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Abstract

For a graph G, the first Zagreb index is defined as the sum of
the squares of the vertex degrees, while the second Zagreb index is
the sum of the products of the degrees of adjacent vertices. The
aim of this paper is to completely characterize n-vertex trees with
given k ≥ 1 vertices that have a fixed maximum degree ∆ ≥ 3 with
respect to the maximal and minimal Zagreb indices. Furthermore,
our results provide detailed insights into the structure of extremal
trees and are equally applicable to the class of chemical trees.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). The

degree dv(G) of a vertex v in a graph G is the number of vertices adjacent

to v. The set of vertices of G that are adjacent to a vertex v is called

neighborhood of v and is represented as Nv(G). A vertex of degree 1 is

called a pendant vertex. If a vertex has degree at least 3, it is called a

branching vertex. The distance dG(u, v) between two vertices u and v in

∗Corresponding author.

https://doi.org/10.46793/match.95-1.03825


234

G is defined as the number of edges in the shortest path connecting u and

v. The total number of vertices of degree i is denoted by ni(G). The

total number of edges in G whose one end has degree i and other end has

degree j is denoted by mi,j(G), where i, j ∈ {1, 2, . . . ,∆}. When there is

no ambiguity, we write dv(G), Nv(G), dG(u, v), ni(G) and mi,j(G) as dv,

Nv, d(u, v), ni and mi,j , respectively.

A segment of a tree T is a path such that all the internal vertices of the

path have a degree 2 and the terminal vertices are pendants or branching

vertices. A segment with a pendant vertex at one end and a branching

vertex at the other end is called a pendant path, while a segment with

branching vertices at both ends is called an internal path. An n-vertex

star Sn is a tree with one vertex of degree n−1 and all other n−1 vertices

have degree 1. A double star graph DSi,j of order i+ j = n is a tree with

exactly two non-pendant vertices of degree i and j, connected by an edge.

A broom tree Bn,∆ on n vertices with maximum degree ∆ is obtained from

a star graph S∆+1 by extending one of its pendant edges into a path of

length n−∆. A (r, i, j)-dumbbell is a tree obtained by connecting Si+1 and

Sj+1 by a path of length r ≥ 1, such that the number of pendant vertices

adjacent to both Si+1 and Sj+1 differ by at most 1. A sequence of non-

increasing positive integers π = (d1, d2, . . . , dn) is called a vertex degree

sequence, if there exists a graph G with vertex set V (G) = {v1, v2, . . . , vn}
such that dvi = di for all i ∈ {1, 2, . . . , n}. For two disjoint sets E1 and

E2 of E(G), the graph G − E1 + E2 is obtained from G by removing the

edges of E1 from G and adding the edges of E2 in G. When an edge is

removed from the graph, its endpoints are not deleted, and when an edge

is added, it makes two non-adjacent vertices adjacent.

In chemical graph theory, topological indices are widely used to predict

and model various properties of chemical compounds. Among the pioneer-

ing are the first and second Zagreb indices, represented as M1 and M2,

respectively. These indices resulted from studies on the total π-electron

energy of molecular structures [12,13], and are respectively defined as:
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M1(G) =
∑

v∈V (G)

d2v(G) =
∑

vu∈E(G)

(dv(G) + du(G)),

M2(G) =
∑

vu∈E(G)

dv(G)du(G).

The Zagreb indices have attracted significant interest in mathematical

chemistry, with their properties and applications extensively studied in

surveys [11,22] and recent works [5, 8, 10,15].

Finding trees that maximize or minimize graph indices within specific

classes has been a major focus in chemical graph theory (see, for Zagreb

indices [2,4,6,7,9,16,18,26,27]). The study of extremal trees with a given

maximum degree has been extensively explored in the literature [1,14,21,

24]. Borovićanin et al. [4] characterized the maximal and minimal Zagreb

indices of trees with a given number of vertices of maximum degree. A

similar problem to [4] concerning the Wiener index has been solved in [17].

Thus, it is natural to consider the analogous problem of characterizing

maximal and minimal n-vertex trees with k ≥ 1 vertices of fixed maximum

degree ∆ ≥ 3.

Let T be an n-vertex tree with specified k ≥ 1 vertices that have the

fixed maximum degree ∆ ≥ 3. Then

∆−1∑
i=1

ni + k = n,

∆−1∑
i=1

ini +∆k = 2(n− 1),


(1)

and

∆∑
j=1
j ̸=i

mj,i + 2mi,i = ini, ∀ i ∈ {1, 2, . . . ,∆}. (2)

From (1), we obtain
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n1 = 2 + n3 + 2n4 + · · ·+ (∆− 2)k.

This leads to

n1 ≥ 2 + k(∆− 2).

From (1), it follows that n ≥ n1 + k. Taking this into consideration with

above inequality, we obtain

n ≥ 2 + k(∆− 1).

Thus, the order n of T with the specified k ≥ 1 vertices of fixed maximum

degree ∆ ≥ 3 must satisfy n ≥ 2 + k(∆− 1).

We define a class Tn,∆,k of n-vertex trees, where n ≥ 2 + k(∆ − 1),

containing exactly k ≥ 1 vertices, each with a fixed maximum degree

∆ ≥ 3. In this paper, we consider the following problem.

Problem 1. Characterize all n-vertex trees in Tn,∆,k with maximal and

minimal Zagreb indices.

The characterization of trees with maximal and minimal Zagreb indices

based on a given number of vertices having maximum degree [4] is distinct

from Problem 1, as here we fix the values for k and ∆.

For fixed ∆ and k, we illustrate examples of trees in Tn,∆,k for specific

values of n in Figure 1. For instance, when ∆ = 4 and k = 2, we have

T8,4,2 = {T1}, T9,4,2 = {T2, T3}, T10,4,2 = {T4, . . . , T10}. Similarly, for

∆ = 5 and k = 3, the sets include T14,5,3 = {T11}, T15,5,3 = {T12, . . . T14},
T16,5,3 = {T15, . . . , T29}.

To find a solution to Problem 1, we first establish several key results.

By using (1), the following result is true.

Lemma 1. Let T ∈ Tn,∆,k, where ∆ = 3. Then the vertex degree sequence

of T is π0 = (3, . . . , 3︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
n−2−2k

, 1, . . . , 1︸ ︷︷ ︸
2+k

).
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T1 T2 T3

T4
T5 T6 T7 T8 T9 T10

∆ = 4 k = 2,

T11 T12 T13 T14

T15 T16 T17 T18 T19

T20 T21 T22 T23 T24

T25 T26
T27 T28 T29

∆ = 5 , k = 3

n = 10

n = 14 n = 15

n = 16

n = 8 n = 9

Figure 1. Examples of trees in Tn,∆,k for selected values of n with
fixed ∆ and k, where ∆ ∈ {4, 5} and k ∈ {2, 3}.

Lemma 2. For T ∈ Tn,∆,k with ∆ ≥ 4, we have the following:

(a) If |{v ∈ V (T ) | 2 ≤ dv(T ) ≤ ∆−2}| = 0, then n−k ≡ 2 (mod (∆− 2)).

