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Abstract

In the study of the structure-dependency of the total π-electron
from 1972, it is pointed out that it depends on the sums

∑
v∈V d(v)2

and
∑

v∈V d(v)3, where d(v) is the degree of a vertex v in the un-
derlying molecular graph G. The first sum

∑
v∈V d(v)2, which was

named the first Zagreb index, is one of the most investigated graph-
based topological index. The second sum

∑
v∈V d(v)3 has been al-

most completely neglected except for its potential involvement in
the study of the first Zagreb index and the zeroth-order general
Randić index. This second sum was named the forgotten index or
F-index in short. In this paper, we investigate some properties of
the F-index with respect to some new graph transformations, which
are used to characterize all extremal graphs having the maximum
F-index in the set Gn,m of all connected graphs of order n and size
m.
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1 Introduction

In this paper we are concerned with simple undirected connected graphs.

Let G = (V,E) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and

edge set E(G). Denote by |V (G)| = n and |E(G)| = m the number

of vertices and edges of G, respectively. We may assume that d(v1) ≥
d(v2) ≥ · · · ≥ d(vn). Then, the degree sequence of G is the non-increasing

degree sequence (d(v1), d(v2), · · · , d(vn)). We denote by di = d(vi) the

degree of vertex vi for i = 1, 2, . . . , n. For vertices u, v ∈ V (G), if u is

adjacent to v, then u ∼ v, if u is not adjacent to v, we write u ̸∼ v. For

e ̸∈ E(G), let G+ e be a graph which is obtained from G by adding a new

edge e. For e ∈ E(G), let G − e be a graph which is obtained from G by

deleting the edge e.

Let Gn,m be the set of all connected graphs of n vertices and m edges.

Let Kn, Sn, K̄n be the complete graph of order n, the star of order n, and

the graph consisting n isolated vertices, respectively. Let H1 and H2 be

two disjoint graphs. Denote by H1 ∪H2 the disjoint union of H1 and H2,

where V (H1 ∪H2) = V (H1) ∪ V (H2) and E(H1 ∪H2) = E(H1) ∪E(H2).

Denote by H1 ∨ H2 be the join of H1 and H2, obtained by adding all

edges between H1 and H2, i.e., V (H1 ∨H2) = V (H1) ∪ V (H2), while the

edge set of H1 ∨H2 consists of E(H1) ∪ E(H2) and edge {uv}, for every

u ∈ V (H1), v ∈ V (H2).

Topological indices play a significant role in mathematical chemistry,

especially in the QSPR/QSAS assessments [20]. Topological indices based

on vertex degrees are widely used for characterizing molecular graphs,

establishing relationships between structure and properties of molecules,

predicting biological activities of chemical compounds, and yielding many

chemical applications.

The first Zagreb index M1(G) and the second Zagreb index M2(G) are

defined as follows:

M1(G) =
∑

vi∈V (G)

d2(vi) =
∑

uv∈E(G)

(d(u) + d(v)),
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M2(G) =
∑

uv∈E(G)

d(u)d(v).

The quantity M1 was first considered in 1972 [12], whereas M2 was in

1975 [15]. These are the oldest and most thoroughly examined vertex-

degree-based topological indices. Details of their theory and applications

can be found in the surveys [4–6,13,30] and references therein.

Various generalizations of the Zagreb indices have been proposed. Li

and Zheng [23] introduced the first general Zagreb index. It is defined as

Mα(G) =
∑
v∈G

dα(v).

where α is an arbitrary real number. It is also known as the general

zeroth-order Randić index [17,22] and variable first Zagreb index [27].

In the study of structure-dependency of the total π-electron energy,

the Zagreb index is the most studied topological index. However, there is

another crucial term for the study of this energy, which did not attract

any attention at all. Furtula and Gutman [10] introduced this topological

index as the forgotten topological index, or the forgotten index, or the F-

index for simplicity, which is defined as the sum of cubes of vertex degrees

of G:

F (G) =
∑

vi∈V (G)

d3(vi) =
∑

uv∈E(G)

(d2(u) + d2(v)).

If α = 3, the first general Zagreb index Mα(G) equals the forgotten in-

dex. For the entropy and acentric factor, Furtula and Gutman [10] showed

that the F-index of molecular graphs can be used to predict some chemical

properties of molecular structure, and presented several upper and lower

bounds for the F-index. De et al. [9] discovered that the F-index of molec-

ular graphs performs better than the Zagreb index in some applications.

Che and Chen [8] obtained lower and upper bounds for the F-index in

terms of graph irregularity, graph size, and maximum/minimum vertex

degrees. Abdo et al. [1] obtained the extremal trees with respect to the

F-index. Akhter et al. [3] and Jahanbani [18] determined the extremal

graphs with respect to the F-index among the classes of unicyclic graphs

and bicyclic graphs, respectively. Jahanbani et. al. [19] presented sharp
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upper bounds for the F-index of bicyclic graphs in terms of the order and

maximum degree.

Let Gn,m be the set of all simple connected graphs of order n and size

m. In 2021, Tomescu [32] posed the following conjecture.

Conjecture 1.1. If G ∈ Gn,m is a connected graph with n ≥ 6, n −
1 ≤ m ≤ 1

2

(
n−1
2

)
and m = nk −

(
k+1
2

)
+ a, where 1 ≤ k ≤ n − 1 and

0 ≤ a < n− k − 1, then

F (G) ≤ k(n− 1)3 + a(k + 1)3 + (n− k − a− 1)k3 + (k + a)3.

Given two integers n ≤ m, let k be the largest integer such that m −
n+ 1 ≥

∑k−1
i=1 i and

∑k−1
i=1 i+ (n− 1) + ā = m. Let

Ln,m =

{
(Kk ∪ (n− k − 1)K1) ∨K1, for ā = 0;

(Kā ∨ (Kk−ā−1 ∪K1) ∪ (n− k − 1)K1) ∨K1, for ā > 0.

