,

h11(O) = − (5h(3h+ 4)− 4)(5h(h(5h+ 17)− 8) + 4)

40h2(5h− 2)
,

h02(O) =
(5h(h+ 4)− 4)(5h(3h+ 4)− 4)

32h(5h− 2)
.

Then according to Lemma 9.9 [ [15], p. 437], there exists a near–identity
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map such that system (15) can be transformed as follows:(
z1

z2

)
→

(
−1 1

γ1 −1 + γ2

)(
z1

z2

)

+

(
0

A(γ1, γ2)z
3
1 +B(γ1, γ2)z

2
1z2

)
+O(|z1 + z2|4),

(19)

where 

A(γ) = g20(γ)h20(γ) +
1

2
h2
20(γ) +

1

2
h20(γ)h11(γ),

B(γ) =
1

2
g20(γ)h11(γ) +

5

4
h20(γ)h11(γ) + h2

20(γ)

+ h20(γ)h02(γ) +
1

2
h2
11(γ) + 3g220(γ)

+
5

2
g20(γ)h20(γ) +

5

2
g11(γ)h20(γ).

Moreover, taking into account simplicity and further requirement, we com-

pute A(γ) and B(γ) at (γ1, γ2) = (0, 0) = O as follows:

A(O) = − (5(h− 4)h+ 4)(4− 5h(3h+ 4))2(h(5h+ 16)− 4)

3200h4(5h− 2)
,

and

B(O) =
3

25h4
− 207

100h3
+

1531h2

32
+

297

25h2
+

13339h

320
− 1641

80h

+
225h4

128
+ +

4125h3

256
+

192

25(5h− 2)
+

128

25(5h− 2)2
− 7391

400
.

Taking into account theoretical results cited in [15] and the above compu-

tations, we have the following result.

Theorem 1. Consider system (19) with parameters set as (a, b) = (a2, b2)

and 0.176607 < h < 0.4. Assume the non-degeneracy condition holds true:

A(O) (B(O) + 3A(O)) ̸= 0.

Then, in the (γ1, γ2)-parameter plane, the system exhibits the following

local bifurcations:
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(i) The trivial fixed point (0, 0) undergoes a non-degenerate period-doub-

ling bifurcation on the curve given by

{
(γ1, γ2) ∈ R2 : γ1 = 0, γ2 ̸= 0

}
.

(ii) The trivial fixed point (0, 0) undergoes a non-degenerate Neimark-

Sacker bifurcation on the curve

{
(γ1, γ2) ∈ R2 : γ1 + γ2 = 0, γ1 ̸= 0

}
.

This bifurcation is supercritical if B(O) + 3A(O) > 0.

(iii) Provided that A(O) < 0, the 2-cycle that emerges from the period-

doubling bifurcation undergoes a non-degenerate Neimark-Sacker bi-

furcation. This occurs on the curve defined by{
(γ1, γ2) ∈ R2 : γ2 =

(
2 +

B(O)

A(O)

)
γ1 +O

(
γ2
1

)
, γ1 > 0

}
.

This bifurcation of the 2-cycle is supercritical if B(O) + 3A(O) < 0.

2.2 1:3 strong resonance

In discrete dynamical systems, a 1:3 resonance bifurcation occurs when

the Jacobian matrix at a fixed point possesses two eigenvalues, specifically

− 1
2±ι

√
3
2 , lying on the unit circle, and no additional eigenvalues are present

on the unit circle.

If a and b are taken as bifurcation parameters, the characteristic equa-

tion of the variational matrix for system (8) evaluated at the point (x∗, y∗)

will have eigenvalues − 1
2 ± ι

√
3
2 under the condition that the following re-

quirement is met:
2 +

h
(
3a2 − 5ab− 125

)
a2 + 25

= −1,

a(3ah+ a+ 5bh(5h− 1))− 125h+ 25

a2 + 25
= 1.

(20)
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Next, assume that h ̸= 0.17082, then we have the following solution of

system (20) for a and b:
a3 : =

5
√
5h(5h− 3) + 3√
15h(h+ 1)− 3

,

b3 : =
8
√
3√

5h(h+ 1)− 1
√
5h(5h− 3) + 3

.

