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aSerbian Academy of Science and Arts, Brunch in Novi Sad, Nikole
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Abstract

The coupling between spatial and temporal order in systems of
chemically reacting and diffusing components has an important role
in some spatially periodic phenomena including the pattern forma-
tion. The model considered here represents a nonlinear reaction-
diffusion process where an allosteric enzyme is activated by its reac-
tion product and the reaction is inhibited by depletion of substrate
component. The special emphasis here is on the possible role of
diffusion of reactants in the initiation of symmetry-breaking insta-
bilities under small spatio-temporal perturbation. We analyzed the
necessary and sufficient conditions for possible technological sce-
nario for this kind of autocatalysis where the substrate reactant
diffuses faster enough than the product activator, thus enabling the
possible symmetry-breaking instability yielding the pattern forma-
tion.
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1 Introduction

Some five decades ago Nobel prize winner, Ilja Prigogine [1,5,6], proposed

the concept of dissipative structures as the dynamical bases of nonequi-

librium self-organization in biochemical systems. There are at least two

type of biochemical instabilities. The first is generated by homogeneous

perturbation, where system goes from a homogeneous steady state to an-

other homogeneous state. The second type is provided by space-dependent

inhomogeneous perturbation where diffusion acts as an essential factor of

symmetry-breaking event. Diffusion can supply a positive contribution to

the excess entropy production in the reaction-diffusion system, leading to

the stabilization of the steady state. Otherwise, it increases the manifold

perturbation compatible with macroscopic evolution equations. If this

effect is dominated, the symmetry-breaking instabilities are possible [2].

Alan Turing [4] proposed that under some specific conditions chemical

molecules or morphogen cells can react and diffuse in such a manner as

to create of heterogeneous spatial patterns of pertaining reactants concen-

trations. In the case considered here, we are concerned with the model

of two chemical species with spatio-temporal (r⃗, t) concentrations X(r⃗, t)

and Y (r⃗, t) which obey the respective reaction-diffusion equations:

∂X
∂t = f(X,Y ) +Dx ▽2 X
∂Y
∂t = g(X,Y ) +Dy ▽2 Y,

(1)

where f(X,Y ) and g(X,Y ) are the reaction kinetics, which should be es-

sentially nonlinear; Dx, Dy are diagonal matrix elements of positive con-

stant coefficients of diffusion; ▽2 stands for Laplace operator. The pro-

found Turing’s concept is established as follows: If in nonlinear reaction

of above type with missing the diffusion of reactants (Dx = Dy = 0), re-

actants X(r⃗, t) and Y (r⃗, t) tend to linearly stable steady state, then under

some specified conditions, spatially nonhomogeneous patterns can appear

in terms of diffusion driven instability if Dx ̸= Dy. To understand how

the Turing patterns appear, it is necessary to examine this problem in the

following way: If we have a reaction-diffusion system with two concentra-

tions of reactants, we can first perform a linear stability analysis. It en-
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ables us to determine the conditions under which obtained steady state will

be robustly stable against homogeneous perturbations, but under the ac-

tion of inhomogeneous perturbations steady state undergoes the instability.

Quantitatively it appears that the reactant specie X(r⃗, t) called activator

must increase the rate of its own production meaning that at steady state,

adding more molecules X(r⃗, t) causes ∂X/∂t to increase while substrate

Y (r⃗, t) must yield the rate of its own presence in the reaction to decrease

(the positive-feedback reaction). A second very necessary condition for

Turing pattern formation is that the substrate must diffuse remarkably

more rapidly than the activator reactant:

Dx

Dy
= r ≫ 1, (2)

where the necessary ratio r is determined in terms of kinetic constants

of reaction and by steady state concentrations X0 and Y0. This ratio is

typically in the range [7]:

6 < r < 10. (3)

The condition in Eq. (3) indicates why Turing patterns were very

difficult to be achieved experimentally. For example, in aqueous solutions

practically all small molecules and ions have diffusion coefficients that lie

within a narrow factor of two of

10−9 m2s−1. (4)

