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Abstract

In this paper, we present a numerical technique to solve two
mathematical models corresponding to two problems in the field of
chemistry. One of these problems delves into the dynamic interplay
of carbon substrates and oxygen concentrations within a microbial
floc particle. Another problem relates to the chemical reaction of
carbon dioxide CO2 and phenyl glycidyl ether in solution. The pro-
posed method is based on Haar wavelet functions. This method
reduces the problems mentioned to sets of algebraic equations. The
method is straightforward, and numerical results validate its effec-
tiveness. To demonstrate its efficiency, we have compared the nu-
merical results to some existing results.

1 Introduction

Many chemical processes in mathematical modeling are represented by

second-order boundary value problems. It is well-known that most of these

problems do not have a closed-form exact solution. In such cases, one pos-

sible approach is to use numerical methods. Here, we will mention two
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cases of modeling chemistry problems.

• Domestic and industrial wastewater contains a high concentration of de-

structive carbonaceous organic materials. The primary method for treat-

ing organic waste is activated sludge. This biological process effectively

oxidizes the carbon substrates, converting them into new cells (sludge),

carbon dioxide (CO2), and water (H2O). Excess sludge is the primary by-

product that is expensive to treat and dispose of. Once anaerobic bacteria

dominate, the sludge can quickly become putrescent, necessitating its re-

moval from the sedimentation tank before this occurs. The concentrations

of carbon substrates and oxygen primarily influence the amount of sludge.

Therefore, it is essential to investigate new methods to minimize sludge

production.

In [1, 7, 11], a mathematical model was introduced that describes the re-

lationship between the concentration of carbon substrate and oxygen con-

centration. This model consists of a system of two coupled Lane–Emden-

type equations and it is used to model the excess sludge production in

wastewater treatment plants and is represented by the following equation:xu′′(x) + 2u′(x) = −α2x+ xF1(u(x), v(x)),

xv′′(x) + 2v′(x) = xF2(u(x), v(x)),
(1)

subject to the conditions

u′(0) = 0, u(1) = 1, v′(0) = 0, v(1) = 1. (2)

In Eq(1), x represents the radius of a spherical floc particle and the func-

tions u(x) and v(x) denote the concentrations of carbon substrate and

oxygen, respectively. Furthermore, F1 and F2 are defined as

F1(u(x), v(x)) =
α1u(x)v(x)

(l1 + u(x))(m1 + v(x))
+

α3u(x)v(x)

(l2 + u(x))(m2 + v(x))
,

F2(u(x), v(x)) =
α4u(x)v(x)

(l1 + u(x))(m1 + v(x))
+

α5u(x)v(x)

(l2 + u(x))(m2 + v(x))
.

For Eq(1), Muthukumar et al. [11] utilized the Adomian decomposition

method, while Duan et al. [7] combined the Adomian decomposition met-
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hod with the Duan-Rach modified recursion scheme. Additionally, In [20],

the variational iteration method has also been employed for this prob-

lem. Also, Saadatmandi and Fayyaz have solved this BVP using the

sinc-collocation method and Chebyshev finite difference method, numeri-

cally [13,14].

• For the chemical kinetics problem of carbon dioxide CO2 and phenyl

glycidyl ether(PGE), following [12] we can use a coupled model of nonlin-

ear differential equations for the steady-state concentrations of CO2 and

PGE as: u′′(x) = α1u(x)v(x)
1+β1u(x)+β2v(x)

,

v′′(x) = α2u(x)v(x)
1+β1u(x)+β2v(x)

,
(3)

u(0) = 1, u(1) = k, v′(0) = 0, v(1) = 1. (4)

In the above system, u(x) and v(x) represent the dimensionless concen-

trations of CO2 and PGE, respectively and αi and βi (where i = 1, 2) are

defined constants. The variable x denotes the dimensionless distance mea-

sured from the center, and k represents the dimensionless concentration

of CO2 at the surface of the catalyst. In [8,12], the authors employed the

Adomian decomposition method to solve the system model and its associ-

ated boundary conditions. In [18], an optimal homotopy analysis method

was applied, and the authors in [15], utilized the residual method for this

problem. Al-Jawari and Radhi [4] applied the variational iteration method

to solve the equations (3), with boundary conditions (4). Also, Zabihi has

solved these coupled equations numerically by using the Chebyshev finite

difference method and Sinc-collocation method [21,22].

