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Abstract

Quantitative Structure Property Relationship (QSPR) model-
ing is critical for predicting physicochemical properties of molecules,
supporting drug discovery and material design. Traditional meth-
ods often use complex descriptors or opaque models, which lim-
its interpretability. There is a need for QSPR approaches that
balance accuracy and interpretability to elucidate structural influ-
ences on molecular properties. We introduce a QSPR method using
degree-distance-based topological indices (TIs) derived from vertex
edge weighted (VEW) molecular graphs, weighted by atomic num-
ber, mass, radius, density, electronegativity, and ionization energy.
This approach captures detailed molecular connectivity and bonding
while prioritizing interpretability. Using a 166-molecule dataset, our
models -Ridge Regression, Random Forest, XGBoost, and Neural
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Networks- achieved high prediction accuracy for six physicochem-
ical properties. Regularization ensured robust predictions. The
performance metrics tables and the TI correlations clarified the
structure-property relationships. This efficient and interpretable
framework accelerates drug discovery by enabling virtual screening
and informed molecular design.

1 Introduction

Studies on finding relationships between the physical properties of molecu-

les and their topological indices are frequently found in the literature. In

particular, QSPR analyses explaining such relationships have been exten-

sively studied in drug design research [1, 27, 37]. Quantitative Structure-

Property Relationship (QSPR) modeling is a powerful computational ap-

proach that correlates molecular structure with physicochemical and bio-

logical properties using mathematical descriptors. By transforming com-

plex molecular graphs into numerical indices such as topological, geomet-

ric, or electronic descriptors QSPR enables the prediction of key charac-

teristics like solubility, toxicity, and reactivity without extensive lab exper-

imentation. This method accelerates drug discovery and materials science

by prioritizing promising compounds before synthesis, reducing costs and

time. Graph-theoretical descriptors, in particular, serve as molecular fin-

gerprints, allowing machine learning models to identify structure-activity

trends with high accuracy. As a bridge between theoretical chemistry and

practical applications, QSPR provides data-driven insights for designing

optimized pharmaceuticals and advanced materials, making it an indis-

pensable tool in modern computational chemistry. The first QSPR study

on vertex-edge weighted molecular graphs was conducted in [31]. The

mentioned studies have utilized degree-based topological indices. In these

studies, the topological indices of molecular graphs of drugs have been

calculated, and some regression models have generally been used to relate

them to physical properties. Some of the recent studies on QSPR can be

found in [2, 22,31,33,34].

In recent years, machine learning (ML) techniques have been exten-

sively employed in chemistry to predict physicochemical properties, par-
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ticularly when experimental data are limited [17, 24]. Studies such as [24]

have demonstrated the effectiveness of ML approaches in handling small

datasets by leveraging appropriate feature representations. Inspired by

these advancements, we applied both linear and non-linear regression mod-

els to explore the relationship between physicochemical properties and

topological indices. Specifically, linear regression, Lasso, and Ridge re-

gression were utilized to capture simple linear dependencies, while Ran-

dom Forest, XGBoost, and Neural Networks were employed to model more

complex, non-linear interactions.

1.1 Motivation

Topological indices (TIs) are mathematical descriptors derived from molec-

ular graphs, capturing structural features without requiring costly experi-

mental measurements [7]. In contrast, determining physicochemical prop-

erties such as Boiling Point (BP), Molar Volume (MV), Molar Refractivity

(MR), Flash Point (FP), Polarizability (Polar), and Enthalpy of Vaporiza-

tion (EV) often involves resource-intensive laboratory procedures. These

properties are critical in drug discovery, as they influence pharmacokinetic

attributes like solubility (via MV, MR, Polar), stability (via BP, FP), and

membrane permeability (via Polar, EV), which are essential for designing

bioavailable and effective therapeutics [1]. Establishing reliable relation-

ships between TIs and these properties enables preliminary insights into

molecular behavior, optimizing resource utilization in cheminformatics re-

search. While properties like the HOMO-LUMO gap (available in datasets

like QM9) or toxicity (available in Tox21) are also relevant for modern drug

discovery, the chosen properties provide a foundational understanding of

molecular interactions, with potential extensions to quantum and toxicity

predictions in future work. This study is motivated by the need for in-

terpretable QSPR models that balance accuracy and structural insight to

accelerate drug development.
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1.2 Novelty and aim

This study introduces a novel QSPR framework using degree-distance-

based TIs derived from vertex-edge weighted (VEW) molecular graphs,

weighted by six atomic properties (Atomic Number, Atomic Mass, Atomic

Radius, Density, Electronegativity, Ionization Energy). Unlike previous

studies focusing on specific drug classes [23, 30, 38], our approach applies

TIs to a diverse 166-molecule dataset, identifying universal descriptors

(e.g., Harary, RDD) that generalize across multiple physicochemical prop-

erties. By integrating linear (Ridge, LASSO) and non-linear (Random

Forest, XGBoost, Neural Networks) models with optimized hyperparam-

eters (Tables 14, 15), we achieve high accuracy (e.g., R2 > 0.9 for MR,

Polar) while maintaining interpretability through TI correlations, contrast-

ing with less transparent graph neural networks (GNNs) [25, 26]. Fu-

ture extensions to advanced topological representations, such as simpli-

cial complexes or hypergraphs, could further enhance predictive power.

The aim is to develop an efficient, interpretable QSPR methodology that

identifies key structural descriptors to guide molecular design in drug

discovery, with open-access code and data to facilitate further research

(https://github.com/ssorgun/LNNR).

This paper is structured as follows: Section 2 introduces the pre-

liminaries and the graph-based molecular representation used through-

out the study. Section 3 describes the materials and methods, including

the dataset, topological indices (TIs), and machine learning models. Sec-

tion 4 presents the results of predictive modeling using both linear and

non-linear approaches across six physicochemical properties. Section 5

discusses the main findings and methodological limitations, emphasizing

the interpretability of topological indices in contrast to graph neural net-

works. Finally, Section 6 concludes the study and outlines future research

directions, including potential integration of TIs with more expressive rep-

resentations and modern deep learning frameworks.

https://github.com/ssorgun/LNNR
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2 Preliminarily and graph model

A vertex and edge-weighted (VEW) molecular graph G is firstly defined

in [9, 18] as

G = G(V,E, Sym,Bo, V w,Ew,w)

such that the vertex and edge set is V = V (G) and E = E(G). respectively;
Here a set of chemical symbols of the vertices Sym = Sym(G), a set of

topological bond orders ( takes the value 1 for single bonds, 2 for double

bonds, 3 for triple bonds and 1.5 for aromatic bonds) of the edges Bo =

Bo(G), a vertex weight set V w(w) = Vw(w,G), and an edge weight set

Ew(w) = Ew(G). Here w is the weighting scheme which is used to compute

the V w(w) and Ew(w). Generally, all schemes in a molecular graph are

the properties of the atoms such as atomic number, atomic radius etc. [9].

V w(w)i = 1− wC

wi
(1)

and

Ew(w)ij =
wCwC

Boijwiwj
(2)

where V w(w)i represents atom i from a molecule; Ew(w)ij represents the

bonds between atom i and atom j and Boij is the topological bonds order

between i and j, respectively [18].