So obtaining a high value of r within the range of Eq. (3) is extremely

difficult seeming impossible in typical chemical systems. These patterns

remained experimentally unreachable for about 40 years. Eventually, the

group of De Kepper [8, 11], using CIMA reaction (chlorite-iodine-malonic

acid reaction) produced conspicuous experimental evidence for Turing pat-

tern appearance.
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2 An autocatalytic reaction with two reac-

tants

Let us consider the biochemical reaction in which reactant YX. Impor-

tantly, the production of X is autocatalytic process. It means that the

reaction accelerates as X increases due to the allosteric catalysis. But

rapid depleting of substrate Y inhibits farther production of X, so much

that the reaction eventually ceases. In that respect the depletion of Y acts

as the inhibition of reaction. This is the case of positive-feedback system.

Under such circumstances we can simply use a rate law for the allosteric

enzyme and write a pair of nonlinear ordinary differential equations of first

order mimicking pertaining mechanism as follows:

dX

dt
= νY

ε2 +
(

X
Kn

)2
1 +

(
X
Kn

)2
−K1X, (5)

dY

dt
= K2 − νY

ε2 +
(

X
Kn

)2
1 +

(
X
Kn

)2
 . (6)

Here Y substrate is supplied by constant rate K2

[
Ms−1

]
and the product

X is created by rate ν
[
s−1
]
autocatalyzed by feedback activation expressed

in terms of the nonlinear Hill function with coefficients n = 2

ρ =
ε2 + x2

1 + x2
x =

X

Kn
. (7)

K1

[
s−1
]
is the rate of removal of product X; Kn [M] is Michealis-Menton

generalized constant for the interaction of two-subunit enzyme with sub-

strate to bind. It is inversely proportional to the affinity of the enzyme

for substrate. The constant ε2 is the low activity of the enzyme with no

product X bound relative to its highly increased activity when its both

regulatory sites are saturated by X molecules. It implies that the inequal-

ity

ε ≪ 1, (8)
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safely holds. The shape of function ρ in Eq. (7) is shown in Figure 1.

Figure 1. The asymptotic behavior of function ρ from Eq. (7).

It is now plausible to introduce the complete set of dimensionless vari-

ables as follows:

x =
X

Kn
y =

Y

Kn
τ = K1t, (9)

as well as a new suitable auxiliary variable

z = x+ y. (10)

This transforms Eqs. (5) and (6) in the following shapes

dx

dτ
= µ(z − x)

(
ε2 + x2

1 + x2

)
− x = f(x, z), (11)

dz

dτ
= κ− x = g(x, z), (12)

with new dimensionless kinetic parameters

µ =
ν

K1
κ =

K2

K1Kn
. (13)

The steady-state for this reaction model now reads:

for
dx

dτ
= 0 ⇒ z0 =

κ

ρµ
+ κ, (14)
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for
dz

dτ
= 0 ⇒ x0 = κ. (15)

It could be of interest to plot the corresponding nullclines in the phase

plane for Eqs. (11) and (12). For dx/dτ = 0, the x-nullclines reads

z =
x(1 + x2)

µ(ε2 + x2)
+ x. (16)

For dz/dτ = 0, the z-nullcline is simply constant

x = κ. (17)

The x-nullcline has two positive extrema at roots of its first derivative

given by

(1 + µ)x4 + [(2µ+ 3)ε2 − 1]x2 + ε2(1 + µε2) = 0. (18)

If we chose the parameters to be ε = 0.1 and µ = 1, this equation gives the

coordinates of maximum and minimum of x-nullcline, as plotted in Figure

2:
xmax = 0.105 xmin = 0.66

zmax = 5.14 zmin = 2.79.
(19)

These extreme are bifurcations points, meaning that there the stability of

system changes.

Figure 2. Phase-plane portret of nullclines given by Eqs. (16) and
(17)
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Let us now form the Jacobian matrix for Eqs. (11) and (12) in the

steady state (Eqs. (14) and (15)):

J =

(
∂f
∂x

∂f
∂z

∂g
∂x

∂g
∂z

)
=

(
2κ2(1−ε2)
ρ0(ε2+κ2)2 µρ0

−1 0

)
, (20)

where ρ0 is the Eq. (7) for x = κ (in steady state).