For equations (1,3) and their corresponding boundary conditions, we will

apply the Haar wavelet method. In recent years, the Haar wavelet method

has gained popularity in the field of numerical approximation due to its

advantages and properties. This method is simple to apply and is suit-

able for both initial value problems (IVPs) and boundary value problems

(BVPs) and various conditions can be easily accommodated.

In [19], Tantawy presented an effective approach using the Haar wavelet
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technique to solve linear systems of fractional integro-differential equa-

tions, focusing on the Fredholm and Volterra forms. The authors in [2]

applied the Haar wavelet and higher-order Haar wavelet collocation meth-

ods to nonlinear ordinary differential equations, considering various initial

conditions, boundary conditions, periodic conditions, two-point conditions,

integral conditions and multi-point integral boundary conditions. In an-

other study [9], second-order boundary value problems were addressed

using Haar wavelets. An efficient and accurate method based on Haar

wavelets was developed for solving third and fourth-order differential equa-

tions with nonlocal boundary conditions [6]. Additionally, a hybrid nu-

merical method, combining Haar wavelets and finite difference methods,

was proposed to solve the hyperbolic telegraph interface model with dis-

continuous coefficients [5]. The authors in [3] also utilized two numerical

methods based on Haar wavelets and higher-order Haar wavelets to solve

linear and nonlinear fourth-order differential equations with different types

of boundary conditions, including two-point boundary conditions and two-

point integral boundary conditions. In [16,17], the Haar wavelet technique

has been applied for second and third-order Emden-Fowler types with a

variety of initial and boundary conditions.

This paper is organized as follows: In Section 2, we review the basic defini-

tions of Haar wavelet functions and their fundamental properties. Section

3 presents a computational method for solving Problems (1) and (3) us-

ing Haar wavelet functions. In Section 4, we provide numerical results to

illustrate the efficiency of the proposed method and compare them with

existing outcomes. Finally, section 5 is devoted to the conclusion.

2 Haar wavelets

In this section, we define the Haar wavelet family on in the interval [0, 1).

For this goal, J is introduced as the maximal of resolution and we define

M = 2J . Now we define the Haar wavelet family as

H1(x) =

1 0 ≤ x < 1,

0 otherwise,
(5)
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and for j = 0, 1, · · · , J, m = 2j , κ = 0, 1, · · · ,m− 1 and i = m+ k + 1:

Hi(x) =


1 λ1 ≤ x < λ2,

−1 λ2 ≤ x < λ3,

0 otherwise,

(6)

where λ1 = κ
m , λ2 = κ+0.5

m , λ3 = κ+1
m . Here, j represents the wavelet

resolution level and called as the dilation parameter, while κ denotes the

translation parameter. The Haar wavelets family has the following prop-

erties:

∫ 1

0

Hi(x)dx =

1 i = 1,

0 i ̸= 1,∫ 1

0

Hi(x)Hl(x)dx =

0 i ̸= l,

m−1 i = l = m+ κ+ 1.

So the functions Hi(x) are orthogonal. For simplicity, we will define the

following notation to denote the Haar wavelet integrals:

pi1(x) =

∫ x

0

Hi(t)dt, pi2(x) =

∫ x

0

pi1(t)dt. (7)

These integrals can be evaluated as [16,17]:

p11(x) = x,

pi1(x) =


x− λ1 λ1 ≤ x < λ2,

λ3 − x λ2 ≤ x < λ3,

0 otherwise,

i = 2, 3, · · ·

p12(x) =
x2

2
,
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pi2(x) =



1
2 (x− λ1)

2 λ1 ≤ x < λ2,

1
4m2 − 1

2 (λ3 − x)2 λ2 ≤ x < λ3,

1
4m2 λ3 ≤ x < 1,

0 otherwise.

i = 2, 3, · · · .