Let k′ be the largest integer such that m ≥
∑k′

i=1(n − i) and â = m −∑k′

i=1(n − i). We also define Sn,m = Kk′ ∨ (Sâ+1 ∪ (n− â− k′ − 1)K1).

Note that if m = n(n− 1)/2, then Sn,m = Kn. For example, L6,9 and S6,9

are depicted in Figure 1, where k = 3, ā = 1; k′ = 2, â = 0.

1 2

3 4

5 6
(a) L6,9

1 2

3 4

5 6
(b) S6,9

Figure 1. Ln,m and Sn,m with n = 6, m = 9

In Section 2, we introduce some known results that are useful for our

work. In Section 3, we present several new graph transformations that

keep the F-index non-increasing. In Section 4, we prove all extremal graphs

having the maximum F-index in the set of all connected graphs of order n

and size m are Sn,m for n−1 ≤ m ≤ 1
4

(
n−1
2

)
, which supports the statement

of Conjecture 1.1.
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2 Preliminaries

A graph G = (V,E) is called a threshold graph if G is {2K2, C4, P4}-free.
Threshold graphs have a beautiful structure and possess many important

mathematical properties such as being the extreme cases of certain graph

properties (see [11, 31]). For more information of threshold graphs, one

can see the monograph [26].

Lemma 2.1. [31] Let G = (V,E) be an undirected graph with degree

sequence (d1, d2, . . . , dn). The following statements are equivalent:

(i). G is a threshold graph;

(ii). G can be constructed from the one-vertex graph by repeatedly adding

an isolated vertex or a universal ( or dominating ) vertex ( a vertex adjacent

to every other vertex );

(iii). every three distinct vertices i, j, k of G satisfy: if di ≥ dj and jk is

an edge, then ik is an edge.

Lemma 2.2. [16, Theorem 6.1] Any threshold graph is uniquely defined

by its degree sequence.

Let D = (d1, d2, . . . , dn) be a non-increasing integer sequence with

all elements being integers. The Ferrers matrix (or Ferrers diagram; see

e.g. [26, p62]) of D is a n× n matrix F of ◦′s, •′s and, +′s such that

⋆ all the diagonal entries and no others are +;

⋆ for each i, i ∈ [n], the number of •′s contained in the ith row is di;

⋆ the symbols •′s in each row are to the left.

In fact, the Ferrers matrix FR(G) of a threshold graph G is the adja-

cency matrix of such a graph if we consider the symbol ◦ and + as the digit

0, and the symbol • as the digit 1, then the Ferrers matrix of a threshold

graph is symmetrical (see Figure 2 as an example and Figure 3 as a coun-

terexample). We only concern and describe the entries below the diagonal

of the Ferrers matrix.

Lemma 2.3. [32] Let x ≥ y ≥ 1. If the function f(x) is strictly convex,

then f(x+1)+ f(y− 1) > f(x) + f(y); else if the function f(x) is strictly

concave, then f(x+ 1) + f(y − 1) < f(x) + f(y).
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+ • • • • •
• + • • • •
• • + ◦ ◦ ◦
• • ◦ + ◦ ◦
• • ◦ ◦ + ◦
• • ◦ ◦ ◦ +

(a) Ferrer matrix of S6,9

1 2

3 4

5 6
(b) S6,9

Figure 2. The Ferrers matrix of a threshold graph is symmetrical

+ • • • • •
• + • • • ◦
• • + • ◦ ◦
• • ◦ + ◦ ◦
• • ◦ ◦ + ◦
• • ◦ ◦ ◦ +

(a) Ferrer matrix of G6,9

1 2

3 4

5 6
(b) G6,9

Figure 3. The Ferrers matrix of a non-threshold graph is asymmetrical

Ábrego et al. [2] showed the following.

Lemma 2.4. [2] If α < 0 or α > 1, then all extremal graphs which

maximizeMα(G) must be threshold graphs; if 0 < α < 1, then all extremal

graphs which minimizes Mα(G) must be threshold graphs. In particular,

all extremal graph having maximum value F (G) are threshold graphs.

Let G∗
n,m be the set of all connected threshold graphs of n vertices

and m edges. By Lemma 2.4,

max
G∈Gn,m

F (G) = max
G∈G∗

n,m

F (G).

Hence we focus our attention on the set of the threshold graphs to char-

acterize all extremal graphs which have the maximum F-index.

3 Transformations

In this section, we focus on threshold graphs. First, we introduce some

graphic transformations and related properties, which will be used to prove
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our main results.

Definition 1. Let d = (d1, . . . , dn) be a non-increasing degree sequence of

a threshold graph G. Suppose that there are four integers 1 ≤ i, j, p, q ≤ n

with q < j, j + l < i− c, and i < p such that dq−c = · · · = dq = p+ l − 1,

di−c = · · · = di = j − 1, dj = · · · = dj+l = i − c − 2, dp = · · · =

dp+l = q, where l ≥ 0 and c ≥ 0. If the non-increasing degree sequence

d′ = (d′1, . . . , d
′
n) of a threshold graph G′ is the same as the degree sequence

of G except d′q−c = · · · = d′q = p − 2, d′i−c = · · · = d′i = j + l, d′j =

· · · = d′j+l = i − 1 and d′p = · · · = d′p+l = q − c − 1, then we say G′ is

obtained from G through a transformation (from G to G′) with respect to

(q, j, i, p; l + 1, c+ 1).

For example, there are three concrete transformations from S9,23 to

G9,23 with respect to (3, 4, 8, 9; 1, 2), from S7,12 to L7,12 with respect to

(2, 3, 5, 6; 2, 1), and from S9,22 to L9,22 with respect to (3, 4, 7, 8; 1, 2) which

are depicted in Table 1, 2 and 3 respectively.

