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Abstract

In this paper, we confirm a conjecture by Furtula and Oz regard-
ing graphs that maximize the second complementary Zagreb index.
We demonstrate that this conjecture holds for a broader class of
indices, each of which is parameter-dependent, and which we will
refer to as the generalized complementary second Zagreb index. It
is shown that all indices in this class are maximized by complete
split graphs. Additionally, we analyze the behavior of the clique
order in optimal graphs. For the case of the second complementary
Zagreb index, we provide an explicit expression, thereby confirming
the value conjectured by Furtula and Oz.

1 Introduction

It happens with alarming regularity in mathematical chemistry that differ-

ent researchers or research teams introduce the same, or essentially equiv-

alent, concepts under different names. A nice example is provided in a
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recent article by Furtula and Oz [4], concerned with the newest incar-

nation of the index they named the second complementary Zagreb index,

but also known as the nano-Zagreb index [6], the F-minus index [7], and

the first Sombor index [5, 9]. As the cited journals form a rather eclec-

tic collection, it is quite possible that the list of alternative names is not

exhaustive.

The second complementary Zagreb index, as formulated by Furtula

and Oz, fits nicely into the class of irregularity measures, being the most

natural generalization of its archetypal member, the Albertson irregularity

index [3]. Like any valid irregularity measure, it attains its minimum value

of zero on all regular graphs. The problem of identifying the maximiz-

ing graphs, however, is more complex. The cases for trees and unicyclic

graphs were resolved in prior studies [10] and [8], respectively, but the

general case remained unresolved. Furtula and Oz conjectured that the

maximizing graphs must belong to the class of complete split graphs, i.e.

graphs consisting of a clique and an empty graph, with edges connecting

every vertex in the clique to every vertex in the empty part. Additionally,

they provided an estimate for the optimal number of vertices in the clique,

based on the total number of vertices in the graph.

In this paper, we first extend the complementary second Zagreb index

by introducing its generalized version that encompasses a class of indices

depending on a free positive integer parameter. This version is referred

to as the generalized complementary second Zagreb index, which yields

the complementary second Zagreb index when the parameter is fixed to

2. The necessary concepts and definitions are introduced in Section 2. In

Section 3, we show that all indices in this class are maximized by complete

split graphs, thereby confirming the conjecture made by Furtula and Oz.

Furthermore, in Section 4, we analyze the behavior of the clique order as

a function of the parameter. For the case where the parameter is 2, we

provide an explicit expression, further confirming the conjectured value

obtained by Furtula and Oz. In the final section, we summarize our results

and suggest potential directions for future research.
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2 Definitions and preliminaries

All graphs considered in this paper are finite, simple, and connected. We

assume the reader is familiar with basic notions of the graph theory. We

denote the vertex set and the edge set of a graph G by V (G) and E(G),

respectively. For a vertex v ∈ V (G), its degree dG(v) is the number of its

neighbors in G. We denote the set of neighbors of a v by NG(v). Graphs

in which all vertices have the same degree are called regular. The largest

and the smallest degree of a vertex in a graph G we denote by ∆(G) and

δ(G), respectively. When the graph G is clear from the context, we omit

the (G) part (G-subscript). A vertex of degree |V (G)| − 1 in G is referred

to as a universal vertex, while a pendent vertex is a vertex of degree 1 in

G.

An irregularity measure is any graph invariant I(G) which is equal to

zero for all regular graphs on a given number of vertices and nonnegative

for non-regular graphs. Naturally, an irregularity measure should achieve

its maximum value(s) on graphs which are, in some sense, the farthest from

being regular. Different irregularity measures accomplish this in various

ways, each capturing and quantifying distinct aspects of non-regularity.

Most of these measures are sensitive to local connectivity patterns, and

there is no consensus on which one is ”the best.”

