
MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 95 (2026) 63–94

ISSN: 0340–6253

doi: 10.46793/match.95-1.03425

Geometric Approach to Degree-Based

Topological Index: Hyperbolic Sombor Index

Jayjit Barman, Shibsankar Das∗

Department of Mathematics, Institute of Science,

Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.

jayjit44@bhu.ac.in, shib.cgt@gmail.com, shibsankar@bhu.ac.in

(Received February 28, 2025)

Abstract

This article presents a new geometric approach to forming molec-
ular structure descriptors (topological indices) based on vertex de-
grees. The degrees of a pair of adjacent vertices are represented by
the length of the semi-major and semi-minor axes of the hyperbola
that form the basis of the model. In this way, a number of previously
known topological indices can now be interpreted geometrically and
some new topological indices can be generated. The eccentricity of
the hyperbola gives rise to a remarkably simple vertex-degree-based
topological index, which we refer to as the hyperbolic Sombor in-
dex (HSO). We concentrate on some of the most important proper-
ties of this index, such as prediction power, structure sensitivity and
degeneracy. We apply statistical approaches and computing meth-
ods to the octane, nonane and decane isomer data sets to compare
these properties with other well-known degree-based topological in-
dices.

1 Introduction

Graph theory is a subfield of mathematics that examines graphs, which

are abstract structures that represent the relationships between objects.
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Let G(V,E) be an undirected, simple and connected graph, where V (G)

and E(G) are the collection of vertices and edges, respectively. An edge e =

uv in a graph is a basic element that connects two vertices u and v and

represents a relationship between them.

A subfield of mathematical chemistry known as chemical graph theory

focuses on employing graph theory to solve severe molecular difficulties.

Chemical graph theory is concerned with a molecular graph in which atoms

are represented as vertices and bonds between them as edges. A topological

index of a graph is a numerical value that represents the structure of graphs

and some of their topological characteristics, such as the arrangement of

vertices and edges. It also contains information about the physicochemical

and biological properties of molecules in QSPR/QSAR analysis.

A degree-based topological index for a graph G is denoted as TI(G)

and stated as

TI(G) =
∑

uv∈E(G)

f(d(u), d(v)), (1)

where f(x, y) is a non-negative real-valued function of x and y with the

symmetric property that f(x, y) = f(y, x).

We now provide formulations for several useful degree-based topological

indices that have distinct theoretical forms of the function f(x, y) given

in Equation 1. One of the first vertex degree-based topological indices is

the Zagreb index, which was first presented by I. Gutman and N. Trinajstić

in 1972 [6]. The following formula defines the first Zagreb index:

M1(G) =
∑

uv∈E(G)

(d(u) + d(v)).

The mathematical interpretation of the modified second Zagreb index

was proposed by Miličević et al. in 2004 [20], and it is represented as

mM2(G) =
∑

uv∈E(G)

1

d(u)d(v)
.

The forgotten index was proposed by B. Furtula and I. Gutman in
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2015 [10], which they defined as

F (G) =
∑

uv∈E(G)

(d2(u) + d2(v)).

Milan Randić developed the branch connectivity metric in 1975 to

measure the degree of branching in saturated hydrocarbon’s carbon-atom

structure. It was known as the Randić index or branching/connectivity

index and presented as

R−1/2(G) =
∑

uv∈E(G)

1√
d(u)d(v)

.

Note that, it is a specific example of the well-known general Randić in-

dex [4,19] (whose mathematical formula is given by
∑

uv∈E(G)(d(u)d(v))
α,

where α ∈ R), with α = 1/2. In 2009, B. Zhou and N. Trinajstić introduced

the sum connectivity index (SCI ), which was inspired by the development

and usefulness of Randić index in a number of scientific and technological

fields [32]. It is represented as

SCI(G) =
∑

uv∈E(G)

1√
d(u) + d(v)

.

The symmetric division (deg) index (SDD) is one of the most significant

bond-additive descriptors among 148 discrete adriatic indices [30]. It was

started in 2010 by D. Vukičević and is described as

SDD(G) =
∑

uv∈E(G)

(
d(u)

d(v)
+

d(v)

d(u)

)
.

In the article [30], the authors show that the SDD index is the most

accurate predictor of the total surface area of polychlorobiphenyls. It

has demonstrated a dominant nature in the QSPR study compared to a

number of other degree-based topological indices [9].

In 1993, Favron et al. presented the harmonic index in [8] and is de-



66

scribed as

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
.

The article [8] illustrates several relationships between a graph’s eigen-

values and harmonic index. The harmonic index is generalized in arti-

cles [5, 26], which also present certain related mathematical findings.

The novel topological descriptor known as the atom-bond connectiv-

ity index (ABC ) was introduced by Estrada et al. in 1998 [7] and was

based on the connection between atoms and bonds in a molecule. It is

mathematically described as

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
.

There is a significant correlation between the enthalpy of alkane forms and

the ABC index [7].

The geometric-arithmetic (GA) index based on the geometric and arith-

metic means of edges’ end vertex degrees has been proposed by D. Vukiče-

vić and B. Furtula in 2009 [29]. It is represented as

GA(G) =
∑

uv∈E(G)

2
√
d(u)d(v)

d(u) + d(v)
.

The usefulness of the GA index is evaluated in the article [29] by conduct-

ing a QSPR analysis of the index with the physicochemical properties of

octane isomers.