Table 1. Transformation from S9,23 to G9,23 with respect to
(3, 4, 8, 9; 1, 2)

+ • • • • • • • •

⇒

+ • • • • • • • •
• + • • • • • • • • + • • • • • • ◦
• • + • • • • • • • • + • • • • • ◦
• • • + • • ◦ ◦ ◦ • • • + • • • • ◦
• • • • + ◦ ◦ ◦ ◦ • • • • + ◦ ◦ ◦ ◦
• • • • ◦ + ◦ ◦ ◦ • • • • ◦ + ◦ ◦ ◦
• • • ◦ ◦ ◦ + ◦ ◦ • • • • ◦ ◦ + ◦ ◦
• • • ◦ ◦ ◦ ◦ + ◦ • • • • ◦ ◦ ◦ + ◦
• • • ◦ ◦ ◦ ◦ ◦ + • ◦ ◦ ◦ ◦ ◦ ◦ ◦ +

Table 2. Transformation from S7,12 to L7,12 with respect to
(2, 3, 5, 6; 2, 1)

+ • • • • • •

⇒

+ • • • • • •
• + • • • • • • + • • • ◦ ◦
• • + • ◦ ◦ ◦ • • + • • ◦ ◦
• • • + ◦ ◦ ◦ • • • + • ◦ ◦
• • ◦ ◦ + ◦ ◦ • • • • + ◦ ◦
• • ◦ ◦ ◦ + ◦ • ◦ ◦ ◦ ◦ + ◦
• • ◦ ◦ ◦ ◦ + • ◦ ◦ ◦ ◦ ◦ +
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Table 3. Transformation from S9,22 to L9,22 with respect to
(3, 4, 7, 8; 2, 2)

+ • • • • • • • •

⇒

+ • • • • • • • •
• + • • • • • • • • + • • • • • ◦ ◦
• • + • • • • • • • • + • • • • ◦ ◦
• • • + • ◦ ◦ ◦ ◦ • • • + • • • ◦ ◦
• • • • + ◦ ◦ ◦ ◦ • • • • + • • ◦ ◦
• • • ◦ ◦ + ◦ ◦ ◦ • • • • • + ◦ ◦ ◦
• • • ◦ ◦ ◦ + ◦ ◦ • • • • • ◦ + ◦ ◦
• • • ◦ ◦ ◦ ◦ + ◦ • ◦ ◦ ◦ ◦ ◦ ◦ + ◦
• • • ◦ ◦ ◦ ◦ ◦ + • ◦ ◦ ◦ ◦ ◦ ◦ ◦ +

Table 4. The differences of the degrees of G and G′ in the transforma-
tion from G to G′ with respect to (q, j, i, p; l + 1, c+ 1)

The subscript x
of the degree dx

q − c, . . ., q j, . . ., j + l i− c, . . ., i p, . . ., p+ l

The degree dx
of G

p+ l − 1 i− c− 2 j − 1 q

The degree dx
of G′ p− 2 i− 1 j + 1 q − c− 1

If there is a transformation from G to G′ with respect to (q, j, i, p; l +

1, c + 1), it is easy to see that the differences of the degrees of G and G′

as depicted in Table 4.

Furthermore, let FR(G) = (fx,y)n×n and FR(G′) = (fx′,y′)n×n be two

Ferrers matrices of G and G′, respectively. Then the corresponding entries

of FR(G) = (fx,y)n×n and FR(G′) = (fx′,y′)n×n are the same except the

following entries:

fx,y =

{
◦, if i− c ≤ x ≤ i, j ≤ y ≤ j + l;

•, if p ≤ x ≤ p + l, q− c ≤ y ≤ q;

and

fx′,y′ =

{
•, if i− c ≤ x ≤ i, j ≤ y ≤ j + l;

◦, if p ≤ x ≤ p + l, q− c ≤ y ≤ q.

Theorem 3.1. Let G′ be obtained from G ∈ G∗
n,m through a transforma-

tion with respect to (q, j, i, p; l+1, c+1) , where q < j, j+ l < i− c,, i < p,

l ≥ 0, c ≥ 0. If i+ j ≤ p+ q, then F (G) > F (G′).

Proof. Let s = p− i− 1, r = j − i+ c+ l+ 1 and t = i+ j − p− q. Then
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s ≥ 0, r ≥ 0, t ≤ 0, s+ t ≥ 0 and i ≥ 2c+ l + r + s+ t+ 4. Hence

△t : = F (G) − F (G′)

= [q3 (l + 1) + (c + 1) (j − 1)3 + (c + 1) (l + p − 1)3 + (l + 1) (−c + i − 2)3]

−[(c + 1) (j + l)3 + (c + 1) (p − 2)3 + (i − 1)3 (l + 1) + (l + 1) (−c + q − 1)3]

= 3c3l + 3c3 + 6c2l2 + 3c2lr + 9c2ls + 9c2lt + 18c2l + 3c2r

+9c2s + 9c2t + 12c2 + 3cl3 + 3cl2r + 9cl2s + 6cl2t + 18cl2

+6clrs + 6clrt + 12clr + 6cls2 + 6clst + 30cls + 3clt2 + 30clt + 30cl

+6crs + 6crt + 9cr + 6cs2 + 6cst + 21cs + 3ct2 + 24ct + 15c

−i (6clt + 6ct + 6lt + 6t) + 3l3 + 3l2r

+9l2s + 6l2t + 12l2 + 6lrs + 6lrt + 9lr + 6ls2 + 6lst + 21ls + 3lt2

+21lt + 15l + 6rs + 6rt + 6r + 6s2 + 6st + 12s + 3t2 + 15t + 6

≥ 3c3l + 3c3 + 6c2l2 + 3c2lr + 9c2ls + 18c2l + 3c2r + 9c2s + 12c2

+3cl3 + 3cl2r + 9cl2s + 18cl2 + 6clrs + 12clr + 6cls2 + 30cls

+30cl + 6crs + 9cr + 6cs2 + 21cs + 15c + 3l3 + 3l2r + 9l2s + 12l2

+6lrs + 9lr + 6ls2 + 21ls + 15l + 6rs + 6r + 6s2 + 12s

−t2 (3cl + 3c + 3l + 3) − t
(
3c2l + 3c2 + 12cl + 12c + 9l + 9

)
+ 6.

