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Abstract

Atom transition networks (ATNs) provide the fine-grained,
atom-level description of a chemical reaction network that is re-
quired for a detailed, mechanistic understanding of multi-step reac-
tions and for the practical analysis of isotope labeling experiments.
Conceptually, ATNs are determined completely by (i) the reaction-
level description of a chemical reaction networks, (ii) the atom-to-
atom map for each constituent reaction, and (iii) fluxes specifying
the relative contribution of different reactions to the turnover of in-
dividual reactants. The construction of ATNs, and thus the analysis
of isotope tracing experiments, is a notoriously difficult and time-
consuming task that is aggravated by symmetries in molecules and
reactions. Starting from the atom-to-atom map of a reaction we
first derive a transition matrix that exactly describes the propaga-
tion of the label from reactants to products, taking into account
the relevant symmetries. These are subsequently combined into
a ATN. Assuming a steady-state flux 𭟋 through the chemical re-
action network we derive a system of affine differential equations
describing how the reaction network is flooded by labeled atoms
from an external reservoir. This leads to a unique asymptotically
stable steady-state distribution of labels that can be computed by
solving a non-singular system of linear equations. Linear combina-
tions of these single-atom labeling patterns also solve the problem
of computing the enrichment of multiple, simultaneous labels, albeit
without providing information on correlations between distinct la-
bels. In particular, we present a simple and complete solution for an
important special case of isotope tracing experiments, namely the
specific labeling of a single atom in a single feed compound.

1 Introduction

The insertion of stable isotopic tracers into living systems and subsequent

tracking of isotopically labeled metabolites provides detailed insights into

cellular and organismal metabolic activity [35]. The analysis of such data,

however, is complicated by the complexity of metabolic networks, which

usually harbour multiple alternative pathways generating compounds with

varying efficiency [66]. Despite advances in the reconstruction of metabolic

capabilities from genome annotations [49], models of metabolic networks

are most likely incomplete. Moreover, not all metabolic reactions are nec-

essarily well understood as far as their reaction mechanism is concerned.

Isotope tracing experiments have the potential to correct, extend, and
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improve models of metabolic networks and their constitutent chemical re-

actions. A first step towards this goal is the efficient and robust prediction

of isotope labeling patterns throughout large reaction networks.

Rates of metabolic reactions usually vary over time. However, it is

generally believed that in fixed environments, fluxes will converge towards

a stable stationary state. In fact, steady-states fluxes lie at the heart of

Metabolic Flux Analysis (MFA) [20] and Flux Balance Analysis (FBA)

[46]. In this setting, isotope tracing experiments are completely described

by temporal changes of the relative abundance of the possible labeling

patterns of each metabolite.

A practical difficulty in the analysis of isotope labeling experiments is

the exponentially large number of distict isotopomers of each molecular

type, since, at least in principle, each individual atom may appear in both

labeled and unlabeled form. The most commonly employed experimental

methods, moreover, only distinguish the number but not the location of

(usually heavy) isotopes in each compound. In order to model such mass

isotopomer distributions (MID) [29], the notion of elementary metabo-

lite units (EMU) was introduced in [6]. Despite resulting simplification

of isotope-level reaction networks, however, computational efforts remain

substantial. The literature, furthermore, appears to lack a concise formal

treatment of the construction and structure of the resulting networks on

EMU-level reactions, even though several software tools have been built

upon this approach.

Position-specific isotope analysis (PSIA) has become feasible at high

resolution and throughput with modern mass spectrometry methods such

as Orbitrap that produce fragmentation spectra for each compound [22,

26]. NMR approaches to PSIA are available as well [31]. Such methods

yield in particular position specific labeling fractions λ(u) for each atom

in chemical reaction networks (CRN). However, these data are far from

routine in metabolomics applications. Hence, it is of practical interest to

better understand the formal structure of atom transition networks (ATN)

and their derivation from CRNs and fluxes on a CRN.

In this contribution we focus on the computation of transmission ma-

trices that describe the symmetries and stoichiometries of each reaction in
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Figure 1. Overview of the formal constructions developed within this
contribution. Atom-to-atom maps (AAM) derived from
chemical reaction networks (CRN) with established steady-
state fluxed are engaged for the construction of reaction-
wise raw atom transition graphs (rATG). Transformation of
rATG into atom transition graphs (ATG) account for the
fact that atom transition networks (ATN) contain only one
copy of each unique atom. Substantial reduction of com-
plexity can be further obtained by the notion of simple atom
transition graphs (sATG), which allow for the construction
of a simplified ATN by the stepwise addition of reactions.
Edge-weights are adjusted accordingly (see the respective
subsections for details). For the CRN, compounds are de-
picted as diamonds with arrows indicating reactions con-
necting them. Fluxes are denoted as integer values beside
reaction-edges, while stoichiometries other than 1 are added
to the start of reaction edges. For the residual graphs, com-
pounds are depicted as squares, atoms as circles, orbits of
symmetric atoms are surrounded by ellipses in reactants,
while marked in the same colour for products. Transition
edges are naturally directed from reactants (top) to prod-
ucts (down) but arrow tips have been omitted for the sake
of visibility. Feed and drain reservoirs are not shown explic-
itly.
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full generality, and on their composition in a large CRN. We start from

the atom-to-atom maps (AAM) of individual reactions in Sect. 3. The

emphasis in this section is on the correct treatment of symmetries, in-

cluding stoichiometric coefficients, in a single reaction. In addition to the

AAM, only the orbits of the symmetry groups of each reactant and prod-

uct molecules are needed. This results in weighted atom transition graphs

(ATG). In addition we derive a dynamically equivalent sparser representa-

tion in Sect. 3.3 to further simplify the construction. We then investigate

the concatenation of single reaction ATGs into networks, Sect. 4. A graph-

ical overview of the entire construction is given in Fig. 1.

The complexity of metabolic networks entails numerous alternative

pathways generating the same desired compound with varying efficiency

[66]. The contributions of pathways is determined by fluxes, i.e., the rate of

turnover of molecules through a pathway. Fluxes, however, are an emer-

gent property of a metabolic system that cannot be measured directly

because production and consumption of metabolites are usually superpo-

sitions determined by multiple reactions. In many situations, furthermore,

metabolic systems can be assumed to be in or close to a steady-state. Flux

estimates are nevertheless crucial for a great number of research goals re-

lating to metabolic phenotypes and associated function and adaptations,

including the modeling of metabolic diseases [11] and metabolic engineer-

ing [5]. Fluxes can be inferred in many cases from the structure of the

CRN in conjunction with additional constraints, such as known feed sets

and objective functions such as the biomass function. FBA [49] and MFA

[20] are well-established methods for this task. It is very difficult, however,

to verify the predicted fluxes experimentally.

Isotope labeling data can be used for this purpose. In the most general

case, relative abundances of stable isotopes at specific positions of each

metabolite are accessible at least in principle. The connection between

fluxes and isotope labeling patterns, however, is based on a detailed mech-

anistic model that requires additional information. Three distinct tasks

are of particular interest in this context:

(i) Given a flux, predict the expected pattern of isotope labels
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(ii) Given experimental and predicted measurements, utilize their dis-

crepancies to adjust estimated fluxes and possibly also the underly-

ing network itself.

(iii) Find a good labeling strategy to distinguish with minimal experi-

mental effort between competing models for a CRN and fluxes.

While it is possible to consider also temporal changes in metabolic fluxes

[4], it is more common to consider isotope labeling data in a setting of

constant fluxes. The majority of currently available methods nevertheless

relies on solving large, complex systems of differential equations [67, 68,

69]. A major complication arises from correlations between isotope labels

that are propagated together through a reaction. Predicting the MID,

which is the quantity most easily accessible by mass spectrometry methods,

therefore requires that one keeps track of individual isotopomers or at least

all EMUs [6].

In contrast, position-specific label abundances are independent of cor-

relations between atoms. The results of Sect. 3 and 4 in fact imply that

they can be computed directly from fluxes and weights of the atom transi-

tion graphs. In Sect. 5 we use this fact to derive a simple dynamical system

describing the propagation of atom-wise isotope labels through an entire

CRN. Assuming that the underlying metabolic network already features

steady fluxes, these can be traced using the temporal changes of rela-

tive, position-wise isotope abundances only. The dynamics of this process

is described as a simple linear inhomogenous system of ordinary differ-

ential equations that can be solved explicitly. Moreover, the qualitative

behaviour can be analyzed completely. We close with examples illustrating

the impact of the formalism developed here.

2 Preliminaries

2.1 Notation

Graphs and Molecules A graph G = (V,E) consists of a set of vertices

V and a set of edges E such that every edge connects a pair of vertices,
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i.e. {x, y} and (x, y) for x, y ∈ V in undirected and directed graphs,

respectively. Throughout, we will consider vertex and edge labels defined

as functions ℓV : V → LV and ℓE : E → LE , where LV and LE are finite

sets of labels. Molecules thus appear as connected undirected graphs with

vertex labels representing atom types and edge labels representing bond

types. We refer to [24] for a more extensive discussion of molecular graphs.

For directed graphs we distinguish the set of in-edges

Ein(v) :={(u, v) ∈ E|u ∈ V } and out-edges Eout(v) := {(v, u) ∈ E|u ∈ V }
at each vertex v ∈ V . Moreover, it will be useful to associate a weight:

w : E → R to each edge. The weighted out-degree is then (Dout)vv :=∑
e∈Eout(v)

w(e). Analogously, the weighted adjaceny matrix Aw has en-

tries Aw
uv := w((u, v)) for (u, v) ∈ E and Aw

uv := 0 otherwise. Denoting by

Dout the diagonal matrix of weighted out-degrees, we define the Laplacian

matrix of a weighted directed graph as

L = Dout −Aw (1)

For each vertex v define the set of reachable vertices such that z ∈
RG(v) if there is a path from v to z. A vertex set W in an undirected

graph G is connected if for all x, y ∈ W : y ∈ R(x) and x ∈ R(y). For di-

rected graphs, W is called strongly connected if the same condition holds.

W is weakly connected in a directed graph if it is connected in the undi-

rected transformation of it ignoring edge direction. We call maximal sets

W respectively the strongly connected, weakly connected, or connected

components of G.

A bijective map µ : V (G) → V (H) between two graphs G and H is

an isomorphism if it preserves adjacency and labels. An automorphism

of a graph G is a map ϱ : V (G) → V (G) that preserves adjacency and

labels, i.e., an isomorphism of G to itself. The automorphisms of G form

the group Aut(G) under composition. The set orb(x) := {y ∈ V (G)|∃ϱ ∈
Aut(G) : ϱ(x) = y} is called the orbit of x. Clearly, the orbits form a

partition of V (G).
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Chemical reactions, directed hypergraphs and atom-to-atom

maps In its most general form, a chemical reaction r can be understood

as a transformation between multi-sets of molecules of the form∑
c∈C

s−cr · c −→
∑
c∈C

s+cr · c (2)

where the stochiometric coefficients s−cr ≥ 0 and s+cr ≥ 0 denote the mul-

tiplicity of molecule c among the reactants and products of reaction r,

respectively. Two alternative representations of a reaction will be used

here. First, we can interpret each reaction as a directed multi-hypergraph

whose vertex set C consists of the molecules. Each edge corresponds to

a reaction r and can be formally written as pair of multisets (r−, r+),

where c is contained in r− with multiplicities s−cr if s−cr > 0 and in r+ with

multiplicities s+cr if s+cr > 0, respectively. Formally this can be written as

r± =
∑

c∈C s
±
cr · c. These multisets are known as complexes in the lit-

erature on chemical reaction networks [23]. Each reaction r thus can be

thought of as a transformation r− → r+ of two complexes. Generalizing

the notation for graphs we write r ∈ Ein(c) if c ∈ r+, i.e., if compound c

is a product of reaction r and r ∈ Eout(c) if c ∈ r−, i.e., if compound c is

a reactant in reaction r.

By definition, a complex r± is simply the disjoint union of the reactants

or products, respectively. Each molecule, on the other hand, can itself be

represented as a connected undirected graph. A complex r± thus has a

representation as an undirected graph Q±
r , with connected components

that are the molecular graphs of the contributing chemical compounds. A

key property of chemical reactions is the preservation of atoms.

Definition 1. An tom-to-atom map (AAM) for a reaction r = (Q→ Q′)

is a bijection of the vertex sets of the complexes φ : V (Q) → V (Q′) that

preserves atom types and hence satisfies ℓV (Q)(x) = ℓV (Q′)(φ(x)) for all

x ∈ V (Q).

The AAM of r provides an atom-level description of the chemical reac-

tion, and thus of the bonds that change in the course of the reaction. For

a detailed investigation of the structure of AAMs we refer to [27].
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Reaction Networks and Fluxes In order to define flows on directed

(multi)hypergraphs such as CRNs, first, we identify subsets F,D ⊆ C of

compounds that take on the role of food and drain. For these we add

transport reactions of the form

∅c −→ c and c′ −→ ∅c′ (3)

and add the external feed and drain sets CF := {∅c|c ∈ F} and CD :=

{∅c′ |c′ ∈ D} to the network, setting C̃ := C ∪· CF ∪· CD. These des-

ignate external reservoirs for the reaction network under consideration.