The adjacency matrix Aw = Aw(G) of a vertex-edge-weighted molec-

ular graph G with n vertices is the square n × n real symmetric matrix

whose element (Aw)uv and (Dw)uv are defined in [18] (pg. 173-175) as:

(Aw)uv =


Vw(w)u, if u = v.

Ew(w)uv, if uv ∈ E(G)

0, otherwise

(3)

and

(Dw)uv =

Vw(w)u, if u = v.

dw(u, v), otherwise,
(4)

respectively. Here dw(u, v) represents the distance between vertices u and
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v where w denotes the weighting scheme employed to calculate the param-

eters Vw and Ew. In a VEW graph G, the length of a path pij between

vertices vi and vj ,

l(pij , w) = l(pij , w,G),

is equal to the sum of the edge parameters Ew(w)ij for all edges along the

path.

Topological indices are numerical descriptors derived from graphs, of-

ten calculated based on the elements of the graph. These indices frequently

depend on properties such as vertex degrees or other structural character-

istics, making them valuable tools for analyzing and interpreting molecular

structures in various scientific fields. The application of topological indices

in drug discovery has been well documented in the literature, with numer-

ous studies highlighting their effectiveness.

Unlike the classical degree-distance-based topological indices, the topo-

logical definitions for VEW graphs are derived from equations in (1) and

(2) as shown in the table below.

Table 1. VEW-based degree distance topological indices for G

TIs names vew-based description

Wiener Index W (G) =
∑

u<v(Dw)uv
Harary Index H(G) = 1

2

∑
u<v

1
(Dw)uv

Balaban Index J(G) = m
m−n+2

∑
uv∈E(G)

1√
(Dw)u(Dw)v

Total Eccentric Index TEI(G) =
∑

u∈V ϵ(u)
Eccentric Connectivity Index ECI(G) =

∑
u∈V ϵ(u)(A2

w)uu
Degree Distance Index DD(G) =

∑
uv∈E [(A

2
w)uu + (A2

w)vv](Dw)uv
Gutman Index G(G) =

∑
uv∈E [(A

2
w)uu(A

2
w)vv](Dw)uv

Reciprocal Degree Distance Index RDD(G) =
∑

uv∈E [(A
2
w)uu + (A2

w)vv]/(Dw)uv

In above table, notations of (Dw)u and ϵ(u) are the sum of all entries in

the uth row of VEW distance matrix of graph G and the maximum value

of the uth row in the Dw(G) matrix, respectively.

For unweighted graphs, the classical definitions (Wiener [10]; Bala-

ban [3]; Harary [28]; Total Eccentric and Eccentric Connectivity index [29];
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Degree Distance Index [6]; Gutman Index [11]; Reciprocal Degree Dis-

tance Index [16]) of distance and degree-distance-based topological in-

dices, applications in chemistry and related between them can be found

in, [8, 12,13,19,21,32,33] as listed in Table 1.

3 Material and method

Molecular graphs and physicochemical properties of 166 drug molecules

were sourced from the Chemspyder database using SMILES codes and

topological indices were calculated using vertex and edge weightings based

on atomic properties of the molecules, including atomic radius, atomic

mass, density, ionization, electronegativity, and atomic number (see Sup-

plementary Data). While larger datasets are often utilized in QSPR mod-

eling to enhance generalizability, our study employed a carefully curated

dataset of 166 drug molecules sourced from Chemspyder. This selection

ensures a diverse range of molecular structures and physicochemical prop-

erties, critical for validating the effectiveness of our degree-distance-based

topological indices. Previous studies, such as those predicting logKoc for

persistent organic pollutants with similar dataset sizes Fuzzy QSARs for

logKoc, have demonstrated that well-selected smaller datasets can yield

robust QSPR models, particularly when focused on specific classes of com-

pounds or properties. Our dataset’s diversity, as evidenced by statistical

analysis of property variability (e.g., standard deviation in boiling point:

45°C), supports its suitability for this analysis [36].

In the following, briefly we introduce both linear and nonlinear mod-

eling approaches to establish the relationship between six physical prop-

erties—Boiling Point (BP), Molar Volume (MV), Molar Refraction (MR),

Flash Point (FP), Polarizability (Polar), and Enthalpy of Vaporization

(EV)—and eight topological indices mentioned in Table 1. Six atomic

properties (Atomic Number, Atomic Mass, Atomic Radius, Density, Elec-

tronegativity, Ionization Energy) were used as inputs. Six machine learn-

ing models, Linear Regression (LR), Ridge Regression (RR), LASSO Re-

gression, Random Forest (RF), XGBoost (XGB), and Neural Networks

(NN), were trained and evaluated using R2, RMSE, and MAE metrics



296

via 5-fold cross-validation to ensure robustness. Hyperparameters for RF

and XGB were optimized via grid search (Tables 14, 15). TI importance

was assessed through correlation coefficients for linear models and fea-

ture importance scores for RF and XGB, providing interpretable struc-

tural insights. This methodology emphasizes computational efficiency and

reproducibility, with all code and data publicly available on GitHub at

https://github.com/ssorgun/LNNR. The results were validated through

cross-validation to ensure robustness, and comparisons with graph neu-

ral networks (GNNs) demonstrated a strong balance between the inter-

pretability of topological indices (TIs) and predictive performance [25,26].

Linear Regression assumes a linear relationship between indices and

properties [14]. Lasso Regression uses L1 regularization for feature selec-

tion, reducing complexity [35]. Ridge Regression applies L2 regularization

to mitigate multicollinearity [15]. Beyond linear models, we applied non-

linear techniques to capture complex relationships. Random Forest (RF)

aggregates decision trees for improved generalization [4]. XGBoost se-

quentially builds trees to correct errors, enhancing accuracy [5]. Neural

Networks (ANNs) uses layered neurons to model intricate patterns, with

careful tuning to avoid overfitting on smaller datasets [20]. Models were

assessed using R2 (explanatory power), RMSE (error magnitude), and

MAE (average accuracy), selected for their complementary evaluation of

performance [14].

The TIs in Table 1 were chosen for their proven ability to encode degree-

distance structural information in weighted graphs, drawing from estab-

lished QSPR literature [7,29]. High correlations among certain indices were

managed through Ridge regularization to prevent overfitting and enhance

model stability, as evidenced by different tables in the results.

To address the variability of topological indices across molecular graphs

of different orders, all TI values and target properties were standardized

using the ‘StandardScaler‘ from scikit-learn, transforming them to a mean

of 0 and standard deviation of 1. This preprocessing step, combined with

VEW graph weighting by atomic properties, effectively balances the im-

pact of molecular size and complexity.

The 166-molecule dataset was divided into training (80%,133 molecules)

https://github.com/ssorgun/LNNR
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and test ((20%,33 molecules) sets using stratified sampling with a fixed ran-

dom seed (42) to ensure reproducibility and maintain property diversity.

The models were trained on the training set and evaluated on the test set

using R2, MAE, and RMSE metrics.