In recent years, several numerical techniques utilizing Haar wavelets have

been proposed to solve differential equations and integro-differential equa-

tions. Most of these methods employ Chen and Hsiao’s methodology.

According to this methodology, the highest-order derivative in the model

is approximated using a truncated Haar wavelet series as
∑2M

i=1 aiHi(x).

3 The computational method based on Haar

wavelets

In this section, we use Haar wavelet functions to approximate solution of

eq(1) and eq(3), corresponding to their stated conditions. For domain [0 1)

we define the collocation points as

xt =
t− 0.5

2M
, t = 1, 2, · · · , 2M. (8)

3.1 Applying the Haar wavelet technique to the eq. (1)

Using Haar wavelets, the highest order derivative terms in eq(1) can be

approximated as

u′′(x) ≈
2M∑
i=1

aiHi(x), v′′(x) ≈
2M∑
i=1

biHi(x). (9)

By integrating the first above equation twice from 0 to x and applying

boundary conditions, we have

u′(x)− u′(0) ≈
2M∑
i=1

aipi1(x) → u′(x) ≈
2M∑
i=1

aipi1(x); (10)
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u(x)− u(0) ≈
2M∑
i=1

aipi2(x). (11)

Thus

u(1)− u(0) ≈
2M∑
i=1

aipi2(1) → u(0) ≈ 1−
2M∑
i=1

aipi2(1). (12)

Therefore, we have

u(x) ≈ 1 +

2M∑
i=1

ai (pi2(x)− pi2(1)) . (13)

The similar process can be done for v(x) and its derivatives. Now, by in-

serting collocation points (8), into eq(1), we obtain the following nonlinear

system:xtu
′′(xt) + 2u′(xt) = −α2xt + xtF1(u(xt), v(xt)),

xtv
′′(xt) + 2v′(xt) = xtF2(u(xt), v(xt)), t = 1, 2, · · · , 2M

(14)

where 
u′′(xt) ≈

∑2M
i=1 aiHi(xt),

u′(xt) ≈
∑2M

i=1 aipi1(xt),

u(xt) ≈ 1 +
∑2M

i=1 ai (pi2(xt)− pi2(1)) ,

(15)


v′′(xt) ≈

∑2M
i=1 biHi(xt),

v′(xt) ≈
∑2M

i=1 bipi1(xt),

v(xt) ≈ 1 +
∑2M

i=1 bi (pi2(xt)− pi2(1)) .

(16)

Eqs(14) generate 4M non-linear equations which can be solved to obtain

the unknown coefficients ai, bi, i = 1, · · · , 2M .

Theorem 1. Assume that u(s)(x), v(s)(x), s = 1, 2, 3 exist and are bound-

ed. If uJ , vJ(x) are the obtained approximate solutions based on Haar

wavelet and u(x), v(x) are the exact solutins of eq(1), then as J → ∞, we
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have

∥u(x)− uJ(x)∥∞ < O(
1

M2
), ∥v(x)− vJ(x)∥∞ < O(

1

M2
).

Proof. u′′(x) can be expanded into a Haae series as u′′(x) =
∑∞

i=1 aiHi(x).

Similar to mentioned process, By integrating twice and substituting bound-

ary conditions, the exact solution is written in the following form

u(x) = 1 +

∞∑
i=1

ai (pi2(x)− pi2(1)) . (17)

On other hand

uJ(x) = 1 +

2M∑
i=1

ai (pi2(x)− pi2(1)) , (18)

is the numerical solution obtained at Jth resolution, therefore

∥EJ∥∞ = ∥u(x)− uJ(x)∥∞ = ∥
∞∑

i=2M+1

ai (pi2(x)− pi2(1)) ∥∞

= max
x

|
∞∑

i=2M+1

ai (pi2(x)− pi2(1)) | →

∥EJ∥∞ ≤ max
x

∞∑
i=2M+1

|ai| (|pi2(x)|+ |pi2(1)|) . (19)