The “pseudo-reactions” (∅c → c) and (c′ → ∅c′) transport molecules of

type c ∈ F into the system and remove molecules of type c′ ∈ D. We

write RF and RD for these sets of feeding and draining reactions and set

R̃ = R ∪· RF ∪· RD. We note that in some cases it may be useful to model

the concerted transport of multiple compounds. This can be handled, how-

ever, by inserting a formal reactant or product of such reactions together

with import or export of the formal intermediate. We therefore do not

sacrifice generality when considering import and export of individual com-

pounds only. We will make explicit use of this simple form of the import

and export later-on.

A (hyper)flow on a directed multi-hypergraph, possibly with both feed-

ing and draining reactions, is a function 𭟋 : R→ R+
0 such that for all c ∈ C

holds ∑
r∈R̃

s+cr𭟋(r) =
∑
r∈R̃

s−cr𭟋(r) (4)

This condition is known as flux balance. In our discussion below it will be

convenient to attach further formal feed and drain reactions that feed the

set CF and drain the set CD. In this case, flux balance extends to C̃.

Every hyperflow describes a stationary state in the sense that for each

compound c, the total production plus influx by feeding equals the total

consumption plus outflux by draining. The notation simplifies consider-

ably by introducing the stoichiometric matrix S with entries Scr := s+cr−s−cr
for all c ∈ C and all reactions r ∈ R, including the feeding and draining

reactions. For simplicity, we do not include the extra vertices ∅s and ∅d in
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the definition of S. In vector form, the flow condition simplifies to S𭟋= 0.

A flux is a function 𭟋 : R × [0,∞] that measures how many instances

of the complex r− are transformed to r+ per time unit at a given time t.

In a deterministic setting, we have

dx

dt
= S𭟋(t) (5)

where x is the vector of concentrations xc of compounds c ∈ C, see [39]

for more details.

This expression reduces to S𭟋(t) = 0 in the steady-state, i.e., if the

flux becomes independent of time. A steady-state flux, 𭟋̇= 0, therefore

satisfies S𭟋(t) = 0 and hence also flux balance. The terms (hyper)flow and

steady-state flux, thus, are synonymous.

2.2 Flux decomposition theorem for chemical

reaction networks

A well-known result for network flows is that every flow f : R→ R can be

decomposed into constant flows along paths from source to drain and flows

that are constant along directed cycles [25]. Moreover, the total out-flow

of the source necessarily equals the total in-flow into the sink. Flows on

hypergraphs [1, 13] in general do not satisfy analogous results. Similar

statements, however, hold for chemical reaction networks. The properties

discussed in this section seem to be known in the community, however,

there does not appear to be a convenient reference. We therefore include

proofs here for completeness.

We start by briefly considering properties of CRNs. A cornucopia in a

reaction network (C,R) is a non-negative linear combination of reactions

that yields a net production of some compound c′ ∈ C without compensat-

ing net consumption of building material. This situation is described by a

function g : R → R+
0 such that

∑
r∈R Scrg(r) ≥ 0 for all c ∈ C, and there

is at least one c′ ∈ C such that
∑

r∈R Sc′rg(r) > 0. Clearly, cornucopias

and abysses, their counterparts with
∑

r∈R Scrg(r) ≤ 0 and c′ ∈ C such

that
∑

r∈R Sc′rg(r) < 0, cannot exist in CRNs since each reaction r ∈ R

conserves all participating atoms, and hence in particular molecular mass.
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This property is captured abstractly by the existence of a strictly positive

reaction invariant [32]:

Definition 2. Let S be the stoichiometric matrix of a reaction network

(C,R). Then (C,R) is conservative if there is a function µ : C → R such

that
∑

c∈C µ(c)Scr = 0 and µ(c) > 0 for all c ∈ C.

This condition is equivalent to ruling out the existence of abysses and

cornucopias and ensures that the compounds c ∈ C have a representation

as sum formulas and structure formulas such that each reaction r ∈ R

preserves atoms [41].

Definition 3. A flow 𭟋 of (C̃, R̃) is a circulation if 𭟋(r) = 0 for all

r ∈ RF ∪· RD.

Circulations are sometimes also called futile cycles [41]. The absence

of abysses and cornucopias suggests that every flow is either a circulation

or has positive values on both feed and drain reactions. This is indeed the

case:

Lemma 1. Let (C̃, R̃) be a conservative reaction network and let

𭟋 : R̃→ R+
0 be a flow without drain, i.e., 𭟋(r) = 0 for all r ∈ RD, or

a flow without feed, i.e., 𭟋(r) = 0 for all r ∈ RF . Then 𭟋 is a circulation.

Proof. Writing g◦(r) := 𭟋(r) for r ∈ R and g◦(r) := 0 for r ∈ RF , as

well as gF (r) := 𭟋(r) for r ∈ RF and gF (r) := 0 for r ∈ R we obtain

𭟋 = g◦ + gF since, by assumption, there is no draining reaction. Using

that 𭟋 is a flow, we have S𭟋 = Sg◦ + SgF = 0. Let C+ be the set of

species with an active feeding reaction, i.e., [SgF ]c > 0 for all c ∈ C+ and

[SgF ]c = 0 for all c ∈ C \ C+. Therefore [Sg◦]c ≤ 0 for all c ∈ C and

[Sg◦]c < 0 for c ∈ C+ ⊆ C. If C+ ̸= ∅ then g◦ is an abyss in (C,R), which

is not possible in conservative reaction networks. If C+ = ∅ then there is

no feeding reaction, i.e., gF = 0, and thus 𭟋= g◦, which implies that 𭟋 is

a circulation. An analogous argument shows that in the absence of feeding

reactions there also cannot be a draining reaction, and thus 𭟋 is again a

circulation.
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Moreover, if 𭟋 is not a circulation, then we expect that 𭟋 specifies a

pathway, i.e., a connected sequence of reactions from feed to drain species.

We next show that this intuition is also correct:

Definition 4. A flow 𭟋 connects from food to drain if there is a sequence

of reactions r0, r1, . . . , rk, rk+1 with 𭟋(ri) > 0, r0 ∈ RF , rk+1 ∈ RD such

that a product of ri is a reactant of ri+1, for 0 ≤ i ≤ k.

Lemma 2. Let 𭟋 be a flow on (C̃, R̃) then either 𭟋 is a circulation or 𭟋
connects from feed to drain.

Proof. Denote by Γ𭟋 the graph with vertex set C̃ and edges (u, v) ∈ E(Γ𭟋)

if there is a reaction r with reactant u and product v and 𭟋(r) > 0. Flow

conservation immediately implies that only vertices in CF and CD can be

source or sink vertices in Γ𭟋.

Let Γ
(i)
𭟋 be a weakly connected component of Γ𭟋 and set 𭟋(i)(r) =

𭟋(r) if all reactants and products of r are vertices of Γ
(i)
𭟋 . In particular,

therefore, for each c ∈ V (Γ
(i)
𭟋 ) ∩ C all in- and out-flows defined by 𭟋 are

contained in 𭟋(i) and thus 𭟋(i) is again a flow. We can therefore write

𭟋=
∑

i 𭟋(i) as sum of flows on the weakly connected components of Γ𭟋.

In particular, therefore, each 𭟋(i) is either a circulation or, by Lemma 1,

contains both a feed and a drain.

Let 𭟋(i) be a flow with source and drain vertices, and assume that

Γ
(i)
𭟋 does not contain a directed path between as source vertex and drain

vertex. Then the vertex set V (Γ
(i)
f ) contains disjoint subsets V + and V −,

such that V + contains all source vertices and V − contains all sink vertices

in Γ
(i)
𭟋 . In particular, therefore, there is no reaction that has a reactant

in V + and a product in V −, and vice versa, and thus there is no edge

in Γ
(i)
𭟋 between V + and V −, contradicting the assumption that Γ

(i)
𭟋 is a

connected component. Thus Γ
(i)
f must contain a directed path between a

source and a sink vertex.

The proof of Lemma 2 immediately implies

Corollary. Let 𭟋 be a flow on (C̃, R̃). Then the restriction of 𭟋 to every

connected component of the graph Γ𭟋 is either a circulation or a pathway

connecting feed and drain.
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We say that a flow 𭟋 contains the circulation 𭟋◦ if 𭟋◦(r) ≤ 𭟋(r) for all
r ∈ R̃.

Lemma 3. Let 𭟋 be a flow on (C̃, R̃) and suppose there is a circulation

𭟋◦ on (C̃, R̃) such that 𭟋◦(r) ≤ 𭟋(r) for all r ∈ R̃. Then there is α > 0

such that 𭟋′ = 𭟋−α𭟋◦ is a flow on (C̃, R̃) and there is a reaction r∗ such

that 𭟋(r∗) > 0 and 𭟋′(r∗) = 0.

Proof. If suffices to choose α = minr:𭟋◦(r)>0 𭟋(r)/𭟋◦(r). For the corre-

sponding reaction r∗ = argminr:𭟋◦(r)>0 𭟋(r)/𭟋◦(r) we have α = 𭟋(r∗)/
𭟋◦(r

∗) and thus 𭟋′(r∗) = 0. Moreover, one easily checks that we have

0 ≤ α𭟋◦(r) ≤ 𭟋(r) for all r ∈ R̃ : and thus 𭟋′(r) = 𭟋(r) − α𭟋◦(r) ≥ 0.

Since both 𭟋 and 𭟋◦ satisfy flow conservation for all c ∈ C, this is also

true for 𭟋′ = 𭟋− α𭟋◦. Thus 𭟋′ is again a flow on (C̃, R̃).

Since 𭟋′ has at least one active reaction less than 𭟋, we conclude that

we can remove no more than |R| circulations from 𭟋until we obtain a flow

𭟋∗ on (C̃, R̃) that does not contain any further circulations. Note that the

sum of circulations is again a circulation. Therefore we have:

Proposition 1. Every flow 𭟋 on (C̃, R̃) can be decomposed into a circu-

lation 𭟋◦ and a circulation-free-flow 𭟋⊥ that contains both feed and drain

reactions.

It is worth noting, however, that this decomposition is not unique. In

general: the same flow can be written in different ways as a non-negative

linear combination of elementary flux modes [53, 70].

For flows on graphs, the total feed equals the total drain. In chemical

networks, however, particle numbers change and hence stoichiometric co-

efficients different from unity appear in Equ. (4). As a consequence, the

balance of feed and drain also takes a somewhat more complicated form:

Lemma 4. Let 𭟋 be a flow on a reaction network (C̃, R̃). Then every

reaction invariant µ : C̃ → R satisfies∑
c∈CF

µ(c)𭟋(rc) =
∑

c′∈CD

µ(c′)𭟋(rc′) (6)

where rc = (∅c → c) ∈ RF and rc′ = (c′ → ∅c′) ∈ RD.
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Proof. Let µ be a reaction invariant, i.e.,
∑

c∈C̃ µ(c)Scr = 0. Using that

the stoichiometric coefficients for the feed and drain reactions are 1 for the

external version of the feed and drain molecules, we obtain:∑
r∈R̃

∑
c∈C̃

µ(c)Scr︸ ︷︷ ︸
=0

f(r) =
∑
c∈CF

µ(c) (−s−crc)︸ ︷︷ ︸
−1

𭟋(rc) +
∑

c′∈CD

µ(c′) s+c′rc′︸ ︷︷ ︸
+1

𭟋(rc′)

+
∑
c∈C

µ(c)
∑
r∈R̃

Scr𭟋(r)︸ ︷︷ ︸
=0

Thus both the l.h.s. and the sum over the inner species vanishes and we

are left with the statement of the lemma.

For flows on graphs there is no distinction between different com-

pounds, hence the identity µ(c) = 1 is always a reaction invariant. In

chemical network, µ(c) is e.g. the number of any type of atom in com-

pound c or the molecular mass.

3 The atom transition graph of a reaction

3.1 Atom-to-atom maps

Consider a chemical reaction network (C̃, R̃) with feed and drain reactions.

Each reaction r = (Qr → Q′
r) is described by an AAM φr : V (Qr) →

V (Q′
r) that determines the fate of each atom during the reaction. We

note in passing that the assumption of an AAM immediately implies that

(C̃, R̃) is conservative since |V (c)|, the number of atoms in each compound,

is a positive reaction invariant. In principle, the fate of an atom u ∈ V (c)

in some compound c ∈ C̃ through a sequence of reactions specified as a

flux 𭟋 can be traced by “concatenating” the AAMs φr of the reactions

r that are active in 𭟋, i.e., for which we have 𭟋(r) > 0. In practice,

however, this “concatenation” is complicated by the fact that (i) given 𭟋,
multiple reactions may use and/or produce the same compound, and, (ii)

symmetries in the reactions need to be taken into account.
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Figure 2. Illustration of the oxidation of succinate to fumarate in terms
of carbon atom transition. Carbon and oxygen atoms of the
same equivalent class, for each molecule seperately, are de-
picted in the same colour. Atom transitions edges for car-
bons are depicted in the colour of their appurtenant equiv-
alence class.

We start with the latter issue, which can be understood by considering a

single reaction r = (Q→ Q′) with AAM φ in isolation. Note that we drop

the explict reference to r throughout this section. Let ϱ : V (Q) → V (Q)

and ϱ′ : V (Q′) → V (Q′) be automorphisms of the reactant and prod-

uct graphs Q and Q′, respectively. Atoms in the same orbit orbQ( . ) or

orbQ′( . ) of Aut(Q) and Aut(Q′), respectively, are chemically indistin-

guishable. This gives rise to a notion of equivalence of AAMs [33].