The Albertson irregularity of a graph G is defined as the sum of the

edge contributions, where each contribution is the absolute value of the

difference in degrees of the two vertices incident to that edge. Formally, it

is given by

irr(G) =
∑

uv∈E(G)

|dG(u)− dG(v)| ,

where |dG(u)− dG(v)| is referred to as the imbalance of the edge uv. In

other words, the imbalance of an edge is the absolute difference between

the degrees of its two end-vertices.

There are several ways to generalize the Albertson irregularity. One of

the most straightforward approaches is to raise the edge contributions to

a (not necessarily integer) power. Another natural generalization involves

raising the vertex degrees to the same power and then considering the
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absolute value of their difference. The simplest case of this approach occurs

when the power is set to two, which yields the second complementary

Zagreb index, as defined by Furtula and Oz:

cM2(G) =
∑

uv∈E(G)

∣∣d2G(u)− d2G(v)
∣∣ .

It is important to note that Furtula and Oz did not derive this invariant

simply by squaring the degrees. Instead, cM2(G) naturally emerged in

their paper as a result of geometric considerations in a plane parameter-

ized by vertex degrees. Their definition avoids the use of absolute values

by specifying that, for unequal degrees, the smaller degree is always sub-

tracted from the larger one. Clearly, their definition is equivalent to the

one presented in this paper.

There is no reason, however, to stop at the second power. For any

given nonnegative integer l, one can define a generalized complementary

second Zagreb index of a graph G as

cMl(G) =
∑

uv∈E(G)

∣∣dlG(u)− dlG(v)
∣∣ .

By setting l = 1 and l = 2, it is immediately clear that this new invariant

generalizes both the Albertson irregularity and the second complementary

Zagreb index of Furtula and Oz, respectively.

In their paper [4], Furtula and Oz focused more on the potential appli-

cations of the second complementary Zagreb index than on its mathemat-

ical properties. However, they did investigate the graphs that maximize

this index for a given number of vertices. After conducting an exhaustive

search on small graphs, they proposed the following conjecture regarding

the structure and size of the maximizing graphs.

Conjecture 1. [4]

Vertices in the connected graph with the maximal complementary second

Zagreb index are partitioned into two groups. Let’s label the number of ver-

tices in the first group with k, which is always smaller than ⌈n/2⌉. These

vertices form a k-complete subgraph. Each of the other n − k vertices in
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this connected graph is connected to all vertices of the k-complete subgraph,

but they are not mutually interconnected.

The graphs described in the conjecture are known as complete split

graphs. A graph G on n vertices is a complete split graph CSk,n−k if k of

its vertices induce a clique, i.e., the complete subgraph Kk, the remaining

n − k vertices induce the empty subgraph Kn−k, and each vertex of the

clique is connected by an edge to each vertex of the empty subgraph. We

can write CSk,n−k = Kk +Kn−k, where + denotes the join of two graphs.

(For two graphs G and H on disjoint vertex sets, their join is obtained

by keeping all edges of G and of H and by adding an edge between each

vertex of G and each vertex of H.)

Conjecture 1 can now be restated more succinctly as follows: Any graph

that maximizes the complementary second Zagreb index among all graphs

on n vertices is a complete split graph CSk,n−k with k not exceeding ⌈n/2⌉.
In the next section, we prove that for each l ≥ 1, the generalized

complementary second Zagreb index cMl is maximized by complete split

graphs, thereby confirming Conjecture 1 and reaffirming previously known

results regarding the Albertson irregularity.

3 The structure of maximizing graphs

In this section, we examine connected simple graphs on n ≥ 5 vertices

and identify those that maximize cMl for a given value of l. We begin by

demonstrating that the vertices with the largest degree in a maximizing

graph induce a complete subgraph.

Lemma 1. Let G be a graph maximizing cMl(G) over all connected graphs

on n vertices. Then its vertices of degree ∆ induce a complete subgraph.