Moreover, T has the degree sequence

π1 = (∆, . . . ,∆︸ ︷︷ ︸
k

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
n−2−k(∆−1)

(∆−2)

, 1, . . . , 1︸ ︷︷ ︸
n(∆−3)+2+k

(∆−2)

).

(b) If |{v ∈ V (T ) | 2 ≤ dv(T ) = i ≤ ∆ − 2}| = 1, then n − k − i ≡
1 (mod (∆− 2)). Moreover, T has the degree sequence

π2 = (∆, . . . ,∆︸ ︷︷ ︸
k

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
n−k(∆−1)−i−1

(∆−2)

, i, 1, . . . . . . . . . , 1︸ ︷︷ ︸
n(∆−3)+k−∆+i+3

(∆−2)

).

Proof. (a) In this case, (1) implies

n = n1 + n∆−1 + k,

2n− 2 = n1 + (∆− 1)n∆−1 +∆k.

}
(3)
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From (3), we obtain

n1 = (∆− 3)n∆−1 + (∆− 2)k + 2. (4)

Now substituting (4) in the first equation of (3), we obtain

n− k = (∆− 2)(n∆−1 + k) + 2.

This implies n− k ≡ 2 (mod (∆− 2)). From the above equation, we have

n∆−1 = n−2−k(∆−1)
∆−2 . This with (4) implies that n1 = n(∆−3)+2+k

∆−2 . Thus

we have π1.

(b) In this case, (1) implies

n = n1 + 1 + n∆−1 + k,

2n− 2 = n1 + i+ (∆− 1)n∆−1 +∆k.

}
(5)

From (5), we obtain

n1 = (∆− 3)n∆−1 + (∆− 2)k + i. (6)

Now substituting (6) in the first equation of (5), we obtain

n− k = (∆− 2)(n∆−1 + k) + i+ 1.

This implies n − k − i ≡ 1 (mod (∆ − 2)). From the above equation, we

have n∆−1 = n−k(∆−1)−i−1
∆−2 . This with (6) gives n1 = n(∆−3)+k−∆+i+3

∆−2 .

Thus, we have our desired degree sequence π2.

In the following lemma, we introduce a graph transformation that de-

creases the second Zagreb index of the modified graph compared to the

original graph.

Lemma 3. Let G be a graph containing an internal path xy (dx, dy ≥ 3)

of length l1 = 1 and another internal path of length l2 ≥ 3. Let G1 be

derived from G by replacing l1 = 1 with l1 = 2 and l2 ≥ 3 with l2 ≥ 2.

Then M2(G1) < M2(G).
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Proof. Note that dw(G1) = dw(G) for all w ∈ V (G). We obtain

M2(G1)−M2(G) = 2dx + 2dy − 4− dxdy.

Let us consider a function f(z1, z2) = 2z1 + 2z2 − z1z2 with z1, z2 ≥ 3.

One can easily see that f(z1, z2) is strictly decreasing in both z1 and z2.

Then from the above, we obtain

M2(G1)−M2(G) ≤ f(3, 3)− 4 = −1 < 0.

Hence M2(G1) < M2(G).

2 The first Zagreb index

In this section, we aim to find trees in Tn,∆,k with maximal and minimal

first Zagreb index. For ∆ = 3, the extremal first Zagreb index for trees in

Tn,∆,k directly follows from Lemma 1. Henceforth, in this section, we will

consider the class Tn,∆,k for ∆ ≥ 4.

Theorem 1. Let T ∈ Tn,∆,k be a tree with ∆ ≥ 4. Then

M1(T ) ≥ 4n+ k(2− 3∆ +∆2)− 6.

The equality holds if and only if T has the degree sequence

(∆, . . . ,∆︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
n−2+k(1−∆)

, 1, . . . , 1︸ ︷︷ ︸
2+k(∆−2)

).

Proof. Let T ′ ∈ Tn,∆,k be a tree having a minimal first Zagreb index. We

show that ni(T
′) = 0 for each i ∈ [3,∆− 1]. On the contrary, assume that

there exists a vertex u ∈ V (T ′) such that 3 ≤ du ≤ ∆ − 1. Without loss

of generality, assume that u is chosen in such a way that there exists a

pendant path from v to u, where v is a pendant vertex. Let u1, u2 ∈ Nu

and u2 lies on the pendant u, v-path. We construct a tree T1 ∈ Tn,∆,k from

T ′ as follows:

T1 = T ′ − uu1 + vu1.

Then du(T1) = du(T
′) − 1 = du − 1, dv(T1) = 2 and dw(T1) = dw(T

′) for
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all w ∈ V (T ′) \ {u, v}. Thus

M1(T1)−M1(T
′) = (du − 1)2 + 22 − d2u − 1 = 2(2− du).

Since du ≥ 3, we obtain M1(T1) < M1(T
′), which contradicts the choice

of T ′. Therefore, ni(T
′) = 0 for each i ∈ [3,∆ − 1]. From (1), we obtain

that T ′ has the degree sequence (∆, . . . ,∆︸ ︷︷ ︸
k

, 2, . . . , 2,︸ ︷︷ ︸
n−2+k(1−∆)

1, . . . , 1︸ ︷︷ ︸
2+k(∆−2)

). Hence

M1(T
′) = k∆2 + 22

(
n− 2 + k(1−∆)

)
+ 2 + k(∆− 2),

= 4n+ k(2− 3∆ +∆2)− 6.

This completes the proof.

In the next theorem, we determine upper bounds for the trees in Tn,∆,k

with respect to the first Zagreb index when ∆ ≥ 4 and characterize the

maximal trees.

Theorem 2. Let T ∈ Tn,∆,k be a tree with ∆ ≥ 4. Then

M1(T ) ≤


n(∆ + 1) + k(∆− 1)− 2∆ if n− k ≡ 2(mod (∆− 2)),

(∆ + 1)(n− 1) + k(∆− 1) + i(i−∆)

if n− k − i ≡ 1(mod (∆− 2)),

where i ∈ [2,∆ − 2]. Inequality becomes an equality if and only if T

has the degree sequence π1 for n − k ≡ 2(mod (∆ − 2)), and inequality

becomes an equality if and only if T has degree sequence π2 for n− k− i ≡
1(mod (∆− 2)), where π1 and π2 are defined in Lemma 2.

Proof. Let T ′ ∈ Tn,∆,k be a tree with the maximal first Zagreb index. We

prove that |{v ∈ V (T ′) | 2 ≤ dv(T
′) ≤ ∆−2}| ≤ 1. Assume to the contrary,

there exist two vertices u, v ∈ V (T ′) such that 2 ≤ du ≤ dv ≤ (∆ − 2).

Let u1 ∈ Nu be such that u1 does not lie on the u, v-path. We construct

a tree T1 ∈ Tn,∆,k from T ′ as follows:

T1 = T ′ − uu1 + vu1.
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Then du(T1) = du(T
′) − 1 = du − 1, dv(T1) = dv(T

′) + 1 = dv + 1 and

dw(T1) = dw(T
′) for all w ∈ V (T ′) \ {u, v}. We obtain

M1(T1)−M1(T
′) = (du − 1)2 − d2u + (dv + 1)2 − d2v = 2 + 2(dv − du).