Definition 5. Let φ : V (Q) → V (Q′) and ψ : V (Q) → V (Q′) be two

vertex label preserving bijections. Then φ and ψ are equivalent if there

are automorphisms ϱ ∈ Aut(Q) and ϱ′ ∈ Aut(Q′) such that ψ = ϱ′◦φ◦ϱ−1.

Equivalent AAMs describe the same chemical reaction. Fix an iso-

tope labeled atom x ∈ V (Q). Then the assignments x 7→ φ(x) and

x 7→ (ϱ′ ◦ φ ◦ ϱ−1)(x) = ϱ′(φ(ϱ−1(x))) are chemically indistinguishable.

Tracing of atoms across multiple reactions therefore must keep track of

this symmetry-based ambiguity, see Fig. 2.

Definition 6. The raw (reaction-wise) atom transition graph (rATG)

T̃QQ′ of a single reaction Q −→ Q′ with AAM φ is the bipartite graph
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with vertex set V (TQQ′) = V (Q) ∪· V (Q′) and a set of directed edges

E(T̃QQ′) =
⋃

x∈V (Q)Eout(x) where Eout(x) := {(x, ϱ′(φ(ϱ−1(x))))|ϱ ∈
Aut(Q), ϱ′ ∈ Aut(Q′)}.

The edge sets Eout(x) are disjoint by construction and correspond to chem-

ically indistinguishable atom transitions. Fig. 2 shows the equivalence

classes of AAM edges for the carbon atoms in the oxidation of succinate

to fumarate. Fig. 3 illustrates the general relationship between a reactant

and a product molecule implied by an AAM.

Figure 3. Construction of the raw Atom Transition Graph from an
atom-to-atom map. Consider a reaction r = (Q → Q)′

with 2 copies of c ⊆ Q (top) as reactants and 4 copies of
c′ ∈ Q′ as product (below). We consider only the orbit
orbQ(x) of a fixed vertex x in Q and focus on a single prod-
uct molecule c′. In this example, | orbc(x)| = 3 and thus
| orbQ(x)| = s−cr · | orbc(x)| = 2× 3 = 6. Of these 6 atoms, 5
are mapped to copies of c′ by the AAM φ, and one is mapped
to a different product. In c′, four orbits Aut(c′) comprising
a total of 8 distinct atoms are reached from orbc(x). Count-
ing the number of atoms from orbQ(x) transmitted to the
orbits of Aut(Q′) we obtain η(black, x) = 1, η(red, x) = 1,
η(green, x) = 1, η(blue, x) = 2. The atom mapped to a dif-
ferent product molecule is not represented here.

3.2 Atom transition graph

It is not possible to compose the ATG of different reactions in the usual

sense, however, since in general both reactant and product complex will

be different for different reactions. The composition of reactions thus re-

quires a decomposition of the complexes into their constituent chemical
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compounds, i.e., the non-isomorphic connected components of Q and Q′,

respectively. For a reaction r = (Q → Q′) we therefore introduce the Q◦

and Q′
◦ as the disjoint union of the pairwisely non-isomorphic connected

components Q and Q′, respectively. We may think of Q◦ and Q′
◦ as the

sets of reactant and product molecules. By a slight abuse of notation we

write c ⊆ Q◦ and c′ ⊆ Q′
◦ for a reactant and product graph, respectively.

Note that we treat connected components of Q and Q′ as different even if

they are isomorphic, i.e., if the reaction r contains explicit catalysts. In

the following we will write x and y for vertices (atoms) in the complexes

Q and Q′, respectively, while at the level of molecules we will use u and v.

Definition 7. ζ : Q∪· Q′ → Q◦∪· Q′
◦ is a map such that (i) ζ(Q) = Q◦ and

ζ(Q′) = Q′
◦ and (ii) ζ(c) is a connected component of Q◦ or Q′

◦ if and only

if c is a connected component of Q or Q′, and (iii) ζ is an isomorphism

between connected components.

In particular, ζ−1(u) for some vertex u ∈ V (c) with c ⊆ Q◦ is an

equivalent class of the vertices in Q. Analogously, ζ−1(v) for some vertex

v ∈ V (c′) with c′ ⊆ Q′
◦ is an equivalent class of the vertices in Q′. The

equivalence classes ζ−1( . ) are sets of vertices in pairwise distinct isomor-

phic connected components of Q or Q′. Their size is therefore determined

by the stochiometric coefficients: we have |ζ−1(u)| = s−cr for all u ∈ V (c)

with c ⊆ Q and |ζ−1(v)| = s+c′r for v ∈ V (c′) with c′ ⊆ Q′.

The map ζ also relates symmetries of Q or Q′ with the symmetries of

the constituent connected components: For x ∈ V (Q) and y ∈ V (Q′) we

have | orbQ(x)| = s−cr · | orbc(ζ(x))| and | orbQ′(y)| = s+c′r · | orbc′(ζ(y))|,
where c ⊆ Q◦ and c′ ⊆ Q′

◦ such that ζ(x) ∈ V (c) and ζ(y) ∈ V (c′).

Definition 8. The atom transition graph (ATG) Tr = TQQ′ of a reaction

r = (Q → Q′) is obtained as the quotient of the raw atom transition

graph T̃QQ′ w.r.t. the equivalence classes ζ−1( . ) defined by the isomorphic

connected components of Q and Q′, respectively.

Atoms are chemically indistinguishable w.r.t. to a given reaction r as

they belong to the same orbit of automorphism groups of the reactant

complex Q or the product complex Q′. Therefore we have to consider the
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transmission of atoms not in terms of a fixed AAM φ : V (Q) → V (Q′) but

in terms of the orbits of Aut(Q) and Aut(Q′), respectively.

Definition 9. Let r = (Q → Q′) be a reaction, x ∈ V (Q) and y ∈
V (Q′). Then η(y, x) is the number of pairs (x′, y′) such that x′ ∈ orbQ(x),

y′ ∈ orbQ′(y) and y′ = φ(x′), i.e., (x′, y′) is a directed edge in the ATG of

Q→ Q′.

In other words, η(y, x) is the number of atoms in orbQ(x) that are

mapped by φ to an atom in orbQ′(y). The order of the arguments of

η will be convenient later-on for use in matrix notation. In particular,

η(y, x) = 0 if the AAM does not transmit an atom from orbc(x) to

orbc′(y). Moreover, since the AAM φ is a bijection, we have η(y, x) ≤
min{| orbQ(x)|, | orbQ′(y)|}. By construction η(y, x) = η(y′, x′) for x′ ∈
orbQ(x) and y′ ∈ orbQ(y), i.e., η( . , . ) is really just a function of the or-

bits. Writing Θ(Q) and Θ(Q′) for the set of orbits of Aut(Q) and Aut(Q′),

respectively, and I[ . ] for the indicator function with values I[true] = 1 and

I[false] = 0, we therefore have

η(y, x) = η(Y,A) =
∑

x̄∈A,ȳ∈Y

I[ȳ = φ(x̄)] (7)

for A ∈ Θ(Q) and Y ∈ Θ(Q′) such that x ∈ A and y ∈ Y . Moreover,

since ζ−1(u) ⊆ orbQ(x) for all x ∈ ζ−1(u), we may define η(v, u) := η(y, x)

for any x ∈ ζ−1(u) and y ∈ ζ−1(v) as well as η(Y◦, A◦) = η(v, u) for any

u ∈ A◦ and v ∈ Y◦ with A◦ ∈ Θ(Q◦) and Y◦ ∈ Θ(Q′
◦).

Lemma 5. Let r = (Q→ Q′) be a reaction. Then there is a directed edge

(x, y) in the raw ATG T̃QQ′ if and only if η(y, x) > 0.

Proof. By construction of T̃QQ′ , there is an edge (x, y) if and only if there

is an edge (x′, y′) for all x′ ∈ orbQ(x) and y′ ∈ orbQ′(y). An edge is

present if there is x′ ∈ orbQ(x) and y′ ∈ orbQ′(y) such that y′ = φ(x′).

The same condition defines η(y, x) > 0 in Equ. (7).

Since φ is a bijection, there are exactly | orbQ(x)| vertices that are the

image of orbQ(x) under φ, and each of them is contained in exactly one
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orbit Y ∈ Θ(Q′). Analogously, every y′ ∈ orbQ′(y) is the image of exactly

one x ∈ V (Q). Therefore we have∑
Y ∈Θ(Q′)

η(Y,A) = |A| and
∑

A∈Θ(Q)

η(Y,A) = |Y | (8)

A valuation λ : V (Q) → R is an arbitrary function that is preserved

throughout a reaction in the sense that the value of λ(x) is distributed

uniformly over all orbQ′(φ(x)) and each y ∈ V (Q′) receives a uniform

share of all x ∈ orbQ(φ
−1(y)). The valuation λ′ : V (Q′) → R therefore

can be written in the from

λ′(y) :=
∑

A∈Θ(Q)

1

|A|
∑
x∈A

1

|Y |
η(y, x) · λ(x)

=
∑

x∈V (Q)

η(y, x)

| orbQ(x)| · | orbQ′(y)|
λ(x)

(9)

Since η(y, x) is constant on A× Y , we infer that λ′(y) is constant on Y .

It remains to reduce these expressions to a molecule-wise representation

by reducing the expressions to orbits on the individual molecules. The key

observation is that A ∈ Θ(Q) and Y ∈ Θ(Q′) are partitioned further by

ζ( . ) in the form

A =
⋃
·
u∈A◦

ζ−1(u), and Y =
⋃
·
v∈Y◦

ζ−1(v), (10)

where A◦ = ζ(A) and Y◦ = ζ(Y ). Recall that |ζ−1(u)| = s−cur and

|ζ−1(v)| = s+c′vr, where cu and c′v are the molecules in which the atoms

u and v are located.

First note for v = ζ(y) we have λ′(v) = λ′(Y◦) = λ′(Y ) = λ′(y),

where by a slight abuse of notation we re-use λ and λ′ for the valuations

of the disjoint unions of non-isomorphic connected components. A short
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computation now yields

λ′(v) = λ′(y) =
∑

A◦∈Θ(Q◦)

1

|A◦| · s−cr

∑
u∈A◦

∑
x∈ζ−1(u)

1

|Y◦| · s+c′vr
· η(y, x) · λ(x)

=
∑

A◦∈Θ(Q◦)

1

|A◦|
∑
u∈A◦

1

s−cur
· s−cur ·

1

|Y◦| · s+c′vr
· η(v, u) · λ(u)

=
∑

u∈V (Q◦)

1

| orbc′v (v)| · s
+
c′vr

· 1

| orbcu(u)|
· η(v, u) · λ(u)

(11)

For each u′ ∈ orbc(u) and v
′ ∈ orbc′(v) we therefore have a weight

h(v, u) :=
η(v, u)

s+c′vr · | orbc′v (v)| · | orbcu(u)|
(12)

As an immediate consequence we can rewrite Equ.(9) in the following

simple form

λ′(v) =
∑

u∈V (Q◦)

h(v, u)λ(u) . (13)

Not surprisingly, the weights h( . , . ) are closely related to the structure

of the ATG:

Lemma 6. The ATG TQQ′ contains the edge (u, v) if and only if

h(v, u) > 0.

Proof. We have h(v, u) > 0 on V (Q◦) ∪· V (Q′
◦) whenever there are u′ ∈

orbcu(u) and x ∈ ζ−1(u′) such that ζ(φ(x)) ∈ orbc′v (v). In other words,

there is a directed edge from u to v if and only if there is a directed edge

between orbQ(x) and orbQ′(y) in T̃QQ′ and thus, if and only if there is a

directed edge in the ATG TQQ′ .

Lemma 7. For every reaction r = (Q→ Q′) we have
∑

u∈V (Q◦)
h(v, u) =

1 and for all v ∈ Q′
◦, and for all u ∈ Q◦ it holds∑

c′⊆Q′
◦

s+c′r
∑

v∈V (c′)

h(v, u) = s−cur . (14)
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Proof. Recalling that η( . , . ) is constant on orbits we can write η(v,A◦) :=

η(Y◦, A◦) with Y◦ = orbQ◦(v) and v ∈ Y◦ and η(v,A) := η(Y,A) with

Y = orbQ(y) for some y ∈ ζ−1(v). Using Equ.(12) we then obtain

∑
u∈V (Q◦)

h(v, u) =
∑
c⊆Q◦

∑
A◦∈Θ(c)

∑
u∈A◦

η(v, u)

s+c′vr · | orbc′v (v)| · | orbcu(u)|

=
1

s+c′vr · | orbc′v (v)|
∑
c⊆Q◦

∑
A◦∈Θ(c)

η(v,A◦)
∑
u∈A◦

1

|A◦|

=
1

s+c′vr
· 1

| orbc′v (v)|
∑

A◦∈Θ(Q◦)

η(v,A◦)

=
1

s+c′vr
· 1

| orbc′v (v)|
∑

A∈Θ(Q)

η(v,A)

Equ. (8)
=

1

s+c′vr
· s+c′vr = 1

Substituting Equ. (12) into the l.h.s. of Equ.(14) and using an analogous

short hand notation yields

∑
c′⊆Q′

◦

s+c′r
∑

Y◦∈Θ(c′)

∑
v∈Y◦

η(v, u)

s+c′r · | orbc′v (v)| · | orbcu(u)|

=
1

| orbcu(u)|
∑

c′⊆Q′
◦

s+c′r
1

s+c′r

∑
Y◦∈Θ(c′)

η(Y◦, u)
∑
v∈Y◦

1

|Y◦|︸ ︷︷ ︸
=1

=
1

| orbcu(u)|
∑

c′⊆Q′
◦

∑
Y◦∈Θ(c′)

η(Y◦, u)

=
1

| orbcu(u)|
∑

Y◦∈Θ(Q′
◦)

η(Y◦, u)

=
1

| orbcu(u)|
∑

Y ∈Θ(Q)

η(Y, u)
Equ. (8)

= s−cur

Valuations and their propagation across a reaction give rise to con-

served quantities, i.e., reaction invariants of the form
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Lemma 8. Let r = (Q → Q′) be a reaction, Λ(c) :=
∑

u∈V (c)

λ(u) for all

c ⊆ Q◦, and Λ′(c′) :=
∑

v∈V (c′)

λ′(v) for all c′ ⊆ Q′
◦. Then

∑
c⊆Q◦

Λ(c) · s−cr =
∑

c′⊆Q′
◦

Λ′(c′) · s+c′r (15)

Proof. Equ. (13) yields
∑

v∈V (c′) λ
′(v) =

∑
u∈V (Q◦)

∑
v∈V (c′) h(v, u) ·λ(u).