Proof. Suppose, for the sake of contradiction, that there are vertices u and

v in G, both of degree ∆, that are not connected by an edge. Adding the

edge uv to G results in a graph G′ = G + uv, in which the contributions

to cMl(G) of all edges incident with either u or v are strictly greater than

their respective contributions inG while the contributions of all other edges
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remain unchanged. Therefore, cMl(G
′) > cMl(G), which contradicts the

assumption that G maximizes cMl(G).

Next, we demonstrate that the vertices of minimum degree in G induce

an empty subgraph, meaning that no two of these vertices are adjacent in

G.

Lemma 2. Let G be a graph maximizing cMl(G) over all connected graphs

on n vertices. Then its vertices of degree δ induce an empty subgraph.

Proof. Suppose, for the sake of contradiction, that there are vertices u and

v in G, both of degree δ, that are connected by an edge. Removing this

edge from G increases the contributions to cMl(G) of all edges incident to

either u or v, while leaving the contributions of all other edges unchanged.

As a result, we obtain a new graph G′ = G− uv with the same number of

vertices n, and cMl(G
′) > cMl(G), which contradicts the assumption that

G maximizes cMl(G).

The next two lemmas show that a maximizing graph must contain

universal vertices.

Lemma 3. Let G be a connected graph with a vertex v of maximum degree

∆. Let u and w be vertices of G such that u is a pendent vertex, uw ∈ E(G)

and vw /∈ E(G), v ̸= w. Then

cMl(G) < cMl(G− uw + vw + uv). (1)

Proof. Let NG(v) = {x1, x2, . . . , x∆} and let G′ := G−uw+ vw+uv. We

denote D(G′, G) := cMl(G
′)− cMl(G). It follows that

D(G′, G) =
∑

yz∈E(G′)

|dlG′(y)− dlG′(z)| −
∑

yz∈E(G)

|dlG(y)− dlG(z)|

=

∆∑
i=1

[(∆ + 2)l − dlG(xi)] + (∆ + 2)l − dlG(w)

+ (∆ + 2)l − 1−
∆∑
i=1

[∆l − dlG(xi)]− (dlG(w)− 1)
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=

∆∑
i=1

[(∆ + 2)l −∆l] + 2[(∆ + 2)l − dlG(w)] > 0.

Lemma 4. Let G be a connected graph with a vertex v of maximum degree

∆. Let u and w be vertices of G such that dG(u) ≥ 2, uw ∈ E(G) and

vw /∈ E(G), v ̸= w. Then

cMl(G) < cMl(G− uw + vw). (2)

Proof. Let NG(v) = {x1, x2, . . . , x∆} and NG(u) = {w, y1, y2, . . . , yt}, t ≥
1. Then dG(u) = t+1, which yields t < ∆. We denote G′ := G−uw+vw.

We consider two cases.

Case 1. uv /∈ E(G). It follows that

D(G′, G) =
∑

yz∈E(G′)

|dlG′(y)− dlG′(z)| −
∑

yz∈E(G)

|dlG(y)− dlG(z)|

=

∆∑
i=1

[(∆ + 1)l − dlG(xi)] +

t∑
i=1

|tl − dlG(yi)|

+ (∆+ 1)l − dlG(w)−
∆∑
i=1

[∆l − dlG(xi)]

−
t∑

i=1

|(t+ 1)l − dlG(yi)| − |(t+ 1)l − dlG(w)|

≥ ∆[(∆ + 1)l −∆l]− t[(t+ 1)l − tl]

+ min{(∆ + 1)l − (t+ 1)l, (∆ + 1)l + (t+ 1)l − 2dlG(w)}

= min{a, b},

where

a = (∆+ 1)l+1 − (t+ 1)l+1 − (∆l+1 − tl+1),

b = (∆+ 1)l+1 − (t+ 1)l(t− 1)− (∆l+1 − tl+1)− 2dlG(w).