Shegehalli and Kanabur [27] introduced the arithmetic-geometric (AG)

index by swapping the numerator and denominator of the GA index. It is

described as

AG(G) =
∑

uv∈E(G)

d(u) + d(v)

2
√
d(u)d(v)

.

Sombor index (SO) was the most studied degree-based topological in-
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dex proposed by Ivan Gutman [12] in 2021 and defined as

SO(G) =
∑

uv∈E(G)

√
d2(u) + d2(v).

The distance of (d(u), d(v)) from the origin (0, 0) in the two-dimensional

plane forms a function, where u and v are two different vertices of the

graph G and they correspond to an edge uv or vu. This function is used

to create the Sombor index. The predictive and discriminative capabilities

and mathematical relationships of the Sombor index are examined in the

articles [25,31].

In 2021, V.R. Kulli presented the modified Sombor index [17]. It is

denoted as mSO and represented as

mSO(G) =
∑

uv∈E(G)

1√
d2(u) + d2(v)

.

Inspired by effectiveness and progress of the GA index, in 2022, V.R.

Kulli introduced two additional indices, the geometric-quadratic (GQ) and

quadratic-geometric (QG) indices [16] derived from the geometric and

quadratic means of the degrees of an edge’s end vertices. Their repre-

sentation is as follows:

GQ(G) =
∑

uv∈E(G)

√
2d(u)d(v)√

d2(u) + d2(v)

and

QG(G) =
∑

uv∈E(G)

√
d2(u) + d2(v)√
2d(u)d(v)

.

The Nirmala index [15] was first presented by V.R. Kulli and described

as

N(G) =
∑

uv∈E(G)

√
d(u) + d(v).

Recently, Gutman et al. [13] proposed a novel topological descriptor

based on the formulation of an ellipse. They termed it the elliptic Sombor
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index and denoted it as

ESO(G) =
∑

uv∈E(G)

(d(u) + d(v))
√
d2(u) + d2(v).

2 The hyperbolic representation

of a vertex-degree pair

The standard form of an equation of a hyperbola centered at the origin O

with vertices V (a, 0), V ′(−a, 0) and co-vertices P (0, b), P ′(0,−b) is given

by
x2

a2
− y2

b2
= 1.

In Figure 1, we consider the hyperbola centered at the origin O to have
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Figure 1. A hyperbola centered at the origin O with focus points F
and F ′.

two focus points, F (c, 0) and F ′(−c, 0). The length of the semi-major axis

OV and the semi-minor axis OP are indicated by a and b, respectively.

Then we know that

c =
√

a2 + b2. (2)

• Eccentricity: The eccentricity of a hyperbola is calculated by the

formula

e =
c

a
(3)

where c is the length of the focus point F of the hyperbola. From
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Equations (2) and (3), we get the value of eccentricity of a hyperbola

in terms of a and b as e =
√
a2+b2

a .

Motivated by the definition of eccentricity of a hyperbola, we induce a

novel vertex-degree-based topological index of a graph G as

HSO(G) =
∑

uv∈E(G)

√
d2(u) + d2(v)

d(u)
(4)

where 0 < d(u) ≤ d(v), which we named the hyperbolic Sombor in-

dex (HSO). An alternative version of the above definition can also be

written as

HSO(G) =
∑

uv∈E(G)

√
d2(u) + d2(v)

min{d(u), d(v)}
. (5)

Throughout this paper, we use the notion of Equation 4 of the HSO index

for notational uniformity.

3 Mathematical properties of

hyperbolic Sombor index

The complete graph, path graph, cycle graph and star graph with n vertices

will be denoted by Kn, Pn, Cn and Sn, respectively.

We now provide a lower bound for the hyperbolic Sombor index using

the size of a graph.

Theorem 1. Let G be a simple and connected graph of size m. Then

HSO(G) ≥
√
2m.

Moreover, the equality holds if and only if G is a complete graph.

Proof. We know that, (x− y)2 ≥ 0 we have

x2 + y2 ≥ 2xy =⇒
√
x2 + y2 ≥

√
2xy

=⇒
√
x2 + y2

x
≥
√

2y

x
(6)
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which holds for all positive x and y and the equality in Equation (6) is

valid only if x = y.

Using Equation (6) and the definition of HSO index, we get

HSO(G) =
∑

uv∈E(G)

√
d2(u) + d2(v)

d(u)
≥

∑
uv∈E(G)

√
2d(v)

d(u)

≥
∑

uv∈E(G)

√
2 =

√
2m.

Therefore, HSO(G) ≥
√
2m.

Below we present a bound for the hyperbolic Sombor index using the

Sombor index and the maximum and minimum degree of a graph.

Theorem 2. Let G be a simple connected graph. Then

1

∆
· SO(G) ≤ HSO(G) ≤ 1

δ
· SO(G),

with equality holds on both sides if and only if G is a complete graph.

Proof. Here ∆ = max{d(u) : u ∈ V (G)} and δ = min{d(u) : u ∈ V (G)}.
Also, we know that

δ ≤ d(u) ≤ ∆

=⇒ 1

∆
≤ 1

d(u)
≤ 1

δ
.

Now

HSO(G) =
∑

uv∈E(G)

√
d2(u) + d2(v)

d(u)

≤ 1

δ
·
∑

uv∈E(G)

√
d2(u) + d2(v) =

1

δ
· SO(G).