4 Results

This section analyzes the predictive performance of machine learning mod-

els: linear regression (LR), ridge regression (RR), LASSO regression, ran-

dom forest (RF), XGBoost (XGB), and neural networks (NN) for six

physicochemical properties: Boiling point (BP), molecular volume (MV),

molecular refractivity (MR), flash point (FP), polarizability (polar), and

enthalpy of vaporization (EV). For each property, two tables present pre-

diction metrics (R2, RMSE, MAE) across atomic properties (Atomic Num-

ber, Atomic Mass, Atomic Radius, Density, Electronegativity, Ionization

Energy) and the importance of topological indices (TIs) such as Harary,

RDD, TEI, ECI, Wiener, DD, Gutman, and Balaban. Additionally, hyper-

parameter optimization results for RF and XGB models are provided to

contextualize model performance. The analysis is organized by property,

followed by a cross-property comparison to guide Quantitative Structure-

Property Relationship (QSPR) modeling for drug design.

4.1 Boiling point (BP)

4.1.1 Prediction performance

As shown in Table 2, both linear and non-linear models exhibit limited

predictive performance for the boiling point (BP). Among linear models,

R2 values range from 0.4545 (LASSO with Atomic Radius) to a maximum

of 0.4999 (Linear Regression with Electronegativity), indicating modest

predictive power. Non-linear models offer only marginal improvements:

the Random Forest (RF) model achieves R2 = 0.51, RMSE = 108.49, and

MAE = 58.20 using Atomic Number, while XGBoost (XGB) follows closely

with R2 = 0.47, RMSE = 113.04, and MAE = 61.92. These results sug-

gest that, despite optimized hyperparameters (e.g., max depth = None and
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n estimators = 200 for RF; max depth = 7 and n estimators = 50 for

XGB; see Tables 14 and 15), non-linear models do not substantially out-

perform their linear counterparts for BP prediction. Among the atomic

features evaluated, Ionization Energy appears to be the most informa-

tive, possibly due to its relevance in governing intermolecular interactions.

Neural Networks (NN) achieve slightly higher performance (R2 = 0.613),

though their results may be constrained by dataset size and inherent com-

plexity of the BP property.

Table 2. Performance metrics and influential TIs for boiling point (BP)
prediction

Atomic Property Model R² RMSE MAE

Atomic Number LR 0.4792 115.4367 69.6274

RR 0.4792 115.4367 69.6274

LASSO 0.4792 115.4312 69.6230

RF 0.51 108.49 58.20

XGB 0.42 117.98 70.26

NN 0.613 92.860 70.767

Atomic Mass LR 0.4798 115.3330 69.2126

RR 0.4798 115.3330 69.2126

LASSO 0.4799 115.3273 69.2079

RF 0.51 108.79 58.25

XGB 0.47 113.04 61.92

NN 0.624 91.070 66.983

Atomic Radius LR 0.4558 117.0522 75.5980

RR 0.4558 117.0522 75.5980

LASSO 0.4545 117.1947 75.7172

RF 0.41 118.50 65.55

XGB 0.39 120.71 70.92

NN 0.596 95.114 71.516

Density LR 0.4875 113.8972 68.3838

RR 0.4875 113.8972 68.3838

LASSO 0.4875 113.8971 68.3839

Continued on next page
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Table 2 (continued)

Atomic Property Model R² RMSE MAE

RF 0.52 107.28 58.90

XGB 0.45 115.19 61.80

NN 0.672 86.019 63.921

Electronegativity LR 0.4999 113.5759 68.2110

RR 0.4999 113.5759 68.2110

LASSO 0.4980 113.7959 68.1240

RF 0.38 121.75 70.82

XGB 0.34 126.07 73.23

NN 0.630 91.864 68.577

Ionization Energy LR 0.4830 114.4173 66.6389

RR 0.4830 114.4173 66.6390

LASSO 0.4816 114.5740 67.1658

RF 0.38 122.38 71.06

XGB 0.37 123.02 69.83

NN 0.622 91.698 67.655

4.1.2 Importance of topological indices

Table 3 highlights the dominance of Harary and RDD indices across linear

models, with correlation coefficients near 0.82 and 0.81 respectively for

Atomic Number, reflecting their ability to capture molecular connectivity

relevant to BP. RF and XGB emphasize Harary and Wiener indices, albeit

with slightly different importance scores, underscoring the complementary

nature of these descriptors in non-linear modeling. The consistent impor-

tance of Gutman and DD indices in non-linear models further suggests

complex graph-theoretical features underpin BP prediction.
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Table 3. Top topological indices (TIs) for boiling point (BP) prediction
across atomic properties and models

Atomic Prop-

erty

Correlation-

Based

(LR/LASSO/RR)

Random Forest

(RF)

XGBoost

(XGB)

Atomic Number Harary: 0.8183

RDD: 0.8054

TEI: 0.7655

ECI: 0.7532

Wiener: 0.7454

Harary: 0.5834

Wiener: 0.1138

RDD: 0.0738

Gutman: 0.0674

Balaban: 0.0540

Harary: 0.5749

RDD: 0.1287

Wiener: 0.1273

DD: 0.0464

Balaban: 0.0463

Atomic Mass Harary: 0.8183

RDD: 0.8057

TEI: 0.7656

ECI: 0.7535

Wiener: 0.7453

Harary: 0.5512

Wiener: 0.1161

RDD: 0.0958

Gutman: 0.0656

Balaban: 0.0554

Harary: 0.5258

RDD: 0.1558

Wiener: 0.1391

DD: 0.0573

Balaban: 0.0527

Atomic Radius RDD: 0.8090

Harary: 0.8041

TEI: 0.7602

ECI: 0.7527

DD: 0.7506

Harary: 0.3140

RDD: 0.2389

Wiener: 0.1870

Gutman: 0.0613

DD: 0.0572

Harary: 0.3629

RDD: 0.1757

Wiener: 0.1679

DD: 0.0974

ECI: 0.0780

Density RDD: 0.8388

Harary: 0.7722

DD: 0.7562

Wiener: 0.7529

TEI: 0.7526

RDD: 0.5262

DD: 0.1130

Wiener: 0.1038

Harary: 0.0829

Gutman: 0.0629

RDD: 0.3603

Gutman: 0.1750

Wiener: 0.1338

DD: 0.1191

Harary: 0.0752

Electronegativity Harary: 0.8147

RDD: 0.7980

TEI: 0.7641

ECI: 0.7455

Wiener: 0.7408

Harary: 0.5523

Wiener: 0.1089

RDD: 0.0739

DD: 0.0698

Gutman: 0.0687

Harary: 0.4370

Wiener: 0.1950

Gutman: 0.1248

DD: 0.0871

TEI: 0.0512

Ionization

Energy

Harary: 0.8170

RDD: 0.7967

TEI: 0.7646

ECI: 0.7496

Wiener: 0.7381

Harary: 0.5112

Wiener: 0.1361

DD: 0.1039

RDD: 0.0856

Balaban: 0.0673

Harary: 0.4239

Wiener: 0.1813

RDD: 0.1070

DD: 0.0913

Gutman: 0.0640
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4.2 Molar volume (MV)

4.2.1 Prediction performance

Table 4 reveals strong predictive accuracy for MV, with linear models

achieving R2 above 0.84 and RF and XGB excelling (R2 up to 0.93). RF’s

n estimators = 200 and XGB’ s learning rate = 0.3 (Tables 14 and 15)

were critical in capturing the molecular volume complexity. Density in

linear and Electronegativity in non-linear models consistently emerge as

the top atomic properties, highlighting its fundamental role in molecular

packing and volume. NN performance is respectable but slightly lower,

possibly due to overfitting risks in limited data contexts.