Let φ(t) = −t2 (3cl + 3c+ 3l + 3)− t
(
3c2l + 3c2 + 12cl + 12c+ 9l + 9

)
. It

is easy to see that φ(t) ≥ max{φ(0), φ(−s)} for −s ≤ t ≤ 0. Hence

△t ≥ 3c3l + 3c3 + 6c2l2 + 3c2lr + 9c2ls+ 18c2l + 3c2r + 9c2s+ 12c2

+3cl3 + 3cl2r + 9cl2s+ 18cl2 + 6clrs+ 12clr + 6cls2 + 30cls

+30cl + 6crs+ 9cr + 6cs2 + 21cs+ 15c+ 3l3 + 3l2r + 9l2s+ 12l2

+6lrs+ 9lr + 6ls2 + 21ls+ 15l + 6rs+ 6r + 6s2 + 12s

+max{φ(0), φ(−s)}+ 6 ≥ 0.

Thus the proof is complete. ■

Remark 1. If t = i + j − p − q > 0, then F (G) − F (G′) might be

negative. For example, L6,11 can be obtained from S6,11 with respect to

(2, 4, 5, 6, 1, 1) and F (S6,11)− F (L6,11) < 0, which is depicted in Table 5.

Corollary 3.2. Let G′ be the graph obtained from G ∈ G∗
n,m by trans-

formation (q, j, i, p; l+1, 1). If i+ j−p− q ≤ 0, then G′ is not an extremal

graph having the maximum F-index in the set Gn,m.
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Table 5. Transformation(2, 4, 5, 6, 1, 1) from S6,11 to L6,11 with t = 1

+ • • • • •

F (S6,11) = 376⇒ F (L6,11) = 382

+ • • • • •
• + • • • • • + • • • ◦
• • + • • ◦ • • + • • ◦
• • • + ◦ ◦ • • • + • ◦
• • • ◦ + ◦ • • • • + ◦
• • ◦ ◦ ◦ + • ◦ ◦ ◦ ◦ +

Corollary 3.3. Let G′ be the graph obtained from G ∈ G∗
n,m by trans-

formation (q, j, i, p; 1, c+1). If i+ j−p−q ≤ 0, then G′ is not an extremal

graph having the maximum F-index in the set Gn,m.

Definition 2. Let G ∈ G∗
n,m be a connected threshold graph with non-

increasing degree sequence d = (d1, . . . , dn). Let dn0 = dn, a0 = ∥{i : di =
dn0}∥, b0 = ∥{i : di = dn0 +1}∥, c0 = min{di − dn0 − 1 : di − dn0 − 1 > 0},
θ0 = n0 + dn0 + 1. Generally, assume that ak−1, bk−1, ck−1 and nk−1 are

defined. Let nk = nk−1 − ak−1 − bk−1, ak = ∥{i : di = dnk
}∥, bk = ∥{i :

di = dnk
+ 1}∥, ck = min{di − dnk

− 1 : di > dnk
+ 1}, θk = nk + dnk

+ 1.

Clearly, ck = dnk+1
− dnk

− 1.

For example, there is a graph G13,56 with n0 = 13, a0 = 1, b0 = 1,

c0 = 3 and n1 = 11, a1 = 1, b1 = 0, c1 = 2, which is depicted in Table 6.

Now we present an algorithm which determines whether a threshold

graph G can be obtained from another graph H by a transformation de-

picted in Corollary 3.2, or 3.3.
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Algorithm 1: Determine an (n,m)-graphG with degree sequence

d = (d1, . . . , dn) can or cannot be obtained from a graph H by

the transformation depicted in Corollary 3.2, or 3.3

Data: a graph G ∈ Gn,m

Result: Determine the a (n,m)-graph G with degree sequence

d = (d1, . . . , dn) can or cannot be obtained from another graph

H by a transformation depicted in Corollaries 3.2, or 3.3.

1 Set d0 = dn, a = a0 = ∥{i : di = d0}∥, b = b0 = ∥{i : di = d0 + 1}∥,
n0 = n, n1 = n0 − a− b, c = c0 = dn1 − dn0 − 1;

2 while (b ≤ 1 and n1 ≥ d0) or (b > 1 and n1 ≥ d0 + 1) do

3 if c ≤ a+ b then

4 Output G can be obtained from a graph by the transformation

depicted in Corollary 3.2, or 3.3;

5 End;

6 else

7 Set d0 = dn1 , a = ∥{i : di = d0}∥, b = ∥{i : di = d0 + 1}∥,
n0 = n1, n1 = n0 − a− b, c = dn1 − dn0 − 1;

8 if (b0 = 0 and b > 0 and a+ b ≥ c0 + 1) or (b0 > 0 and b = 0

and a+ b ≥ c0 − 1) or (b0 = 0 and b = 0 and a+ b ≥ c0) or

(b0 > 0 and b > 0 and a+ b ≥ c0) then

9 Output G can be obtained from a graph by the

transformation depicted in Corollaries 3.2, or 3.3;

10 End;

11 else

12 Set c0 = c, b0 = b ;

13 end

14 end

15 end

16 Output G can not be obtained from a graph by the transformation

depicted in Corollary 3.2, or 3.3;

In order to prove the correctness of the above algorithm, let

ϕk =

{
nk − ak − bk − dnk

− 1, if bk > 1;

nk − ak − bk − dnk
, if bk = 0 or bk = 1

for k = 0, 1, 2, . . . .
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Table 6. G13,56