We can immediately conclude that a > 0. Let us prove that b > 0. By

using the formula xl − yl = (x− y)

l−1∑
i=0

xiyl−1−i, we obtain
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b = (∆+ 1)l+1 −∆l+1 − (t+ 1)l(t− 1) + tl+1 − 2dlG(w)

=

l∑
i=0

(∆ + 1)i∆l−i − (t− 1)
[
(t+ 1)l − tl

]
+ tl − 2dlG(w)

=

l∑
i=0

(∆ + 1)i∆l−i − (t− 1)

l−1∑
i=0

(t+ 1)itl−1−i + tl − 2dlG(w)

= ∆l + (∆+ 1)∆l−1 + (∆+ 1)l +

l−1∑
i=2

(∆ + 1)i∆l−i − (t− 1)tl−1

− (t− 1)(t+ 1)tl−2 − (t− 1)

l−1∑
i=2

(t+ 1)itl−1−i + tl − 2dlG(w)

= 2(∆l − dlG(w)) + [(∆ + 1)l − tl] + ∆l−1 + tl−2(t+ 1)

+

l−1∑
i=2

[(∆ + 1)i∆l−i − (t+ 1)i(tl−i − tl−1−i)] > 0.

Case 2. uv ∈ E(G). Then u is one of the vertices x1, x2, . . . , x∆ and v

is one of the vertices y1, y2, . . . , yt. Without loss of generality, we assume

u = x∆ and v = yt. Then

D(G′, G) =
∑

yz∈E(G′)

|dlG′(y)− dlG′(z)| −
∑

yz∈E(G)

|dlG(y)− dlG(z)|

=

∆−1∑
i=1

[(∆ + 1)l − dlG(xi)] +

t−1∑
i=1

|tl − dlG(yi)|+ (∆+ 1)l − dlG(w)

+ (∆ + 1)l − tl −
∆−1∑
i=1

[∆l − dlG(xi)]−
t−1∑
i=1

|(t+ 1)l − dlG(yi)|

− |(t+ 1)l − dlG(w)| − [∆l − (t+ 1)l]

≥ (∆− 1)[(∆ + 1)l −∆l] + (∆ + 1)l −∆l

+ (t+ 1)l − tl − (t− 1)[(t+ 1)l − tl]

+ min{(∆ + 1)l − (t+ 1)l, (∆ + 1)l + (t+ 1)l − 2dlG(w)}

= min{a, b},
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where

a = (∆+ 1)l+1 −∆l+1 − (t− 1)
[
(t+ 1)l − tl

]
− tl,

b = (∆+ 1)l+1 −∆l+1 − (t− 1)
[
(t+ 1)l − tl

]
+ 2(t+ 1)l − tl − 2dlG(w).

Let us prove that a > 0 and b > 0. We have

a = (∆+ 1)l+1 −∆l+1 − (t− 1)
[
(t+ 1)l − tl

]
− tl

=

l∑
i=0

(∆ + 1)i∆l−i − (t− 1)

l−1∑
i=0

(t+ 1)itl−1−i − tl

=
[
(∆ + 1)l − tl

]
+

l−1∑
i=0

[
(∆ + 1)i∆l−i − (t+ 1)i(tl−i − tl−1−i)

]
> 0.

Furthermore,

b = (∆+ 1)l+1 −∆l+1 − (t− 1)
[
(t+ 1)l − tl

]
+ 2(t+ 1)l − tl − 2dlG(w)

=

l∑
i=0

(∆ + 1)i∆l−i − (t− 2)

l−1∑
i=0

(t+ 1)itl−1−i + (t+ 1)l − 2dlG(w)

=
[
(∆ + 1)l +∆l − 2dlG(w)

]
+
[
(t+ 1)l − tl + 2tl−1

]
+

l−1∑
i=1

[
(∆ + 1)i∆l−i − (t+ 1)i(tl−i − 2tl−1−i)

]
> 0.

Note that the transformation of G in Lemma 4 preserves the number

of edges in G, whereas the transformation in Lemma 3 increases it.

We can now show that ∆ must be equal to n− 1, i.e., that each vertex

of degree ∆ must be adjacent to all other vertices.