This implies:∑
c′⊆Q′

◦

Λ(c′) · s+c′r =
∑

c′⊆Q′
◦

∑
u∈V (Q◦)

∑
v∈V (c′)

h(v, u) · λ(u) · s+c′r

=
∑

u∈V (Q◦)

 ∑
c′⊆Q′

◦

s+c′r
∑

v∈V (c′)

h(v, u)


︸ ︷︷ ︸

s−cur by Equ. (14)

λ(u)

=
∑
c⊆Q◦

s−cr
∑

u∈V (c)

λ(u) =
∑
c⊆Q◦

s−cr · Λ(c)

We can therefore view the valuations λ( . ) as “building blocks” of

chemically relevant invariants describing the transmission of the atom-

level properties. For example, if we set λ(u) = 1 for all atoms of given

type, then Λ(c) measures the number of atoms of this type in compounds

c and Equ.(15) ensures that this is indeed a reaction invariant.

3.3 Simplified atom transition graphs

In the following, we will be interested in particular in valuations that are

constant on orbcu(u) for all c ⊆ Q and all u ∈ V (c). We shall see that in

this case we can simplify the construction of the ATN. In particular, the

averaging over the x′ ∈ orbQ(x), respectively can be omitted. In this case,

we can rewrite Equ.(9) in a different form that makes it possible to omit

some of the edges in the ATG.
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Lemma 9. Let r = (Q→ Q′) be a reaction and λ : V (Q) → R a valuation

on Q that is constant on the orbits of Aut(Q), then

λ′(Y ) =
∑

A∈Θ(Q)

1

|Y |
∑
y′∈Y

∑
x∈A

λ(x)I[y′ = φ(x)] (16)

Proof. Since λ and λ′ are constant on the orbits on Q and Q′, we can

rewrite Equ. (9) in the form λ′(y) = λ′(Y ) =
∑

A∈Θ(Q) λ(A)
1

|Y |η(Y,A).

Substituting Equ.(7) for η(Y,A), observing that λ(A) = 1
|A|
∑

x′∈A λ(x
′) =

λ(x) for all x ∈ A, and exchanging the order of the two sums yields

Equ.(16).

Since the assumption that λ(x) is contant on orbQ(x) also implies that

λ(u) is constant on orbcu(u), we can use Equ.(16) to compute λ′(v) as

follows:

λ′(v) =
∑

A∈Θ(Q)

1

|Y |
∑
x∈A

∑
ȳ∈Y

I[ȳ = φ(x)] · λ(x)

=
∑

A◦∈Θ(Q◦)

∑
u∈A◦

∑
x∈ζ−1(u)

1

|Y◦|
· 1

s+c′vr

∑
v̄∈Y◦

∑
ȳ∈ζ−1(v̄)

I[ȳ = φ(x)] · λ(u)

=
∑

u∈V (Q◦)

1

s+c′vr| orbc′v (v)|
∑

v̄∈orbc′v
(v)

∑
x∈ζ−1(u)

∑
ȳ∈ζ−1(v̄)

I[ȳ = φ(x)]

︸ ︷︷ ︸
=:h∗(v,u)

·λ(u)

(17)

We next give a direct combinatorial interpretation of h∗(v, u). To this

end we consider the subset of atoms in the equivalence class ζ−1(u) of

V (Q) with an AAM image in orbQ′(y):

ζ−1
v (u) :=

{
x′ ∈ ζ−1(u)

∣∣∃y′ ∈ ζ−1(v) : φ(x′) ∈ orbQ′(y′)
}
, (18)

Using orbQ′(y′) =
⋃
· v̄∈orbc′v

(v) ζ
−1(v̄) we observe that φ(x′) may be located

in any of the equivalence classes. Thus we can rewrite this definition as

ζ−1
v (u) =

{
x′ ∈ ζ−1(u)

∣∣∃v̄ ∈ orbc′v (v) : φ(x
′) ∈ ζ−1(v̄)

}
(19)
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Figure 4. Comparison of the atom transition graph (ATG, left) and the
simplified atom transition graph (sATG, right) of the exam-
ple given in figure 3. Note that, by construction, the sub-
graph of TQQ′ induced by the vertex set orbc(u) ∪ orbc′ (v)
is a complete bipartite graph, if and only if for any x ∈
ζ−1(u), y ∈ ζ−1(v) there is an edge (x, y) ∈ E(T̃QQ′ ).

Since for each x′ there is at most one y′ with y′ = φ(x′) we can express

the cardinality of ζ−1
v (u) as follows:

|ζ−1
v (u)| =

∑
x′∈ζ−1(u)

∑
v̄∈orbc′v

(v)

∑
y′∈ζ−1(v̄)

I[y′ = φ(x′)] (20)

Comparing this expression with Equ. (17), we obtain

h∗(v, u) =
1

s+c′vr · | orbc′v (v)|
|ζ−1

v (u)| (21)

The propagation of valuations thus can also be expressed in the following

form:

Corollary. Let r = (Q→ Q′) be a reaction and assume that the valuation

λ on V (Q◦) is constant on the orbits of c for all c ⊆ Q◦. Then

λ′(v) =
∑

u∈V (Q◦)

h∗(v, u)λ(u)
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This representation suggests to consider a simplified version of the

ATG.

Definition 10. Let r = (Q → Q′) be a reaction. Then the simplified

atom transition graph SQQ′ has vertex set V (Q◦)∪· V (Q′
◦) and edges (u, v)

if and only if ζ−1
v (u) ̸= ∅.

Each edge (u, v) of SQQ′ is associated with the weights h∗(v, u). An

illustration of the example from figure 3 is shown in figure 4. An alternative

derivation of SQQ′ and the edge weights h∗( . , . ) is given in the appendix.

In contrast to h(v, u) defined in Equ.(12), the weights h∗(v, u) are

not necessarily constant on the orbcu(u) and orbc′v (v) due to the factor

|ζ−1
v (u)|. However, the sum of the weights must be the same for all orbits

orbcu(u) on the reactants, i.e.,∑
u′∈orbcu (u)

h∗(v, u′) =
∑

u′∈orbcu (u)

h(v, u′) = h(v, u) · | orbcu(u)| , (22)

where the last equality follows from the fact that h(v, u) is constant on

orbcu(u). A short computation then yields

η(v, u) =
∑

ū∈orbcu (u)

|ζ−1
v (ū)| (23)

This result allows us to relate the ATG and the sATG as follows:

Lemma 10. SQQ′ is a subgraph of TQQ′

Proof. From Equ. (23) we conclude immediately that η(v, u) = 0 implies

|ζ−1
v (ū)| = 0 for all ū ∈ orbcu(u). Conversely, if |ζ−1

v (ū)| > 0 for at least

one ū ∈ orbcu(u) we have η(v, u) > 0. Thus h(v, u) = 0 implies h∗(v, u) =

0 and h∗(v, u) > 0 implies h(u, v) > 0. Using Lemma 5 and Definition 10

we observe that (u, v) ∈ E(SQQ′) implies (u, v) ∈ E(TQQ′).

Clearly, SQQ′ = TQQ′ if both Q and Q′ have trivial automorphism

groups. This is the case if and only if all stoichiometric coefficients in r

are unity and none of the involved molecules has any internal symmetries.

This condition is not necessary, however:
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Lemma 11. Let r = (Q → Q′) be a reaction with ATG and sATG TQQ′

and SQQ′ , respectively. Then TQQ′ = SQQ′ if and only if for each x ∈ V (Q)

there exists y ∈ V (Q′) such that φ(orbQ(x)) ⊆ orbQ′(y).

Proof. Since V (SQQ′) = V (TQQ′) by definition we only have to take care

of the edge sets. Assuming TQQ′ = SQQ′ yields E(TQQ′) = E(SQQ′). For

an arbitrary x ∈ V (Q) there exists exactly one y ∈ V (Q′) with y = φ(x)

due to the bijectivity of the AAM φ. With E(TQQ′) = E(SQQ′) we obtain

(ζ−1(x′), ζ−1(y′)) ∈ SQQ′ for all x′ ∈ orbQ(x) and y′ ∈ orbQ′(y). This,

however, implies by the definition of SQQ′ that for each x′ ∈ orbQ(x) there

exists a y′ ∈ orbQ′(y) such that y′ = φ(x′) which yields φ(orbQ(x)) ⊆
orbQ′(y). Conversely, for an arbitrary x ∈ V (Q) there exists a y ∈ V (Q′)

such that the image of the orbit of x under the bijection φ is a subset

of the orbit of y. By definition of SQQ′ this directly implies for each

x′ ∈ orbQ(x
′) : (ζ−1(x), ζ−1(y′)) ∈ E(SQQ′) for all y′ ∈ orbQ′(y). With x

arbitrary chosen, we obtain E(TQQ′) = E(SQQ′).

4 Atom transition networks

The (simplified) ATGs of individual reactions can be combined to a single

large Atom Transition Network for an entire chemical network. The con-

struction is exactly the same for ATGs with weight h( . , . ) and simplified

ATGs with weight h∗( . , . ). For the ease of presentation we will there-

fore simply refer to the ATG, even though the practical implementation is

based on simplified ATGs for the individual reactions.

Explicit catalysts in reaction r = (Q→ Q′) appear as connected com-

ponents both on the reactant side and the product side, i.e., c is a catalyst

if c ⊆ Q◦ and there is c′ ∈ Q′
◦ such that c and c′ are isomorphic. In the

final ATN, c and c′ cannot appear separately, thus we identify them along

a label-preserving isomorphism µ : V (c′) → V (c) that maps the product

to the reactant. Correspondingly, edges (u, v) with u ∈ V (c) and v ∈ V (c′)

are replaced by directed edges of the form (u, µ(v)) within c. Note that

this may result in loops (u, u) if there are edges (u, v) with µ(v) = u. Two

different reactions r1 and r2, moreover, may involve the same reactant c

and the same product c′, albeit connected with AAM that yield different
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edge sets in the ATGs. Below, we therefore define the atom transition

network as (weighted) multigraphs with loops.

It is also possible to model different compartments. In this case, all

atom labels identify also the compartment. Exchange of material between

compartments then is modeled by additional pseudo-reaction between iso-

morphic copies of a compound c that differ only in compartment infor-

mation on their atoms. The AAM for such a transport reaction then is a

graph isomorphism that preserves only atom types but not the compart-

ment information.

Definition 11. Let (C̃, R̃) a be reaction network augmented by feed and

drain reactions and an AAM for each reaction r ∈ R̃. The atom transition

network (ATN) A(C̃, R̃) is the weighted multi-graph with loops that has

the set V (A) =
⋃

c∈C V (c) of atoms in the pairwise distinct molecular

graphs c ∈ C as its vertex set – the seed and drain atoms are considered

distinct from the atoms in the inner compounds c ∈ C. The edge set E(A)

is the disjoint union of the edges of ATG for all reactions r = (Q→ Q′) ∈ R

(after merging catalysts). Each edge (u, v)r ∈ E(A) receives the weight

hr(v, u).

By construction of the ATG for individual reactions there are edges

only between atoms of the same type, and thus each weakly connected

component of an ATN contains only atoms of a single type.

Lemma 12. Let (C̃, R̃) be a conservative reaction network with feed and

drain reactions and assume that every c ∈ C \ CD is a reactant of at

least one reaction and every c ∈ C \ CF is a product of at least one reac-

tion. Then the vertex sets of the weakly connected components of the ATN

A(C̃, R̃) and the simplified ATN AS(C̃, R̃) coincide.

Proof. First we observe that for every reaction r = (Q → Q′) and every

atom v ∈ V (c′) with c′ ⊆ Q◦, all v
′ ∈ orbc′(v) are by construction in the

same connected component of both the ATN and the simplified ATN. If c

is the product of some reaction, then for each orbit Y , all v ∈ Y are in the

same connected component of both the ATN and the sATN. Hence this

is in particular true for all internal species as well as the drain species.
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Since feed reactions by construction have an isomorphism as their AAM,

the statement extends to all c ∈ C̃. It therefore suffices to consider the

quotient graphs Γ and Γs of the ATN and sATN, respectively, obtained by

contracting the orbits of all compounds. By construction, Γ and ΓS have

the same vertex sets since the vertex sets and definitions of the orbits of the

compounds are the same for A(C̃, R̃) and AS(C̃, R̃). Moreover, Equ.(23)

implies immediately that there is an edge (u′, v′) from some u′ ∈ orbcu(u)

to v′ ∈ orbc′v (v
′) in AS(C̃, R̃) if and only if there is an edge (u, v) in

A(C̃, R̃). That is, Γ and ΓS have the same edge set and thus the weakly

connected components of Γ and ΓS are the same. Making use of the

observation that orbits are always contained in a single weakly connected

component completes the proof.