(21)

Next, assuming un = xn − x∗, vn = yn − y∗ and a = a3 + β1, b =

b3 + β2, where β1 and β2 are small perturbation parameters. Under these

assumptions, (8) transforms into the following map:(
u

v

)
→

(
σ10(β) σ01(β)

τ10(β) τ01(β)

)(
u

v

)
+

(
g1(u, v, β)

g2(u, v, β)

)
, (22)

where β = (β1, β2)

σ10(β) = h

(
3− 200

a23 + 2a3β1 + β2
1 + 25

)
+ 1,

σ01(β) = − 20h (a3 + β1)

a23 + 2a3β1 + β2
1 + 25

,

τ10(β) =
2h (a3 + β1)

2 (β2 + b3)

a23 + 2a3β1 + β2
1 + 25

,

τ01(β) = 1− 5h (a3 + β1)(β2 + b3)

a23 + 2a3β1 + β2
1 + 25

.

{
g1(u, v, β) = σ20(β)u

2 + σ11(β)uv +O
(
(|u|+ |v|)3

)
,

g2(u, v, β) = τ20(β)u
2 + τ11(β)uv +O

(
(|u|+ |v|)3

)
,

σ20(β) = −
20h (a3 + β1)

(
a23 + 2a3β1 + β2

1 − 75
)

(a23 + 2a3β1 + β2
1 + 25) 2

,

σ11(β) =
100h (a3 + β1 − 5) (a3 + β1 + 5)

(a23 + 2a3β1 + β2
1 + 25) 2

,

τ20(β) = −
5h (a3 + β1)

(
a23 + 2a3β1 + β2

1 − 75
)
(β2 + b3)

(a23 + 2a3β1 + β2
1 + 25) 2

,
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τ11(β) =
25h (a3 + β1 − 5) (a3 + β1 + 5) (β2 + b3)

(a23 + 2a3β1 + β2
1 + 25) 2

.

The characteristic equation of the Jacobian matrix(
σ10(β) σ01(β)

τ10(β) τ01(β)

)
for system (22) at β1 = β2 = 0 yields eigenvalues

of the form −1
2 ±

√
3
2 ι. Let q and p represent the eigenvectors corresponding

to the Jacobian matrix of (22) and its transpose at β1 = β2 = 0, respec-

tively, with the condition that their inner product satisfies ⟨p, q⟩ = 1.

Through direct calculation, we derive the following:

q =

(
−15h+ 6 + 5i

√
3h

4ρ

)
,

and

p =

(
i

10
√
3h

5
√
3h+3i(5h−2)

40
√
3hρ

)
,

where

ρ :=

√
15h(5h− 3) + 9

5h(h+ 1)− 1
.

Then, every Y ∈ R2 can be expressed uniquely in the following manner:

Y = zq + z̄q̄, z ∈ C.

Thus, the complex representation of the map (22) can be expressed as

follows:

z −→

(
−1

2
+

√
3

2
ι

)
z +

∑
2≤j+k≤3

1

j!k!
Gjk(β)z

j z̄k, (23)

where

G20(β) = −
25
√
3
(√

3 + 3i
)
h2τ20(β)

ρ

−
2i
(
4
√
3ρ2σ11(β) + 6

√
3ρσ20(β)− 6

√
3ρτ11(β)− 9

√
3τ20(β)

)
5hρ
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+
12iρ2σ11(β) + 4

√
3ρ2σ11(β) + 36iρσ20(β)√

3ρ

+
12
√
3ρσ20(β)− 36iρτ11(β)− 81iτ20(β)− 9

√
3τ20(β)√

3ρ

+
5h√
3

(
(−6i− 6

√
3)σ20(β) + 12i τ11(β)

)
+

5h√
3ρ

(
(45i+ 9

√
3) τ20(β)

)
,

G11(β) =
4i
√
3((5h− 2)ρσ11(β) + (5(3− 5h)h− 3)σ20(β))

5h

+

√
3
(
5(
√
3− 3i)h+ 6i

)
5hρ

(
5h(5h− 3) + 3

)
τ20(β)

+

√
3
(
5(
√
3− 3i)h+ 6i

)
5h

(2− 5h) τ11(β),

G02(β) =
5(
√
3− 3i)h+ 6i

5
√
3h

(
− 4ρ σ11(β)

)
+

5(
√
3− 3i)h+ 6i

5
√
3h

(
− 6 + 5(3 + i

√
3)h
) (

σ20(β)− τ11(β)
)

+
3
(
5h(5h− 3)

(
10h+ 3i

√
3− 3

)
+ 6i

√
3
)
τ20(β)

5hρ
,

and G30(β) = G21(β) = G12(β) = G03(β) = 0.