+ • • • • • • • • • • • •
• + • • • • • • • • • • •
• • + • • • • • • • • • ◦
• • • + • • • • • • • ◦ ◦
• • • • + • • • • • • ◦ ◦
• • • • • + • • • • • ◦ ◦
• • • • • • + • • • ◦ ◦ ◦
• • • • • • • + • • ◦ ◦ ◦
• • • • • • • • + • ◦ ◦ ◦
• • • • • • • • • + ◦ ◦ ◦
• • • • • • ◦ ◦ ◦ ◦ + ◦ ◦
• • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ +

Lemma 3.4. For G ∈ G∗
n,m, m > n− 1, assume G is the extremal graph

in G∗
n,m with the maximum F-index, k is a positive integer, then

(i). If ϕk > 0, then ck > ak + bk;

(ii). If ϕk > 0, then
ck + 1 > ak+1 + bk+1, if bk = 0 and bk+1 > 0;

ck − 1 > ak+1 + bk+1, if bk > 0 and bk+1 = 0;

ck > ak+1 + bk+1, others.

(iii). If ϕk > 0, then θk ≥ θk−1 + 2 ≥ θ0 + 2k.

Proof. (i).

By Definition 2, nk+1 = nk − ak − bk and ck = dnk+1
− dnk

− 1.

Obviously, if bk = 0 or bk = 1, dnk+1
< nk+1. It remains to show

that dnk+1
< nk+1 for bk > 1. If dnk+1

≥ nk+1, then dnk+1+1 ≥ nk+1.

By Definition 2, we have dnk+1+1 ≤ dnk
+ 1. So dnk

+ 1 ≥ nk+1, a

contradiction. So we have dnk+1
< nk+1. If ak + bk ≥ ck, then there

exists a graph G1 ∈ Gn,m, G can be obtained from G1 by transfor-

mation (dnk
+ 1, dnk+1

− l̂ + 1, nk+1, nk − ak + 1; l̂, 1), l̂ = min(ck, ak),

t = dnk+1
− l̂ + 1 + nk+1 − (nk − ak + 1 + dnk

+ 1) = dnk+1
− dnk

− 1 +

nk+1 − nk + ak − l̂ = ck − l̂ − bk ≤ ck − ak − bk ≤ 0, by Theorem 3.1,

F (G1) > F (G), a contradiction.
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(ii). Clearly ak ≥ 1, ak+1 ≥ 1.

• bk = 0:

– bk+1 = 0:

If ck ≤ ak+1+bk+1, then we have G1 ∈ Gn,m, G can be obtained

from G1 by transformation (dnk
+ ĉ, dnk+1

, nk+1, nk+1 +1; 1, ĉ),

ĉ = min(ck, ak+1) = ck, t = dnk+1
+nk+1−(dnk

+ĉ+nk+1+1) =

ck − ĉ ≤ 0, by Theorem 3.1, F (G1) > F (G), a contradiction.

– bk+1 > 0:

If ck + 1 ≤ ak+1 + bk+1, then we have G1 ∈ Gn,m, G can be

obtained from G1 by transformation (dnk
+ c̃, dnk+1

+1, nk+1 −
ak+1, nk+1 + 1; 1, c̃), c̃ = min(ck, bk+1), t = dnk+1

+ 1 + nk+1 −
ak+1− (dnk

+ c̃+nk+1+1) = ck+1− c̃−ak+1 ≤ 0, by Theorem

3.1, F (G1) > F (G), a contradiction.

• bk > 0:

– bk+1 = 0:

If ck − 1 ≤ ak+1 + bk+1, then we have G1 ∈ Gn,m, G can be ob-

tained from G1 by transformation (dnk
+c+1, dnk+1

, nk+1, nk+1

+ 1; 1, c), c = min(ck − 1, ak+1) = ck − 1, t = dnk+1
+ nk+1 −

(dnk
+ c + 1 + nk+1 + 1) = ck − c − 1 ≤ 0, by Theorem 3.1,

F (G1) > F (G), a contradiction.

– bk+1 > 0:

If ck ≤ ak+1 + bk+1, then we have G1 ∈ Gn,m, G can be ob-

tained from G1 by transformation (dnk
+ ć+1, dnk+1

+1, nk+1−
ak+1, nk+1 + 1; 1, ć), ć = min(ck, bk+1), t = dnk+1

+ 1 + nk+1 −
ak+1− (dnk

+ ć+1+nk+1+1) = ck− ć−ak+1 ≤ 0, by Theorem

3.1, F (G1) > F (G), a contradiction.

(iii). Clearly, nk+1+dnk+1
> nk+dnk

+1, then θk+1 > θk+1. So we have

θk+1 ≥ θk +2. By repeating this inequality, we obtain θk+1 ≥ θ0 +2k. ■

Corollary 3.5. Let G ∈ Gn,m with degree sequence d = (d1, . . . , dn) have

the maximum F-index in Gn,m. If the entry (x, y) of the Ferrers matrix
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FR(G) = (fx,y) with x > y satisfies y ≥ 3, fx,y = •, fx+1,y−1 = ◦,
fx+1,y = ◦ and fx,y+1 = ◦ or +, then x+ y ≥ n+ dn + 2.

4 Main results

In this section, using graph transformations, we characterize all extremal

graphs having the maximum F-index in the set of all connected graphs of

order n with size m for some n and m.

Theorem 4.1. Let n − 1 < m ≤ 2n − 3. If G ∈ Gn,m has the maximum

F-index in Gn,m, then G = Sn,m. Moreover, the degree sequence of G is

(n− 1, d2, 2, 2, . . . , 2, 1, . . . , 1).