Table 4. Performance metrics and influential TIs for molar volume
(MV) prediction

Atomic Property Model R² RMSE MAE

Atomic Number LR 0.8455 33.0305 28.8814

RR 0.8455 33.0305 28.8814

LASSO 0.8457 33.0104 28.8597

RF 0.90 25.96 19.84

XGB 0.92 23.99 18.32

NN 0.848 41.541 32.925

Atomic Mass LR 0.8455 33.0297 28.8454

RR 0.8455 33.0297 28.8454

LASSO 0.8457 33.0100 28.8243

RF 0.91 25.77 20.07

XGB 0.91 25.25 19.58

NN 0.875 37.108 29.766

Atomic Radius LR 0.8451 33.0754 26.9180

RR 0.8451 33.0754 26.9180

LASSO 0.8471 32.8609 26.7316

RF 0.90 26.63 21.00

XGB 0.90 27.21 20.49

NN 0.849 39.675 32.007

Continued on next page
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Table 4 (continued)

Atomic Property Model R² RMSE MAE

Density LR 0.8869 28.2627 23.9887

RR 0.8869 28.2627 23.9887

LASSO 0.8869 28.2628 23.9891

RF 0.85 32.46 23.97

XGB 0.86 31.98 23.08

NN 0.879 35.811 28.928

Electronegativity LR 0.8627 31.1373 26.5694

RR 0.8627 31.1374 26.5694

LASSO 0.8612 31.3019 26.5889

RF 0.91 25.69 20.06

XGB 0.93 21.99 16.56

NN 0.874 37.259 28.970

Ionization Energy LR 0.8656 30.8072 26.8388

RR 0.8656 30.8072 26.8388

LASSO 0.8658 30.7855 26.8080

RF 0.89 28.23 21.52

XGB 0.91 25.45 19.35

NN 0.879 35.938 29.061

4.2.2 Importance of topological indices

From Table 5, ECI and TEI dominate linear models with correlations above

0.92 for Atomic Number, confirming their relevance to volume-related

properties. RF and XGB prioritize Gutman and DD indices, reflecting

their sensitivity to subtle structural variations impacting molecular vol-

ume. The agreement across atomic properties reinforces these indices’

utility.
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Table 5. Top topological indices (TIs) for molar volume (MV) predic-
tion across atomic properties and models

Atomic

Property

Correlation-

Based

(LR/LASSO/RR)

Random For-

est (RF)

XGBoost

(XGB)

Atomic Num-

ber

ECI: 0.9273

TEI: 0.9259

RDD: 0.9161

Harary: 0.9058

DD: 0.9007

Gutman: 0.2971

DD: 0.1790

Wiener: 0.1398

Harary: 0.1114

RDD: 0.0958

Gutman: 0.5301

DD: 0.1674

RDD: 0.1596

Wiener: 0.0448

TEI: 0.0409

Atomic Mass ECI: 0.9273

TEI: 0.9259

RDD: 0.9162

Harary: 0.9059

DD: 0.9005

Gutman: 0.3003

DD: 0.1629

Wiener: 0.1492

Harary: 0.1086

RDD: 0.0963

Gutman: 0.2907

DD: 0.2489

Wiener: 0.1731

RDD: 0.1164

TEI: 0.1138

Atomic Radius Harary: 0.9175

TEI: 0.9136

RDD: 0.9067

Wiener: 0.8914

ECI: 0.8911

Harary: 0.2783

Wiener: 0.2636

DD: 0.1759

TEI: 0.1230

RDD: 0.0669

DD: 0.2392

TEI: 0.2153

Harary: 0.2095

Wiener: 0.1468

RDD: 0.0889

Density Harary: 0.9115

Wiener: 0.8883

TEI: 0.8796

RDD: 0.8763

DD: 0.8339

Harary: 0.4160

Wiener: 0.3468

TEI: 0.1069

DD: 0.0738

RDD: 0.0247

Harary: 0.3396

Wiener: 0.2447

TEI: 0.1979

DD: 0.1471

RDD: 0.0332

Electronegativity ECI: 0.9332

TEI: 0.9281

RDD: 0.9173

Gutman: 0.9074

Harary: 0.9062

Gutman: 0.3444

DD: 0.2577

Wiener: 0.1005

ECI: 0.0877

RDD: 0.0691

Gutman: 0.6600

ECI: 0.1136

Wiener: 0.0555

RDD: 0.0472

TEI: 0.0413

Continued on next page
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Table 5 (continued)

Atomic

Property

Correlation-

Based

(LR/LASSO/RR)

Random For-

est (RF)

XGBoost

(XGB)

Ionization En-

ergy

ECI: 0.9364

TEI: 0.9283

RDD: 0.9165

Harary: 0.9105

DD: 0.8983

Gutman: 0.3313

DD: 0.2936

ECI: 0.0974

TEI: 0.0833

Harary: 0.0803

DD: 0.3324

Gutman: 0.1989

ECI: 0.1407

RDD: 0.1109

Wiener: 0.1011

4.3 Molar refractivity (MR)

4.3.1 Prediction performance

According to Table 6, MR exhibits excellent predictability, with R2 ex-

ceeding 0.94 for most models. RF and XGB maintain high accuracy (R2

≈ 0.96), benefiting from tuned hyperparameters (Tables 14 and 15). Elec-

tronegativity again ranks highest among atomic properties, consistent with

MR’s dependence on molecular polarizability and size. NN shows compet-

itive but slightly lower performance.

Table 6. Performance metrics and influential TIs for molar refraction
(MR) prediction

Atomic Property Model R² RMSE MAE

Atomic Number LR 0.9541 6.7408 5.6431

RR 0.9541 6.7408 5.6431

LASSO 0.9541 6.7352 5.6451

RF 0.95 6.76 4.99

XGB 0.95 6.98 5.11

NN 0.927 9.738 7.389

Atomic Mass LR 0.9543 6.7245 5.6100

RR 0.9543 6.7245 5.6100

LASSO 0.9544 6.7183 5.6122

Continued on next page
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Table 6 (continued)

Atomic Property Model R² RMSE MAE

RF 0.95 6.79 4.98

XGB 0.95 7.04 5.37

NN 0.951 8.012 6.311

Atomic Radius LR 0.9559 6.6053 5.4746

RR 0.9559 6.6053 5.4746

LASSO 0.9551 6.6664 5.4967

RF 0.95 7.36 5.27

XGB 0.94 7.52 5.46

NN 0.928 9.418 7.258

Density LR 0.9460 7.3057 6.0635

RR 0.9460 7.3057 6.0635

LASSO 0.9460 7.3060 6.0636

RF 0.93 8.32 6.12

XGB 0.94 7.53 5.51

NN 0.934 9.196 7.256

Electronegativity LR 0.9572 6.5094 5.4507

RR 0.9572 6.5094 5.4507

LASSO 0.9571 6.5120 5.4576

RF 0.97 5.55 4.25

XGB 0.97 5.21 4.09

NN 0.954 7.897 6.261

Ionization Energy LR 0.9557 6.6212 5.4401

RR 0.9557 6.6212 5.4401

LASSO 0.9560 6.5985 5.4762

RF 0.96 5.96 4.69

XGB 0.97 5.79 4.41

NN 0.945 8.427 6.701

4.3.2 Importance of topological indices

Table 7 highlights RDD and ECI as key indices, with correlations exceeding

0.95 for linear models. RF and XGB models stress Gutman and DD,

emphasizing their role in capturing the nuanced electronic environment
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influencing MR.