Corollary 1. Let G be an n-vertex connected graph which maximizes the

generalized complementary second Zagreb index. Then the maximum de-

gree of G is n− 1.

Proof. Let v be a vertex of maximum degree in G, and suppose that

dG(v) < n− 1. Then, there exists a vertex w in G such that vw /∈ E(G).

Since G is connected, there must be a vertex u in G such that uw ∈ E(G).

If dG(u) = 1, then by Lemma 3 we obtain cMl(G) < cMl(G−uw+vw+uv),
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contradicting the maximality of G. If dG(u) ≥ 2, then by Lemma 4 we get

cMl(G) < cMl(G− uw+ vw), again leading to a contradiction. Thus, the

assumption is false.

The above results indicate that if a graph G maximizes the generalized

complementary second Zagreb index, then diam(G) = 2, the vertices with

the maximum degree ∆ induce a clique in G, and the vertices of the mini-

mum degree induce an empty subgraph. It remains to show that there are

no vertices of degrees different from ∆ and δ.

Theorem 1. Let G be a connected n-vertex graph which maximizes the

generalized complementary second Zagreb index. Then G is a complete

split graph.

Proof. For an arbitrary graph H we have

cMl(H) =
∑

uv∈E(H)
d(u)≥d(v)

(dl(u)− dl(v)) =
∑

uv∈E(H)
d(u)>d(v)

(dl(u)− dl(v))

=
∑

uv∈E(H)
d(u)>d(v)

(d(u)− d(v))

l−1∑
i=0

di(u)dl−1−i(v).

Let 1 ≤ m1 ≤ m be the number of edges uivi in H for which d(ui) > d(vi),

i = 1, . . . ,m1. We define vectors x⃗ := [d(u1)−d(v1), . . . , d(um1
)−d(vm1

)]τ

and y⃗ :=

[
l−1∑
i=0

di(u1)d
l−1−i(v1), . . . ,

l−1∑
i=0

di(um1)d
l−1−i(vm1)

]τ
. The inner

product of these vectors is equal to cMl(H). By applying the Cauchy-

Schwarz inequality to them, we obtain

cMl(H) =

m1∑
j=1

[
(d(uj)− d(vj))

l−1∑
i=0

di(uj)d
l−1−i(vj)

]

≤

√√√√m1∑
j=1

(d(uj)− d(vj))2 ·

√√√√√m1∑
j=1

(
l−1∑
i=0

di(uj)dl−1−i(vj)

)2

. (3)

Equality in (3) holds if and only if x⃗ and y⃗ are linearly dependent, which

in our case means there exists a scalar λ ∈ Q with λ > 1 such that y⃗ = λx⃗,
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i.e. the following equalities hold:

l−1∑
i=0

di(u1)d
l−1−i(v1) = λ(d(u1)− d(v1)),

l−1∑
i=0

di(u2)d
l−1−i(v2) = λ(d(u2)− d(v2)),

...

l−1∑
i=0

di(um1
)dl−1−i(vm1

) = λ(d(um1
)− d(vm1

)).

(4)

Denote by G the graph for which equality in (3) holds. Let v be a vertex of

maximum degree ∆ in G and let w1, . . . , wp be its neighbors, where each

wk satisfies d(wk) < ∆, for k = 1, . . . , p. Then 1 ≤ p ≤ ∆. We consider

equalities (4) for edges vwk and obtain

l−1∑
i=0

∆idl−1−i(w1) = λ(∆− d(w1))

l−1∑
i=0

∆idl−1−i(w2) = λ(∆− d(w2))

...

l−1∑
i=0

∆idl−1−i(wp) = λ(∆− d(wp)),

from which it follows

λd(wk) +

l−1∑
i=0

∆idl−1−i(wk) = λ∆−∆l−1, k = 1, . . . , p.
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Since λ and ∆ are fixed positive integers, the above expression yields

λd(wk1
) +

l−1∑
i=0

∆idl−1−i(wk1
) = λd(wk2

) +

l−1∑
i=0

∆idl−1−i(wk2
), (5)

for all k1, k2 = 1, . . . , p, k1 ̸= k2. Note that (5) holds if and only if

d(wk1
) = d(wk2

). We conclude that vertices wk have the same degree.