The determinant of Jacobian matrix is by all means positive

detJ = µρ0 > 0. (21)

It is remarkable that the trace of matrix, Eq. (20) mainly depends on the

parameter κ:

TrJ =
2κ2(1− ε2)

ρ0(1 + κ2)2
− µρ0 − 1, (22)

or more explicitly

TrJ =
−(1 + µ)κ4 + (1− 3ε2 − 2µε2)κ2 − ε2(1 + µε2)

(1 + κ2)(ε2 + κ2)
. (23)

The sign of TrJ is provided by the numerator in Eq. (23). It represents

a downward open parabola represented in Figure 3.

Figure 3. The plot of how the sign of TrJ depends on parameter
κ.
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For small ε,TrJ is positive in the interval

ε < κ < (µ+ 1)−1/2 (24)

so that the eigenvalue γ for Jacobian matrix, Eq. (20), is expressed by

γ1/2 =
1

2

{
TrJ ±

[
(TrJ )2 − 4 detJ

]1/2}
, (25)

meaning that the steady state Eqs. (14) and (15) is unstable in the interval

of Eq. (24). In that interval the considered reaction exhibits limit cycle

oscillations. This regime is of interest for the case where diffusivity of

reactants is taken into account, which is the subject of the next section.

3 Symmetry breaking instability in

this model of autocatalytic reaction with

diffusion of reactants X and Y

In the following we will consider the circumstances where parameters

(κ, µ, ε0) have the values to provide steady-state, Eqs. (14) and (15).

Then we will examine the role of reactants diffusivity within harmonic

spatial perturbation of steady-state checking if it would lead to symmetry

breaking instability of the reaction elaborated in the preceding section.

In the literature a commonly used reactor for the study of such chemical

dynamics, is the continuous flow well-stirred tank reactor (CSTR). It is

also known as backmix reactor [9]. Let us now add the diffusion terms on

the right hand sides of Eqs. (5) and (6), respectively:

Dx
∂2X

∂ℓ2
Dy

∂2Y

∂ℓ2
, (26)

where Dx, Dy are the corresponding constant diffusion coefficients with

dimensions
[
m2s−1

]
. The length ℓ [m] is taken along coordinate axis of

“one dimensional” tube of CSTR, where the reaction with diffusion takes

part.
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We will then introduce the dimensionless length ξ as follows [10]:

ξ =
ℓ

ℓ0
, (27)

where ℓ0 is the characteristic diffusion length for reactants. Thus, the

nondimensionalized diffusion terms now read:

Dx
∂2x
∂ξ2 ; Dx = DxKn

ℓ20K2

Dy
∂2y
∂y2 ; Dy =

DyKn

ℓ20K2
.

(28)

Consequently, by adding of these new terms into Eqs. (11) and (12),

and introducing a suitable auxiliary variable z:

z = x+ y, (29)

we now have two partial differential equations as follows:

dx

dτ
= µ(z − x)

(
ε2 + x2

1 + x2

)
− x+Dx

∂2x

∂ξ2
, (30)

dz

dτ
= κ− x+Dy

∂2z

∂ξ2
−Dy

∂2x

∂ξ2
, (31)

We will now analyze stability properties of Eqs. (30) and (31) by

considering effects of small perturbations. One should look at spatially

nonuniform perturbations and estimate whether these are amplified or

attenuated. If an amplification occurs, then a concentration of reactant

close to the spatially uniform steady-state will be destabilized leading to

some new state in which spatial variations prevail. Starting close to the

homogeneous steady-state (x0; z0) in Eqs. (14) and (15) we take small

inhomogeneous perturbations (δx and δz) as follows:

x = x0 + δx z = z0 + δz, (32)

where pertaining inequalities safely holds:

δx

x0
≪ 1

δz

z0
≪ 1. (33)
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When reactant solution is well mixed, it is plausible that we rely on the

fact that x0 and z0 are constant in time and spatially uniform (independent

of τ and ξ), so it yields:

∂
∂τ (x0 + δx) = ∂δx

∂τ
∂
∂τ (z0 + δz) = ∂δz

∂τ
∂2

∂ξ2 (x0 + δx) = ∂2δx
∂ξ2

∂2

∂ξ2 (z0 + δz) = ∂2δz
∂ξ2 .