From [10], the wavelet coefficients ai’s can be calculated by

ai = 2j
∫ 1

0

u′′(x)Hi(x)dx = 2j

(∫ λ2

λ1

u′′(x)dx−
∫ λ3

λ2

u′′(x)dx

)
= 2j (u′′(ξ1)(λ2 − λ1)− u′′(ξ2)(λ3 − λ2)) ,

where ξ1 ∈ (λ1, λ2), ξ2(λ2, λ3). It is easy to verify that

λ2 − λ1 = λ3 − λ2 =
1

2j+1
,
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thus

ai =
1

2
[u′′(ξ1)− u′′(ξ2)] =

1

2
(ξ1 − ξ2)u

′′′(ξ), ξ ∈ (ξ1, ξ2).

u′′′(x) is bounded, then for positive constant γ, we have

|ai| ≤
γ

2j+1
. (20)

In [10], it is demonstrated with details that

max
x∈(0,1)

pi2(x) = (
1

2j+1
)2. (21)

From eq(20) and eq(21) we have

∥EJ∥∞ ≤ 2γ

∞∑
i=2M+1

1

2j+1

(
1

2j+1

)2

= 2γ

∞∑
j=J+1

2j−1∑
k=0

(
1

2j+1

)3

= γ

∞∑
j=J+1

(
1

2j+1

)2

=
γ

3

(
1

2J+1

)2

= O(
1

M2
).

The similar result is hold for v.

3.2 Applying the Haar wavelet technique to the eq. (3)

Similar to previous subsection, we can approximate u′′(x) and v′′(x) by

using Haar wavelet functions and obtain u(x) and v(x) by integrating

repeatedly to find u(x), u′(x), v(x) and v′(x). Same as before, for v(x)

we have

v′′(x) ≈
2M∑
i=1

biHi(x), v(x) ≈ 1 +

2M∑
i=1

bi (pi2(x)− pi2(1)) . (22)

But for u(x) and its derivatives, by integrating twice from 0 to x, we have

u′′(x) ≈
2M∑
i=1

aiHi(x) → u′(x)− u′(0) ≈
2M∑
i=1

aipi1(x); (23)
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(u(x)− u(0))− xu′(0) ≈
2M∑
i=1

aipi2(x). (24)

Hence for x = 1 we have:

u′(0) ≈ u(1)− u(0)−
2M∑
i=1

aipi2(1).

Above equation is substituted in eq(24), therefore

u(x) ≈ 1 + x

(
k − 1−

2M∑
i=1

aipi2(1)

)
+

2M∑
i=1

aipi2(x). (25)

Now, we insert the collocation points (8) into Eqs(3):(1 + β1u(xt) + β2v(xt))u
′′(xt) = (α1u(xt)v(xt)),

(1 + β1u(xt) + β2v(xt))v
′′(xt) = α2u(xt)v(xt),

(26)

where u′′(xt) ≈
∑2M

i=1 aiHi(xt),

u(xt) ≈ 1 + x
(
k − 1−

∑2M
i=1 aipi2(1)

)
+
∑2M

i=1 aipi2(xt),
(27)

v′′(xt) ≈
∑2M

i=1 biHi(xt),

v(xt) ≈ 1 +
∑2M

i=1 bi (pi2(xt)− pi2(1)) .
(28)

By solving eqs(26), we can easily calculate the coefficients ai and bi, i =

1, · · · , 2M . Throughout this paper, we use the Maple’s fsolve command

for solving this non-linear system.

Similar to Theorem 1, we can present a corresponding theorem regard-

ing the convergence order of the Haar wavelet-based technique applied to

eq(3), concluding that

∥u(x)− uJ(x)∥∞ < O(
1

M2
), ∥v(x)− vJ(x)∥∞ < O(

1

M2
).
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4 Numerical experiments

In this section, we present numerical simulations derived from the proposed

technique for solving equations (1) and (3). Throughout this section, uJ(x)

and vJ(x) show the approximate solutions obtained for parameter J .