From Corollary 1, we know that ∆ = n − 1. Therefore, all neighbors

of v, except those of degree ∆, share the same degree. Consequently,

we have d(wk) = δ for k = 1, . . . , p. Since v was chosen arbitrarily, by

applying Lemma 2, we conclude that G is a complete split graph, where

the independent set (the subset of vertices of G such that no two of its

vertices are adjacent to each other), has cardinality p. For such G we

calculate the generalized complementary second Zagreb index and get

cMl(G) =

√√√√m1∑
j=1

(∆− δ)2 ·

√√√√√m1∑
j=1

(
l−1∑
i=0

∆iδl−1−i

)2

= m1(∆
l − δl)

=
∑

uv∈E(G)

[
(n− 1)l − δl

]
. (6)

Hence, we have proved that maximizing graphs for a generalized com-

plementary second Zagreb index must be complete split graphs CSk,n−k.

By taking l = 2, our result confirms the main (structural) part of Conjec-

ture 1. The remaining part, concerning the optimal order k of the clique

for a given n, will follow from more general results in our next section.

The appearance of split graphs as the maximizers of an irregularity

measure is not surprising. They have been already confirmed as the maxi-

mizers of the Albertson irregularity [1] and of a related measure called the

σ irregularity [2].
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4 Optimizing the clique order

In this section we consider the optimal k, i.e., the optimal order of the

clique Kk in complete split graph(s) maximizing cMl for given values of

l and n. We start by showing that in all cases k cannot be greater than

⌊n/2⌋.

Lemma 5. A complete split graph CSk,n−k cannot maximize cMl(G) over

all connected graphs on n vertices for k > ⌊n/2⌋.

Proof. Let CSk,n−k be a maximizing graph for cMl(G) and let k > ⌊n/2⌋.
Take the graph G′ obtained by switching the roles of k and n − k in

CSk,n−k = Kk +Kn−k, i.e., G
′ = Kn−k +Kk, and compute the difference

cMl(G
′)− cMl(G).

cMl(G
′)− cMl(G) = k(n− k)

[
kl − (n− k)l

]
> 0,

a contradiction.

This settles the remaining part of Conjecture 1.

For l = 1, i.e., for Albertson irregularity, the exact value of the optimal

k is known. According to Theorem 2.2 of [1], the optimal k is either ⌊n/3⌋,
or ⌈n/3⌉, with the latter case occurring when n divided by 3 gives the

remainder 2. Therefore, the next step is to determine the exact value(s)

of the optimal k for given n and l ≥ 2. We begin by considering the case

l = 2.

The following theorem provides a complete characterization of the

graphs that maximize the complementary second Zagreb index. In partic-

ular, it determines the optimal number of universal vertices in a graph G,

as described in Theorem 1.

Theorem 2. Let n ≥ 5 and let G be a connected graph on n vertices

maximizing the complementary second Zagreb index among all such graphs.

(i) If 17n2− 28n+4 is not a complete square, then G is the complete split

graph CSk∗,n−k∗ , where k∗ is the number of universal vertices given by the

formula

k∗ =

⌊
1

8

[√
17n2 − 28n+ 4− (n− 6)

]⌋
, (7)
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and G is the only such graph;

(ii) If 17n2−28n+4 = s2 for some nonnegative integer s and if s and n−6

give the same remainder when divided by 8, then G is either CSk∗,n−k∗

or CSk∗+1,n−k∗−1. If s is not congruent to n − 6 modulo 8, then G is

CSk∗,n−k∗ .