Similarly, HSO(G) ≥ 1
∆ · SO(G).

Therefore,
1

∆
· SO(G) ≤ HSO(G) ≤ 1

δ
· SO(G).
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In the following theorem, we establish a bound for the hyperbolic Som-

bor index by utilizing the first Zagreb index along with the maximum and

minimum degree of a graph.

Theorem 3. Let G be a simple connected graph. Then

1√
2∆

·M1(G) ≤ HSO(G) <
1

δ
·M1(G),

with equality holds if and only if G is a complete graph.

Proof. Given elementary inequalities is

1√
2
(x+ y) ≤

√
x2 + y2 < (x+ y)

holds for all positive value of x and y. Also, we know that

1

∆
≤ 1

d(u)
≤ 1

δ
. (7)

By taking x = d(u) and y = d(v), we get

1√
2
(d(u) + d(v)) ≤

√
d2(u) + d2(v) < (d(u) + d(v)). (8)

Using Equations (7) and (8) and the definition of HSO index, we conclude

that

1√
2∆

∑
uv∈E(G)

(d(u) + d(v)) ≤
∑

uv∈E(G)

√
d2(u) + d2(v)

d(u)

<
∑

uv∈E(G)

(d(u) + d(v))

δ

=⇒ 1√
2∆

·M1(G) ≤ HSO(G) <
1

δ
·M1(G).

Therefore,
1√
2∆

·M1(G) ≤ HSO(G) <
1

δ
·M1(G).
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Lemma 1. Let Pn, Cn and Sn denote the path graph, cycle graph and

star graph, respectively. Then for n ≥ 2,

HSO(Pn) = 2
√
5 +

√
2(n− 3), HSO(Cn) =

√
2n and

HSO(Sn) = (n− 1)
√
(n− 1)2 + 1.

Proof. We know that |V (Pn)| = n and |E(Pn)| = (n − 1). Based on the

degree of end vertices, the edge set of Pn can be separated into two different

sets:

E1,2 = {uv ∈ E(Pn)|d(u) = 1, d(v) = 2} and

E2,2 = {uv ∈ E(Pn)|d(u) = 2, d(v) = 2}.

Therefore,

HSO(Pn) =
∑

uv∈E(G)

√
d2(u) + d2(v)

d(u)

= 2×
√
1 + 4

1
+ (n− 3)×

√
4 + 4

2

= 2
√
5 +

√
2(n− 3).

Now, |V (Cn)| = n and |E(Cn)| = n. All of the vertices in Cn have degree 2.

Thus,

HSO(Cn) =
∑

uv∈E(G)

√
d2(u) + d2(v)

d(u)

= n×
√
22 + 22

2

=
√
2n.

Similarly, |V (Sn)| = n and |E(Sn)| = (n − 1). There is only one type of

edge uv based on the degree of end vertices, which satisfies (d(u), d(v)) =
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(1, n− 1). Thus,

HSO(Sn) =
∑

uv∈E(G)

√
d2(u) + d2(v)

d(u)

= (n− 1)×
√
1 + (n− 1)2

1

= (n− 1)
√
(n− 1)2 + 1.

Theorem 4. Let G be a simple connected graph with n(≥ 2) vertices. Let

Cn and Sn be the cycle and star graph, respectively. Then,

HSO(Cn) ≤ HSO(G) ≤ HSO(Sn).

The left and right inequalities hold if and only if G ∼= Cn and G ∼= Sn,

respectively.

Proof. It is obvious that the value of HSO(G) increases when we add edges

to the graph G. A tree obtains the highest value of HSO(G) of a connected

graph. S2 and S3 demonstrate that HSO(Sn) is the greatest value for trees

with n vertices. Now, by the principle of mathematical induction, we shall

prove for n ≥ 4.

Let Wa,b represent the contribution of an edge to HSO when d(u) = a

and d(v) = b implies Wa,b =
√
a2+b2

a . Now from Lemma 1, we get for

n = 4, HSO(S4) = 3
√
10 is the greatest of all HSO(T ) values, where T is

a four-vertex tree.

Now, assume that HSO(Sk) = (k − 1)
√
(k − 1)2 + 1 is the greatest

of all HSO(T ) values, where T is a k-vertex tree. If a vertex adjacent

to the central vertex of Sk is provided, a star graph with k + 1 vertices

and maximal HSO(T ) can be created. Therefore, the highest amount of

new edge that can be added is W1,k =
√
k2 + 1. The contribution of

neighboring edges will also increase. Therefore, T must be Sk+1 with

HSO(Sk+1) = k
√
k2 + 1. Hence, the principle of mathematical induction

is valid for all n.

We know that the only graph with all of its vertices of degree 2 is Cn.

Therefore, the value of HSO(Cn) is minimum. So, the lower bound is

obtained.
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Theorem 5. Let T be a tree with n ≥ 2 vertices and let Pn be the n-vertex

path graph. Then

HSO(Pn) ≤ HSO(T ) ≤ HSO(Sn).

The left and right inequalities hold if and only if T ∼= Pn and T ∼= Sn,

respectively.

Proof. To determine the upper bound, we note that d(u) + d(v) ≤ n for

each edge uv of an n-vertex tree. The star is a tree where all of its edges

have the formula d(u) + d(v) = n.

