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Abstract

The i-iterated subdivided-line graph Γi(G) of a base graph G is
the graph obtained from G by iteratively applying the subdivided-
line graph operation i times. The M-polynomial of a graph G is
a bivariate polynomial that encodes the degree-based properties of
G. In this paper, we present a general formula expressing the M-
polynomial of Γi(G) in terms of the degrees of the vertices of the
base graph G. We compute the First and Second Zagreb indices
from the M-polynomial of i-iterated subdivided-line graphs Γi(G)
when G belongs to several graph classes, such as wheel, ladder, ∆-
regular, cycle, and tadpole graphs. The obtained results generalize
those of Ranjini et al. (2011). Additionally, we analyse the impact of
the vertex of maximum degree on the value of the First and Second
Zagreb indices, providing asymptotic upper bounds for i-iterated
subdivided-line graphs of general graphs.

1 Introduction

Chemical Graph Theory is a branch of mathematical chemistry concerned

with analyzing all consequences of connectivity in graphs representing

https://doi.org/10.46793/match.95-1.26224
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chemical structures – chemical graph (Trinajstić [27]). If the chemical

structures under consideration are molecules, we call this type of chemical

graph a molecular graph. Molecular descriptors are mathematical quanti-

ties that describe the structure or shape of molecules, helping to predict the

activity and properties of molecules in complex experiments (Ahmadi et

al. [1]). Among molecular descriptors, topological indices play a significant

role, as described by Das [8]. The concept of the topological index origi-

nated from the work of Wiener [29] on the boiling points of paraffins. He

initially named this index the “path number”, which later became known

as the Wiener index.

A topological index is a numeric quantity associated with a graph that

characterizes the topology of graph and is invariant under graph automor-

phism (Baca et al. [3]). According to Waterbeemd et al. [28], a topological

index is a numerical value associated with chemical constitution used for

correlating chemical structure with various physical properties, chemical

reactivity or biological activity. Topological indices are widely used to pre-

dict the physico-chemical and bioactivity properties of a molecule or molec-

ular compound in the quantitative structure-property/structure-activity

relationship (QSPR/QSAR) modeling (Devillers and Balaban [11]).

The first topological index based on the line graph was introduced by

Bertz in 1981 [5]. In recent years, numerous results concerning topologi-

cal indices that use the subdivision concept in line graphs have emerged.

Additional results are provided in [4, 19–22, 24–26] and in the references

therein.

In 2016, Nadeem et al. [22] computed topological indices like the gener-

alized Randić, general Zagreb, general sum-connectivity, ABC, GA, ABC4

and GA5 indices of the line graphs of subdivision graphs of 2D lattice of

nanotube and nanotorus.

Belay et al. [4] computed the first, second, and third Zagreb coindices,

the F-coindex, the first and second multiplicative Zagreb coindices and the

hyper Zagreb coindex of the subdivision graph and the line graph of sub-

division graph of the wheel graph. Ranjini et al. [25] calculated the Zagreb

indices and coindices of the line graph of the subdivision graph of wheel,

ladder and tadpole graphs. In 2015, Su and Xu [26] generalized the results
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of Ranjini et al. [25] by calculating the general sum-connectivity index and

general product-connectivity index of the line graph of subdivision graph

of the tadpole, wheel, and ladder graphs.

Gutman et al. [13, 17] introduced the Zagreb indices of a graph G

presented in Table 1, where du and dv are the degrees of the vertices u and

v in G respectively.

Topological Index Formula Derivation from M(G)

First Zagreb M1(G) =
∑

uv∈E(G)

du + dv (Dx +Dy)(M(G))

Second Zagreb M2(G) =
∑

uv∈E(G)

dudv (DxDy)(M(G))

Table 1. Degree based topological indices and the corresponding for-
mulas computed from their M-polynomial.

The Zagreb indices are among the most significant degree-based molec-

ular structure descriptors with many chemical applications. Many results

can be found in [6, 7, 9, 14–16,23] and in the references therein.