Proof. Let n ≥ 5 and let G be a complete split graph with k universal

vertices. Then ∆(G) = n − 1, δ(G) = k and E(G) = k(n − k). Inserting

this into expression (6) of Theorem 1 and taking l = 2 we get

cM2(G) = k(n− k)[(n− 1)2 − k2]. (8)

Now, our goal is to find k∗ that maximizes (8), where 1 ≤ k∗ ≤ n−2. Let us

define a function f : [1, n− 2] → R, where f(k) = k(n− k)[(n− 1)2 − k2].

The function f is a polynomial of degree 4, with four simple real zeros

1 − n, 0, n − 1, and n. Its derivative has three simple real zeros, which

interlace with those of f . As a result, f has exactly one local maximum

strictly between 0 and n−1. From Lemma 5, we know that this maximum

cannot exceed ⌊n/2⌋. Therefore, we seek the largest k ∈ [1, ⌊n/2⌋ − 1] for

which f(k) ≤ f(k + 1). The latter inequality is equivalent to

k(n− k)[(n− 1)2 − k2] ≤ (k + 1)(n− k − 1)[(n− 1)2 − (k + 1)2],

which is, after simplification, equivalent to

4k2 + (n+ 2)k − n(n− 2) ≤ 0. (9)

By solving the quadratic inequality (9) on the interval [1, ⌊n/2⌋ − 1], we

obtain

1 ≤ k ≤ 1

8

[√
17n2 − 28n+ 4− (n+ 2)

]
.

If the expression under the square root is not a complete square, then the

term in square brackets is not an integer, and hence (8) attains its unique

maximum integer value for

k∗ =

⌊
1

8

[√
17n2 − 28n+ 4− (n+ 2)

]⌋
+ 1
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=

⌊
1

8

[√
17n2 − 28n+ 4− (n− 6)

]⌋
.

If, on the other hand, 17n2 − 28n+4 = s2 for some nonnegative integer s,

then the expression in square brackets becomes an integer. If, in addition,

both s and n − 6 have the same remainder when divided by 8, then the

term in the square brackets is divisible by 8, and the result is an integer

k∗ such that f(k∗) = f(k∗ + 1). Hence, both k∗ and k∗ + 1 will yield

maximizing graphs. Since f is a polynomial of degree 4, it is clear that its

restriction on positive integers cannot achieve its local maximum at more

than 2 consecutive integer values. Hence, G must be either CSk∗,n−k∗ or

CSk∗+1,n−k∗−1.

The problem of characterizing the values of n for which the maximum

occurs at two consecutive integer values of k remains unresolved. We will

discuss this issue further in the next section.

For large values of n, the ratio k∗/n becomes arbitrarily close to
√
17−1
8

≈ 0.3903882032n, confirming thus the approximate linear relation conjec-

tured by the authors of [4].

We observe that the optimal k for l = 2 is larger than the one for l = 1.

It is natural to wonder if this trend continues for l > 2. In the general

case, for l > 2, explicit formulas like the ones derived for l = 2 are unlikely

to exist. Instead, we can attempt to estimate the position of the optimal

k for large values of l and n by considering a continuous relaxation of the

problem.

So, let f(x) = x(n − x)[(n − 1)l − xl] be the continuous relaxation of

f(k) = cMl(Kk + Kn−k). Clearly, f is a polynomial of degree l with a

positive leading coefficient. Depending on the parity of l, it has either

three (for l odd) or four (for l even) simple real zeros. Its derivative, f ′(x),

is given by

f ′(x) = (l + 2)xl+1 − n(l + 1)xl − 2(n− 1)lx+ n(n− 1)l. (10)

At this point, we can no longer rely on interlacing to demonstrate that the

derivative has exactly one simple real zero in the interval (1, n − 2). In
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order to establish this fact, we must prove several auxiliary results.

Lemma 6. Function f ′(x) has one simple real zero in (1, n− 2).

Proof. Equation f ′(x) = 0 is equivalent to

(l + 2)xl+1 + n(n− 1)l = n(l + 1)xl + 2(n− 1)lx.