Since dv ≥ du, we obtain M1(T1) > M1(T
′), which is a contradiction to

the choice of T ′. Thus |{v ∈ V (T ′) | 2 ≤ dv(T
′) ≤ ∆ − 2}| ≤ 1. We now

consider the following cases:

Case1. When |{v ∈ V (T ′) | 2 ≤ dv(T
′) ≤ ∆− 2}| = 0, that is ni(T

′) = 0

for all i ∈ [2,∆−2]. From Lemma 2 (a), we have n−k ≡ 2 (mod (∆−2)),

and T ′ has the degree sequence

π1 = (∆, . . . ,∆︸ ︷︷ ︸
k

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
n−2−k(∆−1)

∆−2

, 1, . . . , 1︸ ︷︷ ︸
n(∆−3)+2+k

∆−2

).

Therefore

M1(T
′) = n(∆ + 1) + k(∆− 1)− 2∆.

Case2. When |{v ∈ V (T ′) | 2 ≤ dv(T
′) = i ≤ ∆−2}| = 1. From Lemma 2

(b), we obtain n−k−i ≡ 1 (mod (∆−2)), such that ni(T
′) = 1. Therefore,

T ′ has the degree sequence

π2 = (∆, . . . ,∆︸ ︷︷ ︸
k

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
n−k(∆−1)−i−1

∆−2

, i, 1, . . . . . . . . . , 1︸ ︷︷ ︸
n(∆−3)+k−∆+i+3

∆−2

),

Hence

M1(T
′) = (∆ + 1)(n− 1) + k(∆− 1) + i(i−∆).

This completes the proof.

3 The second Zagreb index

In this section, we find trees in Tn,∆,k with the maximal and minimal

second Zagreb index.
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3.1 Maximal second Zagreb index

In this subsection, we first address Problem 1 regarding the maximal

second Zagreb index for ∆ = 3. By Lemma 1, a tree T ∈ Tn,∆,k with

∆ = 3 has the degree sequence π0 = (3, . . . , 3︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
n−2−2k

, 1, . . . , 1︸ ︷︷ ︸
2+k

).

We define a subclass T 1
n,∆,k ⊆ Tn,∆,k of trees that satisfy the following

conditions:

(i) Each tree in T 1
n,∆,k has a degree sequence π0.

(ii) If n < 3k+4, then m1,3 = 3k−n+4−n, m2,3 = n− 2− 2k, m1,2 =

n− 2− 2k and m3,3 = k − 1.

(iii) If n ≥ 3k + 4, then m1,2 = k + 2, m2,3 = k + 2, m2,2 = n − 3k −
4 and m3,3 = k − 1.

We now prove the main result for the maximal second Zagreb index for

trees in Tn,∆,k when ∆ = 3.

Theorem 3. Let T ∈ Tn,∆,k be a tree with ∆ = 3. Then

M2(T ) ≤

5n+ 2k − 13 if n < 3k + 4,

4n+ 5k − 9 if n ≥ 3k + 4.

The equality holds if and only if T is in T 1
n,∆,k.

Proof. Let T ′ be a tree with maximal second Zagreb index in Tn,∆,k such

that ∆ = 3. From Lemma 1, the degree sequence of T ′ is

π0 = (3, . . . , 3︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
n−2−2k

, 1, . . . , 1︸ ︷︷ ︸
2+k

).

We now consider the following claims.

Claim 1. T ′ holds m3,3 = k − 1.

Proof of Claim 1. Suppose to the contrary that T ′ contains v1v2 . . . vl

(l ≥ 3) such that dv1 = 3 = dvl . Let xy ∈ E(T ′) such that dx = 1 and
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dy ≥ 2. Now, construct a tree T1 from T ′ as follows:

T1 = T ′ − {v1v2, vl−1vl, xy}+ {v1vl, xv2, vl−1y}.

Then note that dv(T1) = dv(T
′) for all v ∈ V (T ′). We obtain

M2(T1)−M2(T
′) = 9− 6 + 2− 6 + dy = −1 + dy > 0,

as dy ≥ 2. Consequently, M2(T1) > M2(T
′). This completes the proof of

Claim 1.

Now by using degree sequence π0 and Claim 1 in (2), we obtain

m1,2 +m1,3 = 2 + k,

m1,2 + 2m2,2 +m2,3 = 2(n− 2k − 2),

m1,3 +m2,3 + 2(k − 1) = 3k.

 (7)

Claim 2. m2,2 and m1,3 cannot be simultaneously positive.

Proof of Claim 2. Suppose to the contrary that T ′ contains xy ∈ E(T ′)

and v1v2 . . . vl (l ≥ 4) simultaneously such that dy = 3 = dvl and dv1 =

1 = dx. We construct a tree T2 = T ′ − {v1v2, v2v3, xy} + {xv2, yv2, v1v3}
from T ′ such that dv(T2) = dv(T

′) for all v ∈ V (T ′). We obtain

M2(T2)−M2(T
′) = 6 + 2− 3− 4 = 1 > 0.

Hence M2(T2) > M2(T
′). This proves the Claim 2.

We now consider the following two cases:

Case 1. When n < 3k + 4. In this case, we claim m2,2 = 0. Suppose on

the contrary that m2,2 > 0. Since n2 = n−2−2k < 3k+4−2−2k = k+2,

m3,3 = k− 1 and T ′ contains n1 = k+2 pendant paths. These along with

m2,2 > 0 ensure that m1,3 > 0. By Claim 2, we conclude that m2,2 = 0.

This with (7) implies that m1,3 = 3k − n + 4, m1,2 = n − 2 − 2k and
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m2,3 = n− 2− 2k. Hence

M2(T
′) = 32(k − 1) + 3(3k − n+ 4) + 2(n− 2− 2k) + 6(n− 2− 2k)

= 5n+ 2k − 13.

Case 2. When n ≥ 3k + 4. In this case, we claim m1,3 = 0. On the

contrary, assume that m1,3 > 0. Note that n2 = n− 2− 2k ≥ k + 2. This

with m3,3 = k − 1, m1,3 > 0 and T ′ contains n1 = k + 2 pendant paths,

verifies that m2,2 > 0. Then by Claim 2, we have m1,3 = 0. Using this

in (7), we obtain m1,2 = 2+ k, m2,3 = k+ 2 and m2,2 = n− 3k− 4. Thus

M2(T
′) = 2(2 + k) + 6(2 + k) + 4(n− 3k − 4) + 32(k − 1) = 4n+ 5k − 9.

This completes the proof.

From now on, we consider the class Tn,∆,k for ∆ ≥ 4 and introduce the

definitions of BFS-ordering and majorization to characterize the structural

properties of trees with maximal second Zagreb index. The BFS-ordering

and majorization technique is a valuable method for localizing graph topo-

logical indices and has been extensively studied in the literature (for ex-

ample see [19,23]).