Let mℓ,ℓ′(G), ℓ, ℓ′ ≥ 1, be the number of edges e = uv of a graph G

such that {du, dv} = {ℓ, ℓ′}. The M-polynomial of G is defined in [10]:

M(G;x, y) =
∑
ℓ≤ℓ′

mℓ,ℓ′(G)xℓyℓ
′
. (1)

This polynomial has been one of the key areas of interest in the compu-

tational aspects of materials (Ali et al. [2]). Topological indices can be also

be directly derived from their M-polynomial (Deutsch and Klavžar [10]),

as exemplified in Table 1, where the First and Second Zagreb indices are

calculated from the M-polynomial where the operators Dx and Dy are

defined on differentiable functions of two variables:

Dx = x
∂M(G;x, y)

∂x

∣∣∣
x=1,y=1

and Dy = y
∂M(G;x, y)

∂y

∣∣∣
x=1,y=1

. (2)

Ranjini et al. [25] calculated the Zagreb indices and coindices of the line

graph of the subdivision graph of wheel, ladder, and tadpole graphs. In



98

2015, Su and Xu [26] generalized the results of Ranjini et al. [25] by calcu-

lating the general sum-connectivity index and general product-connectivity

index of the line graph of subdivision graph of the tadpole, wheel, and

ladder graphs. In 2015, using the subdivided-line graph operation, Ha-

sunuma [18] described a new definition of i-iterated subdivided-line graph

of a graph.

Motivated by these results, we present the following contributions in

this paper. In Section 2, we establish a general formula expressing the M-

polynomial of i-iterated subdivided-line graphs in terms of the degrees of

the vertices of a general base graph G. In Section 3, we compute the First

and Second Zagreb indices from the M-polynomial of i-iterated subdivided-

line graphs Γi(G) when G belongs to several graph classes, such as wheel,

ladder, ∆-regular, cycle and tadpole graphs. Moreover, the obtained re-

sults, calculating these indices for every i ≥ 1, generalize those of Ranjini

et al. [25]. We conclude the paper analyzing the impact of the vertex of

maximum degree on the value of the First and Second Zagreb indices, pro-

viding asymptotic upper bounds for i-iterated subdivided-line graphs of

general graphs.

2 M-polynomial of i-iterated subdivided-line

graphs

In this section, we present the characterization of the M-polynomial of

i-iterated subdivided-line graphs. Our main theorem provides a general

formula for any graph, expressed in terms of the individual vertex degree.

First, we provide some definitions and notations.

Let G = (V,E) be a finite, simple, and undirected graph, with vertex

set V = V (G) and edge set E = E(G). The degree of a vertex v ∈ V

in a graph G, denoted by dG(v) = dv, is the number of edges incident to

v. Two edges are adjacent if they share a common endpoint. Let ∆ be

the maximum degree among all the vertices in the graph G. A graph is

called ∆-regular graph if the degree of each vertex in the graph is ∆. A

complete graph Kn with n vertices is a graph in which any two vertices are
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adjacent. A path Pn is a graph whose vertices can be arranged in a linear

sequence (v1, v2, . . . , vn) in such a way that two vertices are adjacent if and

only if they are consecutive in the sequence. A path with n ≥ 1 vertices

is represented by Pn = v1v2 . . . vn. Similarly, a cycle Cn on three or more

vertices is a graph whose vertices can be arranged in a cyclic sequence

(v1, v2, . . . , vn, v1) in such a way that two vertices are adjacent if and only

if they are consecutive in the sequence.

The line graph L(G) of graph G is obtained by associating a vertex of

L(G) with each edge in E(G), and two vertices are adjacent in L(G) if and

only if the corresponding edges of G have a vertex in common.

Figure 1. Graphs G, S(G), Γ1(G), S(Γ1(G)) and Γ2(G) (2-iterated
subdivided-line graph for the graph), respectively.