Fluxes combine reactions in a manner that keeps track of the relative

intensity. Given a flux 𭟋, the values of λ′(v) of a valuation of the atoms of

compound c will therefore depend on a (linear) combination of the influxes

into c.

Definition 12. Let (C̃, R̃) a be reaction network with an AAM for each

reaction r ∈ R̃, and let 𭟋 be a flux on (C̃, R̃). Then the ATN associated

with 𭟋 is the ATN A(C̃,𭟋) := A(C̃, R𭟋) where R𭟋 = {r ∈ R̃|𭟋(r) > 0} is

the set of reactions with positive flux. Each edge (u, v) ∈ E(A(C̃,𭟋)) is

associated with an atom-wise flux

Fvu :=
∑
r

s+cvrhr(v, u)𭟋(r) (24)

Given a stationary flux 𭟋, each inner species in the network is either

not involved in an active reaction at all or it appears both as reactant

and product. The restriction of the CRN to the active reactions therefore

always satisfies the conditions of Lemma 12, and we obtain:

Corollary. Let 𭟋 be a stationary flux on the reaction network (C̃, R̃).

Then the vertex sets of the weakly connected components of the ATN

A(C̃,𭟋) and the simplified ATN AS(C̃,𭟋) coincide.

If 𭟋 is a stationary flux that is not a circulation, then A(C̃,𭟋) has at

least one feed and one drain reaction, see Section 2.2. Moreover, these
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feed and drain species are uniquely identified by the flux 𭟋; assuming that

a compound c is not both a feed and drain species at the same time, any

violation of the flux balance condition at c uniquely identifies species with

incident feed or drain reactions. Finally, each atom in a feed or drain

species is attached to feed or drain atoms.

A key observation is that for steady-state fluxes 𭟋 of the metabolites,

flux balance also holds atom-wise on the ATN:

Lemma 13. Let A(C̃,𭟋) be an ATN and let 𭟋be a steady-state flux. Then

for all w ∈ V (A(C̃,𭟋)) \ (CF ∪ CD) holds∑
u∈V (A(C̃,𭟋))

Fwu =
∑

v∈V (A(C̃,𭟋))

Fvw

Proof. The definition of Fuv and Lemma 7 yields∑
u∈V (A(C̃,𭟋))

Fwu =
∑
r

s+cwr

∑
c∈C̃

∑
u∈V (c)

hr(w, u)︸ ︷︷ ︸
=1

𭟋(r) =
∑
r

s+cwr𭟋(r)

∑
v∈V (A(C̃,𭟋))

Fvw =
∑
r

∑
c∈C̃

∑
v∈V (c)

s+cvrhr(v, w)︸ ︷︷ ︸
=s−cwr

𭟋(r) =
∑
r

s−cwr𭟋(r)

Since every inner compound c ∈ C satisfies
∑

r s
−
cr𭟋(r) =

∑
r s

+
cr𭟋(r) for

every steady-state flow, the two sums coincide.

Since A(C̃,𭟋) is an edge-weighted graph, it has well-defined weakly

connected components. Denote by W the subset of vertices in a weakly

connected component of the ATN A(C̃,𭟋). We first note that Lemma 8

remains valid with Λ(c) :=
∑

u∈V (c)∩W since for any reaction with a non-

zero flux we have hr(v, u) = 0 unless u and v are connected by an edge in

the full ATN. Finally, we note that the weakly connected components of

ATNs and sATNs coincide, see Lemma 12.
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5 Propagation of valuations on atom

transition networks

Recall that the dynamics of concentrations of the network is given as ẋ =

S𭟋(x). We can interpret this also at the level of the individual atoms,

i.e., the concentration of an atom v in c is simply given by xc. The atom-

level fluxes are given by Fvu, and hence the outflux from u is therefore

Dout
u :=

∑
v ̸=u Fvu. The corresponding Laplacian L, thus, has entries

Lvu := Dout
u δvu − Fvu . (25)

To simplify the presentation below we link all atoms v ∈ V (c) of the

external drain species c ∈ CD to an additional formal drain node ∅ that

serves as unique absorbing state. In particular, Dout
ũ for an atom ũ ∈ V (c̃)

with c̃ ∈ CD is the outflow into the drain ∅ and thus equals the inflow

Fũu through transport reaction (c→ c̃).

In order to model the time evolution of the valuations λ(u) we assume

that λ is propagated proportional to the flux 𭟋(r) through every reaction

r and consider the time evolution of γu := λ(u)xc. In the general case we

therefore have γ̇u = xcλ̇(u) + ẋcλ(u). We are in particular interested in

the case that 𭟋 is a steady-state flux, while the isotope labeling modeled

by the valuation λ is newly introduced into the system. In this case xc is

the constant steady-state concentration of compound c.

We assume that the feed species are replenished by means of an external

flux which in turn gives rise to an inflow ϖ(v) of the valuation λ(v) to

the atoms v of compounds cv ∈ CF . Under these assumptions, the time

evolution of λ has the form

xcv λ̇(v) =
∑

u∈V (A(C̃,𭟋))

(−Lvu)λ(u) +ϖ(v) (26)

for all v ∈ V (A(C̃,𭟋)). Moreover,ϖ(v) = 0 unless v ∈ V (cv) with cv ∈ CF ,

i.e., v is an atom of a feed molecule. Note that the formal drain ∅, i.e.,

the absorbing state, does not appear in this description.

In the following it will be convenient to consider the weakly connected
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components of A(C̃,𭟋) separately. In particular, we will disregard compo-

nents that are not connected to food and drain atom.

Proposition 2. Let A(C̃,𭟋) be a weakly connected ATN with feed and

drain atoms. Then the matrix −L is Hurwitz stable, i.e., the real parts

of all its eigenvalues are negative. Moreover, L−1 has only non-negative

entries.

Proof. The matrix L can be rearranged such that each strongly connected

component B of A(C̃,𭟋) appears consecutively. Denote the restriction of

L to B by LB . Since 𭟋 is not a circulation, every atom in A(C̃,𭟋) is

connected by a path to ∅ and thus every strongly connected component B

contains an atom w that drains either to a different block or, the compound

cw harboring w is a drain species, cw ∈ CD, then w drains to ∅. Thus L

cannot be written in block-diagonal form.

By construction L is a weakly diagonally dominant, i.e.,

Dout
w ≥

∑
v Fvw. The inequality is strict exactly for the feed atoms w ∈ cw

with cw ∈ CF . For each irreducible block LB , furthermore, there is at

least one species w with Dout
w >

∑
v∈B Fvw. Thus LB is irreducibly diag-

onally dominant for each B. Moreover the diagonal entries Luu = Dout
u

are strictly positive, i.e., L is a so-called L-matrix. It is well known that

all eigenvalues of an irreducibly diagonally dominant L-matrix have posi-

tive real parts [59]. Moreover, the block-triangular structure of L implies

that its spectrum is the union of the spectra of the blocks LB . Thus all

eigenvalues of L have a positive real part.

Using e.g. Thm.2.2.4 of [7], a non-singular weakly diagonally dominant

L-matrix is equivalent to a weakly diagonally dominant non-singular M-

matrix. Alternatively, it is not difficult to verify that L is a “weakly chained

diagonally dominant” L-matrix, or “a matrix of positive type” [12], which

implies that it is non-singular [8, 56] and an M-matrix [7]. Therefore L

satisfies the fifty properties listed in Thm.(2.3) of [10]. In particular, L is

“inverse positive”, i.e., L−1 has only non-negative entries.

Let us write X for the diagonal matrix of atom-wise concentrations,

i.e., Xvw := xcwδvw for all v, w ∈ V (A(C̃,𭟋)). Considering λ as a column

vector indexed by the atoms v ∈ V (A(C̃,𭟋)), we may rewrite Equ.(26) in
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the form

λ̇ = Aλ+ b (27)

with A := −X−1L and bv := ϖ(v)/xcv , i.e., b = X−1ϖ.

The solutions of ordinary differential equations of the form Equ.(27)

are well known [62].

Proposition 3. If A is Hurwitz stable and b is a constant, then the initial

value problem Equ. (27) with initial condition λ(t = 0) = λ0 is solved

uniquely by

λ(t) = λ∞ + exp(tA)(λ0 − λ∞) with λ∞ = −A−1b . (28)

Moreover, the stationary solution λ∞ is globally stable.

Proof. In brief, the coordinate transformation µ := λ + A−1b reduces

Equ.(27) to the linear ODE µ̇ = Aµ.

It remains to show that A = −X−1L is also stable. Using well known

results we may state:

Proposition 4. Let M be a matrix with non-positive off-diagonal entries.

If the real parts of all eigenvalues of M are positive then the real parts of

all eigenvalues of DM are positive for positive diagonal matrices D.

Proof. Since the real parts of all eigenvalues are positive, M is indeed a

non-singular M-matrix by Thm.(2.3) in [10] and hence in particular all

principal minors are positive. As noted e.g. in [37], this property as well

as the non-negativity of the off-diagonal entries are preserved under mul-

tiplication with D, and thus using Thm.(2.3) in [10] again, DM is also a

non-singular M-matrix and hence the real parts of all its eigenvalues are

again positive. Alternatively, [9, 30] showed that stability and D-stability

are equivalent for Metzler matrices, i.e., matrices with non-negative off-

diagonal elements.

As a consequence of Prop. 2 the Laplacian L satisfies the conditions of

Prop. 4, and hence we obtain:
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Corollary. Let L be the Laplacian of a weakly connected ATN with source

and drain atom. Then the matrix A := −X−1L is Hurwitz stable, A−1

has only non-positive entries, and hence λ∞ is non-negative for all non-

negative vectors b.

A practical problem with applying this result directly is that it involves

the steady-state concentrations xc of all metabolites c. It is well known,

however, that these cannot be computed from the structure of the ATN and

the steady-state fluxes alone. Additional information, most prominently

Gibbs energies for the reactions, is required in general, see e.g. [60]. We

will therefore avoid the assumption of concrete values of xc as much as

possible in the following.

Hence start from 0 = −Lλ + ϖ. We first consider u ∈ V (cu) with

cu ∈ CF . By assumption, we only have a single outflux reaction from cu,

namely the transport from u to its counterpart u′ in the same molecule at

the inside of the system with flux 𭟋(cu → c′u). Thus we have D
out
u = Fu′u.

The only influx is the replenishing from ∅, which does not appear as

an atom in the ATN A(C̃,𭟋). As implicitly defined in Equ.(26), ϖ(u)

subsumes the valuation transported to the feed atom u. By flux balance,

every steady-state solution satisfies Dout
u λ∞(u) = ϖ(u). Thus it suffices to

solve [Lλ∞]v = 0 for the non-feed atoms v with the values λ∞(u) already

fixed for the feed atoms. In this manner we completely avoid using X.

Before we proceed, we note some important consequences of the fact

that A−1 has only non-positive entries. Since the influx ϖ and thus also b

is non-negative and has positive entries only for feed atoms, we can write

the steady-state flow λ∞ as

λ∞(u) =
∑

w∈V (CF )

λ∞(w)ϑw(u) with

ϑw := −A−1bw = L−1XX−1ϖw = L−1ϖw

(29)

where bw is the inflow into the single atom w ∈ V (CF ) adjusted such that

λ∞(w) = 1, i.e., ϖw(w) := Dw and ϖw(w
′) := 0 for w′ ̸= w. We may think

of ϑw as a basis labeling pattern obtained from marking a single influx

atom. Inverse positivity of L ensures that ϑw is a non-negative vector.
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As an immediate consequence we note that the steady-state solutions are

monotonic in the following sense:

Corollary. Let λ∞ and λ′∞ be two stationary solutions of Equ.(26) for a

weakly connected ATN with source and drain atom and assume λ∞(w) ≥
λ′∞(w) for all seed atoms w ∈ V (CF ). Then λ∞(u) ≥ λ′∞(u) for all

u ∈ V (A(C̃,𭟋)).

Increasing the labeling fraction λ∞(w) of some seed atom w ∈ V (CF )

therefore never decreases the stationary labeling fraction λ∞(u) of any

other atom u in the ATN.

It remains to consider the special case that all feed atoms are fully

labeled, i.e., that λ∞(w) = 1 for all w ∈ CF . The following result shows

that in this case the entire part of the ATN that is reachable from the feed

is flooded with the marks in the feed.

Theorem 5. Consider λ∞ being a stationary solution of Equ.(26) for a

weakly connected ATN with source and drain atom and let λ∞(w) = 1 for

all feed atoms w ∈ V (CF ). Then λ∞(u) = 1 for all u ∈ V (A(C̃,𭟋)).