(34)

Inserting the expressions from Eqs. (32) into the system of Eqs. (30) and

(31) and relying on (x0, z0) from Eqs. (14) and (15) we arrive at the new

format of this system

∂δx

∂τ
=

(
2κ2(1− ε2)

ρ0(1 + κ2)2
− µρ0 − 1

)
δx+Dx

∂2x

∂ξ2
+ µρ0δz, (35)

∂δz

∂τ
= −δx−Dy

∂2x

∂ξ2
+Dy

∂2z

∂ξ2
. (36)

Note that in the derivation of Eqs. (35) and (36) we discarded small terms

of quadratic order of type δx2, δxδz, preserving just linear form of small

perturbations [10].

We shall build solutions to Eqs. (35) and (36) from the basic functions

exp(στ) and cos(qξ), where σ is the growth rate of perturbation and q

is the dimensionless wave number. It is appropriate that we restrict our

attention to the following trial option [10]: by separation of variables (τ, ξ),

as follows

δx = A ·f(τ, ξ); δz = B ·f(τ, ξ); f(τ, ξ) = exp(στ) cos(qξ), (37)

where A and B are respective small amplitudes of perturbations of initial

time τ = 0 (t = 0).

The exponential time dependence exp(στ) would be suitable for either

increasing (σ > 0) or decreasing (σ < 0) perturbation. We need to de-

termine if σ > 0, thus providing that the symmetry-breaking instability

of the uniform steady-state is compatible with the model considered here.

In realistic circumstances δx and δz might have more complicated spatial

forms. Then the Fourier theorem states that such a form of perturba-

tion can be expressed as an infinite sum of terms of type cos(nqξ), where
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n = 1, 2, 3, ... with decreasing amplitudes. For the sake of simplicity, we

are merely taking only leading component, Eq. (37) which could be con-

sidered a dominant mode in Fourier expansion. It is apparent that from

expressions in Eq. (37) easily follows the set of auxiliary equations:

∂δx

∂τ
= Aσ · f(τ, ξ) ∂δz

∂τ
= Bσ · f(τ, ξ) (38)

∂2δx

∂ξ2
= −Aq2 · f(τ, ξ) ∂2δz

∂ξ2
= −Bq2 · f(τ, ξ) (39)

Inserting Eqs. (37), (38) and (39) in the system of Eqs. (35) and (36), we

safely get (by cancelling the common factor f(τ, ξ) the system of algebraic

homogeneous equations for unknown amplitudes A and B:(
σ + µρ0 +Dxq

2 + 1− 2κ2(1−ξ2)
ρ0(1+κ2)2

)
A− µρ0B = 0,

(1−Dyq
2)A+ (σ +Dyq

2)B = 0.
(40)

To get nonzero perturbations it is needed to have A ̸= 0 and B ̸= 0. The

only way this can be achieved is by setting the determinant of Eq. (40)

equal to zero

det

(
σ + 1 + µρ0 − φ+Dxq

2 −µρ0

1−Dyq
2 σ +Dyq

2

)
= 0, (41)

where we used the abbreviation

φ =
2κ2(1− ε2)

ρ0(1 + κ2)2
. (42)

This parameter will play a crucial role in forthcoming calculations. If we

put Eq. (41) in the more compact version

det

(
m11 + σ +Dxq

2 m12

m21 −Dyq
2 σ +Dyq

2

)
= 0, (43)

we see that m11 = 1 + ρµ0 − ϕ, m12 = −ρµ0, m21 = 1 and m22 = 0

are exactly the matrix elements of Jacobian matrix (Eq. (20)), where

diffusivities of X and Y are missing. Expanding determinant in Eq. (41)
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and by grouping the terms of the polynomial with respect to σ, we get

σ2 +
[
(Dx+Dy)q

2 + 1 + ρ0µ− φ
]
σ+

+DxDyq
4 +Dy(1− φ)q2 + µρ0 = 0

. (44)