Next, as outlined in Lemma 9.12 [ [15], p. 448], a smoothly parameter-

dependent change of variables exists, which enables the transformation of

the map (23) into the following form:

w −→

(
−1

2
+ i

√
3

2

)
w + P (β)w̄2 +Q(β)w|w|2 +O

(
|w|4

)
, (24)

where at β1 = β2 = 0, that is, β = (0, 0) = O

P (O) =
1

2
G02(O),
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and

Q(O) =

(
1

2
+

i√
3

)
G20(O)G11(O) +

(
1

2
− 1

2
√
3
i

)
|G11(O)|2 .

Following the reasoning in Lemma 9.13 ( [15], p. 450), we obtain the

following result.

Theorem 2. If the parameters are set to their critical values a = a3

and b = b3, the system (8) experiences a 1:3 strong resonance at its pos-

itive fixed point. Assuming the non-degeneracy conditions P (O) ̸= 0 and

Re(Q(O)) ̸= 0 for the normal form coefficients of map (24) are satisfied,

the system exhibits the following dynamical behaviors in a neighborhood of

the bifurcation:

(i) The system undergoes a Neimark-Sacker bifurcation, from which a

unique closed invariant curve emerges. The stability of this curve is

determined by the sign of the real part of the normal form coefficient

Q(O). If Re(Q(O)) < 0, the bifurcation is supercritical, and the

invariant curve is stable (attracting). Conversely, if Re(Q(O)) >

0, the bifurcation is subcritical, and the invariant curve is unstable

(repelling).

(ii) In the vicinity of the fixed point, a pair of period-three orbits is cre-

ated. One of these orbits is a saddle cycle, while the stability of the

second period-three orbit is dependent on the system parameters.

(iii) The stable and unstable manifolds of the period-three saddle cycle

may intersect transversally. This intersection gives rise to a homo-

clinic structure, which can lead to complex dynamics and chaotic

behavior within specific parameter regions.

2.3 1:4 resonance

In discrete dynamical systems, a 1:4 resonance bifurcation occurs when

the Jacobian matrix at a fixed point possesses two eigenvalues, specifically

±i, lying on the unit circle, and no additional eigenvalues are present on

the unit circle.



424

If a and b are taken as bifurcation parameters, the characteristic equa-

tion of the variational matrix for system (8) evaluated at the point (x∗, y∗)

will have eigenvalues ±i under the condition that the following requirement

is met: 
2 +

h
(
3a2 − 5ab− 125

)
a2 + 25

= 0,

a(3ah+ a+ 5bh(5h− 1))− 125h+ 25

a2 + 25
= 1.

(25)

Next, assume that h ̸= 0.16108, then we have the following solution of

system (25) for a and b:
a4 : =

5
√

5h(5h− 2) + 2√
5h(3h+ 2)− 2

,

b4 : =
16√

5h(3h+ 2)− 2
√

5h(5h− 2) + 2
.

(26)

Next, assuming un = xn − x∗, vn = yn − y∗ and a = a4 + γ1, b =

b4 + γ2, where γ1 and γ2 are small perturbation parameters. Under these

assumptions, (8) transforms into the following map:(
u

v

)
→

(
j10(γ) j01(γ)

k10(γ) k01(γ)

)(
u

v

)
+

(
h1(u, v, γ)

h2(u, v, γ)

)
, (27)

where γ = (γ1, γ2)

j10(γ) = h

(
3− 200

(a4 + γ1)2 + 25

)
+ 1,

j01(γ) = − 20h (a4 + γ1)

(a4 + γ1)2 + 25
,

k10(γ) =
2h (a4 + γ1)

2 (b4 + γ2)

(a4 + γ1)2 + 25
,

k01(γ) = 1− 5h (a4 + γ1)(b4 + γ2)

(a4 + γ1)2 + 25
.