Through simple computation, it can be confirmed that

W1,n−1 > W2,n−2 > · · · > W⌊n
2 ⌋,⌈n

2 ⌉.

Thus,

HSO(Sn) = (n− 1)W1,n−1

= (n− 1)

√
1 + (n− 1)2

1

= (n− 1)
√
(n− 1)2 + 1

is the upper bound for HSO(T ).

It is obvious that the value of HSO(G) decreases when we remove edges

from the graph G. A tree obtains the lowest value of HSO(G) of a con-

nected graph. P2 and P3 demonstrate that HSO(Pn) is the lowest value

for trees with n vertices. Now, by the principle of mathematical induction,

we shall prove for n ≥ 4.

Let Wa,b represent the contribution of an edge to HSO when d(u) = a

and d(v) = b implies Wa,b =
√
a2+b2

a . Now from Lemma 1, we get for

n = 4, HSO(P4) = (2
√
5 +

√
2) is the lowest of all HSO(T ) values, where

T is a four-vertex tree.

Now, assume that HSO(Pk) = 2
√
5 +

√
2(k − 3) is the lowest of all

HSO(T ) values, where T is a k-vertex tree. Then, if a vertex at the end

is given an edge of Pk or somewhere along the path in between, a tree

with k + 1 vertices and minimal HSO(T ) may be created. Therefore, the
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least amount of new edge that can be added is W2,2 =
√
2. Otherwise, if

a vertex at the end is given an edge of the path graph or somewhere along

the path in between, then the added edge will contribute W1,3 =
√
10.

Likewise, the contribution of adjacent edges will rise. Therefore, T must

be Pk+1 with HSO(Pk+1) = 2
√
5 +

√
2(k − 2). Hence, the principle of

mathematical induction is valid for all n.

4 Hyperbolic Sombor index: applications

The idea of a topological index was first presented in mathematical chem-

istry. In the early 20th century, scientists looked for techniques to math-

ematically describe molecular structures in order to gain a better under-

standing of their properties, such as stability, reactivity and boiling points.

The process of determining the quality of topological indices began many

years ago, but accurate processes were only recently developed [9]. A list

of ideal specifications for molecular descriptors was included in the arti-

cles [9, 18,24]. These resulted in the thirteen properties listed below:

1. It should be possible to interpret molecular descriptors structurally.

2. At least one characteristic should be positively correlated with molec-

ular descriptors.

3. It is preferable for molecular descriptors to differentiate between iso-

mers.

4. The local structure should be able to be described by molecular de-

scriptors.

5. It should be feasible to generalize molecular descriptors to higher

descriptors.

6. It is ideal for molecular descriptors to be independent.

7. Molecular descriptors ought to be simple.

8. It is not appropriate to base molecular descriptors on characteristics.
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9. The relationship between molecular descriptors and other descriptors

ought not be trivial.

10. It should be feasible to create molecular descriptors effectively.

11. Well-known structural ideas should be used in molecular descriptors.

12. The size dependency of molecular descriptors should be accurate.

13. When structures make gradual changes, then molecular descriptors

should also change gradually.

Most topological indices adhere to properties 1, 4, 5, 7, 8, 10, 11 and 12,

while the remaining properties must be calibrated before introducing a

new topological index. The primary challenge and justification in the

past was the absence of techniques for quantifying certain of the specified

features. Although this issue has mostly been resolved in recent years,

molecular descriptor quality assessment is still commonly disregarded. In

this article, we will focus on characteristics 2, 3, 6, 9 and 13 of the renowned

degree-based topological indices, which are similar to our proposed HSO

index.

An analogous procedure will be employed here to evaluate the possible

application of the hyperbolic Sombor index (HSO). The primary and most

significant characteristic of a topological index is the capacity to forecast a

minimum of one physicochemical property or biological activity of a group

of molecules. Correlating a topological index with the physicochemical

characteristics of isomeric alkanes is the most practical approach to ver-

ifying this. In order to explore the application domain of the hyperbolic

Sombor index, we have chosen the boiling point (BP), enthalpy of forma-

tion (HFORM ), entropy (S ), enthalpy of vaporization (HVAP), acentric

factor (AF ) and standard enthalpy of vaporization (DHVAP) of octane

isomers. We compare the outcomes of the above analysis with those de-

rived from the elliptic Sombor index (ESO), the first Zagreb index (M1),

the modified second Zagreb index (mM2), the forgotten index (F ) and the

atom-bond connectivity index (ABC ). We selected these indices since they

are closely linked to the hyperbolic Sombor index.
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4.1 Correlation analysis based on QSPR model

In addition to the indices mentioned earlier, we used the Randić index

(R−1/2), the sum-connectivity index (SCI ), the symmetric division (deg)

index (SDD), the harmonic index (H ), the geometric-arithmetic index

(GA), the arithmetic-geometric index (AG), the Sombor index (SO), the

modified Sombor index (mSO), the geometric-quadratic index (GQ), the

quadratic-geometric index (QG) and the Nirmala index (N ). The values of

the six physicochemical properties of octane isomers are listed in Table 1,

which are taken from the following papers [9, 22] and the website cited in

reference [28].