Let us denote

g(x) = (l + 2)xl+1 + n(n− 1)l, h(x) = n(l + 1)xl + 2(n− 1)lx,

and consider the equation g(x) = h(x). It is a matter of somewhat tedious,

but otherwise straightforward computation, to verify the following claims:

(i) g(1) > h(1), for all l ≥ 1 and n ≥ 4;

(ii) g(n/2) < h(n/2), for all l ≥ 1 and n ≥ 4;

(iii) g′(x) < h′(x) for all x ∈ (1, n/2).

Hence, the curve y = h(x) is below the curve y = g(x) at the left endpoint

of the interval [1, n/2], ends above the curve y = g(x) at the right endpoint,

and grows faster than y = g(x) throughout the entire interval. From the

first two claims it follows that f ′(x) has opposite signs at the endpoints of

the interval [1, n/2], while the third claim ensures that the derivative does

not change sign within the interval. Therefore, it must have exactly one

simple zero within the considered interval.

Note that for large values of l, the first two terms of the function (10)

become negligibly small compared to the remaining two terms. As a result,

the entire function f ′ can be viewed as a small perturbation of the simpler

function f ′
1(x) = −2(n − 1)lx + n(n − 1)l. Now the solution of f ′(x) = 0

must be close to the only solution of f ′
1(x) = 0, i.e., to x = n

2 .

We can summarize our analysis in the following corollary.

Corollary 2. For large values of n and l, the optimal order of the clique

in the complete split graphs that maximize cMl(G) approaches n/2.
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5 Concluding remarks

In this paper, we introduced and analyzed a generalized complementary

second Zagreb index, a novel index that encompasses a class of indices

suitable for use as irregularity measures. Our generalization was inspired

by a recent paper by Furtula and Oz, where they investigated a specific case

and put forward an interesting conjecture about the structure of graphs

that maximize it. We have confirmed the validity of their conjecture and

shown that it also applies to the generalized complementary second Zagreb

index.

It would be interesting to explore whether our results hold when the

nonnegative integers in the definition of cMl(G) are replaced by more

general exponents. While it would be reasonable to expect the results to

extend to positive non-integer values of l, negative values of l or those

between 0 and 1 may result in different behavior.

Another intriguing direction would be to examine whether the pro-

posed generalization provides new insights compared to the existing ones,

essentially conducting an analysis similar to that in the paper by Furtula

and Oz.

Finally, several mathematically interesting questions remain open. For

instance, when l = 2, we are unsure whether there are finitely or infinitely

many values of n for which two consecutive integer values of optimal k

exist. This situation can only occur when the expression

1

8

[√
17n2 − 28n+ 4− (n− 6)

]
of Theorem 1 is an integer, which requires

√
17n2 − 28n+ 4−(n−6) to be

divisible by 8. It is a straightforward exercise in Diophantine equations to

show that there are infinitely many values of n for which
√
17n2 − 28n+ 4

is a nonnegative integer, but not all of them are congruent to n−6 modulo

8. Such values of n seem to be quite rare; apart from the trivial case of

n = 2, which gives k = 0, there are only 8 such values smaller than 108,

and only 48 smaller than 109. The first few interesting cases are n = 12,

yielding k = 4 and k = 5 as optimal clique orders, n = 117 with k = 45 and
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k = 46, and n = 450, leading to optimal values of k = 175 and k = 176.

We are inclined to believe that there are infinitely many such values, and

we leave the claim as an open problem for interested readers.

To conclude this section, we explicitly present several open problems:

Problem 1. Characterize trees having maximum and minimum gener-

alized complementary second Zagreb index. Do the extreme trees differ

depending on the parameter l?

Problem 2. Characterize unicyclic graphs having maximum and mini-

mum generalized complementary second Zagreb index.

Problem 3. Derive bounds on the generalized complementary second

Zagreb index of a graph as functions of its order and diameter.
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