Proof. It suffices to show that the all-one vector is a solution of Lλ∞ = ϖ1,

where ϖ1(w) = Dout
w for w ∈ V (CF ) and ϖ1(w) = 0 otherwise, because

uniqueness is ensured by Prop.(3) and the influx vector ϖ1 is adjusted

such that λ∞(w) = 1 for all w ∈ V (CF ) as required. Writing 1⃗ for the all-

one column vector, and V := V (A(C̃,𭟋)) we have [L1⃗]w =
∑

u∈V Lwu =

Dww = ϖ(w) for w ∈ V (CF ) since feed atoms have no other influx than

ϖ(w). For v ∈ V \ (V (CF ) ∪ V (CD)) flux balance implies

[L1⃗]v =
∑
u∈V

Lvu = Dvv −
∑
u̸=v

Fvu =
∑
u ̸=v

Fuv −
∑
u̸=v

Fvu = ϖ(v) .

For the drain vertices w ∈ CD, finally, we have Dww =
∑

u̸=w Fwu by

assumption, and thus [L1⃗]w = 0. Thus 1⃗ is indeed a solution of the steady

equation λ∞L = ϖ1, and hence λ∞ = 1⃗.

Since A is monotone (i.e., A−1y is non-positive for any vector y with

non-positive entries) and Hurwitz stable, exp(tA)y is coordinate-wise de-

creasing for any non-negative vector y. Thus λ(t) remains between 0 and
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1 provided this is true for λ0 and λ∞. Since the external flow ϖw is used

here only as a formal device to model a temporally constant labeling of

the feed atoms, we assume λ0(w) = λ∞(w) for all w ∈ V (CF ).

A valuation λ, thus, can be interpreted as the (expected) fraction of a

label, provided λ∞(w) = λ0(w) ∈ [0, 1] for the atoms w ∈ V (CF ) of the

feed set. The dynamics of Equ. (28) then describes how a steady-state flux

acts to distribute the label throughout the weakly connected component

of the ATN that contains w. Usually, we will assume λ0(u) = 0 for the

non-feed atoms u /∈ V (CF ). This assumption is not necessary, however,

and may be replaced for instance by the natural isotope distribution.

We finally show that the graph-theoretic structure of the ATN alone

determines the set of atoms that are eventually reached by isotope labels.

To this end we consider the stationary labeling patterns ϑw defined in

Equ. (29) for single labeled feed atom:

Theorem 6. Let A(C̃, R̃) be an ATN with feed set CF and a feed atom

w ∈ V (CF ). Then for all u ∈ V (A(C̃, R̃)) holds ϑw(u) > 0 if and only if

u is reachable from w.

Proof. Denote by T the breadth-first search tree in A(C̃, R̃) rooted at

w ∈ CF . By construction we have (ϑw(w) = 1). Moreover, we know that

ϑw(u) ≥ 0. We proceed by induction and assume that at every step of

BFS traversal ϑw(u) > 0 holds for all vertices visited so far. Let v be an

unvisited out-neighbor of u. Then there is a reaction r = (Q → Q′) with

positive flow 𭟋r such that hr(u, v) > 0 and hence in particular Fvu > 0.

In particular, v /∈ V (CF ) since feed atoms have no incoming arcs (except

from the formal source ∅, which we are not considering). The stationary

distribution satisfied [Lϑw]v = 0, and thus

ϑw(v)D
out
v =

∑
u′

Fvu′ϑw(u
′) ≥ Fvuϑw(u) > 0

where we use the induction hypothesis ϑw(u) > 0. Since Dout
v > 0 for

all v, we have ϑw(u) > 0 for all u reachable from w. For the converse

we first note that we can restrict ourselves to the weakly connected com-

ponent of the ATN that contains the feed for w. If there is more than
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one component, L can be written in block-diagonal form, which is also

true for L−1. Since only the block containing w has an influx ϖ, we

obtain ϑw(u) = [Lk
−1o⃗]u = 0 for all u in all other weakly connected com-

ponents. The vertex set W of the component containing w is naturally

partitioned into a set W1 reachable from w and its complement W2. By

assumption, there is no edge from W1 into W2 and thus the Laplacian has

block-triangular form and all vertices u with ϖ(u) > 0 belong to W1. The

equation for the steady-state flow on W2 thus becomes L(W2)λ∞ = 0,

and the restriction of ϑw to W2 vanishes since Lϑw = b has a unique

solution.

That is, reachability in the ATN, and thus the graph structure of the

ATN alone, already specifies all atoms that will eventually carry an isotope

label.

6 Superpositions of pathways

A straightforward application of isotope labeling is to distentangle alter-

native pathways. At least four well-characterized pathways have been

described in the literature that collectively amount to the conversion of

glucose into pyruvate: In addition to the classic model of glycolysis, the

Embden-Meyerhoff-Parnas (EMP) pathway [52], the Entner-Doudoroff

(ED) pathway [18], the oxidative Pentose Phosphate Pathway (PPP) [61],

as well as the generation of glycerinaldehyd 3-phosphate and subsequent

conversion using Transketolase-1 (TKT-1) are wide-spread [14, 18, 57].

The four pathways yield distinct labeling patterns in the end product pyru-

vate depending on the position of the label in the glucose feed, see Figure

5 and also [42].

During the oxidative part of the PPP, 6-phosphogluconate is decar-

boxylated to ribulose 5-phosphate, thereby loosing the isotopic labeled

carbon atom if 13C1-glucose is engaged as isotopic tracer. Hence, pyruvate

generated purely via the PPP (oxidative part as well as TKT-1) is com-

pletely unlabeled. In contrast, ED and EMP each yield 50% single-labeled

and 50 % unlabeled pyruvate. The labels, however, emerge at different po-
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Figure 5. Schematic depiction of the degradation of single la-
beled 13C1-glucose and 13C2-glucose via four different
metabolic pathways: Entner-Doudoroff (ED), Entner-
Meyerhoff (EMP), oxidative Pentose Phosphate Pathway
(PPP), and generation of glycerinaldehyd 3-phosphate as
well as subsequent susbtrates by Transketolase-1 (TKT-1).

sitions due to different catalytic mechanisms and intermediates. ED and

EMP, therefore, are indistinguishable via conventional, MID based, mass

spectrometry but exhibit distinct positional enrichment: The carbon atom

in pyruvate with the highest oxidation state exhibits positional enrichment

of 50% when 13C1-glucose is degraded via ED and all the others carbon are

fully depleted. In contrast, degradation of 13C1-glucose via EMP yields a

positional enrichment of 50% for the third carbon atom only. 13C2-glucose,

on the other hand, is not suitable to discriminate between the two path-

ways even in positional enrichment analysis. Isotopomers generated via

TKT-1 are unlabeled, while the oxidative part of the PPP yields pyruvate

isotopomers single-labeled at position 1 or double-labeled at position 1 and

3, additionally. Nevertheless, discrimination of glycolysis from PPP is of

great importance since it reflects the ability of cells to cope with oxidative

stress. Tumor cells, for example, exhibit higher potential of PPP usage

in order to generate NADPH for glutathione reduction and elimination of
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oxidative species such as H2O2 [58].

In many organisms more than one glycolytic pathway may be active

concurrently, see e.g. [47]. It is therefore of interest to disentangle the

relative contributions of distinct pathways. To this end, we first note that

each pathway can be thought of as a flux 𭟋(k) normalized such that the

influx from a single feed species ∅c ∈ CF is set to unity, i.e., 𭟋(k)
∅c→c = 1.

In this case D
out(k)
u = 1 for each atom u ∈ V (∅c). It is important to keep

in mind that such a normalized pathway is a purely structural feature of

the underlying chemical reaction network. The input labeling ϖ is used

by all competing pathways indiscriminately.

Pathway Deconvolution Problem. Given a set of m normalized path-

ways 𭟋(k), k = 1, 2, . . . ,m, and a known input labeling ϖ• on the feed

compounds CF , can we identify the relative fluxes through the m compet-

ing pathways from measurements of the steady-state labeling pattern λ∞?

Let us denote by L̂(k) the Laplacian of the normalized pathway 𭟋(k)

and let ϖ(k) denote the corresponding normalized input flux. Additivity

of flows allows us to consider the weighted superposition of the pathways:

L :=

m∑
k=1

αkL̂
(k) and ϖ• :=

m∑
k=1

αkϖ
(k) with αk ≥ 0 for 1 ≤ k ≤ m.

(30)

Since the absolute value of the flux only affects the time-scale in Equ.(26)

but not the steady-state vector λ∞ we may require, in addition, that∑m
k=1 αk = 1. Then

λ∞ =

(
m∑

k=1

αkL̂(k)

)−1

ϖ• (31)

Importantly, it is not a linear combination of labeling patterns gen-

erated by the individual pathways, which would be computed as λ
(k)
∞ =

L−1
(k)ϖk. The reason for the non-linear dependence is that labels are mixed

at each intermediate at which pathways intersect.

Measurements of λ∞(v) for a sufficient number of well-chosen atoms of
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intermediates or drain species can be used to determine the relative flows

αk through the different pathways.

Proposition 7. The pathway deconvolution problem has either a unique

solution or a linear manifold of degenerate solutions.

Proof. Using the fact that the matrix L is invertible we can rewrite Equ. 31

in the form
m∑

k=1

αk

[
L̂(k)λ∞

]
u
= ϖ•(u) . (32)

The vector (α1, . . . , αm) is therefore given by a system of linear equations

that includes the additional constraint that the αk add to unity. Standard

results on systems of linear equations immediately imply the claim.

If there is a unique solutions, moreover, m − 1 well-chosen, i.e., in-

dependent measurements together with the normalization conditions are

sufficient to completely determine the relative activity of the individual

pathways.

In more complex examples examples, successful labeling strategies may

depend on the metabolic state of the cell. As an example, we consider the

synthesis of isopentenyl pyrophopshate (IPP) from pyruvate and glyceri-

naldehyde 3-phosphate (GA3P) [63]. There are two major synthesis path-

ways, the mevalonate pathway (MVA) and the MEP pathway, see Figure

6. The MVA pathway involves the generation of β-hydroxy-β-methyl-

glutaryl-CoA (HMG-CoA), which requires two acetyl-CoA molecules for

acetoacetyl-CoA and one additional acetyl-CoA is used subsequently to

synthesize HMG-CoA. This multiple use of acetyl-CoA accounts for the

complicated structure of the ATN in this case and the generation of mul-

tiple isotopomers depending on the particular labeling strategy.

Labeling strategies using two distinct isotopomers of pyruvate as iso-

topic tracers are highlighted in Fig. 6 by red and blue edges, respectively.

In an anabolic metabolic state gluconeogenesis from pyruvate can be con-

sidered negligible and hence GA3P remains unlabeled. In this situation,

both choices of the label discriminate the two pathways in a manner that is

measurable both by positional enrichment and MID measurements. How-

ever, the situation becomes more complicated if the cells depend on glu-
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cose. Deployment of 13C1-glucose as isotopic tracer generates three differ-

ent pyruvate isotopomers (see Fig.5). If only labeled pyruvate were used for

IPP synthesis via the MVA pathway the resulting IPP isotopomers would

coincide with the ones generated by red labeling strategy. However, three

different pyruvate isotopomers give rise to two acetyl-CoA isotopomers

since the label obtained at the first carbon atom in pyruvate generated

via ED is lost due to decarboxylation. Thus, in total, 23 = 8 different

HMG-CoA isotopomers emerge, which give rise to eight different IPP iso-

topomers, i.e. unlabeled, 13C1,
13C3,

13C5,
13C1,3,

13C1,5,
13C3,5, and

13C1,3,5-IPP. The MEP pathway, however, depends additionally on GA3P,

which emerges in two flavors, unlabeled and as 13C1-GA3P. Propagation

of the additional label introduced via 13C1-GA3P is depicted in orange.

Hence, next to unlabeled IPP, three other isotopomers are generated, i.e.
13C2,

13C5, and
13C2,5-IPP. Obviously, the diversity of isotopomers would

increase even more, if 13C2- glucose instead of 13C2-glucose were employed

as isotopic tracer (see figure 5). In such a complex situation, solving the

pathway deconvolution problem aids to compute the contribution of each

metabolic pathway.

However, these examples highlight the fact that the structure of the

ATN even without a precise computation of λ∞ is informative in the sense

of determining the atoms that will eventually be labeled. In particular, the

graph-theoretic information about the ATN is sufficient to reason about

labeling strategies at a qualitative level.
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Figure 6. Trace of isotope labels distinguishing the mevalonate path-
way (MVA, above) and non-mevalonate pathway (MEP, be-
lower) for isopentenylpyrophosphate (IPP) synthesis. Col-
ored edges indicate labeling transmission for different la-
beling strategies: 13C2-pyruvate (blue) and 13C3-pyruvate
(red), respectively. Transition edges depicted in orange
indicate additional marks introduced by GA3P if 13C1-
glucose instead of 13C3-pyruvate (red) is used. Depend-
ing on the pathway and labeling strategy multiple iso-
topomers can be found (see below). Abbreviations for en-
zymes and compounds: PDH: Pyruvatedehydrogenase, CoA:
Coenzym A, HMG: 3-Hydroxy-3-Methylglutaryl, GA3P:
glycerinadehyd 3-phosphate, DOXP: 1-deoxy-D-xylulose 5-
phosphate, MEP: methyl-D-erythritol phosphate, CDP-ME:
4-diphosphocytidyl-2-C-methylerythritol, HMB-PP: E)-4-
Hydroxy-3-methyl-but-2-enyl pyrophosphate, IPP: Isopen-
tenylphosphate.
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7 Multi-labeling experiments

Some metabolic pathways might not be discriminable with single labeled

isotopic tracers. Multi-labeling experiments can provide more precise

metabolic pathway differentiation in such cases and address additional

research questions [34]. The isotopic tracers deployed in such a setting can

be of one or different compounds (e.g. glucose and glutamine). In par-

ticular, glucose and glutamine dependent isotopic tracers are engaged to

study fluxes in initial glucose breakdown (glycolysis and PPP) and TCA,

respectively. In addition, multiple (13C1,2-glucose) or all (U-[13C]-glucose,

U-[13C]-glutamine) atoms of interest can be isotopic labeled.