Example 1. For the first problem, consistent with the approach outlined

in [13,14,20] we set

m1 = m2 = l1 = l2 = 0.0001,

α1 = 5, α2 = 1, α3 = α4 = 0.1, α5 = 0.05.

To facilitate comparison, Tables (1) and (2) display the results of the

proposed Haar wavelet method(HWM) alongside those obtained using the

variational iteration method [20], Sinc-collocation method [13] and classical

4−th order Runge-Kutta method (with a constant stepsize h = 0.1 ).

Table 1. comparison of results of u4(x), for equation (1).

x HWM(J = 4) Sinc-C [13] VIM [20] RK
0.1 0.3237600 0.3238492 0.3238516 0.3426228
0.3 0.3786995 0.3784715 0.3784898 0.3960602
0.5 0.4876834 0.4877298 0.4877663 0.5011594
0.7 0.6516180 0.6516395 0.6516811 0.6596803
0.9 0.8702081 0.8702122 0.8702341 0.8727150

Table 2. comparison of results of v4(x), for equation (1).

x HWM(J = 4) Sinc-C [13] VIM [20] RK
0.1 0.9752576 0.9752602 0.9752603 0.8441813
0.3 0.9772568 0.9772589 0.9772595 0.8572612
0.5 0.9812553 0.9812567 0.9812578 0.8818643
0.7 0.9872534 0.9872541 0.9872553 0.9189154
0.9 0.9952512 0.9952513 0.9952519 0.9694035

To evaluate the accuracy of our approximate solution, similar to [14,20],

we define the error remainder functions

ERu,J(x) = xu′′
J(x) + 2u′

J(x) + α2x− xF1(uJ(x), vJ(x)),
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ERv,J(x) = xv′′J(x) + 2v′J(x)− xF2(uJ(x), vJ(x)),

and the maximal error remainder parameters

MERu,J = max
x∈[0,1)

|ERu,J(x)|, MERv,J = max
x∈[0,1)

|ERv,J(x)|. (29)

Figure 1. Plot of the |ERu,4(x)| (left) and |ERv,4(x)| (right).

Figure 1 shows the curves of the error reminder functions |ERu,4(x)|
and |ERv,4(x)| for J = 4. In Table 3, we have compared the maximal

error remainders MERu,5 and MERv,5 obtained from the Haar wavelet

method(HWM) for J = 5, along with the results obtained using the Cheby-

shev finite difference method [14] and the Adomian decomposition method,

which is combined with the Duan-Rach modified recursion scheme [7].

Table 3. Comparison of the maximal error remainder parameters.

HWM(J=5) Ch.FD [14] ADM [7]
MERu,5 2.7991× 10−6 1.15556× 10−6 2.39928× 10−4

MERv,5 8.2326× 10−8 3.39872× 10−8 7.05670× 10−6

Example 2. For the second problem, we select fixed parameters α1, α2,

β1, β2 and κ, and apply the proposed Haar wavelet technique. As in the

previous example, we define the error remainder functions to evaluate the
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accuracy and efficiency of our approximate solutions:

ERu,J(x) = u′′
J(x)−

α1uJ(x)vJ(x)

1 + β1uJ(x) + β2vJ(x)
,

ERv,J(x) = v′′J(x)−
α2uJ(x)vJ(x)

1 + β1uJ(x) + β2vJ(x)
.

We set α1 = 1, α2 = 2, β1 = 1, β2 = 3, κ = 1
2 . In Tables 4 and 5,

the obtained approximate solutions are compared to the results from the

sinc-collocation method [22], the optimal homotopy analysis method [18]

and Numerov’s method(Nu-M) with a constant stepsize h = 0.1.