For a tree T with root vertex v0, denote hv by the distance between

vertices v and v0, and define Ai(T ) as: Ai(T ) = {v | hv = i and v ∈ V (T )}.
Thus A0(T ) = {v0}. For details, we refer [19,20,29].

Definition 1. (BFS-ordering, [19]) Let T be a tree with root vertex v0.

A well-ordering ≺ of the vertices is called a breadth-first search ordering

(BFS-ordering) if the following holds for all vertices u, v ∈ V (T ):

(i) u ≺ v implies hu ≤ hv and du ≥ dv.

(ii) If there are two edges uu1 ∈ E(T ) and vv1 ∈ E(T ) such that u ≺ v,

hu = hu1
+ 1 and hv = hv1 + 1, then u1 ≺ v1.

We call tree a BFS tree if the vertices have BFS-ordering. In some

literature, a BFS-tree is also called a greedy tree (see, [20, 28]). We now

define the majorization.
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Definition 2. (Majorization) Given two non-increasing degree sequ-

ences π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n), we say that π′ majors

π, written by π ◁ π′, if the following conditions are met:

(i)
∑n

i=1 di =
∑n

i=1 d
′
i.

(ii)
∑j

i=1 di ≤
∑j

i=1 d
′
i for all j = 1, . . . , n− 1.

We define Γ(π) as the class of connected graphs that have the degree

sequence π. The following result will be important to build our argument.

Lemma 4. [19] Let π and π′ be two different non-increasing tree degree

sequences with π ◁ π′. Let T ∗ and T ∗∗ be the trees with maximal second

Zagreb indices in Γ(π) and Γ(π′), respectively. Then M2(T
∗) < M2(T

∗∗).

We now prove the following lemma.

Lemma 5. Let T ∈ Tn,∆,k be a tree with the maximal second Zagreb index,

where ∆ ≥ 4. Then |{v ∈ V (T ) | 2 ≤ dv(T ) ≤ ∆− 2}| ≤ 1.

Proof. On the contrary, assume that there exist u, v ∈ V (T ) such that

2 ≤ dv ≤ du ≤ ∆− 2. It follows that the degree sequence of T is

π = (∆, . . . ,∆︸ ︷︷ ︸
k≥1

, ∆− 1, . . . ,∆− 1︸ ︷︷ ︸
p≥0

, du, . . . dv, . . .︸ ︷︷ ︸
q≥2

, 1, . . . , 1).

We now construct a tree T ′ ∈ Tn,∆,k from T such that du(T
′) = du(T )+1,

dv(T
′) = dv(T )− 1 and dw(T

′) = dw(T ) for all w ∈ V (T )\{u, v}. Then T ′

has the degree sequence

π′ = (∆, . . . ,∆︸ ︷︷ ︸
k≥1

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
p≥0

, du + 1, . . . , dv − 1, . . .︸ ︷︷ ︸
q≥2

, 1, . . . , 1).

If di and di′ represent the entries of π and π′, respectively, then

n∑
i=1

di =

n∑
i=1

d′i, (8)
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and

k+p+1∑
i=1

d′i >

k+p+1∑
i=1

di.

This gives
j∑

i=1

d′i ≥
j∑

i=1

di, for all j = 1, 2, . . . , n− 1. (9)

From (8), (9) and Definition 2, we conclude that π◁π′ (π′ majorizes π). Let

Γ(π) and Γ(π′) be the subclasses of trees in Tn,∆,k with degree sequences

π and π′, respectively. Let T ∈ Γ(π) and T ′ ∈ Γ(π′) such that both T and

T ′ have the maximal second Zagreb index in Γ(π) and Γ(π′), respectively.

Then, by using Lemma 4, we obtain

M2(T ) < M2(T
′),

which contradicts the choice of T . Hence |{v ∈ V (T ) | 2 ≤ dv(T ) ≤
∆− 2}| ≤ 1. This completes the proof.

The following results are important in establishing our main theorem.

Proposition 4. [29] For a given degree sequence π of some tree, there

exists a unique tree T ∗ with degree sequence π having a BFS-ordering.

Moreover, any two trees with the same degree sequences and having BFS-

ordering are isomorphic.

Lemma 6. [19] Given a tree degree sequence π, the BFS-tree T ∗ has the

maximum second Zagreb index in Γ(π).

Theorem 5. Let T ∈ Tn,∆,k be a tree with the maximal second Zagreb

index, where ∆ ≥ 4. Then
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M2(T ) =



∆(k + 2n− 2)−∆2 − k − n+ 2

if n < k∆2 + (2− 3k)(∆− 1), n− k ≡ 2(mod (∆− 2)),

∆2(k − 1) + 2(n∆− k∆+ k − n)

if n ≥ k∆2 + (2− 3k)(∆− 1), n− k ≡ 2(mod (∆− 2)),

1
(∆−2)

(
n(2∆2 − 5∆ + 2) + ∆2(1−∆+ k − i) + i2(∆− 2)

+k(2− 3∆) +∆(3 + 2i)− 2
)

if n < k∆2 + (2− 3k)(∆− 1), n− k − i ≡ 1(mod (∆− 2)),

1
(∆−2)

(
n(∆2 + 3− 4∆) + k(∆2(6− 4∆ +∆2)− 1− 3∆)

+i(∆− 1 + i∆− 2i) + ∆(3−∆)− 1
)

if n = k∆2 + (2− 3k)(∆− 1), n− k − i ≡ 1(mod (∆− 2)),

1
(∆−2)

(
2n(∆2 − 3∆ + 2) + k(6∆− 4− 4∆2 +∆3)

+2(1− i2) + ∆(2i+ 3∆− 3− i∆−∆2 + i2)
)

if n > k∆2 + (2− 3k)(∆− 1), n− k − i ≡ 1(mod (∆− 2)),

where i ∈ [2,∆− 2].

Proof. By Lemma 5, T has the degree sequence

π∗ = (∆, . . . ,∆︸ ︷︷ ︸
k≥1

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
p≥0

, i︸︷︷︸
q≤1

, 1, . . . , 1︸ ︷︷ ︸
n−k−p−q

),

where i ∈ [2,∆ − 2]. Thus T ∈ Γ(π∗) ⊆ Tn,∆,k. From Lemma 6, the

BFS-tree maximizes the second Zagreb index within Γ(π∗). Denote the

BFS-tree by TBFS in Γ(π∗). By Proposition 4, it follows that TBFS may

or may not be isomorphic to T . Since both T and TBFS are maximal in

Γ(π∗), it holds that M2(T ) = M2(TBFS). Therefore we focus on finding the

M2(TBFS) by following BFS-ordering. From BFS-ordering, it is clear that

m∆,∆ = k − 1. (10)
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By using (10) in (2), we obtain

m1,∆ +
∑

2≤i≤∆−2

mi,∆ +m∆−1,∆ + 2(k − 1) = ∆k,

that is,

m1,∆ +
∑

2≤i≤∆−2

mi,∆ +m∆−1,∆ = k(∆− 2) + 2.