{
h1(u, v, γ) = j20(γ)u

2 + j11(γ)uv +O
(
(|u|+ |v|)3

)
,

h2(u, v, γ) = k20(γ)u
2 + k11(γ)uv +O

(
(|u|+ |v|)3

)
,
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j20(γ) = −
20h (a4 + γ1)

(
(a4 + γ1)

2 − 75
)

((a4 + γ1) 2 + 25) 2
,

j11(γ) =
100h (a4 + γ1 − 5) (a4 + γ1 + 5)

((a4 + γ1) 2 + 25) 2
,

k20(γ) = −
5h (a4 + γ1)

(
(a4 + γ1)

2 − 75
)
(b4 + γ2)

((a4 + γ1) 2 + 25) 2
,

j11(γ) =
25h (a4 + γ1 − 5) (a4 + γ1 + 5) (b4 + γ2)

((a4 + γ1) 2 + 25) 2
.

The characteristic equation of the Jacobian matrix

(
j10(γ) j01(γ)

k10(γ) k01(γ)

)
for system (27) at γ1 = γ2 = 0 yields eigenvalues of the form ±i. Let q

and p represent the eigenvectors corresponding to the Jacobian matrix of

(27) and its transpose at γ1 = γ2 = 0, respectively, with the condition

that their inner product satisfies ⟨p, q⟩ = 1. Through direct calculation,

we derive the following:

q =

( (
1
4 (2− 5h) + 1

4 i(5h)
)
µ

1

)
,

and

p =

(
2i
5hµ

5h+i(5h−2)
10h

)
,

where

µ :=

√
5h(3h+ 2)− 2

5h(5h− 2) + 2
.

Then, every Y ∈ R2 can be expressed uniquely in the following manner:

Y = zq + z̄q̄, z ∈ C.

Thus, the complex representation of the map (27) can be expressed as

follows:

z −→ iz +
∑

2≤j+k≤3

1

j!k!
Hjk(γ)z

j z̄k, (28)



426

where

H20(γ) =

(
1
5 + i

5

)
j11(γ)(5h− 1− i)

h

− (5h− 1− i)µ

10h

(
(5h− 1− i) j20(γ)

+ (1 + i− 5hi) k11(γ)
)

+

(
1
40 + i

40

)
k20(γ)(5h− (1 + i))2(5h+ (−1 + i))µ2

h
,

H11(γ) =
(1− i)

20h
(5h− 1 + i)µ

(
(5h− 2) k11(γ)

+ +
1− i

40h
k20(γ) (5h− 1− i)(5h− 1 + i)2 µ2

+ (2− 5h+ 5ih) j20(γ)
)

+
i(5h− 2)

5h
j11(γ),

H02(γ) = −
(
1
5 − i

5

)
j11(γ)(5h+ (−1 + i))

h

+
(5h+ (−1 + i))2µ(j20(γ)− k11(γ))

10h

+

(
1
40 + i

40

)
k20(γ)(5h+ (−1 + i))3µ2

h
,

and H30(γ) = H21(γ) = H12(γ) = H03(γ) = 0.

Following Lemma 9.14 [15, p. 455], it is then possible to construct

a smoothly parameterized transformation of variables that facilitates the

conversion of the map (28) into the form given below:

Λ → iΛ + L(γ)Λ|Λ|2 +M(γ)Λ̄3 +O
(
|Λ|4

)
, (29)

where at γ1 = γ2 = 0, that is, γ = (0, 0), L(0, 0) and M(0, 0) are given as



427

follows:

L(0, 0) =

(
1 + 3i

4

)
H20(0, 0)H11(0, 0) +

(
1− i

2

)
|H11(0, 0)|2

−
(
1 + i

4

)
|H02(0, 0)|2 +

1

2
H21(0, 0),

and

M(0, 0) =

(
i− 1

4

)
H11(0, 0)H02(0, 0)−

(
i+ 1

4

)
H02(0, 0)H̄20(0, 0)

+
1

6
H03(0, 0).

Theorem 3. Let the parameters be set to their critical values a = a4 and

b = b4. The system (8) then undergoes a 1:4 strong resonance at its positive

fixed point. Assuming the non-degeneracy conditions Re(L(0, 0)) ̸= 0 and

M(0, 0) ̸= 0 for the normal form coefficients of map (29) are satisfied, the

system exhibits the following dynamical behaviors in a neighborhood of the

bifurcation:

(i) The system undergoes a Neimark-Sacker bifurcation, leading to the

emergence of a unique closed invariant curve. The stability of this

curve is determined by the sign of Re(L(0, 0)).