In this paper, we use the notation and definitions for the subdivided-

line graph operation and i-iterated subdivided-line graph as described by

Hasunuma [18]. The subdivision graph S(G) is the graph obtained from

G by replacing each of its edges by a path of length 2, or equivalently,

for each edge uv ∈ E(G), we insert an additional vertex w, delete edge

uv and add edges wu and wv. This definition is the same as barycentric

subdivision B(G) in [18], which says that B(G) is the graph obtained from

G by elementary subdividing every edge of G.

The subdivided-line graph Γ(G) of a graph G is defined as the line graph

of the barycentric subdivision of G, i.e., Γ(G) = L(B(G)). We call Γ the

subdivided-line graph operation. The i-iterated subdivided-line graph Γi(G)
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of G is the graph obtained from G by iteratively applying the subdivided-

line graph operation i times. We refer to Figure 1 for examples of these

graphs when G is the K4 minus one edge.

The inflation or inflated graph GI of the graph G without isolated

vertices is obtained as follows (see Favaron [12]). Each vertex vj ∈ V (G) of

degree dG(vj) = dvj is replaced by a cliqueXj such that GI [Xj ] ∼= KdG(vj).

Each edge (uj , vj′) ∈ E(G), j ̸= j′, is replaced by an edge (u, v), in such

a way that u ∈ Xj , v ∈ Xj′ , and two different edges of G are replaced by

two non-adjacent edges of GI . Thus, in GI , for all u ∈ Xj , we have that

d(u) = dG(vj), and that GI is the line graph L(S(G)) ∼= Γ1(G). Moreover,

Γi+1(G) is the inflated graph of Γi(G).

Theorem 1. The M-polynomial of the i-iterated subdivided line graph of

the graph G is

M(Γi(G);x, y) =
∑
ℓ≤ℓ′

mℓ,ℓ′(G)xℓyℓ
′
+

∑
w∈V (G)

(
dw(d

i
w − 1)

2

)
xdwydw (3)

where mℓ,ℓ′(G), ℓ, ℓ′ ≥ 1, is the number of edges uv ∈ E(G) such that

{du, dv} = {ℓ, ℓ′}.

Proof. Let |E(Γi(v))| be the number of edges added to E(G) by a vertex

v ∈ V (G) after iteratively applying the subdivided-line graph operation i

times in G. First, we prove by induction on i ≥ 1 that:

|E(Γi(v))| =


0, if d(v) = 1;

2i − 1, if d(v) = 2;

d(v)(d(v)i−1)
2 , if d(v) ≥ 3.

(4)

If i = 1, by definition of inflated graph, we have that Γ1(G) = L(S(G))

= GI . Thus, a vertex vj ∈ V (G) of degree d(vj) is replaced by a clique

Xj such that GI [Xj ] ∼= Kd(vj). So, the formula is valid: |E(Γ1(vj))| =
21 − 1 = 1, if d(vj) = 2; and |E(Γ1(vj))| = d(vj)(d(vj)−1)

2 , if d(vj) ≥ 3.

Suppose, by induction hypothesis, that the statement is valid for i =

k > 1, that is, |E(Γk(vj))| = 2k − 1 = 1, if d(vj) = 2; and |E(Γk(vj))| =
d(vj)(d(vj)

k−1)
2 , if d(vj) ≥ 3. In particular, in Γk(G), vertex vj added



101

d(vj)
k−1 cliques of order d(vj) to G (total of d(vj)

k vertices), and d(vj)

external edges, that is, edges that correspond to the original edges in E(G)

incident to do vj .

Each of this d(vj)
k vertices v ∈ Γk(G) of degree d(vj) adds a clique

of order d(vj) in Γk+1(G). Now, the number of edges in Γk+1(vj) is:

|E(Γk+1(vj))| = |E(Γk(vj))| · d(vj) +
(
d(vj)

2

)
, which, by induction hypoth-

esis, implies

|E(Γk+1(vj))| =
(
d(vj)(d(vj)

k − 1)

2

)
· d(vj) +

d(vj)(d(vj)− 1)

2
.