By Lemma 5, the tree TBFS contains at most one vertex of degree 2 ≤ i ≤
∆− 2, thus we can write the above equation as follows:

m1,∆ +mi,∆ +m∆−1,∆ = k(∆− 2) + 2. (11)

By (11), one can see that that the total neighboring vertices of degree ∆,

excluding the vertices having degree ∆, amount to (∆ − 2)k + 2. From

Lemma 5, we have |{v ∈ V (TBFS) | 2 ≤ dv(TBFS) ≤ ∆− 2}| ≤ 1. We now

discuss the proof in two cases:

Case 1. When |{v ∈ V (TBFS) | 2 ≤ dv(TBFS) ≤ ∆− 2}| = 0.

By Lemma 2 (a), we obtain n − k ≡ 2 (mod (∆ − 2)), and the degree

sequence π∗ of TBFS becomes

π1 = (∆, . . . ,∆︸ ︷︷ ︸
k

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
n−2−k(∆−1)

∆−2

, 1, . . . , 1︸ ︷︷ ︸
n(∆−3)+2+k

∆−2

).

By using (10) and above degree sequence π1 in (2), we derive

m1,∆−1 +m1,∆ =
n(∆− 3) + 2 + k

∆− 2
,

m1,∆−1 + 2m∆−1,∆−1 +m∆−1,∆ =
(∆− 1)[n− 2− k(∆− 1)]

∆− 2
,

m1,∆ +m∆−1,∆ + 2(k − 1) = ∆k.


(12)

Since TBFS follows BFS-ordering, so by (11), it is observed that if n∆−1

< k(∆−2)+2 then m∆−1,∆−1 = 0, m1,∆ ̸= 0, and if n∆−1 ≥ k(∆−2)+2,

then m1,∆ = 0. We now consider the following cases:



249

Case 1.1. When n < k∆2 + (2− 3k)(∆− 1).

We obtain n∆−1 < k(∆ − 2) + 2, and thus by (11), we conclude that

m1,∆ > n∆−1 − m∆−1,∆ ≥ 0. Since m1,∆ > 0, thus by BFS-ordering,

one can see that m∆−1,∆−1 = 0. This with (12) implies that m1,∆−1 =

n+k(1−∆)−2, m∆−1,∆ = n+k(1−∆)−2
(∆−2) and m1,∆ = k(∆2−3∆+3)+2∆−n−2

(∆−2) .

Therefore

M2(TBFS) = ∆

(
k(∆2 − 3∆ + 3) + 2∆− n− 2

∆− 2

)
+∆2(k − 1)

+ ∆(∆− 1)

(
n+ k(1−∆)− 2

∆− 2

)
+ (∆− 1)(n+ k(1−∆)− 2).

Case 1.2. When n ≥ k∆2 + (2− 3k)(∆− 1).

We obtain n∆−1 ≥ k(∆ − 2) + 2. By (11), it is evident that in a tree

TBFS ∈ Tn,∆,k, the k vertices of degree ∆ collectively have (∆ − 2)k + 2

neighboring vertices that are not of degree ∆. Since n∆−1 ≥ k(∆− 2)+2,

by BFS-ordering, one can infer that m1,∆ = 0. By using this in (12), we

obtain m1,∆−1 = n(∆−3)+2+k
(∆−2) , m∆−1,∆ = (∆ − 2)k + 2 and m∆−1,∆−1 =

n+2+k(3∆−∆2−3)−2∆
(∆−2) . Thus

M2(TBFS) = (∆− 1)

(
n(∆− 3) + 2 + k

(∆− 2)

)
+∆(∆− 1)

(
k(∆− 2) + 2

)
+∆2(k − 1) + (∆− 1)2

(
n+ 2 + k(3∆−∆2 − 3)− 2∆

(∆− 2)

)
.

Case 2. When |{v ∈ V (TBFS) | 2 ≤ dv(TBFS) ≤ ∆ − 2}| = 1. Then

there exists i ∈ [2, ∆ − 2] such that ni(TBFS) = 1 and nj(TBFS) = 0 for

all j ∈ [2, ∆ − 2] with j ̸= i. From Lemma 2 (b), we obtain n − k − i ≡
1 (mod (∆− 2)) and degree sequence π∗ of TBFS becomes

π2 = (∆, . . . ,∆︸ ︷︷ ︸
k

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
n−k(∆−1)−i−1

(∆−2)

, i, 1, . . . . . . . . . , 1︸ ︷︷ ︸
n(∆−3)+k−∆+i+3

(∆−2)

).

From BFS-ordering, it is evident that m1,i = i−1. This with above degree
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sequence π2 and (10) in (2), we derive

(i− 1) +m1,∆−1 +m1,∆ =
n(∆− 3) + k −∆+ i+ 3

(∆− 2)
,

(i− 1) +mi,∆−1 +mi,∆ = i,

m1,∆−1 +mi,∆−1 + 2m∆−1,∆−1 +m∆−1,∆

=
(∆− 1)[n− k(∆− 1)− i− 1]

(∆− 2)
,

m1,∆ +mi,∆ +m∆−1,∆ + 2(k − 1) = ∆k.


(13)

We now further consider the following cases:

Case 2.1. When n < k∆2 + (1− 3k)(∆− 1) + i.

We obtain n∆−1 + ni(= 1) < k(∆− 2) + 2, and thus by (11), we conclude

that m1,∆ > n∆−1 − m∆−1,∆ − mi,∆ + 1. From (13), we have mi,∆ +

mi,∆−1 = 1, which implies that mi,∆ ≤ 1. It follows that m1,∆ > n∆−1 −
m∆−1,∆−1+1 = n∆−1−m∆−1,∆ ≥ 0, that is, m1,∆ > 0. Since m1,∆ > 0,

by BFS-ordering, it follows that

m∆−1,∆−1 = 0 and mi,∆−1 = 0. (14)

By using (14) in (13), we obtain mi,∆ = 1, m1,∆−1 = n−k(∆−1)−(i+1),

m∆−1,∆ = n−k(∆−1)−(i+1)
∆−2 and m1,∆ = k∆2+3k(1−∆)−n+i+∆−1

∆−2 . Thus

M2(TBFS) = (∆− 1)

(
n− k(∆− 1)− (i+ 1)

)
+∆2(k − 1) + i(i− 1)

+ ∆(∆− 1)

(
n− k(∆− 1)− (i+ 1)

∆− 2

)
+ i∆

+∆

(
k∆2 + 3k(1−∆)− n+ i+∆− 1

∆− 2

)
.

Case 2.2. When n = k∆2 + (1− 3k)(∆− 1) + i.

From Case 2.1, clearly m1,∆ > 0 for n < k∆2 + (1 − 3k)(∆ − 1) + i. In

this case n = k∆2 + (1 − 3k)(∆ − 1) + i, thus by BFS-ordering, one can
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infer that

mi,∆−1 = 0 and m∆−1,∆−1 = 0. (15)

We now claim that m1,∆ = 0 for n = k∆2 + (1− 3k)(∆ − 1) + i. On the

contrary, we assume that m1,∆ > 0. One can observe that m1,∆ > n∆−1−
m∆−1,∆−mi,∆+1. Together with (11), we obtain n∆−1+1 < k(∆−2)+2.