Table 7. Top topological indices (TIs) for molar refraction (MR) pre-
diction across atomic properties and models

Atomic

Property

Correlation-

Based

(LR/LASSO/RR)

Random For-

est (RF)

XGBoost

(XGB)

Atomic Num-

ber

RDD: 0.9514

ECI: 0.9514

TEI: 0.9468

Harary: 0.9385

Gutman: 0.9172

Gutman: 0.2847

DD: 0.2058

Wiener: 0.1913

RDD: 0.1764

Harary: 0.0521

DD: 0.3434

Gutman: 0.3171

Wiener: 0.1520

RDD: 0.1505

Harary: 0.0251

Atomic Mass RDD: 0.9516

ECI: 0.9515

TEI: 0.9468

Harary: 0.9386

Gutman: 0.9171

Gutman: 0.2926

DD: 0.1979

Wiener: 0.1940

RDD: 0.1899

TEI: 0.0520

DD: 0.3682

Gutman: 0.2560

Wiener: 0.2075

RDD: 0.1060

Harary: 0.0296

Atomic Radius Harary: 0.9481

RDD: 0.9425

TEI: 0.9371

ECI: 0.9190

DD: 0.9060

Wiener: 0.4249

Harary: 0.2744

DD: 0.1122

RDD: 0.0659

Gutman: 0.0565

DD: 0.4225

Wiener: 0.3264

TEI: 0.1084

Harary: 0.1075

RDD: 0.0181

Density RDD: 0.9328

Harary: 0.9314

TEI: 0.9133

Wiener: 0.9085

DD: 0.8764

Wiener: 0.5266

Harary: 0.2805

TEI: 0.0674

RDD: 0.0629

DD: 0.0465

Wiener: 0.3254

TEI: 0.3092

DD: 0.1599

Harary: 0.1278

RDD: 0.0579

Electronegativity ECI: 0.9552

RDD: 0.9509

TEI: 0.9485

Harary: 0.9393

Gutman: 0.9228

DD: 0.4022

Gutman: 0.2990

Wiener: 0.0946

RDD: 0.0823

ECI: 0.0579

DD: 0.4650

Gutman: 0.2845

Wiener: 0.1347

RDD: 0.0818

ECI: 0.0140

Continued on next page
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Table 7 (continued)

Atomic

Property

Correlation-

Based

(LR/LASSO/RR)

Random For-

est (RF)

XGBoost

(XGB)

Ionization En-

ergy

ECI: 0.9536

RDD: 0.9489

TEI: 0.9470

Harary: 0.9462

DD: 0.9085

Gutman: 0.3235

DD: 0.3180

Wiener: 0.1337

RDD: 0.0971

ECI: 0.0493

DD: 0.3874

Gutman: 0.3511

Wiener: 0.0964

RDD: 0.0505

Harary: 0.0444

4.4 Flash point (FP)

4.4.1 Prediction performance

Table 8 indicates moderate predictive performance for linear models, with

R2 near 0.71 and slightly lower for ensemble models. Optimized hyperpa-

rameters such as n estimators = 50 (RF) and learning rate = 0.1 (XGB)

facilitated modeling of this more complex property. Density’s predictive

strength persists, suggesting molecular packing influences volatility. NN

models achieve moderate results, highlighting FP’s challenging prediction

landscape.

Table 8. Performance metrics and influential TIs for flash point (FP)
prediction

Atomic Property Model R² RMSE MAE

Atomic Number LR 0.7048 48.3148 37.3700

RR 0.7048 48.3148 37.3700

LASSO 0.7048 48.3181 37.3702

RF 0.68 48.21 32.85

XGB 0.64 51.24 33.87

NN 0.618 56.570 43.494

Atomic Mass LR 0.7044 48.3123 37.1798

RR 0.7044 48.3124 37.1798

Continued on next page
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Table 8 (continued)

Atomic Property Model R² RMSE MAE

LASSO 0.7044 48.3152 37.1800

RF 0.67 48.88 33.26

XGB 0.64 51.26 36.12

NN 0.607 57.352 43.582

Atomic Radius LR 0.6453 53.2214 42.0346

RR 0.6453 53.2214 42.0346

LASSO 0.6455 53.2043 42.0268

RF 0.61 53.22 37.30

XGB 0.51 59.59 41.38

NN 0.591 58.424 45.077

Density LR 0.7131 47.5233 37.4076

RR 0.7131 47.5233 37.4076

LASSO 0.7167 47.2273 36.8919

RF 0.65 50.21 34.18

XGB 0.62 52.24 35.14

NN 0.681 51.603 39.681

Electronegativity LR 0.7134 47.6816 36.8679

RR 0.7134 47.6816 36.8679

LASSO 0.7099 47.9670 36.7952

RF 0.54 57.68 40.18

XGB 0.51 59.91 41.73

NN 0.610 56.881 43.735

Ionization Energy LR 0.7146 46.9982 35.0963

RR 0.7146 46.9983 35.0963

LASSO 0.7115 47.2478 35.6502

RF 0.54 57.67 40.29

XGB 0.50 60.34 45.87

NN 0.611 56.499 42.776

4.4.2 Importance of topological indices

As seen in Table 9, Harary and RDD remain dominant for linear methods.

RF and XGB highlight Gutman and Harary, indicating their ability to en-
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code molecular features affecting FP. The recurrent importance of Harary

across properties supports its robustness.

Table 9. Top topological indices (TIs) for flash point (FP) prediction
across atomic properties and models

Atomic

Property

Correlation-

Based

(LR/LASSO/RR)

Random For-

est (RF)

XGBoost

(XGB)

Atomic Num-

ber

Harary: 0.8101

RDD: 0.7903

TEI: 0.7694

ECI: 0.7544

Wiener: 0.7458

Harary: 0.4885

Gutman: 0.1532

RDD: 0.0910

Wiener: 0.0827

Balaban: 0.0642

Harary: 0.3400

Gutman: 0.2033

Wiener: 0.1533

TEI: 0.0750

RDD: 0.0689

Atomic Mass Harary: 0.8102

RDD: 0.7907

TEI: 0.7694

ECI: 0.7547

Wiener: 0.7457

Harary: 0.4768

Gutman: 0.1536

RDD: 0.0982

Wiener: 0.0833

Balaban: 0.0671

Harary: 0.3569

Gutman: 0.2213

TEI: 0.0899

RDD: 0.0801

Wiener: 0.0780

Atomic Radius RDD: 0.7917

Harary: 0.7905

TEI: 0.7754

ECI: 0.7641

DD: 0.7518

Harary: 0.2513

RDD: 0.2249

Wiener: 0.1865

ECI: 0.0827

Gutman: 0.0747

Harary: 0.2995

RDD: 0.2661

ECI: 0.1029

Wiener: 0.0867

DD: 0.0695

Density RDD: 0.8365

DD: 0.7791

TEI: 0.7764

Wiener: 0.7636

Harary: 0.7469

RDD: 0.3216

Gutman: 0.2349

Wiener: 0.1168

Harary: 0.0818

DD: 0.0795

Gutman: 0.3313

RDD: 0.2566

Wiener: 0.1079

DD: 0.0894

Harary: 0.0791

Continued on next page
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Table 9 (continued)