If Re(L(0, 0)) < 0, the bifurcation is supercritical, and the invariant

curve is stable (attracting).

If Re(L(0, 0)) > 0, the bifurcation is subcritical, and the invariant

curve is unstable (repelling).

(ii) In the vicinity of the fixed point, a pair of period-four orbits is created.

One of these orbits is a saddle cycle.

(iii) When the coefficient M(0, 0) ̸= 0, the stable and unstable mani-

folds of the period-four saddle cycle may intersect. This can create

a homoclinic structure, leading to complex dynamics, including the

potential for chaotic behavior in certain parameter regions.
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3 Numerical simulation

In this section, we seek to validate the theoretical analysis presented ear-

lier by demonstrating the dynamic and chaotic behavior of the system

described by

(a) Bifurcation diagram for xn. (b) Bifurcation diagram for yn.

(c) Maximum Lyapunov exponents.

Figure 2. Plots of the system (8) at h = 0.25, b = b2 = 30.6526,
(x0, y0) = (0.538816, 1.29032) and 2.66 ≤ a ≤ 2.706.

equation (8). For this, first we discuss emergence of 1:2 strong reso-

nance and bifurcating properties related to this. We choose h = 0.25, then

1:2 strong resonance occurs at a = a2 = 2.69408 and b = b2 = 30.6526.

Moreover, at a = a2 = 2.69408, b = b2 = 30.6526, h = 0.25, the fixed point

of system (8) is (0.538816, 1.29032), and taking into account the conditions

of Theorem 1, one can see that A(O) = −0.086027, B(O) = 0.324687 and

B(O)+A(O) = 0.0666058 (that is, conditions of Theorem 1 are satisfied).

Furthermore, at h = 0.25, b = b2 = 30.6526, (x0, y0) = (0.538816, 1.29032)

and 2.66 ≤ a ≤ 2.706, the bifurcation diagrams and MLE are depicted
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in Fig. 2. Moreover, it must be noted that the 1:2 strong resonance is

strongly dependent on the step size h. One can check this occurrence

between 0.176607 < h < 0.4. Next, we take h = 0.18, then 1:2 strong

resonance occurs at a = a2 = 18.7548 and b = b2 = 99.1992. Moreover,

at a = a2 = 18.7548, b = b2 = 99.1992, h = 0.18, the fixed point of sys-

tem (8) is (3.75097, 15.0698), and taking into account the conditions of

Theorem 1, one can see that A(O) = −0.00107762, B(O) = 0.00313415

and B(O) + 3A(O) = −0.0000987133 (that is, conditions of Theorem 1

are satisfied). Furthermore, at h = 0.18, b = b2 = 99.1992, (x0, y0) =

(3.75097, 15.0698) and 18.3 ≤ a ≤ 20, the bifurcation diagrams and MLE

are depicted in Fig. 3.

(a) Bifurcation diagram for xn. (b) Bifurcation diagram for yn.

(c) Maximum Lyapunov exponents.

Figure 3. Plots of the system (8) at h = 0.18, b = b2 = 99.1992,
(x0, y0) = (3.75097, 15.0698) and 18.3 ≤ a ≤ 20.
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Figure 4. Kaplan-Yorke dimension at h = 0.25, 30.68 ≤ b ≤ 30.8,
(x0, y0) = (0.538816, 1.29032) and 2.66 ≤ a ≤ 2.706.

Figure 5. Lyapunov spectrum regions at h = 0.25, 30.68 ≤ b ≤ 30.8,
(x0, y0) = (0.538816, 1.29032) and 2.66 ≤ a ≤ 2.706.
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Moreover, at h = 0.25, (x0, y0) = (0.538816, 1.29032), 2.66 ≤ a ≤
2.706, and 30.68 ≤ b ≤ 30.8, the Kaplan-Yorke dimension (DKY ) and

the Lyapunov spectrum regions (LSR) are depicted in Fig. 4 and 5,

respectively, near 1:2 strong resonance point P2 = (2.69408, 30.6526) .