Table 4. Numerical solution for u3(x).

x HWM(J = 3) OHAM [18] Sinc-c [22] Nu-M
0.1 0.9429110 0.9428972 0.9429145 0.9429102
0.3 0.8339846 0.8339414 0.8339840 0.8339829
0.5 0.7315479 0.7314845 0.7315460 0.7315460
0.7 0.6350107 0.6349490 0.6350083 0.6350092
0.9 0.5437943 0.5437652 0.5437939 0.5437938

Table 5. Numerical solution for v3(x).

x HWM(J = 3) OHAM [18] Sinc-c [22] Nu-M
0.1 0.8417942 0.8415794 0.8419224 0.8422102
0.3 0.8559476 0.8557293 0.8560406 0.8562694
0.5 0.8830803 0.8828670 0.8831439 0.8833089
0.7 0.9220122 0.9218381 0.9220478 0.9221486
0.9 0.9715856 0.9715097 0.9715983 0.9716309

Also in Tables 6 and 7, we have compared |ERu,6(x)| and |ERv,6(x)| to-
gether with the some existing results in [8, 18,21].

Now we change parameters and assign α1 = 2, α2 = 3, β1 = 1, β2 = 3

and κ = 3. In Tables 8 and 9, the absolute error remainders are shown for

J = 5. In a different scenario, we consider α1 = 1, α2 = 2, β1 = 2, β2 = 4

and κ = 2. For J = 6, we apply the Haar wavelet method proposed in this

work and calculate the error remainders (see Tables 10 and 11).
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Table 6. Comparison of |ERu,6(x)| with some other methods,for α1 =
1, α2 = 2, β1 = 1, β2 = 3, κ = 1

2
.

x HWM(J = 6) ChFD [21] OHAM [18] ADM [8]
0 3.27× 10−4 6.51× 10−4 2.85× 10−4 6.42× 10−4

0.2 6.03× 10−5 1.04× 10−4 9.38× 10−5 3.21× 10−5

0.4 1.72× 10−4 1.07× 10−4 4.27× 10−4 5.85× 10−4

0.6 1.68× 10−4 1.00× 10−4 7.10× 10−4 1.23× 10−3

0.8 5.67× 10−5 8.51× 10−5 8.43× 10−4 1.74× 10−3

Table 7. Comparison of |ERv,6(x)| with some other methods,for α1 =
1, α2 = 2, β1 = 1, β2 = 3, κ = 1

2
.

x HWM(J = 6) ChFD [21] OHAM [18] ADM [8]
0 6.55× 10−4 1.30× 10−3 3.15× 10−4 6.31× 10−4

0.2 1.20× 10−4 2.08× 10−4 4.90× 10−5 9.80× 10−5

0.4 3.44× 10−4 2.14× 10−4 4.08× 10−4 8.17× 10−4

0.6 3.77× 10−4 2.00× 10−4 7.54× 10−4 1.50× 10−3

0.8 1.13× 10−4 1.70× 10−4 9.81× 10−4 1.96× 10−3

Table 8. Comparison of |ERu,5(x)| with some other methods, for α1 =
2, α2 = 3, β1 = 1, β2 = 3 and κ = 3.

x HWM(J = 5) ChFD [21] OHAM [18] ADM [8]
0 3.35× 10−3 1.11× 10−2 2.41× 10−3 8.19× 10−4

0.2 1.96× 10−3 1.81× 10−3 1.07× 10−2 1.24× 10−2

0.4 7.10× 10−4 1.92× 10−3 1.59× 10−2 1.87× 10−2

0.6 8.33× 10−4 1.85× 10−3 1.34× 10−2 1.30× 10−2

0.8 3.04× 10−3 1.62× 10−3 1.77× 10−4 9.28× 10−3

Table 9. Comparison of |ERv,5(x)| with some other methods, for α1 =
2, α2 = 3, β1 = 1, β2 = 3 and κ = 3.