Atomic

Property

Correlation-

Based

(LR/LASSO/RR)

Random For-

est (RF)

XGBoost

(XGB)

Electronegativity Harary: 0.8053

RDD: 0.7860

TEI: 0.7704

ECI: 0.7534

Wiener: 0.7446

Harary: 0.5229

Gutman: 0.1459

Wiener: 0.0843

RDD: 0.0711

Balaban: 0.0591

Harary: 0.3897

Gutman: 0.1785

Wiener: 0.1348

TEI: 0.0796

DD: 0.0669

Ionization En-

ergy

Harary: 0.8103

RDD: 0.7841

TEI: 0.7679

ECI: 0.7518

Wiener: 0.7410

Harary: 0.4952

DD: 0.1037

Wiener: 0.1032

RDD: 0.0876

Gutman: 0.0725

Harary: 0.6456

ECI: 0.1191

Balaban: 0.0583

RDD: 0.0447

Wiener: 0.0407

4.5 Polarizability (polar)

4.5.1 Prediction performance

Table 10 reports high accuracy for Polar, with RF and XGB achieving

R2 values around 0.94. Consistent hyperparameter optimization, includ-

ing n estimators = 200 and learning rate = 0.3, played a significant role.

Electronegativity and Ionization Energy stands out, reflecting polarizabil-

ity’s strong dependence on molecular size and electronic environment. NN

results are comparable, underscoring the potential of deep learning in this

domain.

Table 10. Performance metrics and influential TIs for polarizability
(polar) prediction

Atomic Property Model R² RMSE MAE

Atomic Number LR 0.9262 3.3253 2.4715

RR 0.9262 3.3253 2.4715

LASSO 0.9264 3.3196 2.4707

Continued on next page
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Table 10 (continued)

Atomic Property Model R² RMSE MAE

RF 0.93 3.22 2.19

XGB 0.93 3.17 2.15

NN 0.919 3.959 3.036

Atomic Mass LR 0.9259 3.3317 2.4631

RR 0.9259 3.3317 2.4631

LASSO 0.9262 3.3258 2.4624

RF 0.93 3.24 2.18

XGB 0.93 3.13 2.25

NN 0.941 3.409 2.597

Atomic Radius LR 0.9257 3.3362 2.4244

RR 0.9257 3.3362 2.4244

LASSO 0.9245 3.3638 2.4367

RF 0.93 3.35 2.24

XGB 0.92 3.54 2.39

NN 0.923 3.966 3.068

Density LR 0.9219 3.4195 2.6004

RR 0.9219 3.4195 2.6004

LASSO 0.9219 3.4197 2.6005

RF 0.91 3.58 2.48

XGB 0.92 3.52 2.44

NN 0.921 4.020 3.167

Electronegativity LR 0.9286 3.2706 2.4024

RR 0.9286 3.2706 2.4024

LASSO 0.9286 3.2709 2.4046

RF 0.94 2.96 1.89

XGB 0.95 2.68 1.66

NN 0.945 3.275 2.560

Ionization Energy LR 0.9289 3.2639 2.3817

RR 0.9289 3.2639 2.3817

LASSO 0.9293 3.2530 2.3938

RF 0.94 3.12 2.09

Continued on next page
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Table 10 (continued)

Atomic Property Model R² RMSE MAE

XGB 0.94 3.02 1.96

NN 0.932 3.719 2.842

4.5.2 Importance of topological indices

From Table 11, ECI and RDD show the highest correlations for linear

models, while RF and XGB assign considerable importance to Gutman

and DD indices. This alignment across models and properties underscores

these descriptors’ effectiveness for Polar prediction.

Table 11. Top topological indices (TIs) for polarizability (polar) pre-
diction across atomic properties and models

Atomic

Property

Correlation-

Based

(LR/LASSO/RR)

Random For-

est (RF)

XGBoost

(XGB)

Atomic Num-

ber

ECI: 0.9502

RDD: 0.9499

TEI: 0.9458

Harary: 0.9369

Gutman: 0.9166

Gutman: 0.2852

DD: 0.1997

Wiener: 0.1930

RDD: 0.1756

Harary: 0.0506

DD: 0.3354

Gutman: 0.3273

RDD: 0.1776

Wiener: 0.1146

Harary: 0.0346

Atomic Mass ECI: 0.9503

RDD: 0.9501

TEI: 0.9458

Harary: 0.9370

Gutman: 0.9165

Gutman: 0.2893

Wiener: 0.2012

DD: 0.1991

RDD: 0.1881

TEI: 0.0496

DD: 0.3806

Gutman: 0.2279

Wiener: 0.2112

RDD: 0.1119

Harary: 0.0408

Atomic Radius Harary: 0.9466

RDD: 0.9415

TEI: 0.9360

ECI: 0.9186

DD: 0.9057

Wiener: 0.4245

Harary: 0.2940

DD: 0.1053

RDD: 0.0681

Gutman: 0.0453

DD: 0.4384

Wiener: 0.2982

TEI: 0.1272

Harary: 0.1056

RDD: 0.0177

Continued on next page
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Table 11 (continued)

Atomic

Property

Correlation-

Based

(LR/LASSO/RR)

Random For-

est (RF)

XGBoost

(XGB)

Density RDD: 0.9315

Harary: 0.9303

TEI: 0.9120

Wiener: 0.9079

DD: 0.8756

Wiener: 0.5472

Harary: 0.2561

DD: 0.0654

RDD: 0.0646

TEI: 0.0522

Wiener: 0.3585

TEI: 0.2841

DD: 0.1368

Harary: 0.1258

RDD: 0.0711

Electronegativity ECI: 0.9538

RDD: 0.9495

TEI: 0.9474

Harary: 0.9382

Gutman: 0.9220

DD: 0.4096

Gutman: 0.3051

Wiener: 0.1095

RDD: 0.0756

ECI: 0.0453

DD: 0.4178

Gutman: 0.4112

Wiener: 0.0845

RDD: 0.0614

ECI: 0.0108

Ionization En-

ergy

ECI: 0.9522

RDD: 0.9474

TEI: 0.9458

Harary: 0.9450

DD: 0.9080

DD: 0.3444

Gutman: 0.3077

Wiener: 0.1293

RDD: 0.0989

Harary: 0.0474

DD: 0.4133

Gutman: 0.2798

Wiener: 0.1264

TEI: 0.0637

RDD: 0.0444

4.6 Enthalpy of vaporization (EV)

4.6.1 Prediction performance

Table 12 demonstrates moderate prediction results for EV, with R2 around

0.72 for RF and slightly lower for XGB. Hyperparameters such as n estimators

= 50 for RF and learning rate = 0.1 for XGB (Tables 14 and 15) were

critical. Atomic Mass obtains a little better results than other atomic

properties in predictability, possibly reflecting electron cloud effects. NN

yields moderate results, indicating room for model improvement.
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Table 12. Performance metrics and influential TIs for enthalpy of va-
porization (EV) prediction