This gives n < k∆2+(1−3k)(∆−1)+i, which is a contradiction. Therefore

m1,∆ = 0. (16)

By using (15) and (16) in (13), we obtain m1,∆−1 = (∆−3)(n−i)+k+1
∆−2 ,

mi,∆ = 1, m∆−1,∆ = k(∆− 2) + 1. Thus

M2(TBFS) = (∆− 1)

(
(∆− 3)(n− i) + k + 1

∆− 2

)
+ i∆+ i(i− 1)

+ ∆2(k − 1) + (∆)(∆− 1)

(
k(∆− 2) + 1

)
.

Case 2.3. When n > k∆2 + (1− 3k)(∆− 1) + i.

This case implies that n∆−1 + ni(= 1) > k(∆ − 2) + 2. By (11), it is

evident that in a tree TBFS ∈ Tn,∆,k, the k vertices of degree ∆ collectively

have (∆ − 2)k + 2 neighboring vertices other than those of degree ∆.

Since n > k∆2 + (1 − 3k)(∆ − 1) + i, by BFS-ordering, it is obvious

that m1,∆ = 0 and mi,∆ = 0. These, together with (13) imply that

mi,∆−1 = 1, m1,∆−1 = n(∆−3)+k+i(3−∆)+1
∆−2 , m∆−1,∆ = (∆ − 2)k + 2. and

m∆−1,∆−1 = n−∆k(∆−3)−3k−i−2∆+3
∆−2 . Thus

M2(TBFS) = (∆− 1)

(
n(∆− 3) + k + i(3−∆) + 1

∆− 2

)
+∆2(k − 1)

+ i(∆− 1) + ∆(∆− 1)

(
(∆− 2)k + 2

)
+ i(i− 1)

+ (∆− 1)2
(
n−∆k(∆− 3)− 3k − i− 2∆ + 3

∆− 2

)
.

This completes the proof.
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3.2 Minimal second Zagreb index

In this subsection, we find the minimal second Zagreb index of trees in

Tn,∆,k. First, we prove the following result when k ≥ 2.

Lemma 7. Let T ∈ Tn,∆,k be a tree with the minimal second Zagreb index,

where k ≥ 2. Then n1 = m1,∆.

Proof. On the contrary, assume that there exists an edge uu1 ∈ E(T ) such

that du = 1 and 2 ≤ du1
≤ ∆ − 1. Let v be a vertex with dv = ∆ and

Nv = {v1, v2, . . . , v∆}. Assume that v minimizes d(u, v) among all vertices

of degree ∆. Also, assume that v∆ lies on the v, u-path. Thus, dv∆ ≥ 2.

We consider the following two cases based on whether there exists a vertex

of degree between 3 to ∆− 1 on u, v∆-path.

Case 1. When there exists a vertex of degree between 3 to ∆−1 on u, v∆-

path: Let z be the vertex on u, v∆-path such that 3 ≤ dz ≤ ∆−1. Without

loss of generality, assume that z minimizes d(u, z) among all vertices on

the u, v∆-path whose degree lies between 3 and ∆ − 1. Let z1 be the

neighbor of z on the u, z-path. Then by the choice of z, we have dz1 = 2.

We construct a tree

T1 = T − {zz1, vv∆}+ {vu, z1v∆}.

Then dz(T1) = dz(T )− 1 = dz − 1, du(T1) = 2 and dw(T1) = dw(T ) for all

w ∈ V (T )\{z, u}.
If z = u1, then z1 = u and du1

≥ 3. Let u′
1 ∈ Nu1

such that u′
1 lies on

u1, v∆-path, where du′
1
≥ 2. We obtain

M2(T1)−M2(T ) = 2∆− du1
+ dv∆(2−∆) + du′

1
(du1

− 1)− du′
1
du1

+
∑

y∈Nu1
\{u,u′

1}

(
dy(du1 − 1)− dydu1

)
.

Since du1
≥ 3, it follows that Nu1

\ {u, u′
1} is nonempty. Also, since

dv∆ , du′
1
≥ 2, it follows that M2(T1)−M2(T ) < 0.
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If z ̸= u1 then du1 = 2 and we obtain

M2(T1)−M2(T ) = 2∆ + 2− 2dz + dv∆(2−∆)

+
∑

y∈Nz\{z1}

(
dy(dz − 1)− dydz

)
.

Since Nz\{z1} is nonempty, dv∆ ≥ 2 and dz ≥ 3, it follows that M2(T1)−
M2(T ) < 0. Thus, in either case, we get a contradiction.

Case 2. When there is no vertex of degree between 3 to ∆− 1 on u, v∆-

path: Since k ≥ 2, there is at least one neighbor of v other than v∆ with

degree greater than 1. In this case du1 = 2. Without loss of generality,

assume that dv1 ≥ 2. We construct a tree T2 ∈ Tn,∆,k from T as follows:

T2 = T − {uu1, vv1}+ {vu, v1u1}.

Then, dw(T2) = dw(T ) for all w ∈ V (T ). We have

M2(T2)−M2(T ) = ∆+ 2dv1 −∆dv1 − 2 = (∆− 2)(1− dv1) < 0,

as dv1 ≥ 2 and ∆ ≥ 3. This is a contradiction to the choice of T .

In each case, we get a contradiction. Hence n1 = m1,∆.

Observe that when k = 1 and n = ∆ + 1, we have T∆+1,1 = {S∆+1};
for k = 1 and n = ∆ + 2 we have T∆+2,1 = {DS∆,2}; and for k = 2

and n = 2∆ we have T2∆,2 = {DS∆−1,∆−1}. We now prove the following

result:

Theorem 6. Let T ∈ Tn,∆,k be a tree, where k ∈ {1, 2}.

(i) If k = 1 and n ≥ ∆+ 3, then

M2(T ) ≥ 4n− 6 + ∆(∆− 3).

The equality holds if and only if T ∼= Bn,∆.

(ii) If k = 2 and n ≥ 2∆ + 1, then

M2(T ) ≥ 4n+ 2∆(∆− 3)− 4.
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The equality holds if and only if T ∼= (r,∆,∆)-dumbbell.

Proof. Let T ′ ∈ Tn,∆,k be a tree with the minimal second Zagreb index.

(i) To obtain the desired result, we prove two claims.

Claim 3. If ∆ ≥ 4, then ni(T
′) = 0 for each i ∈ [3,∆− 1].

Proof of Claim 3. On the contrary, assume that T ′ contains a vertex

w such that 3 ≤ dw = t ≤ ∆ − 1, where Nw = {w1, w2, . . . , wt}. Since

k = 1, there exists a unique vertex u such that du = ∆. Let wt lie on the

u,w-path, that is, dwt
≥ 2. Also, assume that w maximizes d(u,w) among

all vertices of degree between 3 and ∆ − 1. This implies that there are

t− 1 pendant paths, each with one end vertex w. Therefore dwi
∈ {1, 2},

for i = 1, 2, . . . , t− 1. Let v be the pendant vertex connected to w via the

path that includes w1. We construct a new tree T1 from T as follows:

T1 = T ′ − ww2 + vw2.