x HWM(J = 5) ChFD [21] OHAM [18] ADM [8]
0 5.03× 10−3 1.66× 10−2 4.81× 10−3 7.22× 10−3

0.2 2.94× 10−3 2.72× 10−3 1.70× 10−3 2.55× 10−3

0.4 1.06× 10−3 2.89× 10−3 4.13× 10−3 6.20× 10−3

0.6 1.25× 10−3 2.78× 10−3 1.57× 10−2 2.36× 10−2

0.8 4.56× 10−3 2.43× 10−3 3.87× 10−2 5.80× 10−2
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Table 10. Comparison of |ERu,6(x)| with some other methods, for
α1 = 1, α2 = 2, β1 = 2, β2 = 4, κ = 2.

x HWM(J = 6) ChFD [21] OHAM [18] ADM [8]
0 3.25× 10−4 9.11× 10−4 3.44× 10−5 1.40× 10−4

0.2 6.39× 10−5 1.50× 10−4 1.31× 10−4 5.23× 10−4

0.4 1.97× 10−4 1.61× 10−4 3.88× 10−4 1.17× 10−3

0.6 2.10× 10−4 1.57× 10−4 4.16× 10−4 1.18× 10−3

0.8 7.73× 10−5 1.40× 10−4 1.11× 10−4 5.94× 10−6

Table 11. Comparison of |ERv,6(x)| with some other methods, for
α1 = 1, α2 = 2, β1 = 2, β2 = 4, κ = 2.

x HWM(J = 6) ChFD [21] OHAM [18] ADM [8]
0 6.50× 10−4 1.82× 10−3 2.90× 10−4 5.80× 10−4

0.2 1.27× 10−4 3.01× 10−4 1.53× 10−4 3.06× 10−4

0.4 3.94× 10−4 3.23× 10−4 4.40× 10−4 8.80× 10−4

0.6 4.21× 10−4 3.15× 10−4 1.45× 10−3 2.90× 10−3

0.8 1.54× 10−4 2.80× 10−4 3.41× 10−3 6.83× 10−3

5 Conclusion

In this paper, we applied the Haar wavelet method to solve two systems of

nonlinear differential equations that model two chemistry problems. The

proposed technique transforms these systems into algebraic equations. The

results indicate that the Haar wavelet method is a powerful tool for solving

boundary value problems with a variety of boundary conditions. Also,

this method is simple to apply, and the approximate solutions obtained

using the Haar wavelet method show that this method is competitive with

other numerical methods such as Adomian decomposition method [8], Sinc-

collocation method [13,22], Chebyshev finite difference method [14,21], and

optimal homotopy analysis method [18].

References

[1] B. Abbassi, S. Dullstein, N. Rabiger, Minimization of excess sludge
production by increase of oxygen concentration in activated sludge
ocs: experimental and theoretical approach, Water Res. 34 (2000)
139–146.



20

[2] M. Ahsan, W. Lei, A. A. Khan, A. Ullah, S. Ahmad, S. U. Arifeen,
Z. Uddin, H. Qu, A high-order reliable and efficient Haar wavelet
collocation method for nonlinear problems with two point-integral
boundary conditions, Alexandria Eng. J. 71 (2023) 185–200.

[3] M. Ahsan, W. Lei, A. A. Khan, M. Ahmed, M. Alwuthaynani, A. Am-
jad, A higher-order collocation technique based on Haar wavelets for
fourth-order nonlinear differential equations having nonlocal integral
boundary conditions, Alexandria Eng. J. 86 (2024) 230–242.

[4] M. A. AL-Jawary, G. H. Radhi, The variational iteration method for
calculating carbon dioxide absorbed into phenyl glycidyl ether, IOSR
J. Math. 11 (2015) #99105.

[5] M. Asif, F. Bilal, R. Bilal, N. Haider, S. A. Abdelmohsenc, S. M. El-
dind, An efficient algorithm for the numerical solution of telegraph
interface model with discontinuous coefficients via Haar wavelets,
Alexandria Eng. J. 72 (2023) 275–285.

[6] I. Aziz, S. Islam, M. Nisar, An efficient numerical algorithm based
on Haar wavelet for solving a class of linear and nonlinear nonlocal
boundary-value problems, Calcolo. 53 (2016) 621–633.