Atomic Property Model R² RMSE MAE

Atomic Number LR 0.7226 9.5651 7.6559

RR 0.7226 9.5651 7.6559

LASSO 0.7248 9.5270 7.6282

RF 0.72 9.23 6.27

XGB 0.67 10.07 6.95

NN 0.674 11.574 8.895

Atomic Mass LR 0.7229 9.5567 7.5519

RR 0.7229 9.5567 7.5519

LASSO 0.7250 9.5198 7.5296

RF 0.72 9.27 6.22

XGB 0.71 9.47 6.31

NN 0.636 11.978 9.213

Atomic Radius LR 0.6743 10.4026 8.1233

RR 0.6743 10.4026 8.1233

LASSO 0.6770 10.3587 8.1050

RF 0.61 10.94 7.79

XGB 0.62 10.84 7.94

NN 0.668 11.657 9.022

Density LR 0.7275 9.7586 7.6991

RR 0.7275 9.7586 7.6991

LASSO 0.7275 9.7588 7.6991

RF 0.64 10.51 6.78

XGB 0.58 11.34 7.06

NN 0.697 11.304 8.777

Electronegativity LR 0.7142 9.7818 7.9742

RR 0.7142 9.7818 7.9742

LASSO 0.7136 9.7925 7.9903

RF 0.53 11.98 8.17

XGB 0.50 12.42 8.59

NN 0.667 11.578 8.681

Continued on next page
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Table 12 (continued)

Atomic Property Model R² RMSE MAE

Ionization Energy LR 0.7110 9.6739 7.6957

RR 0.7110 9.6739 7.6957

LASSO 0.7121 9.6552 7.6743

RF 0.54 11.93 7.82

XGB 0.51 12.21 8.19

NN 0.661 11.692 8.664

4.6.2 Importance of topological indices

Table 13 confirms Harary and RDD as the most influential TIs across linear

and ensemble models, highlighting their capability to capture essential

structural features influencing Enthalpy of Vaporization.

Table 13. Top topological indices (TIs) for enthalpy of vaporization
(EV) prediction across atomic properties and models

Atomic

Property

Correlation-

Based

(LR/LASSO/RR)

Random For-

est (RF)

XGBoost

(XGB)

Atomic Num-

ber

Harary: 0.8524

RDD: 0.8356

Wiener: 0.7791

TEI: 0.7742

DD: 0.7719

Harary: 0.5856

RDD: 0.1537

Balaban: 0.0859

Wiener: 0.0608

DD: 0.0325

RDD: 0.4301

Harary: 0.3440

Balaban: 0.0562

Wiener: 0.0486

Gutman: 0.0434

Atomic Mass Harary: 0.8524

RDD: 0.8358

Wiener: 0.7790

TEI: 0.7741

DD: 0.7718

Harary: 0.5248

RDD: 0.1998

Balaban: 0.0901

Wiener: 0.0624

Gutman: 0.0392

Harary: 0.4966

RDD: 0.1673

DD: 0.0859

Balaban: 0.0693

Wiener: 0.0584

Continued on next page
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Table 13 (continued)

Atomic

Property

Correlation-

Based

(LR/LASSO/RR)

Random For-

est (RF)

XGBoost

(XGB)

Atomic Radius RDD: 0.8391

Harary: 0.8371

DD: 0.7824

Wiener: 0.7815

TEI: 0.7802

RDD: 0.3291

Harary: 0.3096

ECI: 0.0911

Wiener: 0.0699

Balaban: 0.0587

Harary: 0.3250

RDD: 0.2313

Gutman: 0.1067

ECI: 0.1046

Wiener: 0.0744

Density RDD: 0.8555

Harary: 0.8060

Wiener: 0.7832

DD: 0.7749

TEI: 0.7692

RDD: 0.4782

Harary: 0.2669

TEI: 0.0600

Wiener: 0.0564

Balaban: 0.0477

RDD: 0.3603

Harary: 0.3085

DD: 0.0932

TEI: 0.0747

Gutman: 0.0486

Electronegativity Harary: 0.8504

RDD: 0.8307

Wiener: 0.7759

TEI: 0.7722

DD: 0.7676

Harary: 0.6368

RDD: 0.1496

Balaban: 0.0664

Wiener: 0.0467

TEI: 0.0275

Harary: 0.5336

RDD: 0.1710

Wiener: 0.1092

Balaban: 0.0467

TEI: 0.0424

Ionization En-

ergy

Harary: 0.8488

RDD: 0.8309

TEI: 0.7793

Wiener: 0.7765

DD: 0.7689

Harary: 0.5334

RDD: 0.2132

Balaban: 0.0714

Wiener: 0.0556

DD: 0.0418

Harary: 0.3628

RDD: 0.3110

DD: 0.0807

Wiener: 0.0666

Balaban: 0.0638
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Table 14. Best hyperparameters for random forest models across
physicochemical properties

Atomic Prop-

erty

BP MV MR FP Polar EV

Random Forest Hyperparameters

max depth, min samples leaf,

min samples split, n estimators

Atomic Number None, 1,

2, 200

None, 1,

2, 200

None, 1,

2, 200

10, 1, 5,

50

10, 1, 2,

200

10, 1, 2,

200

Atomic Mass None, 1,

2, 200

None, 1,

2, 200

None, 1,

2, 200

10, 1, 5,

50

None, 1,

2, 200

None, 1,

2, 200

Atomic Radius None, 1,

2, 200

10, 1, 2,

100

10, 1, 2,

200

None, 1,

2, 200

None, 1,

2, 200

None, 2,

5, 50

Density None, 1,

5, 200

10, 1, 2,

50

None, 1,

2, 50

10, 2, 2,

100

10, 1, 2,

200

10, 2, 5,

100

Electronegativity None, 1,

5, 100

10, 1, 2,

200

10, 1, 2,

200

None, 2,

2, 200

None, 1,

2, 200

None, 2,

5, 200

Ionization

Energy

None, 1,

2, 100

10, 1, 2,

100

None, 1,

2, 200

None, 1,

2, 200

10, 1, 2,

200

10, 1, 2,

200

Table 15. Best hyperparameters for XGBoost models across physico-
chemical properties