Then dv(T1) = 2, dw(T1) = t − 1 and dx(T1) = dx(T
′) for all x ∈

V (T ′)\{w, v}. We now consider two cases:

Case 1. When w1 = v, we obtain

M2(T1)−M2(T
′) = dw2

(2− t) + (t− 2) + (dwt
(t− 1)− dwt

× t)

+
∑

wj∈Nw\{w2,wt}

(
dwj (t− 1)− dwj × t

)
,

< (t− 2)(1− dw2
)− dwt

.

Since dw2
≥ 1 and dwt

≥ 2, we have M2(T1) − M2(T
′) < 0. This is a

contradiction to the choice of T ′.

Case 2. When w1 ̸= v, we obtain

M2(T1)−M2(T
′) = (dwt(t− 1)− dwt × t) + 2 + dw2(2− t)

+
∑

wj∈Nw\{w2,wt}

(
dwj

(t− 1)− dwj
× t

)
,

< dw2
(2− t)− dwt

+ 2.
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Since dwt ≥ 2, dw2 ≤ 2 and t ≥ 3, it follows that M2(T1) < M2(T
′)0. This

is a contradiction to the choice of T ′. This proves the Claim 3.

Claim 4. The tree T ′ has exactly one pendant path of length at least 2.

Proof of Claim 4. On the contrary, assume that T ′ contains two pen-

dant paths P1 and P2 of lengths l1, l2 ≥ 2, respectively. We construct a

tree T2 from T ′ by detaching the subpath of length l2 − 1 from P2 and

attaching it to the pendant vertex of P1. Then

M2(T2)−M2(T
′) = ∆− 2∆ + 4− 2 = 2−∆ < 0,

as ∆ ≥ 3. This is a contradiction to the choice of T ′. Therefore, T ′ has

exactly one pendant path of length at least 2. This completes the proof of

Claim 4.

From Claim 3, the vertex degree sequence of T ′ is (∆, 2, . . . , 2︸ ︷︷ ︸
n−∆−1

, 1, . . . , 1︸ ︷︷ ︸
∆

),

and Claim 4 implies that m1,2 = 1 and m2,∆ = 1. From (2), we obtain

m2,2 = n−∆− 2 and m1,∆ = ∆− 1. Hence T ′ ∼= Bn,∆. Thus

M2(T
′) = ∆(∆− 1) + 2∆ + 2 + 4(n−∆− 2).

(ii) To obtain the required result, we prove two claims.

Claim 5. If ∆ ≥ 4, then ni(T
′) = 0 for each i ∈ [3,∆− 1].

Proof of Claim 5. Assume to the contrary, there exists u ∈ V (T ′) such

that du ∈ [3,∆ − 1]. Since k = 2 and du(T
′) > k, it follows that T ′

contains at least a pendant vertex z such that z1 ∈ Nz with dz1 ̸= ∆. This

contradicts Lemma 7. Therefore ni(T
′) = 0 for each i ∈ [3,∆ − 1]. This

completes the proof of Claim 5.

Claim 6. n1(T
′) = m1,∆.

Proof of Claim 6. The proof directly follows from Lemma 7.
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From Claim 5 and (1), the degree sequence of T ′ is

(∆,∆︸ ︷︷ ︸
2

, 2, . . . , 2︸ ︷︷ ︸
n−2∆

, 1, . . . , 1︸ ︷︷ ︸
2(∆−1)

). By Claim 6, we obtain m1,∆ = n1 = 2(∆ − 1).

This implies m1,2 = 0. Since n > 2∆, it follows that n2 > 0 and m∆,∆ = 0

(as m1,2 = 0). By using m1,∆ = 2(∆ − 1), m1,2 = 0 and m∆,∆ = 0 in

(2), we obtain m2,2 = n − 2∆ − 1 and m2,∆ = 2. Hence T ′ ∼= (r,∆,∆)-

dumbbell. Therefore

M2(T
′) = 4(n− 2∆− 1) + 2∆(∆− 1) + 4∆.

This completes the proof.

Applying Lemmas 3 and 7, we draw some graphs that provide informa-

tion on the minimal second Zagreb index in Tn,∆,k, as illustrated in Figure

2. From Figure 2, we observe that for 4 ≤ ∆ ≤ 5, trees with the minimal

second Zagreb index do not contain any vertex of degree 3, whereas this is

not the case for ∆ ≥ 6 (for example, see the trees in Figure 2 when ∆ = 6

and n = 22, and when ∆ = 7 and n = 25).

In the next lemma, we find the degree sequence of the minimal trees in

Tn,∆,k when ∆ ≥ 4 and k ≥ 3. Specifically, when ∆ ∈ {4, 5}, the degree

sequence of minimal trees differs from that of minimal trees with ∆ ≥ 6.

Moreover, for graphs with ∆ ≥ 6, the degree sequence changes after every

group of four consecutive values of ∆. In particular, for max{4i+ 2, 4} ≤
∆ ≤ 4i+5, where i ≥ 0, the degree sequence of minimal trees remains the

same for these four consecutive values but changes after each such group.

Therefore, the structure of minimal trees with respect to second Zagreb

index varies after every set of four consecutive values of ∆, when ∆ ≥ 6

and k ≥ 3. We define a subset T ′
n,∆,k ⊆ Tn,∆,k of trees as follows:

T ′
n,∆,k = {T ∈ Tn,∆,k | n ≥ (∆− 1)k + 2, ∆ ≥ 4 and k ≥ 3}.
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Figure 2. Based on Lemmas 3 and 7, all possible non-isomorphic trees
in Tn,∆,k for k(∆ − 1) + 2 ≤ n ≤ k(∆ − 1) + 7, k = 3
and 4 ≤ ∆ ≤ 7 are shown. In the labels (x, y) beneath the
graphs, x represents the order of the graph, while y denotes
the second Zagreb index.

Lemma 8. Let T ∈ T ′
n,∆,k be a tree with the minimal second Zagreb index

and max{4i + 2, 4} ≤ ∆ ≤ 4i + 5, where i ≥ 0. Then nq(T ) = 0 for each

q ∈ [i+ 3,∆− 1].

Proof. On the contrary, assume that there exists u ∈ V (T ) such that

3 + i ≤ du ≤ ∆− 1. Let Nu = {u1, u2 · · · , ut}, where t = du. By Lemma

7, we have duj
≥ 2 for each j ∈ {1, 2, . . . , t}. Then there are t paths, each

having one endpoint u and the other endpoint as a pendant vertex. Thus,

by Lemma 7, there are atleast t vertices with degree ∆, that is, k ≥ t.
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Let v be a pendant vertex such that there is a u, v-path and without loss

of generality assume that u1 does not lie on this u, v-path. We construct

a new tree T1 from T as follows:

T1 = T − uu1 + vu1.

Then T1 ∈ Tn,∆,k. Also, dv(T1) = 2, du(T1) = t − 1 and dw(T1) = dw(T )

for all w ∈ V (T )\{v, u}. We obtain

M2(T1)−M2(T ) = ∆− du1
(t− 2)−

t∑
j=2

duj
.