Proof. Let the non-increasing degree sequence of the extremal graph G is

(d1, . . . , dn) with d1 ≥ d2 ≥ . . . ≥ dn. If G ̸= Sn,m, then i := max{x :

dx > 2} > di. Let l = di − 2 and p = min{x : dx = 1}, then by

n − 1 < m ≤ 2n − 3, we have i ≤ p − 1 and l ≤ n − p + 1. Moreover,

dk = 2 for i < k < p, d2 = p − 2. Hence there is a threshold graph

G′, G can be obtained from G′ by a transformation (2, 3, i, p; l, 1) with

t = 3+ i− 2− p = i+1− p ≤ 0. By Theorem 3.1, we have F (G′) > F (G),

which is a contradiction. So the assertion holds. ■
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Table 7. Transformations on G13,22

F (S13,22) = 3544

+ • • • • • • • • • • • •
• + • • • • • • • • • • •
• • + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ +

⇓ 3178

+ • • • • • • • • • • • •
• + • • • • • • • • • • ◦
• • + • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ +

⇓ 2692

+ • • • • • • • • • • • •
• + • • • • • • • • ◦ ◦ ◦
• • + • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • + • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ +

⇓ 2458

+ • • • • • • • • • • • •
• + • • • • • ◦ ◦ ◦ ◦ ◦ ◦
• • + • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • + • • ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • + • ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • • + ◦ ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ +

Remark 2. For example, if n = 13 and m = 22 with n− 1 < m ≤ 2n− 3,

it is easy to see that each threshold graph can be obtained from Sn,m by

transformations with respect to (q, j, i, p, l + 1, c+ 1) (see Table 7).
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Theorem 4.2. Let n and m be two integers where 2n− 3 < m ≤ 3n− 6.

If G ∈ Gn,m with degree sequence d = (d1, . . . , dn) has the maximum

F-index, then G = Sn,m except (n,m) = (6, 11).

Proof. Let a = ∥{i : di = 1}∥ ≥ 0, b = ∥{i : di = 2}∥ ≥ 0, c = min{di − 3 :

di − 3 ≥ 0, i > 3} ≥ 0. By m ≤ 3n − 6, we have 2a + b ≥ c(c + 1)/2.

Clearly, by Corollary 3.2, if a+b ≥ c+1, a > 0, then there exists a threshold

graph G1 ∈ Gn,m such that G can be obtained from G1 by a transformation

(2, 3 + c − l̃ + 1, n − a − b, n − a + 1, l̃, 1), where l̃ = min(a, c), which is

a contradiction. If a + b ≥ c and a = 0, then there exists a threshold

graph G1 ∈ Gn,m and G can be obtained from G1 by a transformation

(3, 4, n − a − b, n − a − b + 1, l̃, 1), where l̃ = min(b, c) = c, which is a

contradiction. Hence a + b < c + 1 and b < c. Therefore a + c + 1 >

2a+ b+ > c(c+ 1)/2, which implies that c < 1/2 +
√
(8a+ 9)/4. So

a− 1 < c− b ≤ c < 1/2 +
√

(8a+ 9)/4, (1)

which implies that 0 ≤ a < 5.

• a = 0. It is easy to see that the assertion holds by similar proof of

Theorem 4.1.

• a = 1. By (1), 0 < c < 2.56, which implies that either c = 1 or c = 2.

If c = 1, then (n,m) = (6, 11) and F (S6,11) < F (L6,11). If c = 2,

then b = 1 and (n,m) = (8, 18). It is easy to see that Sn,m has the

maximum F-index in G8,18.

• a = 2, 3. The proof is similar to Case a = 1.

• a ≥ 4. Then c > 3. On the other hand, by (1), c < 3.7, which is a

contradiction. ■

Theorem 4.3. Let n,m be two integers with 3n − 6 < m ≤ 4n − 10. If

G ∈ Gn,m, with degree sequence d = (d1, . . . , dn), has the maximum F-

index in Gn,m, then G = Sn,m, except for (n,m) = (7, 16), (7, 17), (8, 22).

We skip the proof here. The argument is similar to that of Theorem

4.2. By Theorem 4.1, 4.2, 4.3, we have the following result.
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Corollary 4.4. Let n,m be two integers with m = nk− k(k+1)
2 +a, where

n ≥ 6, 1 ≤ k ≤ 3 and 1 ≤ a ≤ n− k − 1. If G ∈ Gn,m, then

F (G) ≤


382, if n=6,m=11;
842, if n=7,m=16;
940, if n=7,m=17;
1640, if n=8,m=22.

k(n−1)3+a(k+1)3+(n−k−a−1)k3+(k+a)3, otherwise.

Theorem 4.5. Let k, n,m be three positive integers with kn−k(k+1)/2 <

m ≤ (k + 1)n − (k + 2)(k + 1)/2, where τ = ⌊ (2k−1)+
√

(12k2−20k+1)

2 ⌋ and

n > 2(τ + k). If a threshold graph G has the maximum F-index in Gn,m,

then G = Sn,m.

Proof. Let a := ∥{i : di = 1}∥ ≥ 0,

g =

{
0, if dk+2 ≤ k + 1;

min{di − k − 1 : di − k − 1 > 0}. if dk+2 > k + 1.

• dk+2 ≤ k + 1:

If G is not Sn,m, let q = min{x : dx < n− 1}, q = dq + 2, j = k + 1,

i = dj + 1. Clearly, i+ j − p− q ≤ 0, by Corollary 3.3, G is not the

extremal graph, a contradiction.

• dk+2 > k + 1:

If G is not Sn,m, then g + k − 1 > a since G is an extremal graph.

Further, we have g + k − 2 ≥ a. Obviously kn − k(k + 1)/2 <

m ≤ (k + 1)n − (k + 2)(k + 1)/2, so ka ≥ g(g+1)
2 , it follows that

k(g + k − 2) ≥ g(g+1)
2 , we have g ≤ τ =

(2k−1)+
√

(2k−1)2+4(2k2−4k))

2 .