This quadratic equation can be reduced to standard form

σ2 +Hσ + F = 0, (45)

with corresponding abbreviations:

H = (Dx +Dy)q
2 + 1 + ρ0µ− φ, (46)

F (θ) = cθ2 + d · θ + e; θ = q2 (47)

c = DxDy; d = Dy(1− φ)θ; e = µρ0. (48)

First we recall that two possible roots of Eq. (45) are

σ1/2 =
1

2

(
−H ±

√
H2 − 4F

)
. (49)

It is plausible that for the realistic values Dx and Dy and big enough q

(small wavelength of perturbation, parameter H in Eq. (43) should safely

be positive. But positive H implicates that there is still possible root in

Eq. (49) whose real part can be negative.

In order for second root to have a positive real part, it is necessary that

the value of F (θ), given by Eqs. (47) and (49) be negative. Since F (θ) is

a parabola opening upwards that has a minimum, it is necessary that this

minimum has negative velue, see Figure 4.

Since coefficients c and e in Eq. (47) are positive, we need that remain-

ing coefficient d by θ should be negative

d = Dy(1− φ) < 0, (50)

which implies

φ =
2κ2(1− ε2)

ρ0(1 + κ2)2
> 1. (51)
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Figure 4. A schematic representation of necessary conditions for
negative F (θ).

In order to complete the necessary and sufficient condition for the neg-

ative minimum of F (θ) from Eq. (47) we take the derivative

dF

dθ
= 2cθ + d = 0 ⇒ θ0 = − d

2c
. (52)

On the basis of Eqs. (47), (48) and (49), we get

θ0 =
φ− 1

2Dx
> 0. (53)

Inserting θ0 in Eqs. (47) and (48), the minimum of F (θ) reads

Fmin = −1

4

Dy

Dx
(φ− 1)2 + ρ0µ. (54)

Now we impose that Fmin in Eq. (54) should be negative, which implies

(φ− 1)2 > 4ρ0µ
Dx

Dy
, (55)
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or otherwise
Dy

Dx
>

4ρ0µ(
2κ2(1−ε2)
ρ0(1+κ2)2 − 1

)2 . (56)

In order to estimate the ratio of diffusion coefficients according to Eq. (56),

the reasoning could be as follows: we chose small parameter ε to be

ε = 0.1 ⇒ ε2 = 0.01. (57)

Regarding the parameter µ we assume ν < K1, so we take

µ = 0.5. (58)

Recalling Eq. (24), we here have

0.1 < κ <
1√

1 + 0.5
⇒ 0.1 < κ < 0.81. (59)

If we choose χ = κ = 0.7 (ρ0 from Eq. (7)), and calculate the auxiliary

paramters as follows

ρ0 =
0.01 + 0.49

1 + 0.49
= 0.3356, (60)

and

φ =
2 · 0.49 · (1− 0.01)

0.3356 · (0.49 + 1)2
= 1.3, (61)

inserting Eqs. (58), (60) and (61) into inequality Eq. (56), we finally get

Dy

Dx
≥ 7.46. (62)

This number meets the requirement from Eq. (3), meaning that re-

markable difference in diffusivities should be provided in order to get in-

homogeneous spatial distribution of reactants, slow diffusive X and fast

diffusive substrate Y . This could be possible if the reaction product X

molecules are associated to some appropriate slowly diffusing buffer.

We recall CIMA reaction in Introduction, where it was achieved in a

way that the activator reactant triiodide is transiently complexed with
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starch molecule and thus its effective diffusion is reduced remarkably in

comparison with free diffusion [3,10]. We could now estimate the values of

wavenumber q for crossing points θ1 and θ2 of parabola plotted in Figure

4. These are the solutions of F (θ) = 0, from Eqs. (47) and (48), which

gives

θ1/2 =
1

2DxDy

[
Dy(φ− 1)±

√
D2

y(φ− 1)2 − 4DxDyµρ0

]
. (63)

In order to get positive real numbers it is necessary to be fulfilled the

inequality

D2
y(φ− 1)2 − 4DxDyµρ0 > 0. (64)

This is the same condition expressed in Eq. (55). If we use the following

set of parameters:

µ = 0.5 φ = 1.3 ρ0 = 0.3356 Dx = 0.1 Dy = 1, (65)

we get the respective wavenumbers:

θ1 = 2.25 or (q1 = 1.5) θ2 = 0.75 or (q2 = 0.87). (66)

Taking into account that the dimensionless q is expressed in terms of di-

mensionless wavelength Λ = λ/ℓ0, as follows

q =
2π

Λ
=

2π

λ
ℓ0, (67)

so we get dimensionless wavelength

λ =
2π

q
ℓ0. (68)

On the basis of numerical values in Eq. (66) it gives pretty narrow domain

λ1 = 4.2ℓ0 λ2 = 7.2ℓ0. (69)

If we choose λ = 6ℓ0, and impose zero boundary condition for gradient of

perturbative concentration at the positions ℓ = 0, and ℓ = L (where 0 and
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L are the end points of CSTR reactor), we have∣∣∣∣− ∂

∂ξ
(cos qξ)

∣∣∣∣ = sin qξ = 0 ⇒ qξ = nπ n = 1, 2, 3, ... (70)

or in dimensionless form (λ = 6ℓ0)

2π

λ
ℓ0

L

ℓ0
= nπ L = 3ℓ0n. (71)

This is plotted in Figure 5, for reactant X. The above could permit us the

Figure 5. The one-dimensional space distribution of reactant ac-
tivator x = x0 + A cos(qξ) for the mode with λ = 6ℓ0,
where ℓ0 =

√
Dt is the characteristic diffusion length.

x0 = κ = 0.7, A = 0.05, L = 3ℓ0n. The amplitude is
exaggerated in order to be easily noticeable. The dot
line is the steady-state level of the concentration of X.

following interpretation of how diffusive instability is caused as a result of

random perturbations; a small peak concentration of substrate Y creates

increased concentration of product X. But this result, along with fast

diffusion of Y , brings about substrate depletion thus preventing unlimited

growth peak of X. This is important since our analysis works only as long

as the perturbations are sufficiently small to render the linear approxima-

tions of Eqs. (32) and (33) are valid picture of nonlinear system of Eqs.

(30) and (31). If perturbation is beyond small size, this analysis would be

inadequate.
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4 Conclusion

In this paper we are focused on specific positive feedback (or substrate

depletion) reaction-diffusion autocatalytic system. It consists of substrate

Y and the product X autocatalyzed in terms of allosteric catalyzer. Under

suitable conditions related to the values of pertaining diffusion coefficients

and reaction rates of X and Y the small perturbation of their concentra-

tions can lead to symmetry-breaking instability which yields heterogeneous

spatial patterns. We intuitively associate diffusion with a smoothing and

homogenizing influence that eliminates chemical gradients leading to uni-

form spatial distribution. Instead, here it appears that different diffusion

reactants act positively, engendering gradients and fostering nonuniform

pattern-like forms of reactant concentrations. We have proven that the

diffusion constants of substrate Y versus activator X should be remark-

ably different (Dy/Dx ∼ 7.4) in order to meet the restrictive conditions

for symmetry-breaking instability. We suggest that lowering diffusivity of

product X can be achieved by proper buffer with low diffusivity. We recall

that such role in successful experiment was achieved by starch molecules

(CIMA reactions [3, 7]).
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[10] M. V. Satarić, T. Nemeš, J. A. Tuszynski, Re-examination of the
Sel’kov model of glycolysis and its symmetry-breaking instability
due to the impact of diffusion with implications for cancer imitation
caused by Warburg effect, Biophysica 4 (2024) 545–560.

[11] S. N. Semenov, L. J. Kraft, A. Ainla, M. Zhao, M. Baghbanzadeh,
V. E. Campbell, K. Kang, J. M. Fox, G. M. Whitesides, Autocat-
alytic, bistable, oscillatory networks of biologically relevant organic
reactions, Nature 537 (2016) 656–660.


	Introduction
	An autocatalytic reaction with two reactants
	Symmetry breaking instability in this model of autocatalytic reaction with diffusion of reactants X and Y
	Conclusion