[7] J. S. Duan, R. Rach, A. M. Wazwaz, Oxygen and carbon substrate
concentrations in microbial floc particles by the Adomian decompo-
sition method, MATCH Commun. Math. Comput. Chem. 73 (2015)
785–796.

[8] J. S. Duan, R. Rach, A. M. Wazwaz, Steady-state concentrations of
carbon dioxide absorbed into phenyl glycidyl ether solutions by the
Adomian decomposition method, J. Math. Chem. 53 (2015) 1054–
1067.

[9] S. Islam, I. Aziz, B. Sarler, The numerical solution of second-
order boundary-value problems by collocation method with the Haar
wavelets, Math. Comput. Model. 52 (2010) 1577–1590.

[10] J. Majak, B. S. Shvartsman, M. Kirs, M. Pohlak, H. Herranen, Con-
vergence theorem for the Haar wavelet based discretization method,
Compos. Struct. 126 (2015) 227–232.

[11] S. Muthukumar, M. Veeramuni, R. Lakshmanan, Analytical expres-
sion of concentration of substrate and oxygen in excess sludge pro-
duction using Adomian decomposition method, Indian J. Appl. Res.
4 (2014) 387–391.



21

[12] S. Muthukaruppan, I. Krishnaperumal, R. Lakshmanan, Theoreti-
cal analysis of mass transfer with chemical reaction using absorption
of carbon dioxide into phenyl glycidyl ether solution, Appl. Math. 3
(2012) 1179–1186.

[13] A. Saadatmandi, S. Fayyaz, Numerical study of oxygen and car-
bon substrate concentrations in excess sludge production using sinc-
collocation method, MATCH Commun. Math. Comput. Chem. 80
(2018) 355–368.

[14] A. Saadatmandi, S. Fayyaz, Chebyshev finite difference method for
solving a mathematical model arising in wastewater treatment plants,
Comput. Methods Diff. Eq. 6 (2018) 448–455.

[15] K. Saranya, V. Mohan, L. Rajendran, Steady-state concentrations
of carbon dioxide absorbed into phenyl glycidyl ether solutions by
residual method, J. Math. Chem. 58 (2020) 1230–1246.

[16] R. Singh, V. Guleria, M. Singh, Haar wavelet quasilinearization
method for numerical solution of Emden–Fowler type equations,
Math. Comput. Sim. 174 (2020) 123–133.

[17] K. Singh, A. K. Verma, M. Singh, Higher order Emden–Fowler type
equations via uniform Haar Wavelet resolution technique, J. Comput.
Appl. Math. 376 (2020) #112836.

[18] R. Singh, A. M. Wazwaz, Steady-state concentrations of carbon diox-
ide absorbed into phenyl glycidyl ether: An optimal homotopy anal-
ysis method, MATCH Commun. Math. Comput. Chem. 81 (2019)
801–812.

[19] S. S. Tantawy, Solving linear systems of fractional integro-differential
equations by Haar and Legendre wavelets techniques, Partial Diff.
Eq. Appl. Math. 10 (2024) #100683.

[20] A. M. Wazwaz, R. Rach, J. S. Duan, Variational iteration method
for solving oxygen and carbon substrate concentrations in microbial
floc particles, MATCH Commun. Math. Comput. Chem. 76 (2016)
511–523.

[21] F. Zabihi, Chebyshev finite difference method for Steady-state con-
centrations of carbon dioxide absorbed into phenyl glycidyl ether,
MATCH Commun. Math. Comput. Chem. 84 (2020) 131–140.

[22] F. Zabihi, The use of the sinc-collocation method for solving steady-
state concentrations of carbon dioxide absorbed into phenyl glycidyl
ether, Comput. Methods Diff. Eq. 12 (2024) 857–865.


	Introduction
	Haar wavelets
	The computational method based on Haar wavelets
	Applying the Haar wavelet technique to the eq. (1)
	Applying the Haar wavelet technique to the eq. (3)

	Numerical experiments
	Conclusion