While multi-labeled tracers aid to enhance the separation resolution of

metabolic pathway usage [3], some pathways, generating the same inter-

mediate compound from a common substrate via different catalytic mecha-

nisms, might only be distinguishable with multi-labeled tracers. Here, also

parallel labeling experiments might be suitable [19]. Fully labeled tracers

serve to study the global metabolic activity of cells and examine which

substrates are generated from the feeding substance. If in one experiment

carbon as well as aminoacid metabolism is of interest, heterogenously la-

beled isotopic tracers such as U-[13C]-U-[15N ]-glutamine can be of interest.

The theory outlined in the previous sections allows the computation

of positional enrichment both for single-labeled and multiple labeled iso-

topic tracers. If more than one feed atom in the inflow is labeled, then

the resulting stationary distribution λ∞ is obtained as the sum of these

contributions according to Equ. (29):

Corollary. Let A(C̃, R̃) be an ATN of a conservative reaction network

(C̃, R̃) and assume that the feed species c ∈ CF are labeled with temporally

constant tracer fractions λ∞(w) for w ∈ V (c). Then the system asymptot-

ically approaches the stationary labelling patterns

λ∞(u) =
∑

w∈V (CF )

λ∞(w)ϑw(u)

where ϑw is the labeling pattern obtained by exclusively labeling the feed

atom w.
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We observe that the asymptotic labeling λ∞ is independent of the

steady-state concentrations X even though the speed at which the equi-

librium state is reached does depend on these, usually unknown, values.

An important caveat is that the formalism derived here correctly com-

putes the labeling intensity λ(u) for a single atom, but does not account

for correlations between labeling intensities between two or more atoms in

the same compound. In particular, therefore, λ is not sufficient to compute

MIDs.

8 Discussion

We introduced here a formal description of atom transition networks as

graphs weighted by transition probabilities that exactly account for sym-

metries of the reactant and product molecules as well as stoichiometry.

Equ.(12) – or its sparsified variant Equ.(21) – can be readily evaluated

given the graph representations of the reactants c ∈ V (Q◦) and reaction

products c′ ∈ V (Q′
◦) together with an AAM φ for each reaction (Q→ Q′).

The main purpose of the work reported here is to provide an explicit con-

struction of the ATN both as a simple graphs and as weighted graphs.

The key step is the definition of weighted atom transition graphs, ATG,

for individual reactions. At this level, both symmetries of the individual

compounds and non-trivial stoichiometry, which is also a form of symme-

try, are incorporated completely. The ATN is then obtained as a quotient

graph of the union of the molecule complexes, ensuring that the vertices

in the ATN appear partitioned into equivalence classes whenever their

fate cannot be separated. As an example, consider the transitions from

acetoacetyl-CoA in Fig. 6. Although target atoms in acetoacetyl-CoA are

not symmetric, each carbon atom of acetyl-CoA exhibits two outgoing

transition edges for the reaction catalyzed by acetoacetyl-CoA thiolase.

Taking symmetries of molecules into account is essential for determin-

ing positional enrichment also in non-symmetric compounds. Figure 7

depicts the sATN with and without symmetries generating oxalacetate

via the TCA from glutamine. In particular, the consequences of neglect-

ing symmetries in molecules such as fumarate or succinate not only af-
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Figure 7. Illustration of the metabolism and atom-to-atom transition
of glutamine to oxalacetetate with and without consideration
of symmetries. Symmetric atoms are depicted in the same
color. Transition edges distributing a labeling are marked
red.

fects molecules harboring symmetric carbon atoms. Indeed, labeling of

the third carbon atom of glutamine results in 50% labeling of the second

and third carbon atom of the unsymmetric oxalacetate when symmetries

are respected, although both atoms are distinguishable. In contrast, solely

engaging one of the possible 16 AAMs, as depicted in the lower panel,

would yield a fully enriched second carbon atom of oxalacetate while the

third one would remain fully depleted. However, since carbon atoms 2

and 3 in succinate are indistinguishable, the percentage of labels on these

atoms is naturally identical.

For practical applications, the formalism outlined here relies on three

ingredients: (i) the efficient computation of the orbits for each compound

c ∈ C, (ii) a way to compute steady-state fluxes for a particular metabolic

state, and (iii) the availability or computational prediction of AAMs. The

first task is readily solved by constructing a set of generators of the auto-

morphism group Aut(c) for each c ∈ C; software for this purpose is readily

available, including nauty [40] or the framework described in [2]. Stere-

ochemistry can be accomodated without problems by replacing the auto-

morphism group Aut(c) with the actual symmetry groups of the molecule.
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The second task is a topic of MFA and FBA.

Reliable AAMs are the most difficult problem. Directly experimen-

tally verified AAMs are scarce and the chemically correct AAMs cannot,

in general, be obtained as the solution of combinatorial optimization prob-

lems such as the minimization of “chemical distance” between reactants

and products [36] or one of the variants of maximum-common subgraph

(MCS) problems [21]. The most recent generation of AAM prediction

tools, which are heavily based on machine learning, provide significant

advances [17, 45, 54] but still perform much less than perfectly [38, 48].

Predicted isotope labeling patterns provide a fairly direct avenue to test

AAMs by comparing measurements and predictions for reactant and prod-

uct labeling patterns.

We suggest that the material presented here will also serve as start-

ing point towards addressing several related research topics. A relatively

straightforward generalization is to consider time-resolved labeling exper-

iments. A major advantage of the formalism presented here is that it can

be expressed entirely in terms of linear algebra. This remains true for the

case of non-stationary data. In fact, it suffices to consider the solutions of

Equ.(27) for temporally non-constant in-fluxes b(t). These can be written

explicitly as

λ(t) =

∫ t

0

exp((t−s)A)b(s)ds = exp(tA)

∫ t

0

exp(−sA)b(s)ds+exp(tA)λ0

(33)

and describe e.g. the dynamics of a pulse b(t). Such time-dependent re-

sults are of great interest for experimentalists since research questions not

only focus on isotopic equilibrium. Metabolic pathway utilization and

flux-estimation might be more accurate based on non-stationary labeling

analysis due to larger amount of experimental data and the absence of

superimposed enrichments of labeled material from side branches. This is

relevant in particular for systems which are slow to label or for quantifica-

tion of substrate cycles [16, 43, 44, 64, 71]. In addition, metabolic fluxes of

physiological responses to stress, such as wound healing in potato tubers,

can be transient and therefore not detectable via steady-state labeling [51].

Some pathways might also be inaccessible at the beginning of a labeling
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process. Another reason to rely on non-stationary data is that, as proven

in Thm. 5, deployment of fully labeled isotopic tracers would yield the

same information as unlabeled substrates in isotope stationarity. Indeed,

for organisms depending on monoisotope-tracers, such as plants on CO2

[28, 55] or Pichia pastoris on CH3OH [15], stationary isotope solutions do

not provide any information on fluxes.

Positional enrichment refers to a single atom. As noted above, it is

not sufficient to correctly determine the MID since λ cannot account for

correlations between labels co-occurring in the same compound. Different

extensions have been introduced to deal with this problem without resort-

ing to complete explicit enumeration of all isotopomers. The key idea is

to identify fragments of metabolites that are transmitted from influx to

outflux as units through all active pathways, see [50] for a formal treat-

ment. The most widely used approaches being elementary metabolite units

(EMU) [6] and cumomers [65]. In either case, positional enrichment corre-

sponds to the lowest order data. The cumomer transition networks (CTN)

for size-one cumomers, in particular, corresponds to the ATN investigated

here. This suggests to consider generalizations, i.e. the transmission of

subsets of atoms. In the absence of symmetries, the combination of h(v, u)

and h(v′, u′) suffices to describe the transmission of pairs of atoms. Sym-

metries, however, introduce complications that go beyond the scope of this

contribution.

Acknowledgment : This work was support in part by the Novo Nordisk
Foundation (grant no. 0066551, MATOMIC), the German Research Foun-
dation as part of the SFB1052 (grant no. 209933838), and the German
Federal Ministry of Education and Research (BMBF) within the German
Network for Bioinformatics Infrastructure (de.NBI) under grant number
w-de.NBI\303\203018.



393

References

[1] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, Chemical
transformation motifs – modelling pathways as integer hyperflows,
IEEE/ACM Trans. Comp. Biol. 16 (2019) 510–523.

[2] J. L. Andersen, D. Merkle, A generic framework for engineering graph
canonization algorithms, J. Exp. Algor. 25 (2020) 1–26.

[3] M. R. Antoniewicz, 13C metabolic flux analysis: Optimal design of
isotopic labeling experiments, Curr. Opinion Biotech. 24 (2013) 1116–
1121.

[4] M. R. Antoniewicz, Dynamic metabolic flux analysis—tools for prob-
ing transient states of metabolic networks, Curr. Opinion Biotech. 24
(2013) 973–978.

[5] M. R. Antoniewicz, A guide to metabolic flux analysis in metabolic en-
gineering: Methods, tools and applications, Metab. Engin. 63 (2021)
2–12.

[6] M. R. Antoniewicz, J. K. Kelleher, G. Stephanopoulos, Elementary
metabolite units (EMU): A novel framework for modeling isotopic
distributions, Metab. Engin. 9 (2007) 68–86.

[7] P. Azimzadeh, A fast and stable test to check if a weakly diagonally
dominant matrix is a nonsingular M-matrix, Math. Comput. 88 (2019)
783–800.

[8] P. Azimzadeh, P. A. Forsyth, Weakly chained matrices, policy itera-
tion, and impulse control, SIAM J. Num. Anal. 54 (2016) 1341–1364.

[9] A. Berman, D. Hershkowitz, Matrix diagonal stability and its impli-
cations, SIAM J. Alg. Discr. Meth. 4 (1983) 377–382.

[10] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathemat-
ical Sciences, Soc. Industrial Appl. Math., Philadelphia, PA, 1994.
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Prog. 78 (1997) 195–217.

[14] N. S. Chandel, Glycolysis, Cold Spring Harbor Persp. Biol. 13 (2021)
#a040535.

[15] T. Charoenrat, M. Ketudat-Cairns, H. Stendahl-Andersen, M. Jahic,
S. O. Enfors, Oxygen-limited fed-batch process: An alternative con-
trol for Pichia pastoris recombinant protein processes, Bioprocess
Biosys. Engin. 27 (2005) 399–406.

[16] Y. E. Cheah, J. D. Young, Isotopically nonstationary metabolic flux
analysis (INST-MFA): Putting theory into practice, Curr. Opinion
Biotech. 54 (2018) 80–87.

[17] S. Chen, S. An, R. Babazade, Y. Jung, Precise atom-to-atom mapping
for organic reactions via human-in-the-loop machine learning, Nat.
Commun. 15 (2024) #2250.

[18] T. Conway, The Entner–Doudoroff pathway: history, physiology and
molecular biology, FEMS Microbiol. Rev. 9 (1992) 1–27.

[19] S. B. Crown, M. R. Antoniewicz, Parallel labeling experiments and
metabolic flux analysis: Past, present and future methodologies,
Metab. Engin. 16 (2013) 21–32.

[20] B. De Falco, F. Giannino, F. Carteni, S. Mazzoleni, D. H. Kim,
Metabolic flux analysis: A comprehensive review on sample prepara-
tion, analytical techniques, data analysis, computational modelling,
and main application areas, RSC Adv. 12 (2022) 25528–25548.

[21] H. C. Ehrlich, M. Rarey, Maximum common subgraph isomorphism
algorithms and their applications in molecular science: a review,
WIREs Comp. Mol. Sci. 1 (2011) 68–79.

[22] J. Eiler, J. Cesar, L. Chimiak, B. Dallas, K. Grice, J. Griep-Raming,
D. Juchelka, N. Kitchen, M. Lloyd, A. Makarov, R. Robins, J. Schwi-
eters, Analysis of molecular isotopic structures at high precision and
accuracy by Orbitrap mass spectrometry, Int. J. Mass Spectrometry
422 (2017) 126–142.

[23] M. Feinberg, Complex balancing in general kinetic systems, Arch.
Rat. Mech. Anal. 49 (1972) 187–194.

[24] C. Flamm, D. Merkle, P. F. Stadler, U. Thorsen, Automatic Inference
of graph transformation rules using the cyclic nature of chemical re-
actions, 2016, comment: ICGT 2016 : 9th International Conference
on Graph Transformation, extended technical report.



395

[25] T. Gallai, Maximum-Minimum Sätze über Graphen, Acta Math.
Acad. Sci. Hung. 9 (1958) 395–434.