Since duj ≥ 2 for each j ∈ {1, 2, . . . , t}, t ≥ 3+ i and ∆ ≤ 4i+5, we obtain

M2(T1)−M2(T ) ≤ ∆− 2(t− 1)− 2(t− 2) = 4(1− t) + ∆ + 2 ≤ −1 < 0.

This gives a contradiction to the fact that T has minimal second Zagreb

index. Thus, nq(T ) = 0 for each q ∈ [i+ 3,∆− 1].

From Lemma 8, we observe that fully characterizing trees having the

minimal second Zagreb index is challenging due to changes in the degree

sequence after every group of four consecutive values of ∆. However, we

explicitly characterize the trees with the minimal second Zagreb index for

3 ≤ ∆ ≤ 5. We define a set T ′′
n,∆,k as follows:

T ′′
n,∆,k = {T ∈ Tn,∆,k : n ≥ (∆− 1)k + 2, 3 ≤ ∆ ≤ 5 and k ≥ 3}.

Next, we define a class T 2
n,∆,k ⊆ T ′′

n,∆,k of trees that satisfy the following

conditions:

(i) Every tree in T 2
n,∆,k has the degree sequence

π4 = (∆, . . . ,∆︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
n−2−k(∆−1)

, 1, . . . , 1︸ ︷︷ ︸
2+k(∆−2)

).

(ii) If n ≤ ∆k, then m1,∆ = k(∆ − 2) + 2,m2,∆ = 2n − 2k(∆ − 1) − 4

and m∆,∆ = ∆k − n+ 1.
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(iii) If n ≥ ∆k + 1, then m1,∆ = k(∆ − 2) + 2,m2,∆ = 2k − 2 and

m2,2 = n−∆k − 1.

In the next theorem, we characterize minimal trees in T ′′
n,∆,k with re-

spect to second Zagreb index and find lower bounds.

Theorem 7. Let T ∈ T ′′
n,∆,k be a tree. Then

M2(T ) ≥


k∆3 −∆2(3k + n− 1) + 2∆(2n+ k − 3) if n ≤ ∆k,

4n− 4 + ∆(∆k − 2k − 2) if n ≥ ∆k + 1.

The equality holds if and only if T ∈ T 2
n,∆,k.

Proof. Let T ′ ∈ T ′′
n,∆,k be a tree with the minimal second Zagreb index.

From Lemmas 1 (∆ = 3) and 8 (∆ ≥ 4), and (1), the tree T ′ has the

degree sequence

π4 = (∆, . . . ,∆︸ ︷︷ ︸
k

, 2, . . . , 2,︸ ︷︷ ︸
n−2−k(∆−1)

1, . . . , 1︸ ︷︷ ︸
2+k(∆−2)

).

By Lemma 7, we have m1,2 = 0. Combining this with the above degree

sequence π4 and (2) implies

m1,∆ = n1 = k(∆− 2) + 2,

2m2,2 +m2,∆ = 2(n− 2− k(∆− 1)),

m2,∆ + 2m∆,∆ = 2(k − 1).

 (17)

Claim 7. m2,2 and m∆,∆ cannot be simultaneously positive.

Proof of Claim 7. To the contrary, assumem2,2 > 0 andm∆,∆ > 0. Let

uv, xy ∈ E(T ′) such that dx = dy = ∆, du = dv = 2 and u1 ∈ Nu(T
′)\{v}.

Then by Lemma 3, we obtain a contradiction to the choice of T ′. Thus,

m2,2 and m∆,∆ cannot be simultaneously positive. This completes the

proof of Claim 7.

We now consider the following two cases.
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Case 1. When n ≤ ∆k. In this case, we claim that m2,2 = 0. Otherwise,

m2,2 > 0. From π4, we have n2 = n− k(∆− 1)− 2 ≤ ∆k− k(∆− 1)− 2 =

k − 2. This, along with m1,2 = 0, m2,2 > 0 and the fact that T ′ contains

exactly k − 1 internal paths with end vertices of degree ∆, implies that

m∆,∆ > 0. Now, by applying Claim 7, we have m2,2 = 0. Using this in

(17), we obtain m2,∆ = 2n− 4− 2k(∆− 1) and m∆,∆ = ∆k−n+1. Thus

T ′ ∈ T 2
n,∆,k. Consequently

M2(T
′) = ∆(k(∆− 2) + 2) + ∆2(∆k − n+ 1) + 2∆(2n− 4− 2k(∆− 1)).

Case 2. When n ≥ ∆k + 1. In this case, we claim that m∆,∆ = 0.

Contrarily, assume that m∆,∆ > 0. From π4, we have n2 = n − k(∆ −
1) − 2 ≥ ∆k + 1 − k(∆ − 1) − 2 = k − 1. This along with m1,2 = 0,

m∆,∆ > 0 and the fact that T ′ contains exactly k − 1 internal paths with

end vertices of degree ∆, implies that m2,2 > 0. By Claim 7, this is not

possible. Thus, m∆,∆ = 0. This, with (17) implies that m2,∆ = 2k − 2

and m2,2 = n−∆k − 1. Thus, T ′ ∈ T 2
n,∆,k. Hence

M2(T
′) = ∆(k(∆− 2) + 2) + 2∆(2k − 2) + 4(n− k∆− 1).

This completes the proof.

4 Concluding remarks

In this paper, we provide a complete characterization of the trees with

maximal and minimal first Zagreb index in the class Tn,∆,k, as well as

the maximal second Zagreb index in the same class. Additionally, we

characterize the trees with minimal second Zagreb index for ∆ ≥ 3 and

k ∈ {1, 2}, and for 3 ≤ ∆ ≤ 5 with k ≥ 3.

We defined the subset T ′
n,∆,k ⊆ Tn,∆,k for ∆ ≥ 4 and k ≥ 3 and

provided a complete solution for the minimal second Zagreb index when

4 ≤ ∆ ≤ 5 and k ≥ 3. Additionally, we presented partial results and

observations on trees in T ′
n,∆,k with the minimal second Zagreb index for

∆ ≥ 6 and k ≥ 3. However, completely characterizing the minimal second
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Zagreb index in T ′
n,∆,k for ∆ ≥ 6 and k ≥ 3, remains an open problem.

Based on Lemmas 3, 7, and 8, such trees satisfy the following constraints:

(i) The tree T does not contain internal path of length 1 and length

greater than 2 simultaneously.

(ii) All the pendant vertices are adjacent to the vertices of degree ∆ only.

(iii) The tree T with max{4i + 2, 4} ≤ ∆ ≤ 4i + 5 holds nq = 0 for

i+ 3 ≤ q ≤ ∆− 1, where i ≥ 0.

Despite these structural constraints, the complete classification of such

trees in T ′
n,∆,k for ∆ ≥ 6 and k ≥ 3 remains unresolved. Thus, we pose

the following problem:

Problem 2. Characterize all n-vertex trees in T ′
n,∆,k (∆ ≥ 6, k ≥ 3) with

minimal second Zagreb index.
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