It can be easily observed that n ≤ 2(τ + k), a contradiction. ■

The relation between the parameters k, τ and the order of the graph

n is shown in Table 8.

Before introducing our last theorem, we state a simple lemma.

Lemma 4.6. Let G ∈ G∗
n,m, a = ∥{i : di = dn}∥, if dn = 1, then the

maximum size of G is

µn := n− 1 +
(n− a− 2)(n− a− 1)

2
.
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Table 8. The relation of k, τ and n

k τ n
1 0 2
2 3 10
3 6 18
4 8 24
5 11 32
6 14 40
7 17 48
8 19 54
9 22 62
10 25 70

Now, let

zn =

{
n+3
2 , if n is odd;

n+2
2 , if n is even.

Letting a = zn in Lemma 4.6, we have

µn =

{
n2+8n−9

8 , if n is odd;
n2+6n−8

8 , if n is even.

Theorem 4.7. Let n,m be two positive integers with m ≤ µn. If a

threshold graph G in Gn,m has the maximum F-index, then G = Sn,m, and

any threshold graph can be obtained from Sn,m by some transformations

depicted in Section 3.

Proof. Assume that G in Gn,m has the maximum F-index, By Lemma 3.4

and Corollary 3.5, the entries (x, y) of FR(G) with x > y, y ≥ 3 and

x+ y ≥ n+ 3 are described as follows: fx,y = •, fx+1,y−1 = ◦, fx+1,y = ◦
and fx,y+1 = ◦ or +.

Denote d′ = dzn , ã = max{i : di = d′}, ĩ = min{i : di = d′}. Clearly

zn + zn − 1 ≤ n+ 2, d′ < zn. We consider the following two cases.

• ∥{i : di = d′ − 1}∥ = 0. Since ã + d′ ≥ n + 3, we have ã + d′ ≥
2zn, which implies that ã − zn ≥ zn − d′. By Lemma 3.4, we have

d′ > ã − zn. Obviously ∥{(x, y) : fx,y = ◦, x > y, y > d′, x ≤
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zn}∥ < ∥{(x, y) : fx,y = •, x > y, y ≤ d′, i > zn}∥, then m > µn, a

contradiction.

• ∥{i : di = d′ − 1}∥ > 0. Let a′ = ∥{i : di = d′ − 1}∥, then ã + a′ +

d′ − 1 ≥ n + 3, so ã + a′ − zn ≥ zn − d′ + 1. It is easy to see that

∥{(x, y) : fx,y = ◦, x > y, y > d′, x ≤ zn}∥ < ∥{(x, y) : fx,y = •, x >

y, y ≤ d′ − 1, x > zn}∥. Then m > µn, a contradiction.

Therefore, the proof is completed. ■

5 Concluding remarks

In addition to the results established in this paper, we also list some com-

putational results. They should help us to gain some insights regarding the

quality of the bounds obtained in the previous sections. It is worth noting

that, if n ≤ 11, the results in Theorem 4.7 is better than Conjecture 1.1.

For example, see Table 9.

For small n, such as 6 ≤ n ≤ 16, through computer search, we consider

all connected threshold graphs in G∗
n,m to find all extremal graph with

maximum F-index. For example, see Table 12 for the case of n = 12. For

fixed n, if m = n, n+1, n+2, n(n−1)
2 −1, n(n−1)

2 −2, n(n−1)
2 −3, all extremal

graphs which attain maximum F-index are Sn,m. For n < 12, all extremal

graphs are either Sn,m or Ln,m, but for n ≥ 12, extremal graphs may not

be Sn,m or Ln,m. With the help of computer, the known results for the

case 6 ≤ n ≤ 16 are summarized in Tables 10 and 11.
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Table 9. Comparation of the upper bound of m in Theorem 4.7 and
Conjecture 1.1

n Theorem 4.7: µn Conjecture 1.1
6 8 5
7 12 7
8 13 10
9 18 14
10 19 18
11 25 22
12 26 27
13 33 33
14 34 39
15 42 45
16 43 52
17 52 60
18 53 68
19 63 76

Table 10. The minimum size m of G which has the maximum F-index
and G isn’t Sn,m

n m degree sequence F-index
6 11 5, 4, 4, 4, 4, 1 382
7 16 6, 5, 5, 5, 5, 5, 1 842
8 22 7, 6, 6, 6, 6, 6, 6, 1 1640
9 28 8, 7, 7, 7, 7, 7, 6, 6, 1 2660
10 36 9, 8, 8, 8, 8, 8, 8, 7, 7, 1 4488
11 44 10, 9, 9, 9, 9, 9, 9, 8, 8, 7, 1 6742
12 49 11, 11, 9, 9, 9, 9, 9, 9, 9, 9, 2, 2 8510
13 59 12, 12, 10, 10, 10, 10, 10, 10, 10, 10, 10, 2, 2 12472
14 68 13, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 1 16840
15 79 14, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 1, 1 22688
16 93 15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 1, 1 31938

Table 11. Extremal graph with maximal F-index

n Sn,m Ln,m Other
6 m ̸= 11 m = 11
7 m ̸= 16, 17 m = 16, 17
8 m ̸= 22, 23, 24 m=22,23,24
9 m < 28 or m > 32 28 ≤ m ≤ 32
10 m < 36 or m > 41 36 ≤ m ≤ 41
11 m < 44 or m > 51 44 ≤ m ≤ 51
12 m < 49 or m > 62 or m = 50, 51, 52 54 ≤ m ≤ 62 m=49,53
13 m < 59 or m > 74 or m = 62, 63 65 ≤ m ≤ 74 m = 59, 60, 61, 64
14 m < 68 or m > 87 or m=70 m = 68, 69, 74, 75 or 77 ≤ m ≤ 87 m=71,72,73,76
15 m < 79 or m > 101 m = 79, 80, 81, 87, 88 or 90 ≤ m ≤ 101 m=82,83,84,85,86,89
16 m < 93 or m > 116 m = 93, 94, 100, 101, 102 or 104 ≤ m ≤ 116 m=95,96,97,98,99,103
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Table 12. Extremal graph with maximal F-index when n = 12