[26] C. Gauchotte-Lindsay, S. M. Turnbull, On-line high-precision car-
bon position-specific stable isotope analysis: A review, Trends Anal.
Chem. 76 (2016) 115–125.
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[63] E. Vranová, D. Coman, W. Gruissem, Network analysis of the MVA
and MEP pathways for isoprenoid synthesis, Ann. Rev. Plant Biol.
64 (2013) 665–700.
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Appendix A Alternative Derivation
of Simple ATGs

A simplified version for the raw atom transition graph of a reaction r =
(Q→ Q′) can be derived by considering symmetries in the products only.
To this end we start from ζ1v (u), defined as the set of atoms x′ in the
equivalence class ζ−1(u) with an image in orbQ′(y), y ∈ ζ−1(v) via the
AAM φ and η(v, u) =

∑
ū∈orbcū

|ζ−1
v (u)| in Equ.(21):

Definition 13 (simplified raw atom transition graph). Let r = (Q →
Q′) be a reaction with AAM φ : V (Q) → V (Q′) and rATG T̃QQ′ . The

simplified raw ATG is the graph S̃QQ′ with vertex set V (S̃QQ′) := V (T̃QQ′)

and edge set E(S̃QQ′) :=
⋃

x∈V (Q)Eout(x) with Eout(x) := {(x, y)|y ∈
ρ′(φ(x))}, ρ′ ∈ Aut(Q′).

Figure 8. Simplified raw atom transition graph for the example AAM
depicted in figure 3.

Figure 8 shows the simplified raw ATG for the example depicted in
figure 3. Note that S̃QQ′ is a subgraph of T̃QQ′ since Id ∈ Aut(Q). In
addition and as in the raw ATG, the number of incoming edges is constant
on orbQ′(y), i. e. Ein(y

′) = Ein(y
′′) for all y′, y′′ ∈ orbQ′(y).

Defining a suitable edge-weight allows us to conserve valuations, such
as the number of transferred atoms from orbQ(x) to orbQ′(y) for all x ∈
V (Q), y ∈ V (Q′). For a (simplified) raw ATG S̃QQ′ or T̃QQ′ we therefore
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define

ES̃/T̃
xy := {(x′, y′) ∈ E(S̃/T̃QQ′)|x′ ∈ orbQ(x), y

′ ∈ orbQ′(y)} (34)

as the set of edges between orbQ(x) and orbQ′(y).

Lemma 14. Let r = (Q → Q′) be a reaction with simplified raw ATG
S̃QQ′ and hS̃ : E(S̃QQ′) → R, hS̃(y, x) = | orbQ′(y)|−1. Then:

η(y, x) =
∑

(x′,y′)∈Es̃
xy

hS̃(y
′, x′) (35)

Proof. Since the weights of edges between orbQ(x) and orbQ′(y) are iden-

tical we only have to show that |ES̃
xy| = η(y, x) · | orbQ′(y)|. Let, therefore,

u := ζ(x). For x′ ∈ orbQ(x), y
′ ∈ orbQ′(y) we have (x′, y′) ∈ E(S̃QQ′) ⇔

x′ ∈ ζ−1
y (u′) for u′ ∈ orbcu(u) as defined in Equ. 18. Then∣∣∣ES̃

xy

∣∣∣ = ∑
y′∈orbQ′ (y)

∑
u′∈orbcu (u)

∑
x′∈ζ−1

y (u′)

1

=
∑

y′∈orbQ′ (y)

∑
u′∈orbcu (u)

|ζ−1
y (u′)|

Equ.(22), ∗
= | orbQ′(y)| · η(y, x)

(36)

Lemma 14 guarantees that the number of atoms transferred from orbQ(x)
to orbQ′(y) in reaction r is conserved also in the simplified version of the

raw atom transition graph. In addition, exactly η(y, x) vertices in S̃QQ′

map from orbQ(x) to one particular y′ ∈ orbQ′(y).
We proceed by computing valuations on the simplified raw ATG and

show that they coincide with valuations derived from the construction of
raw ATGs.

Lemma 15. Let r = (Q → Q′) be a reaction with simplified raw ATG
S̃QQ′ , λ : V (Q) → R a valuation on Q that is constant on the orbits of

Aut(Q), and hS̃ : E(S̃QQ′) → R, hS̃((x, y)) = | orbQ′(y)|−1. Then:

λ′(y) =
∑

(x,y)∈ES̃
in(y)

hS̃(y, x) · λ(x) (37)

∑
(x,y)∈ES̃

in(y)

hS̃(y, x) · λ(x) =
∑

x∈V (Q)

λ(x) · η(x, y)

| orbQ(x)| · | orbQ′(y)|
(38)
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Proof. We start with the first statement. Recall by Equ. (16) we have

λ′(Y ) =
∑

A∈Θ(Q)

1

|Y |
∑
y′∈Y

∑
x∈A

λ(x) · I[y′ = φ(x)]

⇒ λ′(y) =
∑

A∈Θ(Q)

∑
x∈A

∑
y′∈orbQ′ (y)

λ(x) · 1

| orbQ′(y)|
I[y′ = φ(x)]

(39)

By definition of S̃QQ′ we have (x, y) ∈ E(S̃QQ′) if and only if there is an
y′ ∈ orbQ′(y) = Y : y′ = φ(x). Hence, we recover all edges pointing into
orbQ′(y′) because Ein(y) = {(x, y′) |x ∈ A ⊆ Θ(Q), y′ ∈ orbQ′(y), y′ =
φ(x)}. This yields

λ′(y) =
∑

A∈Θ(Q)

∑
x∈A

∑
y′∈orbQ′ (y)

λ(x) · 1

| orbQ′(y)|
I[y′ = φ(x)]

=
∑

(x,y)∈ES̃
in(y)

hS̃(y, x) · λ(x)
(40)

The second part follows from the computation above and Lemma 9.

Let us now turn to the construction of simplified ATG from the sim-
plified raw ATG. To this end, we restrict our construction for simplified
raw ATGs to the non-isomorphic connected components of Q and Q′. As
a result, we obtain a sparse version of the ATG.

Definition 14. Let r = (Q → Q′) be a reaction with AAM φ : V (Q) →
V (Q′) and simplified raw ATG S̃QQ′ . The alternative simplified atom

transition graph SQQ′ is the quotient graph of S̃QQ′ w.r.t. the equivalence
relation ζ−1 defined by the isomorphic connected components of Q and
Q′, respectively.

In the following we aim to show the equivalence of the upper con-
struction with the one of simplified ATGs of definition 10. In order to
accomplish this goal, we need to show to that both graphs are identical, in
terms of vertices and edges, and that valuations on V (Q′

◦) are preserved.

Lemma 16. Let r = (Q→ Q′) be a reaction with raw simplified, simplified
and alternative simplified ATGs S̃QQ′ , SQQ′ and SQQ′ , respectively. Then
SQQ′ = SQQ′ .

Proof. By construction V (SQQ′) = V (SQQ′). We denote by ES̃ :=

E(S̃QQ′), ES := E(SQQ′), and E(S) := E(SQQ′). We have (u, v) ∈ ES ⇔
ζ−1
v (u) ̸= ∅ ⇔ ∃x′ ∈ ζ−1(u) | ∃v̄ ∈ orbc′v (v) : φ(x

′) ∈ ζ−1(v̄). Hence, we
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have (x′, y′) ∈ ES̃ for all x′ ∈ ζ−1
u (v) and y′ ∈ ζ−1(v̄) : v̄ ∈ orbc′v (v). This

yields for the quotient graph that (u, v) ∈ ES. We conclude ES ⊆ ES.
On the other hand, (u, v) ∈ ES implies that there exists x′ ∈ ζ−1(u), y′ ∈
ζ−1(v) : (x′, y′) ∈ ES̃ and in particular that ζ−1

u (v) ̸= ∅, which directly
yields (u, v) ∈ ES .

By lemma 10 we directly obtain that also SQQ′ is a subgraph of TQQ′ .
It remains to show that the valuations are conserved on SQQ′ . For this
purpose we need to assign appropriate edge weights, which we will derive
subsequently. In the following we will continue to useSQQ′ instead of SQQ′

to have a consistent notation for the edge weights. The main idea will be
to maintain the number of atoms transfered from orbQ(x) and orbQ′(y)
for each v ∈ V (Q), y ∈ V (Q′). As before, let x ∈ V (Q), y ∈ V (Q′) be fixed
and u := ζ(x), v := ζ(y). We observe that in SQQ′ , vertices y′ ∈ orbQ′(y)

from S̃QQ′ are merged to equivalent classes. Therefore, the number of
edges received from orbQ(x) by orbc′(ζ(y)) in SQQ′ is given by:

1

s+c′r
·
∣∣∣ES̃

xy

∣∣∣ Lem.14
=

| orbQ′(y)|
s+c′r

· η(y, x) = | orbc′
ζ(y)

(ζ(y))| · η(y, x) (41)

Thus, an x′ ∈ orbQ(x) adds at most | orbc′
ζ(y)

(ζ(y))| edges. However, in

SQQ′ only those equivalence classes with ζ−1
v (ζ(x′)) ̸= ∅ contribute to the

pool of transition edges between orbcζ(x)
(ζ(x)) and orbc′

ζ(y)
(ζ(y)). To this

end we define
Zv := {ζ−1(u)|ζ−1

v (u) ̸= ∅}. (42)

Note that, since φ is a bijection, we have |Zv| > 0 for all v ∈ V (Q′
◦).

Thus, with ζ(x) = u, ζ(y) = v, and η(y, x) = η(v, u) the number of edges
mapping from orbcu(u) to orbc′v (v) in SQQ′ is given by

η(v, u) · orbc′v (v) ·
|Zv|
η(v, u)

= orbc′v (v) · |Zv| (43)

Lemma 17. Let r = (Q → Q′) be a reaction with simplified atom transi-
tion graph SQQ′ and set ES

uv = {(u′, v)|(u′ ∈ orbcu(u))} for u ∈ V (Q◦),
and Zv := {ζ−1(u)|ζ−1

v (u) ̸= ∅}. Then∑
(u′,v)∈ES

uv

1

|Zv|
= 1 (44)

Proof. By construction of SQQ′ , each v′ ∈ orbc′v (v) receives the same
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number of edges form orbcu(u). Hence

∣∣ES
uv

∣∣ = | orbc′v (v)| ·
|Zv|

| orbc′v (v)|
= |Zv| (45)

From the discussion above we obtain that the number of edges between
orbcu(u) and orbc′v (v) is | orbc′v (v)|·|Zv|. Combining these two observations
yields Equ. (44).

Defining the weight of edges from orbcu(u) to orbc′v (v) in SQQ′ by
means of the map hS : E(SQQ′) → R with

hS(v, u) :=
η(v, u)

|Zv| · | orbc′v (v)|
(46)

therefore maintains the number of transferred atoms. These weights rep-
resent an analogous definition to the weights assigned to transition edges
in TQQ′ as we only had to exchange the size of orbcu(u) by |Zv| which
is reflected by the different sizes of starting vertices contributing to the
transition edge pool. We will now see that engaging hS as edge weights,
also valuations are conserved in SQQ′ as they are conserved in TQQ′ .

Lemma 18. Let r = (Q → Q′) be a reaction with atom transition graph
TQQ′ and simplified ATG SQQ′ with edge sets ES := E(SQQ′) and ET :=
E(TQQ′) Let λ : V (Q) → R be a valuation that is constant on the orbits
of Aut(Q) and λ′(v) :=

∑
(u,v)∈ET

in(v)
s+c′vr · h(v, u) · λ(u) with h(v, u) as

defined in Equ. (12). Then:

λ′(v) =
∑

(u,v)∈ES
in(v)

hS(v, u) · λ(u) (47)

for all v ∈ V (Q′).

Proof. We aim to show that∑
(u,v)∈ET

in(v)

s+cvr · h(v, u) · λ(u) =
∑

(u,v)∈ES
in(v)

hS(v, u) · λ(u) .

Recalling that the orbits of Aut(Q) form a partition of V (Q) into subsets
A ∈ Θ(Q) and substituting the definitions of h(v, u) and hS(v, u) yields
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∑
A∈Θ(Q)

∑
x∈A

∑
(ζ(x),v)∈ET

in(v)

η(v, ζ(x))

| orbcζ(x)
(ζ(x))|

λ(ζ(x))

=
∑

A∈Θ(Q)

∑
x∈A

∑
(ζ(x),v)∈ES

in(v)

η(v, ζ(x))

|Zv|
λ(ζ(x)) .

To see that this is indeed an identity we observe that Equ. (44) can be
rewritten in the form∑

x∈A

∑
(ζ(x),v)∈ET

in(v)

1

| orbcζ(x)
(ζ(x))|

=
∑
x∈A

∑
(ζ(x),v)∈ES

in(v)

1

|Zv|

by observing that η(v, ζ(x)) for fixed v and λ(ζ(x)) are constant on the or-
bit orbcζ(x)

(ζ(x)) and using |ET
in(v)| = | orbcζ(x)

(ζ(x))| as well as |ES
in(v)| =

|Zv|.

Finally, we show that valuations derived via h∗ and hS only differ by
their respective normalization.

Lemma 19. Let r = (Q → Q′) a reaction with simplified ATG SQQ′ .
Then ∑

u∈V (Q◦)

s+cvr · h
∗(v, u) · λ(u) =

∑
(u,v)∈ES

in(v)

hS(v, u) · λ(u) (48)

for all v ∈ V (Q◦).

Proof. The proof is a consequence of lemmas 9 and 18, and Equ. (17).
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