Next, we take h = 0.176, then system (8) undergoes 1:3 strong reso-

nance at its fixed point (3.29256, 11.841) about resonance point P3 =

(a3, b3) = (16.4628, 69.6593). Then, it is easy to see that at h = 0.176,

P (O) = 1.44951 + 0.488397i and Q(O) = −1.08394 + 2.16944i, which

automatically satisfies the conditions of Theorem 2. Taking h = 0.176,

b = b3 = 69.6593, and 15.8 ≤ a ≤ 16.5, the bifurcation diagram is dis-

played in Fig. 6. On the other hand, at h = 0.176, a = a3 = 16.4628, and

67 ≤ b ≤ 70, the bifurcation diagram is displayed in Fig. 7.

(a) Bifurcation diagram for xn. (b) Bifurcation diagram for yn.

Figure 6. Bifurcation diagrams of (8) at h = 0.176, b = b3 = 69.6593,
and 15.8 ≤ a ≤ 16.5.

(a) Bifurcation diagram for xn. (b) Bifurcation diagram for yn.

Figure 7. Bifurcation diagrams of (8) at h = 0.176, a = a3 = 16.4628,
and 67 ≤ b ≤ 70.
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Figure 8. Kaplan-Yorke dimension at h = 0.176, (x0, y0) =
(3.29256, 11.841), 16.35 ≤ a ≤ 16.55, and 69.5 ≤ b ≤ 69.8.

Figure 9. Lyapunov spectrum regions at h = 0.176, (x0, y0) =
(3.29256, 11.841), 16.35 ≤ a ≤ 16.55, and 69.5 ≤ b ≤ 69.8.
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Moreover, at h = 0.176, (x0, y0) = (3.29256, 11.841), 16.35 ≤ a ≤
16.55, and 69.5 ≤ b ≤ 69.8 the Kaplan-Yorke dimension (DKY ) and the

Lyapunov spectrum regions (LSR) are depicted in Fig. 8 and 9, respec-

tively, near 1:3 strong resonance point P3 = (16.4628, 69.6593) . In the

end, we check the appearance of 1:4 strong resonance, we take h = 0.2,

then a4 = 6.45497 and b4 = 20.6559, then system undergoes 1:4 strong

resonance at fixed point (1.29099, 2.66667). Moreover, taking h = 0.2,

b = b4 = 20.6559, 5.5 ≤ a ≤ 8, the bifurcation diagrams and MLE are

shown in Fig. 10. On the other hand, considering Theorem 3, we have

L(O) = −0.00984375−0.00421875i, andM(O) = 0.00140625 +0.0182813i,

clearly verifying its assumptions.

(a) Bifurcation diagram for xn. (b) Bifurcation diagram for yn.

(c) Maximum Lyapunov exponents.

Figure 10. Bifurcation diagrams and MLE of the system (8) at h = 0.2,
b = b4 = 20.6559, 5.5 ≤ a ≤ 8.
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Figure 11. Periodicity diagram near P4 point at h = 0.2, 6.4 ≤ a ≤ 8
and 20 ≤ b ≤ 21.3.

Figure 12. MLE at h = 0.2, (x0, y0) = (1.29099, 2.66667), 6.4 ≤ a ≤ 8,
and 20.0 ≤ b ≤ 21.3.
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Figure 13. Kaplan-Yorke dimension at h = 0.2, (x0, y0) =
(1.29099, 2.66667), 6.4 ≤ a ≤ 8, and 20.0 ≤ b ≤ 21.3.

Figure 14. Lyapunov spectrum regions at h = 0.2, (x0, y0) =
(1.29099, 2.66667), 6.4 ≤ a ≤ 8, and 20.0 ≤ b ≤ 21.3.
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Moreover, for h = 0.2, 6.4 ≤ a ≤ 8 and 20 ≤ b ≤ 21.3, the periodic

orbits diagram up to 50 periods about 1:4 strong resonance point P4 =

(6.45497, 20.6559) is depicted in Fig. 11. Moreover, at h = 0.2, (x0, y0) =

(1.29099, 2.66667), 6.4 ≤ a ≤ 8, and 20.0 ≤ b ≤ 21.3, MLE, Kaplan-

Yorke dimension (DKY ) and the Lyapunov spectrum regions (LSR) are

depicted in Fig. 12, 13, and 14, respectively, near 1:4 strong resonance

point P4 = (6.45497, 20.6559) .