Hence, after algebraic manipulation of this expression, we conclude the

induction step with

|E(Γk+1(vj))| =
d(vj)(d(vj)

k+1 − 1)

2
.

Thus, considering: the external edges (u, v) (edges that correspond to

the original edges in E(G)); the edges generated by each vertex in the in-

flated graph; and dv = d(v), the edge-generating polynomialM(Γi(G);x, y)

can be expressed as:

M(Γi(G);x, y) =
∑
ℓ≤ℓ′

mℓ,ℓ′(G)xℓyℓ
′
+

∑
w∈V (G)

dw(d
i
w − 1)

2
xdwydw .

where mℓ,ℓ′(G), ℓ, ℓ′ ≥ 1, is the number of edges uv ∈ E(G) such that

{du, dv} = {ℓ, ℓ′}.

3 M-polynomial and Zagreb indices for

i-iterated subdivided-line graphs

In this section, we calculate the M-polynomial of the i-iterated subdi-

vided-line graphs of G, where the graph G belongs to the wheel, ladder,

∆-regular, cycle, and tadpole graph classes. According to Table 1, and by

applying the differential operators Dx and Dy (defined in equation (2)), to

the M-polynomials of Γi(G), we obtain the Zagreb indices for the i-iterated
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subdivided-line graph of the graphs on these classes.

Furthermore, our contributions obtained in Theorems 2, 3 and 6 are

valid for any value of i ≥ 1, which provide a generalization of the results

of Ranjini et al. [25] (Theorems 2.4, 3.1 and 2.1, respectively).

Wheel graphs Wn+1

The join of two graphs G1 and G2, denoted by the sum G1 + G2, is the

graph obtained by connecting each vertex of G1 to every vertex of G2.

Formally, V (G1 + G2) = V (G1) ∪ V (G2) and E(G1 + G2) = E(G1) ∪
E(G2)∪{(u, v) : u ∈ V (G1) and v ∈ V (G2)}. Thus, the join Cn +K1 of a

cycle Cn, on n vertices, with a single vertex is referred to as a wheel graph

Wn+1. We refer to Figure 2 for an example of the i-iterated subdivided-line

graphs of the wheel graph W5 for i ∈ {1, 2}.

Figure 2. Wheel W5, and its respective Γ1(W5) and Γ2(W5). Zagreb
indices M1(Γ2(W5)) = 580 and M2(Γ2(W5)) = 996.

Theorem 2. The M-polynomial and the First and Second Zagreb indices

of the i-iterated subdivided-line of the wheel graph Wn+1, n ≥ 4, are

M(Γi(Wn+1);x, y) = nx3(yn +
(3i+1 − 1)

2
y3) +

n(ni − 1)

2
xnyn,

M1(Γ
i(Wn+1)) = n(ni+1 + 3i+2),

M2(Γ
i(Wn+1)) = n

(
ni+2 − n2 + 6n+ 3i+3 − 9

2

)
.

Proof. By definition, the wheel graph Wn+1 has n edges linking the central
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vertex v0 (degree n) to the vertices of the cycle Cn (degree 3), and n

edges linking pairs of consecutive vertices of the cycle Cn. Thus, m3,n =

m3,3 = n, and
∑

ℓ≤ℓ′ mℓ,ℓ′(G)xℓyℓ
′
= nx3yn + nx3y3 = nx3(yn + y3).

Now, we have

∑
w∈V (Wn+1)

(
dw(d

i
w − 1)

2

)
xdwydw =

∑
w∈V (Cn)

(
3(3i − 1)

2

)
x3y3

+
∑

w∈V (Wn+1),w=v0

n(ni − 1)

2
xnyn.