As stated in article [18], we use Algorithm 1 for calculating all of the

degree-based topological indices of octane isomers and listed their values

in Table 2. We conduct a cross-correlation analysis among the consid-

ered degree-based topological indices. A substantial degree of correlation

was found among the indices: elliptic Sombor index (ESO), first Zagreb

index (M1), modified second Zagreb index (mM2), forgotten index (F ),

atom-bond connectivity index (ABC ), including hyperbolic Sombor index

(HSO) when we applied these indices to a collection of octane isomers and

conducted a correlation analysis. These findings are displayed in Table 3.

One can see that there is a strong correlation coefficient value between

HSO and M1.

We use the linear regression model

P = c · TI + d

to examine the relationship between the topological indices and the physic-

ochemical characteristics, where TI stands for the topological index, P for

the physicochemical property, and constants c and d for the fitting coef-

ficients. In a linear regression model, the following statistical metrics are

present:

R2 = 1−
∑N

i=1(Pi − P̂i)
2∑N

i=1(Pi − P )2
, Adjusted-R2 = 1− (1−R2)(N − 1)

N − p− 1
,
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RMSE =

√∑N
i=1(Pi − P̂i)2

N
and SSE =

N∑
i=1

(Pi − P̂i)
2,

Table 1. Physicochemical properties of octane isomers.
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where Pi, P̂i and P stand for the physicochemical property’s experimen-

tal value, predicted value and mean, respectively. Additionally, p is the

Table 2. Calculated values of the various degree-based topological in-
dices of octane isomers.
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Table 3. Cross-correlation matrix of the hyperbolic Sombor, the ellip-
tic Sombor, the first Zagreb, the modified second Zagreb, the
forgotten and the atom-bond connectivity indices.

HSO ESO M1
mM2 F ABC

HSO 1.0000

ESO 0.9083 1.0000

M1 0.9204 0.9970 1.0000
mM2 −0.9143 −0.8799 −0.9051 1.0000

F 0.9146 0.9991 0.9964 −0.8925 1.0000

ABC 0.9097 0.8711 0.8978 −0.9997 0.8839 1.0000

number of predictors utilized in the regression model and N is the sam-

ple size. When the value of R2 and adjusted-R2 approaches 1, and the

value of RMSE (root mean squared error) and SSE (sum of squared er-

ror) approaches 0, then the regression model is considered good. See the

articles [2, 18] for further information.

Recently, QSPR research among some physicochemical characteristics

and several degree-based topological indices was examined to the data set

of octane isomers. For example, article [9] presents a QSPR study for

physicochemical characteristics (BP, AF, S, HFORM and HVAP) with

some significant degree-based topological indices M1, M2, SDD, GA, ABC

and ISI ; article [25] shows the Sombor index’s chemical application with

the attributes S and HVAP ; article [21] shows how to estimate features

like S, AF, HVAP and DHVAP using linear regression models for the first

hyper-Zagreb index; article [3] provides the linear regression models of the

GA index are shown with all of our physicochemical features taken into

consideration.

We perform statistical analysis between the datasets in Table 1 and

the values of our considered topological indices for correlation analysis in

Table 2. We extended the number of degree-based topological indices and

calculated correlation coefficients between them in the context of octanes

to investigate the relationship between the hyperbolic Sombor index and

other indices more deeply. The physicochemical features of octane isomers

with the hyperbolic Sombor index are represented graphically by linear

regression models in Figures 2–4. Next, the outcomes of the comparative

analysis of the considered degree-based topological indices from the linear
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regression models are displayed in Tables 4–9.

Table 4. Linear regression models with statistical measures for boiling
point.

Linear Models R R2 Adjusted − R2 RMSE SSE

BP = −1.95 × HSO + 138.6 −0.7311 0.5345 0.5054 4.302 296.1

BP = −0.1713 × ESO + 132.3 −0.6844 0.4684 0.4352 4.597 338.2

BP = −1.505 × M1 + 160.2 −0.7203 0.5188 0.4887 4.374 306.1

BP = 28.27 × mM2 + 57.23 0.8562 0.7330 0.7163 3.258 169.8

BP = −0.2064 × F + 130.6 −0.7048 0.4967 0.4652 4.473 320.2

BP = −22.6 × ABC + 232.9 −0.8631 0.7450 0.7291 3.184 162.2

Table 5. Linear regression models with statistical measures for en-
thalpy of formation.

Linear Models R R2 Adjusted − R2 RMSE SSE

HFORM = −0.4109 × HSO − 46.59 −0.7529 0.5669 0.5398 0.849 11.530

HFORM = −0.03789 × ESO − 47.73 −0.7398 0.5473 0.5191 0.8679 12.050

HFORM = −0.3258 × M1 − 41.77 −0.7623 0.5811 0.5550 0.8349 11.150

HFORM = 6.017 × mM2 − 63.85 0.8905 0.7930 0.7801 0.5869 5.512

HFORM = −0.04566 × F − 48.09 −0.7618 0.5806 0.5544 0.8354 11.170

HFORM = −4.792 × ABC − 26.56 −0.8945 0.8001 0.7876 0.5767 5.322

Table 6. Linear regression models with statistical measures for entropy.