n m degree sequence Extremal graph F-index

12 12 11, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 Sn,m 1356

12 13 11, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 Sn,m 1382

12 14 11, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 Sn,m 1426

12 15 11, 5, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 Sn,m 1494

12 16 11, 6, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 Sn,m 1592

12 17 11, 7, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 Sn,m 1726

12 18 11, 8, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 Sn,m 1902

12 19 11, 9, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 Sn,m 2126

12 20 11, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 Sn,m 2404

12 21 11, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 Sn,m 2742

12 22 11, 11, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2 Sn,m 2780

12 23 11, 11, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2 Sn,m 2836

12 24 11, 11, 5, 3, 3, 3, 2, 2, 2, 2, 2, 2 Sn,m 2916

12 25 11, 11, 6, 3, 3, 3, 3, 2, 2, 2, 2, 2 Sn,m 3026

12 26 11, 11, 7, 3, 3, 3, 3, 3, 2, 2, 2, 2 Sn,m 3172

12 27 11, 11, 8, 3, 3, 3, 3, 3, 3, 2, 2, 2 Sn,m 3360

12 28 11, 11, 9, 3, 3, 3, 3, 3, 3, 3, 2, 2 Sn,m 3596

12 29 11, 11, 10, 3, 3, 3, 3, 3, 3, 3, 3, 2 Sn,m 3886

12 30 11, 11, 11, 3, 3, 3, 3, 3, 3, 3, 3, 3 Sn,m 4236

12 31 11, 11, 11, 4, 4, 3, 3, 3, 3, 3, 3, 3 Sn,m 4310

12 32 11, 11, 11, 5, 4, 4, 3, 3, 3, 3, 3, 3 Sn,m 4408

12 33 11, 11, 11, 6, 4, 4, 4, 3, 3, 3, 3, 3 Sn,m 4536

12 34 11, 11, 11, 7, 4, 4, 4, 4, 3, 3, 3, 3 Sn,m 4700

12 35 11, 11, 11, 8, 4, 4, 4, 4, 4, 3, 3, 3 Sn,m 4906

12 36 11, 11, 11, 9, 4, 4, 4, 4, 4, 4, 3, 3 Sn,m 5160

12 37 11, 11, 11, 10, 4, 4, 4, 4, 4, 4, 4, 3 Sn,m 5468

12 38 11, 11, 11, 11, 4, 4, 4, 4, 4, 4, 4, 4 Sn,m 5836

12 39 11, 11, 11, 11, 5, 5, 4, 4, 4, 4, 4, 4 Sn,m 5958

12 40 11, 11, 11, 11, 6, 5, 5, 4, 4, 4, 4, 4 Sn,m 6110

12 41 11, 11, 11, 11, 7, 5, 5, 5, 4, 4, 4, 4 Sn,m 6298

12 42 11, 11, 11, 11, 8, 5, 5, 5, 5, 4, 4, 4 Sn,m 6528

12 43 11, 11, 11, 11, 9, 5, 5, 5, 5, 5, 4, 4 Sn,m 6806

12 44 11, 11, 11, 11, 10, 5, 5, 5, 5, 5, 5, 4 Sn,m 7138

12 45 11, 11, 11, 11, 11, 5, 5, 5, 5, 5, 5, 5 Sn,m 7530

12 46 11, 11, 11, 11, 11, 6, 6, 5, 5, 5, 5, 5 Sn,m 7712

12 47 11, 11, 11, 11, 11, 7, 6, 6, 5, 5, 5, 5 Sn,m 7930

12 48 11, 11, 11, 11, 11, 8, 6, 6, 6, 5, 5, 5 Sn,m 8190

12 49 11, 11, 9, 9, 9, 9, 9, 9, 9, 9, 2, 2 Other 8510

12 50 11, 11, 11, 11, 11, 10, 6, 6, 6, 6, 6, 5 Sn,m 8860

12 51 11, 11, 11, 11, 11, 11, 6, 6, 6, 6, 6, 6 Sn,m 9282

12 52 11, 11, 11, 11, 11, 11, 7, 7, 6, 6, 6, 6 Sn,m 9536

12 53 11, 10, 10, 10, 10, 10, 10, 10, 8, 8, 8, 1 Other 9868

12 54 11, 10, 10, 10, 10, 10, 10, 10, 9, 9, 8, 1 Ln,m 10302

12 55 11, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 1 Ln,m 10790

12 56 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1 Ln,m 11332

12 57 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 2 Ln,m 11670

12 58 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 3 Ln,m 12020

12 59 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 4 Ln,m 12388

12 60 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 5 Ln,m 12780

12 61 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 6 Ln,m 13202

12 62 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 7 Ln,m 13660

12 63 11, 11, 11, 11, 11, 11, 11, 11, 11, 9, 9, 9 Sn,m 14166

12 64 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 9 Sn,m 14708

12 65 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10 Sn,m 15310
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Commun. Math. Comput.Chem. 54 (2005) 425–434.

[18] A. Jahanbani, On the forgotten topological index of graphs, Discr.
Math. Algor. Appl. 13 (2021) #2150054.

[19] A. Jahanbani, L. Shahbazi, S. M. Sheikholeslami, R. Rasi, J. Ro-
driguez, New upper bounds for the forgotten index among bicyclic
graphs, ArXiv, 2020, abs/2102.02415, doi: https://doi.org/10.

48550/arXiv.2102.02415.

[20] M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley, New
York, 2000.

[21] A. Khaksari, M. Ghorbani, On the forgotten topological index, Iran.
J. Math. Chem. 8 (2017) 327–338.

[22] X. Li, Y. Shi, (n,m)-graphs with maximum zeroth-order general
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