Hence,

M(Γi(Wn+1);x, y) = nx3(yn + y3)

+ n

(
3(3i − 1)

2

)
x3y3

+
n(ni − 1)

2
xnyn. (5)

and, by Theorem 1, the result follows:

M(Γi(Wn+1);x, y) = nx3(yn +
(3i+1 − 1)

2
y3) +

n(ni − 1)

2
xnyn.

Applying the differential operators Dx and Dy (defined in equation

(2)), we have:

M1(Γ
i(Wn+1)) = n(ni+1 + 3i+2),

M2(Γ
i(Wn+1)) = n

(
ni+2 − n2 + 6n+ 3i+3 − 9

2

)
.

Ladder graph Ln

The Cartesian product G1□G2 of graphs G1 and G2 is a graph with vertex

set V1×V2, and two vertices (u1, v1) and (u2, v2) are adjacent in G1□G2 if

and only if either u1 = u2 and v1, v2 ∈ E2, or v1 = v2 and u1u2 ∈ E1. The



104

ladder graph Ln is constructed from the Cartesian product Ln = K2□Pn,

where Pn is the path on n vertices. In Figure 3, we present an example of

these graphs for i = 1, 2.

Figure 3. Ladder graph L3 (obtained by the Cartesian product of
K2□P3), and its respective Γ1(L3) and Γ2(L3). Zagreb in-
dices M1(Γ2(L3)) = 226 and M2(Γ2(L3)) = 305.

Theorem 3. The M-polynomial and the First and Second Zagreb indices

of the i-iterated subdivided-line of the ladder graph Ln are

M(Γi(Ln);x, y) = (2i+2 − 2)x2y2 + 4x2y3 + ((n− 2)3i+1 − 2)x3y3,

M1(Γ
i(Ln)) = 3i(18n− 36) + 2i+4,

M2(Γ
i(Ln)) = 3i+3(n− 2) + 2i+4 − 2.

Proof. By definition, the ladder graph Ln = K2×Pn has: 2 edges between

vertices of degree 2; 4 edges between vertices of degree 2 and 3; 2(n− 3)+

(n − 2) edges between vertices of degree 3; Thus, m2,2 = 2, m2,3 = 4,

m3,3 = 2(n− 3) + (n− 2) = 3n− 8, and∑
ℓ≤ℓ′

mℓ,ℓ′(G)xℓyℓ
′
= 2x2y2 + 4x2y3 + (3n− 8)x3y3.
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Now, we have

∑
w∈V (Ln)

(
dw(d

i
w − 1)

2

)
xdwydw = 4

(
2(2i − 1)

2

)
x2y2

+ (2n− 4)

(
3(3i − 1)

2

)
x3y3.

Hence, by Theorem 1, we have

M(Γi(Ln);x, y) = (2i+2 − 2)x2y2 + 4x2y3 + ((n− 2)3i+1 − 2)x3y3

Applying the differential operators Dx and Dy (defined in equation

(2)), we have:

M1(Γ
i(Ln)) = 3i(18n− 36) + 2i+4,

M2(Γ
i(Ln)) = 3i+3(n− 2) + 2i+4 − 2.

Regular graphs G∆

Theorem 4. The M-polynomial and the First and Second Zagreb indices

of the i-iterated subdivided-line graph of the ∆-regular graph G∆ with n

vertices is

M(Γi (G∆) ;x, y) =
n

2
∆i+1x∆y∆,

M1(Γ
i(G∆)) = n∆i+2,

M2(Γ
i(G∆)) =

n∆i+3

2
.

Proof. By Theorem 1, we have

M(Γi(G∆);x, y) =
∑
ℓ≤ℓ′

mℓ,ℓ′(G∆)x
ℓyℓ

′
+

∑
w∈V (G∆)

dw(d
i
w − 1)

2
xdwydw

=
n∆

2
x∆y∆ +

n∆(∆i − 1)

2
x∆y∆

=
n

2
∆i+1x∆y∆.
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Applying the differential operators Dx and Dy (defined in equation

(2)), we have that

M1(Γ
i(G∆)) = n∆i+2 and M2(Γ

i(G∆)) =
n∆i+3

2

Corollary 5. The M-polynomial and the First and Second Zagreb indices

of the i-iterated subdivided-line of the cycle graph Cn are

M(Γi(Cn);x, y) = 2inx2y2,

M1(Γ
i(Cn)) = n2i+2,

M2(Γ
i(Cn)) = n2i+2.