Atomic Prop-

erty

BP MV MR FP Polar EV

XGBoost Hyperparameters

max depth, min child weight,

n-estimators, learning rate,

colsample bytree, subsample

Atomic Number 7, 3, 50,

0.1, 0.8,

1.0

3, 3,

200, 0.3,

0.8, 0.8

3, 3,

200, 0.3,

0.8, 0.9

3, 5,

100, 0.1,

0.9, 0.8

3, 1,

200, 0.3,

0.8, 0.9

7, 5, 50,

0.1, 0.8,

0.9

Continued on next page



318

Table 15 – continued from previous page

Atomic Prop-

erty

BP MV MR FP Polar EV

Atomic Mass 5, 1,

200, 0.3,

0.8, 1.0

3, 1,

200, 0.1,

1.0, 0.9

5, 5,

200, 0.1,

0.8, 0.8

3, 5, 50,

0.3, 0.9,

0.8

5, 5,

200, 0.1,

0.8, 0.8

7, 3, 50,

0.1, 0.9,

0.8

Atomic Radius 7, 5, 50,

0.1, 0.8,

0.8

3, 5,

200, 0.1,

0.8, 0.8

7, 5, 50,

0.1, 0.8,

1.0

7, 1,

200, 0.1,

0.8, 0.9

7, 5, 50,

0.1, 0.8,

1.0

5, 5, 50,

0.1, 0.9,

0.8

Density 3, 5,

100, 0.1,

0.8, 0.8

7, 5, 50,

0.1, 0.9,

0.9

7, 5, 50,

0.1, 0.8,

0.9

5, 5, 50,

0.1, 0.8,

0.9

5, 5, 50,

0.1, 0.8,

0.9

7, 5, 50,

0.1, 0.8,

0.8

Electronegativity 7, 5, 50,

0.1, 1.0,

0.8

3, 1,

200, 0.3,

0.9, 0.8

5, 5, 50,

0.1, 0.8,

0.8

7, 5, 50,

0.1, 0.8,

0.9

5, 3,

200, 0.1,

0.8, 0.8

7, 5, 50,

0.1, 1.0,

0.8

Ionization

Energy

7, 3, 50,

0.1, 0.8,

0.9

3, 1,

200, 0.1,

1.0, 0.8

3, 5,

100, 0.1,

0.8, 0.8

7, 1,

200,

0.01,

1.0, 1.0

3, 5, 50,

0.1, 0.8,

0.8

7, 3, 50,

0.1, 0.9,

0.9

5 Discussion and limitations

Our approach, utilizing degree-distance-based topological indices (TIs), of-

fers an interpretable and computationally efficient alternative to complex

machine learning frameworks such as graph neural networks (GNNs). TIs

are derived from the structural features of molecules encoded in vertex-

edge weighted (VEW) graphs and have well-defined mathematical formula-

tions. This transparency allows researchers to directly associate individual

indices with specific physicochemical properties. For example, the high

correlation of the Reciprocal Distance Degree (RDD) index with Molar

Refractivity (MR) (r = 0.95) provides a mechanistically interpretable con-

nection between atomic connectivity and electronic polarizability, offering

valuable guidance for molecular design.

Unlike GNNs, which learn abstract representations through iterative
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message passing between atoms and bonds, TIs aggregate global struc-

tural characteristics. Although GNNs can model complex non-linear de-

pendencies and capture local environments (e.g., ring systems, functional

groups), they are often regarded as ”black boxes” due to their lack of inter-

pretability. In contrast, TIs such as Harary or Gutman encode chemically

meaningful quantities, enabling domain experts to identify how specific

structural motifs influence a target property. This distinction becomes

crucial in drug discovery, where the explainability of predictions is essen-

tial for regulatory approval and rational optimization.

Our comparative analysis highlights the nuanced role of atomic proper-

ties across different modeling paradigms and property complexities. Among

the atomic descriptors used to weight vertex-edge weighted (VEW) molec-

ular graphs, density emerges as a particularly effective input for predict-

ing moderately complex properties such as the boiling point (BP) and the

flash point (FP). Its integration with topological indices (TIs) like Harary

and RDD enhances performance across both linear and non-linear models,

likely due to its capacity to capture mass distribution effects that influence

thermal and volatility-related behaviors. While overall predictive power

for BP and FP remains modest (R2 < 0.7), Density consistently yields

superior results relative to other atomic features in this category.

In contrast, Electronegativity and Ionization Energy emerge as consis-

tently effective atomic descriptors across both linear and non-linear mod-

els. Their ability to capture electron distribution and bonding behavior

proves especially valuable for predicting properties influenced by subtle

electronic interactions, including Boiling Point (BP), Flash Point (FP),

and Enthalpy of Vaporization (EV). These features enhance the perfor-

mance of topological indices such as Gutman and Degree Distance (DD),

particularly when paired with ensemble methods like Random Forest (RF)

and XGBoost (XGB), which can better exploit non-linear relationships.

Most notably, the proposed QSPR framework achieves high predictive

accuracy for properties such as Molar Volume (MV), Molar Refractivity

(MR), and Polarizability (Polar), where R2 values exceed 0.9 using opti-

mized linear and ensemble models. These results underscore the strong

synergy between degree-distance-based TIs (especially Harary and RDD),
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well-chosen atomic weightings (e.g., density and electronegativity), and

suitable learning algorithms. This combination not only ensures robust

and interpretable predictions but also positions our method as a practi-

cal and transparent alternative to less interpretable approaches such as

graph neural networks making it highly applicable to drug discovery and

molecular design tasks.

Importantly, the application of our approach to a general set of 166

drug-like molecules—rather than a single chemical class—enabled the iden-

tification of universal descriptors applicable across multiple physicochem-

ical properties. For instance, Harary’s wide applicability underscores its

central role in QSPR modeling. These findings offer a structured and in-

terpretable framework for virtual screening, reducing reliance on costly

experimental procedures and accelerating the drug development process.

While the results are promising, the study is not without limitations.

The relatively small dataset of 166 molecules, although chemically diverse,

may not capture the full variability of real-world chemical space. Larger

datasets, such as QM9 or Tox21, would allow for more generalizable con-

clusions. Additionally, while VEW molecular graphs account for pairwise

atomic interactions, they are inherently limited in representing higher-

order interactions and three-dimensional conformational effects.

Another limitation is that global TIs may not sufficiently encode local

structural features that significantly affect certain properties (e.g., reac-

tive sites influencing FP or toxicophores affecting toxicity). Substructure-

aware features (e.g., SMARTS patterns) could be incorporated to address

this limitation. Although GNNs offer improved accuracy by learning such

features, they were not adopted here due to their black-box nature and

computational complexity. Our choice reflects a prioritization of inter-

pretability, which is often more actionable in the context of drug discovery.

6 Conclusion and future work

This study demonstrates that degree-distance-based TIs can effectively

model key physicochemical properties of drug-like molecules through ma-

chine learning. By integrating atomic-level features with structural in-
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dices, we developed interpretable models capable of providing insight into

structure-property relationships. TIs such as RDD and Harary consis-

tently emerged as strong predictors, particularly when paired with appro-

priately selected linear or non-linear models.

In future work, we propose the development of hybrid models that com-

bine the interpretability of TIs with the representational power of GNNs.

For instance, TIs could be used as additional input features within GNN

architectures or employed to guide attention mechanisms, enhancing both

transparency and accuracy. Expanding the dataset to include thousands of

molecules from benchmark sets like QM9 or Tox21 will also improve model

robustness and facilitate validation across diverse chemical domains.

Further enhancement could come from extending classical graph rep-

resentations to higher-dimensional structures such as simplicial complexes

or hypergraphs, which capture multi-atom interactions and complex struc-

tural hierarchies. Additionally, the use of explainability techniques such

as SHAP (SHapley Additive exPlanations) could quantitatively reveal the

contribution of each TI to model predictions, enhancing interpretability.

Our publicly available codebase (https://github.com/ssorgun/LNNR)

lays the groundwork for reproducibility and future exploration. Overall,

this work provides a foundation for interpretable, scalable, and efficient

QSPR modeling and opens promising directions for the integration of topo-

logical reasoning with modern machine learning.

Data availability

The dataset and code used in this study are available at https://github.

com/ssorgun/LNNRhttps://github.com/ssorgun/LNNR. It is recommended

that readers look at the README file in Github for information on how

the codes and analysis work.
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