Conclusion

This research provides a definitive investigation into the complex nonlin-

ear dynamics of the discrete-time Chlorine Dioxide-Iodine-Malonic Acid

(CDIMA) reaction model, establishing a robust link between analytical

theory and numerical validation. By focusing on the unique positive fixed

point of the system, (x∗, y∗) = (a5 , 1 + a2

25 ), we have successfully charac-

terized the codimension–two bifurcations corresponding to 1:2, 1:3, and

1:4 strong resonances. The agreement between the theoretical conditions

outlined in Theorems 1, 2, and 3 and the simulated behaviors depicted

in Figures 1–14 confirms the rich dynamical repertoire and the predictive

power of our approach.

The analysis reveals three distinct dynamical regimes, each governed

by a specific strong resonance:

• 1:2 Strong Resonance: The conditions for this resonance, gov-

erned by Theorem 1, were shown to initiate a period-doubling bifur-

cation leading to stable period-2 limit cycles. This chemically repre-

sents a rhythmic, bistable oscillation. Our numerical simulations for

h = 0.25 at the critical point (a2, b2) ≈ (2.69, 30.65) confirmed this,

satisfying the condition B(O) + 3A(O) > 0 of theorem. Figure 2

provides a clear visual of this transition, while the parameter–plane

plots in Figures 4 and 5 map the regions of stability and chaos around

the bifurcation point P2, vividly illustrating the complex dynamics

predicted by the theorem. The robustness of this finding is further

supported by the analysis at h = 0.18 (Figure 3), which demonstrates

the same phenomena under different parameters.
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• 1:3 Strong Resonance: The emergence of complex period-3 or-

bits, indicative of tripled-state nonlinear interactions, was analyzed

through Theorem 2. The non-degeneracy conditions P (O) ̸= 0 and

Re(Q(O)) ̸= 0 were verified for h = 0.176 at (a3, b3) ≈ (16.46, 69.66),

ensuring the creation of period-three orbits and the potential for ho-

moclinic structures leading to chaos. The bifurcation diagrams in

Figure 6 (varying a) and Figure 7 (varying b) numerically realize

these predictions, showing the evolution of the system into intricate

patterns. Furthermore, the Kaplan–Yorke dimension and Lyapunov

spectrum regions in Figures 8 and 9 provide a detailed map of the pa-

rameter space near the P3 point, confirming the presence of chaotic

regions arising from the interactions predicted in Theorem 2.

• 1:4 Strong Resonance: This resonance introduces a mixed regime

of periodic and chaotic dynamics, characterized by a sensitive depen-

dence on initial conditions. The dynamics are governed by Theorem

3, whose conditions Re(L(0, 0)) < 0 and M(0, 0) ̸= 0 were met for

h = 0.2 at (a4, b4) ≈ (6.45, 20.66). This guarantees the emergence of

a stable invariant curve and period-four orbits, alongside homoclinic

intersections that generate chaos. Figure 10 illustrates this path to

chaos, while the periodicity diagram in Figure 11 offers compelling

evidence by visualizing the large period–4 orbit region emanating

from the P4 point, surrounded by a sea of chaos dotted with peri-

odic windows. The comprehensive mapping in Figures 12–14 further

substantiates these findings, illustrating the rich fractal structures of

the periodic and chaotic regions in the parameter plane.

In summary, this work provides a comprehensive validation of the the-

oretical framework for codimension-two bifurcations in the CDIMA model.

The remarkable consistency between our analytical theorems and exten-

sive numerical simulations advances the fundamental understanding of how

complex oscillatory patterns and chaos arise in nonlinear chemical systems.

These insights hold practical implications for controlling reaction dynam-

ics, offering a predictive basis to stabilize oscillations or mitigate chaos

in engineered and biological systems. The integrated methodology estab-
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lished here serves as a powerful and generalizable approach for exploring

complex behaviors in other nonlinear systems.
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