Tadpole graphs Tn,k

A tadpole graph Tn,k is a graph obtained by linking, by an edge, a vertex

of a cycle graph Cn to a degree one vertex of a path Pk. In Figure 4, is

shown the 2-iterated subdivided-line graph for the tadpole graph Tn,k as

example.

Figure 4. Tadpole graph T3,2, and its respective Γ1(T3,2) and
Γ2(T3,2). Zagreb indices M1(Γ2(T3,2)) = 130 and
M2(Γ2(T3,2)) = 168.
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Theorem 6. The M-polynomial and the First and Second Zagreb indices

of the i-iterated subdivided-line graph of the tadpole graph Tn,k is

M(Γi(Tn,k);x, y) = xy2 + 3x2y3 + (2i(n+ k − 2)− 2)x2y2

+
(3i+1 − 3)

2
x3y3,

M1(Γ
i(Tn,k)) = 2i+2(n+ k − 2) + 3i+2 + 1,

M2(Γ
i(Tn,k)) = 2i+2(n+ k − 2) +

3i+3 − 3

2
.

Proof. By definition, the tadpole graph Tn,k has: 1 edge between a vertex

of degree 1 and 2 of the Pk; 3 edges between vertices of degree 2 and 3;

n− 2 edges between vertices of degree 2 of the cycle Cn; and k − 2 edges

between vertices of degree 2 of the path Pk.

Thus, m1,2 = 1, m2,3 = 3, m2,2 = n + k − 4,
∑

ℓ≤ℓ′ mℓ,ℓ′(G)xℓyℓ
′
=

1x1y2 + 3x2y3 + (n+ k − 4)x2y2, and

∑
w∈V (Ln)

(
dw(d

i
w − 1)

2

)
xdwydw = 1

(
1(1i − 1)

2

)
x1y1

+ (n+ k − 2)

(
2(2i − 1)

2

)
x2y2

+ 1

(
3(3i − 1)

2

)
x3y3.

Hence, by Theorem 1, we haveM(Γi(Tn,k);x, y) = xy2+3x2y3+(2i(n+

k − 2) − 2)x2y2 + (3i+1−3)
2 x3y3. Thus, applying the differential operators

Dx and Dy (defined in equation (2)), we have that

M1(Γ
i(Tn,k)) = 2i+2(n+ k − 2) + 3i+2 + 1,

M2(Γ
i(Tn,k)) = 2i+2(n+ k − 2) +

3i+3 − 3

2
.
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4 Conclusions

Topological indices have meaningful role in the chemical-mathematical lit-

erature, as they have potential for predicting the physico-chemical prop-

erties of molecules. In this paper, we present the First and Second Zagreb

indices of i-iterated subdivided-line graphs of various graph classes, calcu-

lated from their M-polynomial.

In particular, we compute the Zagreb indices for the i-iterated subdivid-

ed-line graph of wheel, ladder, ∆-regular, cycle, and tadpole graphs. These

results are significant, as they generalize the findings of Ranjini et al. [25]

for these classes, corroborating new methods for computing topological

indices that can be widely applied to other indices in future research.

Finally, we analyze the impact of the maximum degree on the topo-

logical index metrics, observing that Theorem 4 establishes asymptotic

upper bounds for both First and Second Zagreb indices of the i-iterated

subdivided-line graph of general graphs G.

Theorem 7. If G is a graph of maximum degree ∆ and Γi(G) is i-

iterated subdivided-line graph of a graph G, then M1(Γ
i(G)) = O(∆i) and

M2(Γ
i(G)) = O(∆i).
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[6] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb
indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.
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