Linear Models R R2 Adjusted − R2 RMSE SSE

S = −1.665 × HSO + 126.6 −0.8452 0.7144 0.6965 2.489 99.10

S = −0.1771 × ESO + 124.6 −0.9576 0.9170 0.9118 1.341 28.79

S = −1.472 × M1 + 150.9 −0.9543 0.9107 0.9051 1.392 30.99

S = 20.23 × mM2 + 65.01 0.8295 0.6880 0.6685 2.601 108.20

S = −0.2061 × F + 122.3 −0.9527 0.9077 0.9019 1.415 32.03

S = −15.86 × ABC + 189.1 −0.8202 0.6727 0.6522 2.664 113.6

Table 7. Linear regression models with statistical measures for en-
thalpy of vaporization.

Linear Models R R2 Adjusted − R2 RMSE SSE

HVAP = −0.7704 × HSO + 78.99 −0.8720 0.7604 0.7454 1.0220 16.730

HVAP = −0.07132 × ESO + 76.89 −0.8599 0.7395 0.7233 1.0660 18.180

HVAP = −0.6131 × M1 + 88.1 −0.8860 0.7850 0.7716 0.9684 15.000

HVAP = 10.14 × mM2 + 48.91 −0.9268 0.8590 0.8502 0.7842 9.839

HVAP = −0.08456 × F + 76.1 −0.8716 0.7596 0.7446 1.0240 16.780

HVAP = −8.065 × ABC + 111.7 −0.9298 0.8646 0.8561 0.7687 9.454

According to the R-value for every physicochemical property, the topo-

logical indices maintain the following ordering relationship:
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Table 8. Linear regression models with statistical measures for acentric
factor.

Linear Models R R2 Adjusted − R2 RMSE SSE

AF = −0.01317 × HSO + 0.5038 −0.8522 0.7263 0.7091 0.019120 0.005848

AF = −0.001414 × ESO + 0.4888 −0.9744 0.9494 0.9462 0.008222 0.001082

AF = −0.01178 × M1 + 0.6996 −0.9731 0.9469 0.9435 0.008424 0.001135

AF = 0.1534 × mM2 + 0.02937 0.8016 0.6425 0.6201 0.021850 0.007638

AF = −0.001638 × F + 0.4701 −0.9650 0.9313 0.9270 0.009577 0.001467

AF = −0.1203 × ABC + 0.9703 −0.7929 0.6287 0.6055 0.022260 0.007932

Table 9. Linear regression models with statistical measures for stan-
dard enthalpy of vaporization.

Linear Models R R2 Adjusted − R2 RMSE SSE

DHVAP = −0.1467 × HSO + 11 −0.8776 0.7702 0.7558 0.1894 0.5740

DHVAP = −0.01438 × ESO + 10.68 −0.9166 0.8401 0.8302 0.1580 0.3993

DHVAP = −0.1225 × M1 + 12.91 −0.9362 0.8764 0.8686 0.1389 0.3088

DHVAP = 1.915 × mM2 + 5.302 0.9253 0.8562 0.8472 0.1499 0.3593

DHVAP = −0.01696 × F + 10.52 −0.9240 0.8538 0.8447 0.1511 0.3651

DHVAP = −1.518 × ABC + 17.13 −0.9253 0.8562 0.8472 0.1498 0.3592
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Figure 2. Pictorial representation of linear regression models for boil-
ing point (BP) and enthalpy of formation (HFORM ) of oc-
tane isomers with HSO index.

1. Boiling point (BP):

ESO < F < M1 < HSO < mM2 < ABC,

2. Enthalpy of formation (HFORM ):

ESO < HSO < F < M1 < mM2 < ABC,
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Figure 3. Pictorial representation of linear regression models for en-
tropy (S) and enthalpy of vaporization (HVAP) of octane
isomers with HSO index.
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Figure 4. Pictorial representation of linear regression models for acen-
tric factor (AF ) and standard enthalpy of vaporization
(DHVAP) of octane isomers with HSO index.

3. Entropy (S ):

ABC < mM2 < HSO < F < M1 < ESO,

4. Enthalpy of vaporization (HVAP):

ESO < F < HSO < M1 < mM2 < ABC,

5. Acentric factor (AF ):

ABC < mM2 < HSO < F < M1 < ESO,
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6. Standard enthalpy of vaporization (DHVAP):

HSO < ESO < F < mM2 < ABC < M1.

4.2 Smoothness of hyperbolic Sombor index

A molecular descriptor’s smoothness indicates that mild changes in the

molecular structure cause the topological index value to fluctuate gradu-

ally. Two metrics, structural sensitivity (SS ) and abruptness (Abr), were

established by B. Furtula, I. Gutman and M. Dehmer in 2013 [11] to as-

sess the smoothness of molecular descriptors and compare them to other

topological indices. In order to determine the SS and Abr of a topological

index of a certain class of connected graphs, we now outline an exiting

algorithm [11]. The steps are:

• Step (1): Determine the topological index TI(G) of a graph G that

belongs to the class of connected graphs Ψ.

• Step (2): Create the set S(G) = {Φ ∈ Ψ|GED(Φ, G) = 2}, where
GED is the graph edit distance between two graphs. (To know more

about GED and the creation of S(G), follow the articles [9, 11,23])

• Step (3): Determine the topological index TI(Ω) for each Ω ∈ S(G).

The following mathematical formulas are used to calculate the struc-

ture sensitivity and abruptness of the topological index (TI ) for

graph G:

SS(TI, G) =
1

|S(G)|
∑

Ω∈S(G)

∣∣∣∣∣TI(Ω)− TI(G)

TI(G)

∣∣∣∣∣
and

Abr(TI, G) = max
Ω∈S(G)

∣∣∣∣∣TI(Ω)− TI(G)

TI(G)

∣∣∣∣∣
where |S(G)| is the total number of graphs in the set S(G).

• Step (4): In a class of connected graphs Ψ, the overall structure

sensitivity and abruptness of a topological index (TI ) are determined
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by averaging the SS and Abr values of a topological index generated

for all G in Ψ. They are given by

SS(TI) =
1

|Ψ|
∑
G∈Ψ

SS(TI, G)

and

Abr(TI) =
1

|Ψ|
∑
G∈Ψ

Abr(TI, G)

where |Ψ| is the total number of graphs in the set Ψ.

The SS value needs to be as high as feasible, while the Abr value should

be as minimal as possible for a topological index to be considered ac-

ceptable. As stated in article [18], we use Algorithm 2 to compute the

abruptness (Abr) and structure sensitivity (SS ) of the degree-based topo-

logical indices of decane, nonane and octane isomers. For additional in-

formation on abruptness, graph edit distance and structure sensitivity,

readers may refer to [1, 9, 11, 23]. The HSO index is proposed here to

evaluate and compare these features with other topological indices. Two

programming applications are utilized to implement the aforementioned

Algorithm 2 [18] on the datasets of decane, nonane and octane isomers.

Initially, the topological indices of a given molecular tree are calculated

using Python’s NetworkX module to identify which molecular trees have

graph edit distance two. Following the completion of steps (1) and (2) in

Python, we utilize Algorithm 2 (mentioned in [18]) in MATLAB R2019a

software to determine the mathematical equations given in steps (3) and

(4). The determined values of abruptness and structural sensitivity of the

topological indices of the decane, nonane and octane isomers are listed in

Table 10. The contrast of Abr and SS for the decane, nonane and oc-

tane isomers of each of our topological indices is displayed in Figures 5–7,

respectively.

Observe that the structural sensitivity (SS ) of several topological in-

dices of each of the decane, nonane and octane isomers preserves the order

connections listed below:

SS(ABC) < SS(GA) < SS(AG) < SS(R−1/2) ≈ SS(SCI) < SS(N)
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Table 10. The obtained values of SS and Abr of several topological
indices of the octane, nonane and decane isomers.

Sl. No. Topological Indices Octane Nonane Decane

1 HSO SS 0.1539 0.1392 0.1061

Abr 0.3336 0.3244 0.2671

2 ESO SS 0.1936 0.1616 0.1387

Abr 0.4008 0.3649 0.3419

3 M1 SS 0.0793 0.0659 0.0566

Abr 0.1583 0.1428 0.1336

4 mM2 SS 0.0753 0.0612 0.0516

Abr 0.1404 0.1286 0.1177

5 F SS 0.2157 0.1794 0.1527

Abr 0.4465 0.4015 0.3735

6 R−1/2 SS 0.0379 0.0311 0.0263

Abr 0.0720 0.0645 0.0588

7 SCI SS 0.0379 0.0311 0.0264

Abr 0.0723 0.0642 0.0591

8 SDD SS 0.1303 0.1078 0.0907

Abr 0.2576 0.2322 0.2099

9 H SS 0.0749 0.0610 0.0515

Abr 0.1409 0.1255 0.1143

10 ABC SS 0.0346 0.0279 0.0233

Abr 0.0656 0.0596 0.0537

11 GA SS 0.0357 0.0290 0.0241

Abr 0.0680 0.0595 0.0535

12 AG SS 0.0372 0.0305 0.0255

Abr 0.0722 0.0643 0.0579

13 SO SS 0.1042 0.0864 0.0735

Abr 0.2078 0.1866 0.1720

14 mSO SS 0.0993 0.0807 0.0681

Abr 0.1854 0.1648 0.1509

15 GQ SS 0.0590 0.0479 0.0398

Abr 0.1117 0.0974 0.0875

16 QG SS 0.0631 0.0519 0.0436

Abr 0.1223 0.1090 0.0984

17 N SS 0.0390 0.0323 0.0276

Abr 0.0767 0.0688 0.0641

< SS(GQ) < SS(QG) < SS(H) < SS(mM2) < SS(M1) < SS(mSO)

< SS(SO) < SS(SDD) < SS(HSO) < SS(ESO) < SS(F ).

On the other hand, the following order links are maintained by the abrupt-

ness (Abr) of a number of topological indices of octane, nonane and decane

isomers:

Abr(ABC) < Abr(GA) < Abr(R−1/2) < Abr(AG) < Abr(SCI) < Abr(N)
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Topological Indices

SS
Abr

Figure 5. Structure sensitivity and abruptness of topological indices
for octane isomers.

Topological Indices

SS
Abr

Figure 6. Structure sensitivity and abruptness of topological indices
for nonane isomers.

< Abr(GQ) < Abr(QG) < Abr(mM2) < Abr(H) < Abr(M1)

< Abr(mSO) < Abr(SO) < Abr(SDD) < Abr(HSO) < Abr(ESO)

< Abr(F )

(for octane isomers),
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Topological Indices

SS
Abr

Figure 7. Structure sensitivity and abruptness of topological indices
for decane isomers.

Abr(GA) < Abr(ABC) < Abr(SCI) < Abr(AG) < Abr(R−1/2) < Abr(N)

< Abr(GQ) < Abr(QG) < Abr(H) < Abr(mM2) < Abr(M1)

< Abr(mSO) < Abr(SO) < Abr(SDD) < Abr(HSO) < Abr(ESO)

< Abr(F )

(for nonane isomers)

and

Abr(GA) < Abr(ABC) < Abr(AG) < Abr(R−1/2) < Abr(SCI) < Abr(N)

< Abr(GQ) < Abr(QG) < Abr(H) < Abr(mM2) < Abr(M1)

< Abr(mSO) < Abr(SO) < Abr(SDD) < Abr(HSO) < Abr(ESO)

< Abr(F )

(for decane isomers).

The SS -values of HSO index is greater than ABC, GA, AG, R−1/2, SCI,

N, GQ, QG, H, mM2, M1,
mSO, SO and SDD indices. Compared to the

ABC, GA, AG, R−1/2, SCI, N, GQ, QG, H, mM2, M1,
mSO, SO and

SDD indices, it is hence smoother and exhibits finer changes in structure.

The abruptness of the HSO index is less than that of the ESO and F
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indices. Here, we observe that when the number of alkane isomers rises

from octane to decane, the values of SS of the topological indices fall. But

when it comes to Abr, it is different.

4.3 Degeneracy of hyperbolic Sombor index

Topological indices make an effort to understand a molecular compound’s

structural properties in a meaningful way. It must be possible for a perfect

topological index to discriminate between two distinct molecular config-

urations. The primary drawback of the majority of topological indices

is degeneracy, which is the state in which two or more isomers have the

same topological index values. The discriminative power of a molecular

descriptor reflects its ability to capture structural statistics, with higher or

lower values indicating greater sensitivity to structural characteristics. In

the article [14], Konstantinova suggested a way to evaluate a topological

index’s degeneracy. The degeneracy measure formula is provided as

STI =
N −NTI

N
,

where NTI is the number of isomers that the topological index (TI ) is

unable to distinguish, and N is the total number of isomers considered for

computational testing.

In this study, we examined the discriminative power of the HSO index

and contrasted it with other degree-based topological indices as mentioned

in Section 1. The molecular data set of octane, nonane and decane isomers

is used to test the discriminative capability. Figure 8 displays the contrast

as a bar graph, while Table 11 lists the obtained outcomes.

According to Figure 8 and Table 11, the first Zagreb index (M1) and

the forgotten index (F ) exhibit significantly less degeneracy for octane,

nonane and decane isomers than other topological indices. Additionally,

the hyperbolic Sombor index (HSO) has demonstrated dominance over

other topological indices for both nonane and decane isomers.
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Topological Indices

Octane Nonane Decane

Figure 8. A bar graph representation to show contrasts of the dis-
criminative power of topological indices between the octane,
nonane and decane isomers.

Table 11. Sensitivity values STIs’ of the several topological indices of
octane, nonane and decane isomers.

Sl. No. Topological Indices Octane Nonane Decane

1 HSO 0.8889 0.8857 0.7333

2 ESO 0.8889 0.8000 0.6533

3 M1 0.3333 0.2000 0.1067

4 mM2 0.7778 0.6000 0.3867

5 F 0.3889 0.2286 0.1333

6 R−1/2 0.8889 0.8000 0.6533

7 SCI 0.8889 0.8000 0.6267

8 SDD 0.8889 0.6857 0.5467

9 H 0.7778 0.7429 0.5467

10 ABC 0.8333 0.7143 0.6133

11 GA 0.8889 0.8000 0.6667

12 AG 0.8889 0.8000 0.6533

13 SO 0.8889 0.8000 0.6533

14 mSO 0.8889 0.8000 0.6667

15 GQ 0.8889 0.8000 0.6533

16 QG 0.8889 0.8000 0.6533

17 N 0.8889 0.8000 0.6267

5 Conclusion

In this article, we introduced the hyperbolic Sombor index (HSO), whose
formation is inspired by the eccentricity of a hyperbola. Our discussion
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focused on the octane, nonane and decane isomers by examining their
uses as well as the data that is available for testing their molecular and
usable characteristics. According to the outcomes of the QSPR analysis,
HSO is a better predictor of boiling point than ESO, F and M1; HSO
predicts enthalpy of formation better than ESO ; HSO predicts entropy
more accurately than ABC and mM2; HSO is a more accurate predictor
of enthalpy of vaporization than ESO and F ; HSO outperforms ABC and
mM2 in predicting acentric factor. The results of the HSO index for SS
are superior to those of various well-known topological indices in terms
of smoothness. To be more precise, it outperforms the outcomes of the
SDD, SO, mSO, GQ and QG indices. According to this, the HSO index
exhibits slight structural variations in contrast to these indices. The HSO
index has a lower Abr -value than the ESO and F indices, suggesting that
it is a more acceptable topological indicator. The measurements of the
discriminative power of the HSO index are similar to all of the topological
indices except M1,

mM2, F, H and ABC indices for octane isomers. In
the case of nonane and decane isomers, the HSO index responds better
to isomer discrimination than other topological indices. The HSO index
could emerge as an attractive alternative for QSPR analysis and for pre-
dicting the physicochemical characteristics in diverse molecular structures
and graphical representations.
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[23] M. Rakić, B. Furtula, A novel method for measuring the structure
sensitivity of molecular descriptors, J. Chemom. 33 (2019) #e3138.
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